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An Evolutionary Autonomous Agents
Approach to Image Feature Extraction
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Abstract—This paper presents a new approach to image feature
extraction which utilizes evolutionary autonomous agents. Image
features are often mathematically defined in terms of the gray-
level intensity at image pixels. The optimality of image feature
extraction is to find all the feature pixels from the image. In
the proposed approach, the autonomous agents, being distributed
computational entities, operate directly in the 2-D lattice of
a digital image and exhibit a number of reactive behaviors.
To effectively locate the feature pixels, individual agents sense
the local stimuli from their image environment by means of
evaluating the gray-level intensity of locally connected pixels, and
accordingly activate their behaviors. The behavioral repository
of the agents consists of: 1) feature-marking at local pixels and
self-reproduction of offspring agents in the neighboring regions
if the local stimuli are found to satisfy feature conditions, 2)
diffusion to adjacent image regions if the feature conditions are
not held, or 3) death if the agents exceed their life span. As part
of the behavior evolution, the directions in which the agents self-
reproduce and/or diffuse are inherited from the directions of their
selected high-fitness parents. Here the fitness of a parent agent is
defined according to the steps that the agent takes to locate an
image feature pixel.

Index Terms—Autonomous agents, diffusion, evolutionary
computation, image feature extraction, self-reproduction.

I. INTRODUCTION

I N COMPUTER vision and image processing, image fea-
tures like edges, lines, curves, corners, and borders may be

detected using some mathematically defined operators, such
as gradient edge detectors and zero-crossing edge detectors,
or using surface fitting methods [12]. Detecting these features
can greatly facilitate the interpretation of the scenes.

Many sophisticated techniques and algorithms for image
feature extraction have been proposed and applied in recent
years [4], [5], [21], [23], [26]. For instance, Liow [21] pro-
posed an extended border tracing technique that combined
the operations of region finding and closed contour detection.
Alter and Basri [1] applied the so-called Salient Network
method for extracting salient curves and noted that this method
could suffer the problem of failing to identify any salient
curve other than the most salient one (according to their
proposed saliency measure). Lee and Kim [20] presented a
method of extracting topographic features directly from a
gray-level character image, without calculating eigenvalues
and eigenvectors of the underlying image intensity surface.
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The method efficiently computes the directions of principal
curvature. Maintzet al. [25] investigated the problem of
evaluating ridge seeking operators for multimodality medical
image matching.

With conventional approaches to image feature extraction,
all the possible feature patterns must be carefully enumerated
and exhaustively searched. This represents a nontrivial task.
Furthermore, the resulting template masks may be sensitive to
noise in the image. Another disadvantage is that the complexity
of image feature extraction (e.g., a closed border for a region)
is determined by the complexity of the image. For instance, in
a spiral-like region, the template-based border tracing method
[21] can be slowed down simply due to the length of the
border to be traversed.

The approach introduced here utilizes evolutionary au-
tonomous agents that can self-reproduce, diffuse, and cease
to exist during the course of interacting with a digital image
environment. The most distinct characteristics of our approach
lie in that it is bottom up, decentralized, and distributed in
nature and relies on local agent “processes” whose behaviors
are both easy to define and natural for software and hardware
implementations. This paper demonstrates such an agent sys-
tem through illustrative examples in which a class of agents
is equipped with the above mentioned behaviors to extract
features from the image.

A. Related Work

Evolutionary computation is concerned with applying the
computational models of evolutionary processes (e.g., [3]) to
either achieving intelligent agent behaviors, where intelligence
is measured in terms of the agent ability to contribute to its
self-maintenance at genetic, structural, individual, as well as
group levels [34], or solving real-life computation-intensive
engineering problems, such as numerical optimization. In
recent years, researchers in this field have been studying and
advancing the methodologies for evolutionary computation as
well as their applications in a number of areas, including
genetic algorithms, evolution strategies, genetic programming,
evolutionary programming, and classifier systems [10], [11],
[13], [15], [16], [28], [29], [32]. Fogel [9] has provided a
thorough treatment on the foundation and scope of this field.

