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An Evolutionary Autonomous Agents
Approach to Image Feature Extraction
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Abstract—This paper presents a new approach to image feature The method efficiently computes the directions of principal
extraction which utilizes evolutionary autonomous agents. Image curvature. Maintzet al. [25] investigated the problem of

features are often mathematically defined in terms of the gray- ayauating ridge seeking operators for multimodality medical
level intensity at image pixels. The optimality of image feature image matching

extraction is to find all the feature pixels from the image. In ) : . .
the proposed approach, the autonomous agents, being distributed ~ With conventional approaches to image feature extraction,
computational entities, operate directly in the 2-D lattice of all the possible feature patterns must be carefully enumerated
a digital image and exhibit a number of reactive behaviors. and exhaustively searched. This represents a nontrivial task.
To effectively locate the feature pixels, individual agents sense Fyrthermore, the resulting template masks may be sensitive to
the local stimuli from their image environment by means of ~iqe in the image. Another disadvantage is that the complexity

evaluating the gray-level intensity of locally connected pixels, and fi feat tracti | d border f .
accordingly activate their behaviors. The behavioral repository of image feature extraction (e.g., a closed border for a region)

of the agents consists of: 1) feature-marking at local pixels and i determined by the complexity of the image. For instance, in
self-reproduction of offspring agents in the neighboring regions a spiral-like region, the template-based border tracing method

if the local stimuli are found to satisfy feature conditions, 2) [21] can be slowed down simply due to the length of the
diffusion to adjacent image regions if the feature conditions are porder to be traversed.

not held, or 3) death if the agents exceed their life span. As part . o . )
of the behavior evolution, the directions in which the agents self- The approach introduced here utilizes evolutionary au

reproduce and/or diffuse are inherited from the directions of their {0NOMouUs agents that can self-reproduce, diffuse, and cease

selected high-fitness parents. Here the fitness of a parent agent isto exist during the course of interacting with a digital image
defined according to the steps that the agent takes to locate anenvironment. The most distinct characteristics of our approach

image feature pixel. lie in that it is bottom up, decentralized, and distributed in
Index Terms—Autonomous agents, diffusion, evolutionary Nature and relies on local agent “processes” whose behaviors
computation, image feature extraction, self-reproduction. are both easy to define and natural for software and hardware

implementations. This paper demonstrates such an agent sys-
| INTRODUCTION _tem through illgstrative examples i_n which a cl.ass of agents
: is equipped with the above mentioned behaviors to extract
N COMPUTER vision and image processing, image fedeatures from the image.
tures like edges, lines, curves, corners, and borders may be
detected using some mathematically defined operators, such
as gradient edge detectors and zero-crossing edge detectdrRelated Work

or using surfac_e_ fitting m_ethods [12_]. Detecting these feat“reSEvolutionary computation is concerned with applying the
can greatly facilitate the interpretation of the scenes.  compytational models of evolutionary processes (e.g., [3]) to
Many sophisticated techniques and algorithms for imagger achieving intelligent agent behaviors, where intelligence
feature extraction have been proposed and applied in recRnfyeasured in terms of the agent ability to contribute to its
years [4], [5], [21], [23], [26]. For instance, Liow [21] pro- gejtmaintenance at genetic, structural, individual, as well as
posed an extended border tracing technique that combingd,; |evels [34], or solving real-life computation-intensive
the operations Qf region f_|nd|ng and closed contour detec“%’hgineering problems, such as numerical optimization. In
Alter and Basri [1] applied the so-called Salient Networkscent years, researchers in this field have been studying and
method for extracting salient curves and noted that this methgd ancing the methodologies for evolutionary computation as
could suffer the problem of failing to identify any salienfye|| a5 their applications in a number of areas, including
curve other than the most salient one (according to thejenetic algorithms, evolution strategies, genetic programming,
proposed saliency measure). Lee and Kim [20] presente,@yytionary programming, and classifier systems [10], [11],
method of extracting topographlc features _dlrect_ly from B3], [15], [16], [28], [29], [32]. Fogel [9] has provided a
gray-level character image, without calculating eigenvalugsyough treatment on the foundation and scope of this field.
and eigenvectors of the underlying image intensity Surface-Evolutionary autonomous agent systems as applied to digital
Manuscript received May 1, 1997; revised July 9, 1997. This work wd§N@g€ Processing Is a neV\_’ly e_xplore(_j area of research that
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automata, which drew upon Von Neumann’s model [31], iffe span will continue to react to their image environment by
concerned primarily with the fixed-point properties in a latticavay of evaluating the pixel gray-level intensity and selecting
of finite automata in which cells act locally according t@ccordingly some of their behaviors. Such agents are called
a set of cellular rules [22]. Shanahan [33] investigated the active agents at time

class of cellular automata in which a population of organisms From the above notions, we can further define an efficiency
evolves in a microworld of square grid locations by repeatreasure of the optimal feature extraction during a given period
edly executing four local procedures, nameatgase to exist, of discrete timet as the average rate of success that active
move, mergeand duplicate The goal of his work was to agents find image features duringHere, the rate of success
experimentally investigate under what conditions an instansedefined as the ratio between the total number of extracted
of cellular automata could produce a significant amount &fature pixels over the total number of active agents being
complexity and diversity. Tamayo and Hartman [35] appliedsed duringt.

