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SUMMARY

Grid computing emerged as a paradigm for high-performance computing and massive parallel processing.
Currently, Grid systems have become an important paradigm for efficiently solving large-scale complex
problems from many fields. On the other hand, P2P paradigm originated from file-sharing, but each time
more is being used for the development of large-scale distributed platforms. Grid and P2P systems have
thus followed different trajectories pushed by different motivations, needs and research communities.
In fact, both paradigms are evolving in a way that each time they are sharing more common characteristics
and are mutually benefiting from their best features. Among these characteristics, we could distinguish the
cooperative model for solving complex problems by exploiting their large computing capacity. As such,
Grid and P2P systems have achieved notable success, in particular, for e-Science applications, a family
of complex applications arising in science and engineering that need considerable computation power.
Despite important advances in the design and use of Grid and P2P systems, they remain still difficult
to implement and apply to real-life problems. The main difficulties reside in the lack of easy-to-use
middleware for Grid and P2P, in the complexities of setting up and in the tedious task of deploying
real-world Grid/P2P platforms as well as in experimental studies which are often complex and not easy
to repeat. In this paper we survey and analyze the advances in communication libraries and middleware
for both Grid and P2P systems as well as their limitations when used in real Grid and P2P infrastructures.
We also bring examples of real-life applications of massive data processing that can be efficiently handled
through Grid and P2P approaches. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computational Grids and P2P systems have emerged as new distributed computing paradigms
for the development of large-scale distributed applications. With the fast developments in Internet
technologies and with the continuous increase in the connected computational resources, Grid
and P2P appeared as the disruptive technologies that can greatly impact not only on scientific
and academic activity but also on business and enterprise productivity. The rationale is that such
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technologies are inexpensive (often built up and maintained in a contributory way), technologically
manageable and easy to maintain and extend, thus reducing the needs for replacement of the
existing systems or acquisition of new infrastructures.

The demand for more computing power has been a constant trend in many fields of science,
engineering and business. Now more than ever, the need for more and more processing power
is raising in the resolution of problems from life sciences, financial services, drug discovery,
weather forecasting, massive data processing for e-Commerce and e-Government, etc. Grid and
P2P computing are based on the premise to deliver greater computing power at less cost enabling
thus the solution of complex problems from many fields of science, engineering and business.

Grid Computing. The term Grid computing was popularized in 1990s [1, 2] to express the
‘computing power Grid’ in analogy to an electric power Grid. Computational Grids were motivated
by the need to develop computational frameworks to support large-scale applications that benefit
from the computing power offered by such distributed infrastructures. As a matter of fact, the
first successful stories of Grid-enabled applications are found from scientific computing domain.
NetSolve/GridSolve [3] is among the first Grid middleware used for high-performance computing.
Another example of middleware for Grid computing is that developed by the MetaNEOS‡ project,
essentially aimed for solvers running on Condor and Globus [4]. Interfaces based on Master–
Worker meta-computing applications were also provided. However, such interfaces (MW, iMW,
iNEOS, PBB and Modeling/Condor) are not integrated into one middleware and are intended for
different families of optimization problems (meta-computing applications, nonlinear optimization,
branch-and-bound algorithms, optimization problems [5] and stochastic programming [6]).

Owing to advances in the development of middleware for Grid computing, such as Globus,
MPI-Grid2 and Condor-G as well as to the continuous improvement in hardware and networking
communications, we are witnessing an explosion in research projects an initiative related to
Grid computing. Nowadays, we can find several types of Grids such as Compute Grids, Data
Grids, Science Grids, Access Grids, Bio Grids, Sensor Grids, Cluster Gr1ids, Campus Grids,
Tera Grids, and Commodity Grids, among others, that support high-performance real-life applica-
tions. Such applications are showing the feasibility of Grid-enabled approaches for scientific and
high-performance computations for a wide range of e-Science applications including parametric
modelling [7], parameter sweep applications and Monte-Carlo simulations [8], computing-intensive
applications in physics and life sciences [9, 10] and data-intensive computing applications [11].
A common feature of all these applications is that they are embarrassingly parallel, that is, they
can be split into a set of independent or loosely coupled tasks, which are processed in parallel.