Evolutionary autonomous agent systems as applied to digital
image processing is a newly explored area of research that
studies the emergent behaviors in a lattice where agents react to
the digital image environment according to a set of behavioral
rules. It may be viewed as a further extension to the earlier
work on cellular automata [8], [17]–[19], [22], [24]. Cellular
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automata, which drew upon Von Neumann’s model [31], is
concerned primarily with the fixed-point properties in a lattice
of finite automata in which cells act locally according to
a set of cellular rules [22]. Shanahan [33] investigated a
class of cellular automata in which a population of organisms
evolves in a microworld of square grid locations by repeat-
edly executing four local procedures, namely,cease to exist,
move, merge, and duplicate. The goal of his work was to
experimentally investigate under what conditions an instance
of cellular automata could produce a significant amount of
complexity and diversity. Tamayo and Hartman [35] applied
computational organisms to model reaction-diffusion systems
from which interesting space-time patterns reminiscent of
chemical turbulence, solitons, and self-excited oscillations
could be constructed and observed.

The proposed autonomous agent model exhibits general
cellular behavior characteristics similar to those of cellular
automata, but with the following fundamental differences;
namely: 1) in the proposed agent model, the automata operate
in a gray-level digital image and hence inanimate stimuli are
present in the cellular environment, and 2) the behaviors of
agents evolve as a result of the interaction with and within
the image environment, whereas in cellular automata they are
predefined.

B. Organization of the Paper

The remainder of this paper is organized as follows: Section
II formally states the global optimality criterion of image
feature extraction from the point of view of the evolutionary
autonomous agents approach. Section III gives the repre-
sentation of the proposed autonomous agents, their reactive
behaviors, and the algorithm underlying the agent-based image
feature extraction. Section IV describes several experiments
in which the agent-based approach is effectively applied to
extract image edges and multiple features and to follow
dynamically moving features. Section V discusses the dy-
namics of the agent population and examines the issues such
as the effects of behavioral parameters on the computation.
Finally, Section VI concludes the paper by highlighting the
key contributions of this work.

II. PROBLEM STATEMENT

The two-dimensional (2-D) lattice in which the proposed
autonomous agents reside is a gray-level image,of size

(i.e., an array of rows by columns of pixels). Suppose
that contains a number of pixels whose intensity relative to
those of its neighboring pixels satisfies certain mathematically
well-defined conditions. These pixels are called feature pixels.
The objective of the autonomous agents inis to extract all
the predefined features of by finding and marking at the
feature pixels. This is essentially an optimization problem as
stated below.

Definition 2.1 (Optimal Feature Extraction):Let denote
the total number of feature pixels in. If the total number of
feature pixels detected and marked by active agents is equal
to it is said an optimal feature extraction is achieved.

Definition 2.2 (Active Agents):At a certain time in the 2-
D lattice, autonomous agents whose age does not exceed their

life span will continue to react to their image environment by
way of evaluating the pixel gray-level intensity and selecting
accordingly some of their behaviors. Such agents are called
the active agents at time.

From the above notions, we can further define an efficiency
measure of the optimal feature extraction during a given period
of discrete time as the average rate of success that active
agents find image features during. Here, the rate of success
is defined as the ratio between the total number of extracted
feature pixels over the total number of active agents being
used during .

Definition 2.3 (Efficiency of Optimal Feature Extraction):
The efficiency measure of an optimal feature extraction by
autonomous agents for time intervals is defined as the
following function:

(1)

where is the number of extracted feature pixels found at
time and is the number of active autonomous agents

in at time .
From Definition 2.3, it is clear that the higher the value,

the higher the efficiency of feature extraction will become.

III. EVOLUTIONARY AUTONOMOUS AGENTS

FOR IMAGE FEATURE EXTRACTION

The evolutionary nature of the proposed agents approach
lies in the way in which the generations of autonomous agents
are selected and replicated. This section presents the detailed
definitions of evolutionary autonomous agents, including their
environment properties, local pixel evaluation function, fitness
function, and the evolution of diffusion and asexual self-
reproduction behaviors.

A. Two-Dimensional Lattice of an Agent Environment

Autonomous agents operate in a rectangular lattice that
corresponds to a digitized image. In the rectangular lattice,
each eight-connected grid represents an image pixel, as illus-
trated in Fig. 1. The grid also signifies a possible location
for an autonomous agent to inhabit, either temporarily or
permanently.

Definition 3.1 (Neighboring Region of an Agent):The
neighboring region of an agent at pixelis a circular region
centered at pixel with radius . The pixels falling inside
this region are called the neighboring pixels of the agent.
Each of the neighboring pixels is located in one of the eight
evenly divided sectors. These sectors are also referred to as
the eight directions of the region. Fig. 1 shows an example
of the neighboring pixels of an agent from eight directions,
respectively, when .