computational organisms to model reaction-diffusion systemsDefinition 2.3 (Efficiency of Optimal Feature Extraction):
from which interesting space-time patterns reminiscent ®he efficiency measure of an optimal feature extraction by
chemical turbulence, solitons, and self-excited oscillatiormgaitonomous agents for time intervals is defined as the

could be constructed and observed. following function:
The proposed autonomous agent model exhibits general .
cellular behavior characteristics similar to those of cellular Zm(k)
automata, but with the following fundamental differences; 1< =
namely: 1) in the proposed agent model, the automata operate Q) = ¥ Z - (1)
in a gray-level digital image and hence inanimate stimuli are =1 ZN@(k)
present in the cellular environment, and 2) the behaviors of k=0

agents evolve as a result of the interaction with and within
the image environment, whereas in cellular automata they
predefined.

Qerem(k) is the number of extracted feature pixels found at
Ime %k and N (k) is the number of active autonomous agents
® in 7 at time k.
From Definition 2.3, it is clear that the higher tt¢) value,
the higher the efficiency of feature extraction will become.
The remainder of this paper is organized as follows: Section
Il formally states the global optimality criterion of image 1
feature extraction from the point of view of the evolutionary

autonomous agents approach. Section Ill gives the repre- )
sentation of the proposed autonomous agents, their reactivé '€ évolutionary nature of the proposed agents approach

behaviors, and the algorithm underlying the agent-based imai§s In the way in which the generations of autonomous agents
feature extraction. Section IV describes several experimef{§ Sélected and replicated. This section presents the detailed
in which the agent-based approach is effectively applied g@ﬂ_nmons of evolungnary autonomous aggnts, mcl_udmg their
extract image edges and multiple features and to fouog\pvw_onment properties, chal plxel_evgluat|on function, fithess
dynamically moving features. Section V discusses the dffnction, and the evolution of diffusion and asexual self-
namics of the agent population and examines the issues s(froduction behaviors.

as the effects of behavioral parameters on the computation.

Finally, Section VI concludes the paper by highlighting thé&. Two-Dimensional Lattice of an Agent Environment

B. Organization of the Paper

. EVOLUTIONARY AUTONOMOUS AGENTS
FOR IMAGE FEATURE EXTRACTION

key contributions of this work. Autonomous agents operate in a rectangular lattice that
corresponds to a digitized image. In the rectangular lattice,
Il. PROBLEM STATEMENT each eight-connected grid represents an image pixel, as illus-

frated in Fig. 1. The grid also signifies a possible location

The two-dimensional (2-D) lattice in which the propose or an autonomous agent to inhabit, either temporarily or

autonomous agents reside is a gray-level imdgef sizelU x ermanent
V (i.e., an array ol/ rows byV columns of pixels). Supposep Definitionyls 1 (Neighboring Region of an Agenfhe
thatZ contains a number of pixels whose intensity relative toei hborin re‘ ion ofgan a e?wt at gi iis a circulgr reqion
those of its neighboring pixels satisfies certain mathematicaﬂg% d % -9 ith dg TI?])@ ols falling | g'd
well-defined conditions. These pixels are called feature pixe ﬁ'n ered a pixep I\?”d trha Ius'ﬁ.hb € PIxels Ia '?gtr:ns' € ¢
The objective of the autonomous agentsZins to extract all 'S region are caiie € neighioring pixels of e agent.

the predefined features af by finding and marking at the Each of f[h_e neighboring pixels is located in one of the eight
feature pixels. This is essentially an optimization problem evenly divided sectors. These sectors are also referred to as

stated below. ?ﬁ'e eight directions of the region. Fig. 1 shows an example

Definition 2.1 (Optimal Feature Extraction)Let A/ denote of the neighboring pixels of an agent from eight directions,
the total number of feature pixels if If the total number of respectively, whens = 1.
feature pixels detected and marked by active agents is equal . . ) . )
to M, it is said an optimal feature extraction is achieved. 5- Local Stimulus in Two-Dimensional Lattice

Definition 2.2 (Active Agents)At a certain timet in the 2- An autonomous agent is coded such that it always checks
D lattice, autonomous agents whose age does not exceed thgineighboring region and selects its behavior according to the
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two-dimensional Jattice Condition for self-reproduction

autonomous agent and feature-marking at pixel p

connectivity of grids

gray-level intensity (8-connectedness) Contrast threshold §=5

Num. of pixels below threshold D € A=[2,5]

per s
,,,,,,,

- :1:: ‘contrast below  §
- 0: contrast above -

.

Fig. 1. Each pixel in the 2-D lattice environment is connected to eight ‘
neighbors (i.e., eight-connectedness). An autonomous agent can check,
self-reproduce, and diffuse to any one of these neighboring locations.

"D=somofall I's=5
 satisfies the conditiqn, B

- feature-markingat ©
- the'image pixel (and -
. reproduction’-not- -
+shown iit the figure) -

concentration of certain gray-level pixels. If the concentration
is within a specific range, the agent will activate its self-
reproduction mechanism. Such a concentration is considered
as a triggering local stimulus to the agent.