B. Local Stimulus in Two-Dimensional Lattice

An autonomous agent is coded such that it always checks
its neighboring region and selects its behavior according to the
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Fig. 1. Each pixel in the 2-D lattice environment is connected to eight
neighbors (i.e., eight-connectedness). An autonomous agent can check,
self-reproduce, and diffuse to any one of these neighboring locations.

concentration of certain gray-level pixels. If the concentration
is within a specific range, the agent will activate its self-
reproduction mechanism. Such a concentration is considered
as a triggering local stimulus to the agent.

Definition 3.2 (Local Stimulus):The local stimulus that se-
lects and triggers the behaviors of an agent at pixel location

is computed from the sum of the pixels belonging to
a neighboring region which satisfy the following condition:
the difference between their gray-level intensity values and
the value at is less than a threshold. In other words,
the stimulus is determined by the density distribution of all
the pixels in the neighboring region whose gray-level intensity
values are close to the intensity at as illustrated in Fig. 2.
More specifically, the density distribution is defined as follows:

(2)

where
the radius of agent neighboring region, i.e., a
circular region centered at ;
the indexes of a pixel belonging to the neighbor-
ing region relative to ;
the gray-level value at ;
a predefined positive threshold.

C. Agent Behaviors

During the course of evolution, each of the agents in the
lattice will exhibit several behaviors, e.g., self-reproducing,
randomized/nonrandomized search. These behaviors are trig-
gered by the external stimuli present in the environment, which
are computed using (2). As a result of the agent behavior
execution, certain patterns, i.e.,markers left behind by the
agents, will emerge, which in turn characterize the features in
the digital image environment. This section provides a detailed
description of the reactive behaviors of an autonomous agent.

1) Feature Marking: When an agent detects a feature pixel
it will place a fixed marker at. There may be different kinds

of features in an image, hence several kinds of markers may
exist. The stimulus for selecting the feature-marking behavior
can be defined as follows:

Definition 3.3 (Feature-Marking):Let be an
acceptable range of the pixel count as defined using (2), where

. The agent places a marker at pixel, if the outcome

Fig. 2. An illustration of gray-level intensity checking. At each pixelp,
an autonomous agent evaluates the outcomes of applying a mathematically
well-defined operator. If the specific feature condition is satisfied, the agent
leaves a permanent feature-marker at the pixel location.

of its evaluation of the density distribution atfalls inside the
interval, i.e., .
Fig. 2 presents an example in which circles placed within

individual grids denote the markers.
2) Agent Fitness Function:Two of the most important be-

haviors of an agent are diffusion and self-reproduction. Both
can be executed in either a directional or a nondirectional
mode. In the directional mode, the agent selects the most
effective parent agents among all the previously successful
ones and copies the directions as used in their reproduction
and diffusion. The selection of the parent agents is based on
their fitness function values. What follows defines the agent
fitness function.

Definition 3.4 (Agent Fitness Function):Let denote
the fitness value of an agent. Thus

steps before self-reproduction
of

if finds triggering stimulus
otherwise

(3)

As can be noted from the above definition, the fitness
function measures how long it takes the agent to find a feature
pixel. The maximum fitness value is equal to one if the agent
is exactly placed at the feature pixel at the time of being
reproduced.
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Fig. 3. An illustration of agent diffusion behavior. An autonomous agent of age three diffuses to its neighboring region of the 2-D lattice, in a direction as
updated based on the directions of the previously selected agents (see Section III-C5). After each diffusion step, the age of the agent will be incremented by
one. The process of diffusion provides a chance for the agent to search image features from the locations of its parent agents.

3) Diffusion According to Definition 2.2, an active agent
always evaluates the pixel gray-level intensity of a neighboring
region relative to its current location to see whether or not this
location can be regarded as a feature pixel, i.e., a pixel that
satisfies the condition as stated in Definition 3.3. If the current
location is not a feature pixel, the agent will exhibit a diffusion
behavior by moving to a new location within its neighboring
region in either a directional or a nondirectional (i.e., random-
direction) mode. The length of diffusion will be randomly
generated. The diffusion behavior plays an important role for
the agent to search feature pixels within the 2-D lattice. The
specific stimulus that triggers this behavior is given as follows.

Definition 3.5 (Directional Diffusion):Let be an
acceptable range of the pixel count as defined using (2), where

. The agent moves to its adjacent locations whenever
the outcome of its evaluation of the density distribution falls
outside the interval, i.e., . The direction of the
diffusion is selected based on an eight-element probability vec-
tor (corresponding to eight evenly divided directional sectors)
in which each value indicates the probability of becoming
high-fitness if the agent diffuses in the corresponding direction.
The length of the diffusion is randomly generated within the
diffusion region.

The direction vector of the agent as mentioned in the above
definition is updated based on the diffusion directions of its
previously selected high-fitness parent agents, as illustrated in
Fig. 3. The details on the updating computation are given in
Section III-C5.

4) Self-Reproduction:If an agent detects a feature pixel,
it will reproduce a finite number of offspring agents within its
neighboring region in either a directional or a nondirectional
(i.e., random-direction) mode. The self-reproduction behavior
enables the agent to distribute offspring agents near the pixel
location that meets the feature definition, and hence increases
the likelihood of further feature extraction.

Definition 3.6 (Directional Self-Reproduction):Let
be an acceptable range of the pixel count as defined using

(2), where . The agent self-reproduces a finite number of
offspring agents within its neighboring region of radiusin a
direction as computed from its direction probability vector, if
the outcome of its evaluation of the density distribution at
falls inside the interval, i.e., The distance of the
offspring from the parent agent inside the self-reproduction
region will be randomly generated.

Fig. 4 illustrates the self-reproduction behavior of an au-
tonomous agent. The direction vectors of self-reproduction by
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Fig. 4. An illustration of agent self-reproduction behavior. The asexual self-reproduction of an agent is triggered by the external stimuli in the environment as
computed from the density distribution of their neighboring pixels of certain gray-level intensity values. The process of diffusion and self-reproduction
repeats during the evolution of the autonomous agent population. The direction of self-reproduction is determined by a direction vector as computed
from those of previously selected high-fitness parent agents.

the agent (and subsequently by its offspring) depend on an
updating mechanism as given in Section III-C5.

5) Direction Vector Updating:Assume that a grandparent
agent of generation produces a set of parent
agents . This set further produces the offspring of

generation , as denoted by . Thus, the directions

of diffusion and self-reproduction by agent will be
updated using the directions of some selected agents from

and . The selection of these agents is based
on their fitness values as computed using (3).

What follows provides the details on the updating mecha-
nism for an autonomous agent to compute its diffusion and
self-reproduction direction vectors. Here, a direction vector
specifies the probability of success in locating image features
if the corresponding direction is chosen for the respective
behavior.

More specifically, the probabilities as associated with direc-
tions and respectively, for diffusion and self-reproduction
by agent are derived in the following two steps.

Step 1) Agent Selection:Select all and

s.t.

Step 2) Direction Vector Updating:For all the selected
agents, compute

(4)

and

(5)

where
the set of possible directions for agent diffusion;
the set of possible directions for agent self-
reproduction;
the number of agents that have diffused to the local
stimulus from direction ;
the number of agents reproduced by their parents
from direction

The above formulas generate the probability distributions
for the diffusion and self-reproduction directions by way of
calculating the percentage of occurrences.
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Fig. 5. The agent behavioral control and computation algorithm.

TABLE I
THE ATTRIBUTES THAT DETERMINE AGENT BEHAVIORS

6) Agent Vanishing (“Death”): When the age of an agent
exceeds its life span, the agent will abort further feature-
searching movements and vanish from the 2-D lattice envi-
ronment.

As can readily be noted from the above overview, the
reactive behaviors of autonomous agents are parameterized by
a set of attributes as summarized in Table I.

D. An Example

Taking border-tracing agents as an example, when an agent
of border-sensitive class reaches a border location, it will
permanentlyreside at the border and proceed to self-reproduce
some offspring within its immediate neighboring region, as
shown in Fig. 4. This process is best illustrated in the follow-
ing reaction scheme:

(6)

where and denote the agents reaching
the border, the reproduced agents within the adjacent neigh-
boring locations, and the agents immobilized at border(i.e.,
feature-markers), respectively. symbolizes that the results
are generated from two concurrently selected behaviors.

As the reproduced agents move away from the their current
locations, some of them will encounter other parts of the border
again, and hence the self-reproduction cycle will repeat itself,
while those whose age exceeds their life span will vanish.