Definition 3.2 (Local Stimulus):The local stimulus that se-
lects and triggers the behaviors of an agent at pixel location .
(i,7) is computed from the sum of the pixels belonging to

a neighboring region which satisfy the following condition: @ Q ;
the difference between their gray-level intensity values and &é%’&
%«6»‘« 7 <y

the value at(i, j) is less than a threshold. In other words,

the stimulus is determined by the density distribution of all Q &Q

the pixels in the neighboring region whose gray-level intensity Q
values are close to the intensity(aty), as illustrated in Fig. 2. Q
More specifically, the density distribution is defined as follows:

i i Fig. 2. An illustration of gray-level intensity checking. At each pixel
Dy = Z Z {1 |lI(i + 5,4 +1¢) — I(s,5)]| <6} (2) an autonomous agent evaluates the outcomes of applying a mathematically
’ well-defined operator. If the specific feature condition is satisfied, the agent

=—rt=— . .
s=mr " leaves a permanent feature-marker at the pixel location.

where
K the radius of agent neighboring region, i.e., & ts evaluation of the density distribution afalls inside the
circular region centered &, 5); A interval, i.e., D5, . € A
s, the indexes of a pixel belonging to the neighbor- g 2 presents an example in which circles placed within
~ ing region relative ta(4, j); individual grids denote the markers.
I(i,j)  the gray-level value ati, j); 2) Agent Fitness FunctionTwo of the most important be-
6 a predefined positive threshold. haviors of an agent are diffusion and self-reproduction. Both
can be executed in either a directional or a nondirectional

C. Agent Behaviors mode. In the directional mode, the agent selects the most

During the course of evolution, each of the agents in ti@dfective parent agents among all the previously successful
lattice will exhibit several behaviors, e.g., self-reproducing@nes and copies the directions as used in their reproduction
randomized/nonrandomized search. These behaviors are tdigd diffusion. The selection of the parent agents is based on
gered by the external stimuli present in the environment, whideir fitness function values. What follows defines the agent
are computed using (2). As a result of the agent behavidness function.
execution, certain patterns, i.anarkersleft behind by the  Definition 3.4 (Agent Fitness Function)et F'(¢;) denote
agents, will emerge, which in turn characterize the featurestftg¢ fitness value of an agent. Thus
the digital image environment. This section provides a detailed
description of the reactive behaviors of an autonomous agent. -

1) Feature Marking: When an agent detects a feature pixel  £° (i) = i d)zlﬂlrfoels_siﬁggg:lr% stimulus 3)

p it will place a fixed marker ap. There may be different kinds _1 otherwise

of features in an image, hence several kinds of markers may

exist. The stimulus for selecting the feature-marking behaviorAs can be noted from the above definition, the fithess
can be defined as follows: function measures how long it takes the agent to find a feature

Definition 3.3 (Feature-Marking):Let A = [u,v] be an pixel. The maximum fithess value is equal to one if the agent
acceptable range of the pixel count as defined using (2), whé&eexactly placed at the feature pixel at the time of being
u < v. The agent places a marker at pixglif the outcome reproduced.

N steps before self-reproduction
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Directional diffusion

o ae 3
L selected  no age 5
ddir W selected  yes

ddr

r_dir no

:
' age 4
selected no

d_d,lr ” Direction vectors of
rdr - no - previously selected
‘ ' high-fitness agents

[ [T T[]

Direction vector of

current agent (TITIHHITT]
( INEENEN
[ T T]

[ [ T[T TT]

Fig. 3. An illustration of agent diffusion behavior. An autonomous agent of age three diffuses to its neighboring region of the 2-D lattice, ioraafrect
updated based on the directions of the previously selected agents (see Section I1I-C5). After each diffusion step, the age of the agent wilhtesl ibgreme
one. The process of diffusion provides a chance for the agent to search image features from the locations of its parent agents.

3) Diffusion According to Definition 2.2, an active agent The direction vector of the agent as mentioned in the above
always evaluates the pixel gray-level intensity of a neighborirtgfinition is updated based on the diffusion directions of its
region relative to its current location to see whether or not thiseviously selected high-fithess parent agents, as illustrated in
location can be regarded as a feature pixel, i.e., a pixel tH&dg. 3. The details on the updating computation are given in
satisfies the condition as stated in Definition 3.3. If the curre8ection 11I-C5.
location is not a feature pixel, the agent will exhibit a diffusion 4) Self-Reproductionif an agent detects a feature pixgl
behavior by moving to a new location within its neighboringt will reproduce a finite number of offspring agents within its
region in either a directional or a nondirectional (i.e., randommeighboring region in either a directional or a nondirectional
direction) mode. The length of diffusion will be randomly(i.e., random-direction) mode. The self-reproduction behavior
generated. The diffusion behavior plays an important role fenables the agent to distribute offspring agents near the pixel
the agent to search feature pixels within the 2-D lattice. Thecation that meets the feature definition, and hence increases
specific stimulus that triggers this behavior is given as followthe likelihood of further feature extraction.

Definition 3.5 (Directional Diffusion):Let A = [u, v] be an Definition 3.6 (Directional Self-Reproductionl:et A =
acceptable range of the pixel count as defined using (2), whérev] be an acceptable range of the pixel count as defined using
u < v. The agent moves to its adjacent locations whenev@), whereu < v. The agent self-reproduces a finite number of
the outcome of its evaluation of the density distribution falleffspring agents within its neighboring region of radiugn a
outside the interval, i.e., Dfi ¢ A. The direction of the direction as computed from its direction probability vector, if
diffusion is selected based on an eight-element probability vebe outcome of its evaluation of the density distributiorpat
tor (corresponding to eight evenly divided directional sector&lls inside the\ interval, i.e.,D¥, in € A. The distance of the
in which each value indicates the probability of becomingffspring from the parent agent inside the self-reproduction
high-fitness if the agent diffuses in the corresponding directioregion will be randomly generated.

The length of the diffusion is randomly generated within the Fig. 4 illustrates the self-reproduction behavior of an au-
diffusion region. tonomous agent. The direction vectors of self-reproduction by
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Directional self-reproduction

Parameter Parameter
age 3 age 1
selected yes selected yes

r_dir W

Direction vectors of . .
previously selected Direction vector of
high-fitness agents current agent

Parent agent

Fig. 4. Anillustration of agent self-reproduction behavior. The asexual self-reproduction of an agent is triggered by the external stimuliirortheeahas

computed from the density distribution of their neighboring pixels of certain gray-level intensity values. The process of diffusion and detfti@pro

repeats during the evolution of the autonomous agent population. The direction of self-reproduction is determined by a direction vector as computed
from those of previously selected high-fithess parent agents.

the agent (and subsequently by its offspring) depend on arStep 2) Direction Vector UpdatingFor all the selected
updating mechanism as given in Section I1I-C5. agents, compute

5) Direction Vector Updating:Assume that a grandparent
agent¢§g_1) of generationg — 1 produces a set of parent p(d € O)y =
agents {¢§§’)}. This set further produces the offspring of ZN
generatiory + 1, as denoted b){(j)gf,jl)}. Thus, the directions
of diffusion and self-reproduction by ageabéj’,jl) will be and
updated using the directions of some selected agents from
{¢ (g)} and {¢(g+1)} The selection of these agents is based plw € D)y =

! Zo

on the|r f|tness values as computed using (3).

What follows provides the details on the updating mecha-
nism for an autonomous agent to compute its diffusion and where
self-reproduction direction vectors. Here, a direction vector = © the set of possible directions for agent diffusion;
specifies the probability of success in locating image features @ the set of possible directions for agent self-

(4)

()

if the corresponding direction is chosen for the respective reproduction;

behavior. N; the number of agents that have diffused to the local
More specifically, the probabilities as associated with direc- stimulus from directior;

tions @ andw, respectively, for diffusion and self-reproduction O; the number of agents reproduced by their parents

by agentd)(g*]L are derived in the following two steps. from direction .
Step 1) Agent SelectionSelect all c @V and The at.)ove. formulas generate th.e prqbab!lity distributions
P 1) ?g-l—l) ¢ {937} for the diffusion and self-reproduction directions by way of
{# ijk b st E(d) > calculating the percentage of occurrences.
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input: A digital image of size U x V/, in which each pixcl has a gray-level value
output: Immobilc agents (or markers) over [eature pixels

randomly distribute an initial set of agents, {q&ﬁ‘”}, over the image
assign the initial agent set to the active agent set: ® « {$\”}
while ¢ # () do
for all current ¢ € ¢ do
if there exists grandparent(s) ¢’ of ¢ then
compute the fitness values for all ¢/
select ¢/, s.t. F(¢') >0
update (0}, and (Q)y, using (4) and (5), respectively
else
assign P(0)4 and P(Q), to uniform distributions
endif
if at local triggering stimulus then
reproduce offspring {¢@D} in direction w € @ with ’(Q), to a neighboring sector of radins »
O — dU{pltD}
become immobilized (or leave a marker) at the current location
be—d—9p
else
if age, = life_span then
d—d—¢
remove agent from the image
else
diffuse to a neighboring sector of radius «, in direction § € © with P(0),
age, ¢ agey, + 1
endif
endif
endfor
endwhlie

Fig. 5. The agent behavioral control and computation algorithm.

TABLE | where @Eg),¢§g+l), and <i>§g+1> denote the agents reaching
THE ATTRIBUTES THAT DETERMINE AGENT BEHAVIORS the border, the reproduced agents within the adjacent neigh-
Attribute | Description | Value boring locations, and the agents immobilized at bordgre.,
c class identifier char label feature-markers), respectivelsp symbolizes that the results
g intensity contrast theeshold >0 are generated from two concurrently selected behaviors.
A acceptable range of density value fu,2], v>u>0 f
s umber of offspring scll-reproducible >0 As the reproduced agents move away from the their current
A fife span {0,1ife span) locations, some of them will encounter other parts of the border
P(©) __ direction vector for diffusion ©=1{12---8} ggain, and hence the self-reproduction cycle will repeat itself,
P(Q) direction vector for self-reproduction Q={1,2,.-,8} hile th h ds their lif ill ish
K radius of diffusion and self-reproduction region (1, K] while those whose age exceeds their lite span will vanish.