E. The Agent Computation Algorithm

The complete algorithm for agent-based image feature ex-
traction is given in Fig. 5.

IV. EXPERIMENTS ON IMAGE FEATURE EXTRACTION

The preceding section has provided a formal model of
autonomous agent behaviors. This section further examines
how such agents can be applied in digital image environ-
ments to extract some interesting image features. In particular,
we present some typical image processing experiments on
edge/border detection and following.

A. Image Edge Detection

Fig. 6 presents a series of snapshots from an optimal edge
detection experiment. The given image here is a 150150
256-gray-level digital image. It was used as the grid lattice
for a class of autonomous agents. Initially, a group of 100
agents was randomly distributed in the lattice. Since this is a
relatively small number of agents, the majority of them will
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(a) (b)

(c) (d)

Fig. 6. The extraction of edges from a digital image based on the proposed autonomous agent-based computation model. Note that the triggering condition
for the behaviors of an agent is computed from the eight-connected neighbors of the agent. The original input image is the one as labeledt = 0: The following
images show the evolution of the agent population over the 2-D lattice. (a)(t = 0); (b) (t = 4); (c) (t = 8); (d) (t = 12).

not immediately find the image features, but rather after a
few randomized movements as illustrated in Fig. 6
In the snapshots, the clouds of light-grey dots signify the
active autonomous agents that are undertaking certain diffusion
processes, and the sequences of dark-grey dots are the markers
left by the agents once they encounter the feature pixel
locations.

By definition, the number of total diffusion movements
allowed is determined by the life span of the agents. In
this experiment, the life span of the agents was set to three.
Therefore, if an agent does not find any features during the
interaction with its environment for more than three discrete
time steps, it will vanish from the lattice environment. On the
other hand, the agents in the environment will asexually self-
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(e) (f)

(g) (h)

Fig. 6. (Continued.)The extraction of edges from a digital image based on the proposed autonomous agent-based computation model. Att = 26; all image
features (i.e., region borders in this case) are found and labeled with markers. (e)(t = 16); (f) (t = 20); (g) (t = 24); (h) (t = 26).

reproduce offspring agents if the triggering condition of certain
density-distribution satisfies a giveninterval. In the present
experiment, we set for a neighboring region of
radius the contrast level difference between the current
pixel (at which an agent resides) and its eight neighboring
pixels and the number of offspring agents reproduced
at a feature pixel That is to say, an agent will leave a

marker if the density distribution of its immediate neighboring
pixels, whose gray-level intensity values are not deviated from
that of the current location by 42, falls into the specific interval
of [2, 7].

1) Effects of Individual Behaviors on Feature Extraction:
To examine the effects of individual behaviors on the effi-
ciency of optimal image feature extraction, we further con-
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(a) (b)

(c)

Fig. 7. The snapshots of agent evolution under three different experimental conditions (see text). (a) random reproduction and diffusion, (b) directional
diffusion, (c) directional reproduction.

ducted three experiments that corresponded to the following
three conditions, respectively.

1) Mode 1—Random Reproduction and Diffusion:The di-
rections for the agent to self-reproduce and diffuse
within a neighboring region of radius (i.e., the
evenly divided sectors within a 5 5 region for self-
reproduction and diffusion) are randomly determined.

2) Mode 2—Directional Diffusion:The direction for the
agent to self-reproduce is randomly determined whereas

the direction for diffusion is determined according to an
updated direction vector.

3) Mode 3—Directional Reproduction:The directions for
self-reproduction and diffusion are determined according
to updated direction vectors.

Fig. 7 presents three snapshots of the agent evolution under
the above mentioned experimental conditions where the age
of the agents was set to three, the number of offspring agents
reproduced was set to eight, and From the figure,
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Fig. 8. A comparison of active agents in the 2-D lattice over the entire
period of evolution.

Fig. 9. A comparison of accumulated feature pixels as detected over the
entire period of evolution.

it can be observed that the shapes of the active agent clouds
were different among the three conditions. In particular, Mode
1 produced the largest clouds evenly distributed along the
detected feature pixels. While the active agents in both Modes
2 and 3 progressed effectively along the local feature pixels,
the layers in the latter case were relative thinner. This is due
to the fact that the maximum size of the self-reproduction or
diffusion region in both cases was set to 55. Hence, as only
one directional sector was selected in the latter case, the actual
reproduction sector became limited to the size of four pixels
(i.e., only four out of eight reproduced agents were actually
kept).

In addition to these observations, several quantitative com-
parisons were also conducted, the results of which have been
shown in Figs. 8–10. Fig. 8 gives the number of active agents
as involved in the region border extraction. Modes 1 and 2
were similar in agent population size, the former used slightly
more than the latter. Mode 3 used a smallest number of

Fig. 10. A comparison of the efficiency measures in optimal feature extrac-
tion.

(a)

(b)

Fig. 11. (a) The dynamics of agent population in the case of edge-detection
experiment, under three different initial population sizes, where�(t) curve
shows the total number of active agents existing in the lattice. (b) The effect of
different life span values on the dynamics of feature extraction, where�s(t)
curve shows the total number of active agents that have found image features
during their interaction with the environment.

agents during the initial half of the evolution period and had
slightly more agents later for a short period. Fig. 9 shows a
comparison of the accumulated feature pixels as detected in
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Fig. 12. An example of autonomous agents for extracting borders of two characters. (a) shows the original image, (b)–(h) provide the snapshots of the
intermediate steps in border extraction, and (i) shows the feature-markers, representing the found borders. It can be noted that the agents are sensitive to
those locations that satisfy the triggering condition, i.e.,� = [1; 10] and � = 2:
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the three modes. Mode 2 was slightly faster than the random
mode, while Mode 3 was slightly slower since fewer agents
were reproduced each time for reasons as mentioned in the
preceding paragraph.

Of greatest interest is Fig. 10 which compares the efficiency
measures among the three modes. From this figure, Mode 3
represents by far the most efficient means for optimal feature
extraction as its averaged measure is consistently higher than
Modes 1 and 2.

2) Parameters Affecting Agent Computation:With respect
to the experiment as presented in the preceding subsection (for
Mode 1), we further investigated the effect of initial population
size on the dynamics of the evolution and found that the total
number of active agents involved was not affected by the
number of initial agents. The rates of self-reproduction and
death, however, can be affected.

In Fig. 11(a), the dynamics of autonomous agent popula-
tions with different initial sizes (i.e., 200, 400, and 800) and
five-step life span is presented. The areas under the three
curves are almost the same, and the curve under higher initial
population size converges faster.

Apart from the initial population size, the second factor that
is of interest is the life span of the agents. Our experiments
showed that if the life span increased, diffusion toward other
features would become more likely to occur. This phenomenon
can be observed from Fig. 11(b), i.e., the slight differences
among the population curves of active agents with three
different life span values, respectively.

B. Character Border Searching

Fig. 12(a)–(i) present the evolution of agents in a digital
image. The final result of agent evolution, as shown in
Fig. 12(i), gives the external borders of two characters. In
the experiment, the initial population size was set to 40. The
neighboring region, from which the triggering condition was
verified, was composed of two consecutive layers from the
current location of the agent. Or, in other words, the radius
of the triggering region was equal to two. The interval
was set to [1, 10] for the triggering condition. Furthermore,
the threshold for the gray-level contrast,was set to zero.
Other parameters such as life span were exactly the same as
those in the previous experiment.

C. Multiple Feature Extraction

All the experiments mentioned so far were concerned only
with single-class agents that effectively search and mark their
feature pixels. To demonstrate the effects of multiple classes
of agents in the simultaneous extraction of significant image
features, we have conducted an experiment in which three
different classes of agents were designed to extract features
from a more complex image as shown in Fig. 13(a). The
specifications of the three classes are as follows.

Class 1) and
;

Class 2) and
;

Class 3) and

(a)

(b)

Fig. 13. The extraction of face features using three different classes of
autonomous agents. (a) The original image is in 256 gray-level intensity of
size 520� 480. (b) The gray-level image is shown in a three-dimensional
plot (scale= 1:4) in which the vertical axis represents the intensity levels of
pixels. The horizontal dimensions of the plot represent the size of the 2-D
lattice in which the autonomous agents reside and evolve.