E. The Agent Computation Algorithm

6) Agent Vanishing (“Death”): When the age of an agent The complete algorithm for agent-based image feature ex-
exceeds its life span, the agent will abort further featurgaction is given in Fig. 5.
searching movements and vanish from the 2-D lattice envi-
ronment. IV. EXPERIMENTS ONIMAGE FEATURE EXTRACTION

As can readily be noted from the above overview, the The preceding section has provided a formal model of
reactive behaviors of autonomous agents are parameterizeffonomous agent behaviors. This section further examines

a set of attributes as summarized in Table I. how such agents can be applied in digital image environ-
ments to extract some interesting image features. In particular,
D. An Example we present some typical image processing experiments on

Taking border-tracing agents as an example, when an age#ge/border detection and following.
of border-sensitive class reaches a border location, it will )
permanentlyeside at the border and proceed to self-reprodu@é Image Edge Detection
some offspring within its immediate neighboring region, as Fig. 6 presents a series of snapshots from an optimal edge
shown in Fig. 4. This process is best illustrated in the followdetection experiment. The given image here is a ¥5@50
ing reaction scheme: 256-gray-level digital image. It was used as the grid lattice
for a class of autonomous agents. Initially, a group of 100
agents was randomly distributed in the lattice. Since this is a
(6) relatively small number of agents, the majority of them will

@

g behavioral selection x (g+1) i (g+1)
i€ {iNborder0} ¢ } ® (I)Z

je{lli—jli<w



LIU et al: IMAGE FEATURE EXTRACTION 147

(@) (b)

© (d

Fig. 6. The extraction of edges from a digital image based on the proposed autonomous agent-based computation model. Note that the triggering conditi
for the behaviors of an agent is computed from the eight-connected neighbors of the agent. The original input image is the onetas labEtedfollowing
images show the evolution of the agent population over the 2-D latticez (&) 0); (b) (¢t = 4); (c) (¢ = 8); (d) (¢t = 12).

not immediately find the image features, but rather after aBy definition, the number of total diffusion movements

few randomized movements as illustrated in Figt6= 4). allowed is determined by the life span of the agents. In
In the snapshots, the clouds of light-grey dots signify thbis experiment, the life span of the agents was set to three.
active autonomous agents that are undertaking certain diffusibmerefore, if an agent does not find any features during the
processes, and the sequences of dark-grey dots are the maiikégsaction with its environment for more than three discrete
left by the agents once they encounter the feature pixehe steps, it will vanish from the lattice environment. On the

locations. other hand, the agents in the environment will asexually self-
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@) (h)

Fig. 6. (Continued.)The extraction of edges from a digital image based on the proposed autonomous agent-based computation modkl, Al image
features (i.e., region borders in this case) are found and labeled with markefs.=£€)6); (f) (t = 20); (9) (¢t = 24); (h) (¢t = 26).

reproduce offspring agents if the triggering condition of certaimarker if the density distribution of its immediate neighboring

density-distribution satisfies a giveninterval. In the present pixels, whose gray-level intensity values are not deviated from
experiment, we sef = [2,7] for a neighboring region of that of the current location by 42, falls into the specific interval
radiusx = 1, the contrast level difference between the currewf [2, 7].

pixel (at which an agent resides) and its eight neighboringl) Effects of Individual Behaviors on Feature Extraction:

pixels & = 42, and the number of offspring agents reproducetbo examine the effects of individual behaviors on the effi-
at a feature pixek = 5. That is to say, an agent will leave aciency of optimal image feature extraction, we further con-
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Fig. 7. The snapshots of agent evolution under three different experimental conditions (see text). (a) random reproduction and diffusiotior{h) direc
diffusion, (c) directional reproduction.

ducted three experiments that corresponded to the following the direction for diffusion is determined according to an
three conditions, respectively. updated direction vector.

1) Mode 1—Random Reproduction and Diffusidiie di- 3) Mode 3—Directional Reproductiorithe directions for
rections for the agent to self-reproduce and diffuse  Self-reproduction and diffusion are determined according
within a neighboring region of radius = 2 (i.e., the to updated direction vectors.
evenly divided sectors within a % 5 region for self- Fig. 7 presents three snapshots of the agent evolution under
reproduction and diffusion) are randomly determined. the above mentioned experimental conditions where the age

2) Mode 2—Directional Diffusion:The direction for the of the agents was set to three, the number of offspring agents
agent to self-reproduce is randomly determined wheregproduced was set to eight, and= [2,7]. From the figure,
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Active Agent Population Comparison (¢ = 100, s = 8, A = 3) Efficiency Measure Comparison (®(% = 100, s = 8, A = 3)
450
T T T T T T T T
3300 - < random repr. & diff. - - 7 random repr. & diff. - - - -
directional diff. — 440 | l(_lilre('_tionaltl diff. —
I 1 —_ :ctional repr. ———
3000 directional repr. i ) directional repr
430 B
2500 — 420 _
2000 _ 410 i
populalion measure
400 E
1500 B
390 E
1000 B
380 4
500 - 370 b i
ol 360 I | I i
0 5 10 15 20 25 1 b 10 15 20 25

Fig. 8. A comparison of active agents in the 2-D lattice over the entiféig. 10. A comparison of the efficiency measures in optimal feature extrac-

period of evolution.