Initially all three classes of agents were randomly distributed
over the 2-D lattice which corresponds to the horizontal grids
of the plot in Fig. 13(b). Note that the vertical dimension as
defined over the lattice shows the intensity values of the grid
pixels. In searching for different image features, the agents of
different classes would check and react to their local pixels
in a manner as defined in Section III-C. After a number of
behavioral evolution steps, the populations of active agents
belonging to the three classes would gradually vanish as all the
features became emerged. The final results of feature-markers
as left by the agents are shown in Fig. 13(c).
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(c) (d)

(e) (f)

Fig. 13. (Continued.)The extraction of face features using three different classes of autonomous agents. (c) After a period of discrete time, the three
classes of the agents completely marked their “territories,” i.e., corresponding image features. (d) The features as marked by Class 1 agents correspond
to the sharp-contrast region pixels. (e) The features as marked by Class 2 agents correspond to the significant narrow edges. (f) The features as marked
by Class 3 agents correspond to the mild sloping surface regions.

To get a clear view of the features, Fig. 13(c) is further
decomposed into three separate figures, one for each type
of features as detected by a particular class of agents. More
specifically, Fig. 13(d) shows the highest contrast region pixels
as found by Class 1 in the hair, ear, and mouth regions. These
feature regions identify the most significant corner sketches of
the image. Fig. 13(e) shows the result of Class 2 in extracting
all the narrowly connected edge pixels. The edge markers give

a meaningful outline of the image. Finally, Fig. 13(f) presents
the features as marked by Class 3, which correspond to the
mild sloping surface regions, i.e., shadows that reflect the
overall shape/depth information of the image.

The rate of feature extraction varies from one class to
another. Fig. 14 gives the accumulated marker curves for all
the three classes. It is noted that Class 2 has the highest
extraction rate, whereas Class 3 has the lowest. This is mainly
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Fig. 14. Accumulated marker curves. The three classes of agents effectively
find their corresponding feature pixels after 100 steps.

Fig. 15. An example dynamic environment in which a T-shaped object
moves in discrete space and time.

due to the fact that the designed agent behaviors, such as
diffusion and self-reproduction, are more effective in searching
and branching the high-connectivity features.

D. Image Feature Tracking

The previous sections have provided the details on the
local mechanism and the global dynamics of agents instatic
digital image environments and shown how the features can be
searched as a result of behavioral evolution. As a step further
from the static image environments, this section examines the
capability of autonomous agents in following detected features
in a sequence of digital image frames. This task represents one
of the most challenging image-processing problems, namely,
visual tracking and motion estimation for robot vision [6], [7].

Fig. 15 shows an overlaid view of multiple digital image
frames, each of which gives the location of an object at a
certain discrete time. The problem of image feature following
in this case can be stated as follows: Suppose that at a specific
time, the image features have been identified in a manner as
in the static-environment case. Slightly unlike the previous
experiments, however, in which the agents marked the feature
pixels whenever their search succeeded, this experiment will
disable the feature-marking behavior but instead permit the
active agents to reside (i.e., become immobilized) at the feature
pixels. After some intervals of time, the image features move
to new locations, and subsequently, some of the previously

(a)

(b)

Fig. 16. (a) At timet; agents have located the border of a T-shaped object
from the environment. (b) At timet + 1; the T-shaped object moves to a
new location, resulting in previously successful agents to be offset from the
feature pixels.

successful agents will no longer be at the feature locations,
as illustrated in Fig. 16. When such an instance occurs, the
agents that previously immobilized at the feature pixels will
be activated again as if they were just reproduced. They
will adjust their diffusion and self-reproduction directions to
maximizetheir fitness in the new environment (i.e., local fitness
optimization). This in turn enables the agents to relocate the
features. Fig. 17 presents the experimental results concerning
the adaptation of the agents in the dynamic environment in
which a T-shaped object moves in time, as shown in Fig. 15.
The learning curve in Fig. 17 indicates the time as required
for the population of the agents to adapt to a new feature
movement.

V. DISCUSSIONS

This section gives some further observations on the pro-
posed evolutionary autonomous agents, concerning their pop-
ulation dynamics and relationships to adaptation.
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Fig. 17. The snapshots of the feature following agents and their learning curve. After the target has been moved, some of the agents will attempt to move
toward the target based on the evolved behaviors. Agents that have found the edge will self-reproduce locally and then become immobilized, and the ones
that have not found the edge grid during their life span will vanish from the 2-D lattice.

A. The Dynamics of Evolutionary Autonomous Agents

To enable a better understanding of the empirically obtained
results on agent population change as shown earlier, what
follows provides a formal description of the agent dynam-
ics.