Accumulated Feature Marker Comparison (<I>(O) =100,s =8, A=3)

tion.

@(t) under different ®(® (A = 5)

. : : 3500 | . ]
o | random repr. & diff. - - - |- o™ =200 — |
3000 directional diff. — | 3000 . M =100 —
directional repr. — (0) _
Irectional repr 2500 q) — 800 a
2500 |- i _.
2000 [ =
®(t) :
2000 | A 1500 -
markers B
1500 - i 1000
500 ~
1000 ]
0
50
500 4 t
(@
! 1 ] [
0 5 10 15 20 25 d,(#) under different A (&) = 400)
400 | ;
Fig. 9. A comparison of accumulated feature pixels as detected over the /\ A=2—
entire period of evolution. - A=5-—
300 A=8§ -
it can be observed that the shapes of the active agent clouds E
) . . b, (1) 200 F : .
were different among the three conditions. In particular, Mode :
1 produced the largest clouds evenly distributed along the
detected feature pixels. While the active agents in both Modes 100 -
2 and 3 progressed effectively along the local feature pixels,
the layers in the latter case were relative thinner. This is due ,
. . . 0
to the fact that the maximum size of the self-reproduction or 10 20 30
diffusion region in both cases was set tx%. Hence, as only t
one directional sector was selected in the latter case, the actual (b)

reproduction sector became limited to the size of four pixefgy. 11. (a) The dynamics of agent population in the case of edge-detection

(i,e_, only four out of eight reproduced agents were actualhﬁperiment, under three different initial population sizes, whife) curve
kept) shows the total number of active agents existing in the lattice. (b) The effect of

’ . . L different life span values on the dynamics of feature extraction, witg(e)
In addition to these observations, several quantitative COgirve shows the total number of active agents that have found image features

parisons were also conducted, the results of which have begring their interaction with the environment.

shown in Figs. 8-10. Fig. 8 gives the number of active agents

as involved in the region border extraction. Modes 1 and&ents during the initial half of the evolution period and had
were similar in agent population size, the former used slightsfightly more agents later for a short period. Fig. 9 shows a
more than the latter. Mode 3 used a smallest number afmparison of the accumulated feature pixels as detected in
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(@ (b)

) (h)

0]

Fig. 12. An example of autonomous agents for extracting borders of two characters. (a) shows the original image, (b)-(h) provide the snapshots of the
intermediate steps in border extraction, and (i) shows the feature-markers, representing the found borders. It can be noted that the agents @re sensi
those locations that satisfy the triggering condition, i%.= [1,10] and x = 2.
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the three modes. Mode 2 was slightly faster than the randc
mode, while Mode 3 was slightly slower since fewer agen
were reproduced each time for reasons as mentioned in
preceding paragraph.

Of greatest interest is Fig. 10 which compares the efficien
measures among the three modes. From this figure, Modg¢
represents by far the most efficient means for optimal feat
extraction as its averaged measure is consistently higher t
Modes 1 and 2.

2) Parameters Affecting Agent Computatiowith respect
to the experiment as presented in the preceding subsection
Mode 1), we further investigated the effect of initial populatio
size on the dynamics of the evolution and found that the tot
number of active agents involved was not affected by t
number of initial agents. The rates of self-reproduction a
death, however, can be affected.

In Fig. 11(a), the dynamics of autonomous agent popul
tions with different initial sizes (i.e., 200, 400, and 800) an
five-step life span is presented. The areas under the th
curves are almost the same, and the curve under higher ini
population size converges faster.

Apart from the initial population size, the second factor that
is of interest is the life span of the agents. Our experiments @)
showed that if the life span increased, diffusion toward other Image Environment (Scale 1:4)
features would become more likely to occur. This phenomenort®
can be observed from Fig. 11(b), i.e., the slight differenceg?
among the population curves of active agents with threg o
different life span values, respectively. 0

B. Character Border Searching “

Fig. 12(a)—(i) present the evolution of agents in a digital *°
image. The final result of agent evolution, as shown in
Fig. 12(i), gives the external borders of two characters. In
the experiment, the initial population size was set to 40. The g
neighboring region, from which the triggering condition was
verified, was composed of two consecutive layers from the 100
current location of the agent. Or, in other words, the radius
of the triggering regiorns was equal to two. The\ interval y°
was set to [1, 10] for the triggering condition. Furthermore, ., *"ﬁ"_—\k,‘ii‘—lf‘ﬁ’_jmo
the threshold for the gray-level contrast,was set to zero.
Other parameters such as life span were exactly the same as
those in the previous experiment.

(b)

Fig. 13. The extraction of face features using three different classes of
. . autonomous agents. (a) The original image is in 256 gray-level intensity of
C. Multiple Feature Extraction size 520x 480. (b) The gray-level image is shown in a three-dimensional

. . lot (scale= 1:4) in which the vertical axis represents the intensity levels of
_A" t_he experiments mentioned S_O far were concerned o xels. The horizontal dimensions of the plot represent the size of the 2-D
with single-class agents that effectively search and mark thgifice in which the autonomous agents reside and evolve.

feature pixels. To demonstrate the effects of multiple classes

of agents in the simultaneous extraction of significant imageiia|ly all three classes of agents were randomly distributed
features, we have conducted an experiment in which thrg€. (he' 2.p Jattice which corresponds to the horizontal grids
different classes of agents were designed to extract fealufeshe piot in Fig. 13(b). Note that the vertical dimension as
from a more complex image as shown in Fig. 13(a). Thgsfined over the lattice shows the intensity values of the grid
specifications of the three classes are as follows. pixels. In searching for different image features, the agents of

Class 1)6 = 50,A = [0,11],® = 350,5 = 8, and ifferent classes would check and react to their local pixels

A =5 in a manner as defined in Section IlI-C. After a number of
Class 2)§ = 50,A = [10,20],2® = 350,s = 8, and pehavioral evolution steps, the populations of active agents
A =5 belonging to the three classes would gradually vanish as all the
Class 3)6 = 50,A = [20,23],2® = 210,s = 8, and features became emerged. The final results of feature-markers
A =5, as left by the agents are shown in Fig. 13(c).
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(e) ®

Fig. 13. (Continued.)The extraction of face features using three different classes of autonomous agents. (c) After a period of discrete time, the three
classes of the agents completely marked their “territories,” i.e., corresponding image features. (d) The features as marked by Class 1 ggemts corres

to the sharp-contrast region pixels. (e) The features as marked by Class 2 agents correspond to the significant narrow edges. (f) The features as marked
by Class 3 agents correspond to the mild sloping surface regions.

To get a clear view of the features, Fig. 13(c) is furthem meaningful outline of the image. Finally, Fig. 13(f) presents
decomposed into three separate figures, one for each tyipe features as marked by Class 3, which correspond to the
of features as detected by a particular class of agents. Manédd sloping surface regions, i.e., shadows that reflect the
specifically, Fig. 13(d) shows the highest contrast region pixadserall shape/depth information of the image.
as found by Class 1 in the hair, ear, and mouth regions. Thes@he rate of feature extraction varies from one class to
feature regions identify the most significant corner sketchesafiother. Fig. 14 gives the accumulated marker curves for all
the image. Fig. 13(e) shows the result of Class 2 in extractititge three classes. It is noted that Class 2 has the highest
all the narrowly connected edge pixels. The edge markers gimetraction rate, whereas Class 3 has the lowest. This is mainly
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Accumulated Marker Curves (tb(lo) = 350, <I>.(ZO) = 350, q)g(]) =210,s =8, A =5) |

35000 F ' * ; : . :
class 1 —
class 2 —
30000 lnss 3 - |
25000 i
20000 i
marker
15000 i
10000 | I
5000 - e |
/ . . | 1 |
0 50 100 150 200 250 300
t

Fig. 14. Accumulated marker curves. The three classes of agents effectively
find their corresponding feature pixels after 100 steps. (@

Fig. 15. An example dynamic environment in which a T-shaped object
moves in discrete space and time.

due to the fact that the designed agent behaviors, such as
diffusion and self-reproduction, are more effective in searching i+ 1
and branching the high-connectivity features. )

D. | Feat Tracki Fig. 16. (a) At timet, agents have located the border of a T-shaped object
- Image Feature [racking from the environment. (b) At time + 1, the T-shaped object moves to a

The previous sections have provided the details on tp@m location, resulting in previously successful agents to be offset from the
. . L eature pixels.

local mechanism and the global dynamics of agentstatic
digital image environments and shown how the features can be
searched as a result of behavioral evolution. As a step furtlserccessful agents will no longer be at the feature locations,
from the static image environments, this section examines the illustrated in Fig. 16. When such an instance occurs, the
capability of autonomous agents in following detected featuragents that previously immobilized at the feature pixels will
in a sequence of digital image frames. This task represents dwee activated again as if they were just reproduced. They
of the most challenging image-processing problems, namelill adjust their diffusion and self-reproduction directions to
visual tracking and motion estimation for robot vision [6], [7]maximiz&heir fitness in the new environment (i.e., local fithess

Fig. 15 shows an overlaid view of multiple digital imageoptimization). This in turn enables the agents to relocate the
frames, each of which gives the location of an object atfaatures. Fig. 17 presents the experimental results concerning
certain discrete time. The problem of image feature followinigpe adaptation of the agents in the dynamic environment in
in this case can be stated as follows: Suppose that at a speeifiich a T-shaped object moves in time, as shown in Fig. 15.
time, the image features have been identified in a mannerTd® learning curve in Fig. 17 indicates the time as required
in the static-environment case. Slightly unlike the previousr the population of the agents to adapt to a new feature
experiments, however, in which the agents marked the featunevement.
pixels whenever their search succeeded, this experiment will
disable the feature-marking behavior but instead permit the
active agents to reside (i.e., become immobilized) at the featuréThis section gives some further observations on the pro-
pixels. After some intervals of time, the image features moymsed evolutionary autonomous agents, concerning their pop-
to new locations, and subsequently, some of the previousilation dynamics and relationships to adaptation.