At a discrete time the number of agents that succeed in
locating the features can be calculated as follows:

(7)

where denotes thelife span of the agents, and
denotes all the agents that were reproduced at time and
found the features at time

Based on the above definition, we can further derive the
equation for computing the agents that vanish at timeas
follows:

(8)

where is computed using (7), anddenotes the number
of offspring generated asexually by a single self-reproducing
agent. The first term of this equation indicates all the agents
reproduced at time The second term indicates how
many of them have found the feature pixels during a period

(a)

Fig. 18. (a) Two spots are of particular interest, as identified with circles.

from time till time In other words, this equation
expresses that the agents will vanish at timeif they exceed
their life span.
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(b) (c)

(d) (e)

Fig. 18. (Continued.)(b)�(e) give the intermediate steps of agent evolution within the focused regions. It can be noted that the agents at these two spots
have failed to branch (upper-left circle) and progress (lower-right circle) to connected feature pixels.

Equations (7) and (8) determine the entire population of
active agents at time, that is

(9)

where denotes the number agents initially distributed over
the 2-D lattice.

Substituting and with (7) and (8), respectively, yields

(10)
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It can readily be noted that the growth rate of the active
agent population ispositive if the following is satisfied:

(11)

Based on (7) and (8), we can rewrite the above condition
as follows:

(12)

What may also be inferred from the above is that the growth
rate of agents will decrease after the markers curve and the
agent death curve intersect. The growth rate switches from
positive to negative when the death rate is the highest.

B. A Continuous Model of Evolutionary
Autonomous Agent Dynamics

The dynamics curves of the agent population as presented in
Fig. 11 have offered the behavioral description of a dynamic
population system that diffuses in discrete time with a time
delay distributed over a specific interval of time. As a matter
of fact, the shape of the population distribution as obtained
from our experiment fits very well with that of the following
continuous integro-differential equation as often used to model
a logistic growth with distributed time delay [2], which reads:

(13)

If let and
a special case solution can be written as follows:

(14)

where
The derivation of (14) can be found in [2]. Some of

the mathematical background readings on nonlinear partial
differential equations can be found in [27].

C. Balance Between Evolution and Adaptation

In our experimentation, we have noted that there are some
cases in which the inherited diffusion and self-reproduction
directions could slow down the agents in adapting to their
new local stimulus. Fig. 18(a) identifies two spots where this
phenomenon is observed: one inside the upper-left circle
and the other inside the lower-right circle. As shown in
Fig. 18(b)–(e), in the former case the agents failed to branch
horizontally to the new feature pixels, whereas in the latter
the agents gradually stopped progressing along the preceding
feature pixels.

Both cases occurred when the life span (or maximum age)
of the agents was set shorter than three. In other words, the
agents would have a great inertia to move or self-reproduce in
the directions as inherited from the previously selected parent
agents. Even though some of the offspring agents encountered
new stimuli from other directions, the inherited directions had
a strong bias that dominated the agent behaviors. This problem
can be remedied if we allow the agents to survive for a longer
period of time or we introduce a certain random movement and

self-reproduction in the sectors other than the one as updated
from the parent agents. In both cases, the agents would have
a chance to gradually alter the preceding course of evolution.

The above observation has raised an interesting issue on
the balance between the influence from the selected parent
agents and the degree of freedom for the current agent to
adapt. Our experiments have shown that it is always necessary
to avoid the two extreme cases of agent behavioral selection,
i.e., 1) completely random diffusion and self-reproduction and
2) complete inheritance.

VI. CONCLUSION

This paper described an evolutionary autonomous agent-
based approach to image feature extraction. While giving the
agent computation algorithm, the paper also presented several
experimental results to demonstrate how the evolution of the
distributed autonomous agents enables the optimal extraction
of image features, and discussed the effects of behavioral
parameters on the performance.

The advantages of the proposed approach can be summa-
rized as follows:

1) the image feature extraction process is entirely deter-
mined by the locality and parallelism of the individual
agents;

2) the directions for the diffusion and self-reproduction of
the agents are dynamically selected and evolved.

With respect to real-life applications, the proposed approach
could have significant impact on difficult image analysis
problems, i.e., problems in which conventional edge and
contrast enhancement have failed to extract important features.
Examples of such applications are:

• identification of pathological foci of early stage cancer
and important anatomical features (either not visible or
not distinguishable) from ultrasound images of a prostate
[30];

• identification of spiculated lesions, microcalcifications,
and circumscribed lesions in scanning mammograms for
breast cancer [14].
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