V. DISCUSSIONS
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t=1 t=3 t=6 t=9

Learning Curve of Border Following Agents
T T T T

number of agents succceded ——

Fig. 17. The snapshots of the feature following agents and their learning curve. After the target has been moved, some of the agents will attempt to move
toward the target based on the evolved behaviors. Agents that have found the edge will self-reproduce locally and then become immobilized,sand the one
that have not found the edge grid during their life span will vanish from the 2-D lattice.

A. The Dynamics of Evolutionary Autonomous Agents

To enable a better understanding of the empirically obtaing
results on agent population change as shown earlier, w
follows provides a formal description of the agent dynam
ics.

At a discrete timek, the number of agents that succeed i
locating the features can be calculated as follows:

A
o= 0k )
=1

where A denotes thdife _span of the agents, and} ™
denotes all the agents that were reproduced at time and
found the features at timé.

Based on the above definition, we can further derive t
equation for computing the agents that vanish at times
follows:

K
Wi = aRg—a — Z pr 8
i=k—A+1 (@

. . Fig. 18. T f icular i i ifi ith circles.
whereR;_ A is computed using (7), and denotes the number ig. 18. (a) Two spots are of particular interest, as identified with circles

of offspring generated asexually by a single self-reproducing

agent. The first term of this equation indicates all the agerftem time & — A till time %. In other words, this equation
reproduced at timé& — A. The second term indicates howexpresses that the agents will vanish at timié they exceed
many of them have found the feature pixels during a perigdeir life span.
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(d) (e)

Fig. 18. (Continued.)(b)—(e) give the intermediate steps of agent evolution within the focused regions. It can be noted that the agents at these two spots
have failed to branch (upper-left circle) and progress (lower-right circle) to connected feature pixels.

Equations (7) and (8) determine the entire population of Substitutingz; andW; with (7) and (8), respectively, yields

active agents at timé, that is N
k k Upy=Up+ad Y ¢
U, =Up+ Z(CYRJ) - Z W; (9) j=1n=1
j=A

A J
j—A—n j—A
wherel;, denotes the number agents initially distributed over ad PITAT = Y w20

i=1 k
the 2-D lattice. Jj=A n=1 n=j—A+1

2
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It can readily be noted that the growth rate of the activeelf-reproduction in the sectors other than the one as updated
agent population ipositiveif the following is satisfied: from the parent agents. In both cases, the agents would have
a chance to gradually alter the preceding course of evolution.

The above observation has raised an interesting issue on
he balance between the influence from the selected parent

alRy, — Wi >0. (11)

Based on (7) and (8), we can rewrite the above conditid
agents and the degree of freedom for the current agent to

as follows: . o
. adapt. Our experiments have shown that it is always necessary
‘ to avoid the two extreme cases of agent behavioral selection
k—A ,
ol > aliy—a — Z vi T (12) i.e., 1) completely random diffusion and self-reproduction and
i=k—A+1

2) complete inheritance.
What may also be inferred from the above is that the growth
rate of agents will decrease after the markers curve and the
agent death curve intersect. The growth rate switches fromThis paper described an evolutionary autonomous agent-
positive to negative when the death rate is the highest.  based approach to image feature extraction. While giving the

agent computation algorithm, the paper also presented several
B. A Continuous Model of Evolutionary experimental results to demonstrate how the evolution of the
Autonomous Agent Dynamics distributed autonomous agents enables the optimal extraction

. . éaf image features, and discussed the effects of behavioral
The dynamics curves of the agent population as presented in
arameters on the performance.

Fig. 11 have offered the behavioral description of a dynam||9c
. . S . . . “The advantages of the proposed approach can be summa-
population system that diffuses in discrete time with a time .
o . : fized as follows:
delay distributed over a specific interval of time. As a matter ) ) ] ]
of fact, the shape of the population distribution as obtainedl) the image feature extraction process is entirely deter-
from our experiment fits very well with that of the following mined .by the locality and parallelism of the individual
continuous integro-differential equation as often used to model  a9ents; o _
a logistic growth with distributed time delay [2], which reads: 2) the directions for the diffusion and self-reproduction of
, the agents are dynamically selected and evolved.
1 dN(t) _ o— b/ K(t = 2)N(2) dz. (13)  With respect to real-life applications, the proposed approach
N(t) dt —oo could have significant impact on difficult image analysis
_ _ _ _ s problems, i.e., problems in which conventional edge and
a g l:(t:igl c_as],\(; bé gig;i;naééjr\]/[ bg l\;vf; itfe; ;é C?Oﬁg\?vg_ =r/a, contrast enhancement have failed to extract important features.
P ' Examples of such applications are:

VI. CONCLUSION

U=1Uy exp[(1—p)T + 3(1 —e )] (14) . ident_ification of pathol_ogical foci of e_arly stage cancer
g and important anatomical features (either not visible or
where p = TUy/o. not distinguishable) from ultrasound images of a prostate

The derivation of (14) can be found in [2]. Some of  [30];
the mathematical background readings on nonlinear partial identification of spiculated lesions, microcalcifications,
differential equations can be found in [27]. and circumscribed lesions in scanning mammograms for
breast cancer [14].

C. Balance Between Evolution and Adaptation
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