P2P systems. P2P systems [12, 13] appeared as a new paradigm after client–server and web-
based computing. P2P systems became quite popular for file-sharing among Internet users through
Napster, Gnutella, FreeNet, BitTorrent and other similar systems. Clearly, the motivation and the
community of users and developers behind P2P systems have been different from that of Grid
computing. Foster et al. stressed the difference between Grids and P2P systems by stating that
‘. . .the sharing that we are concerned with is not primarily file exchange but rather direct access to
computers, software, data, and other resources, as is required by a range of collaborative problem-
solving and resource brokerage strategies emerging in industry, science, and engineering’.

Differently from centralized or hierarchical models of Grid systems, in P2P systems nodes
(peers) have equivalent capabilities and responsibilities and can be both servers and clients. Decen-
tralization is thus an important feature of P2P systems as it is also their large scale as compared
with small to moderate size of Grid systems. Although motivated by file-sharing, the improve-
ments of P2P protocols are enabling the development of P2P applications other than file-sharing.
For instance, Sun’s JXTA library [14] and MPJ [15] are enabling the development of P2P large-
scale distributed applications. One important initiative in this direction is that of SETI@home—the
largest distributed computing effort with over 3 million users—which harnesses the power of
networked PCs worldwide, through CPU scavenging and volunteer computing [16] of under-utilized
desktop PCs [17]. The resulting P2P systems are used for solving CPU-intensive research problems

‡http://www-unix.mcs.anl.gov/metaneos/project/index.html.
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such as protein folding. It should be noted, however, that in the P2P distributed project, the perfor-
mance is usually ‘best effort’-like when compared with the high-performance Grid. Nonetheless,
P2P systems each time are more able to leverage high rates of throughput (currently processing at
rates of few Terabytes), which is significant processing power for data-intensive applications.

Until now, there has been little work done to apply P2P systems to real-word applications,
mainly due to the lack of easy-to-use middleware and difficulties in programming and the tedious
task of deployment of large P2P systems.

Grid and P2P integrated approaches. Computational Grids and P2P systems still remain difficult
for many users [18], mainly, because Grid/P2P middleware provide fundamental services but they
are low level, making thus difficult their use in the development of Grid and P2P applications.
Moreover, such middleware are not complete regarding the needs of different domain applications,
requiring thus some ad hoc development. All in all, researchers on Grid and P2P systems are
addressing issues that concern both systems, which will yield to new views of large-scale distributed
application development in such systems.

In this paper, we survey and analyze the advances in communication libraries and middleware
for both Grid and P2P systems as well as their limitations when used in real Grid and P2P
infrastructures. We also exemplify the usefulness of P2P approaches for massive parallel processing
of large size log data files generated in collaborative environments such as virtual campuses or IT
enterprises.

The remainder of the paper is organized as follows. In Section 2, we overview the use of
Grid paradigm for parallel processing. The P2P counterpart is presented in Section 3. The use
of Grid paradigm for e-Science applications is tackled in Section 4. The common characteristics
and lessons learned from both paradigms are presented in Section 5. In Section 6 we bring an
application example of massive processing of large size log data files using a P2P approach. We
end this paper in Section 7 with some conclusions.

2. GRID PARADIGM FOR PARALLEL PROCESSING

In a broader context of Grid systems, Bal et al. [18] motivated the need for research from
conceptual, algorithmic and Grid application-level tools to facilitate the application development
task. As claimed by authors, there is a need for tools, namely Grid application-level tools, that
enable writing, deploying and running Grid applications. A set of requirements on Grid tools
is commonly accepted: Grid tools should be built on the Grid software infrastructure, should
isolate users from the dynamics of the Grid infrastructure, should reduce costs and complexi-
ties and should be generic and easy to use facilitating thus the application development also to
users and practitioners non-familiar with the Grid technology. For instance, it is desirable for
Grid users to be able to manage the entire application from a single interface. In particular, Grid
systems should account for efficient resource allocation and scheduling, that is, accept user or
application jobs, schedule jobs to execution hosts and provide statistical results upon completion
of jobs.

At the application level, Grid paradigm can be exploited for different purposes:

High-throughput computing: the interest is to complete the largest number of applications per
time unit. It should be noted that in such a case, we have a coarse-grained parallelism whereas
fine-grained is not necessarily exploited. Quality-of-Service (QoS) system requirement could be
an important indicator in this case.

High-performance computing: the interest is to reduce the execution time of applications.
To achieve this speed-up goal, exploitation of fine-grained parallelism is necessary. User
requirement on fast completion of applications could be important as well in this case.

QoS-aware computing: the objective is to develop Grid-enabled applications that will ensure QoS
support for a series of parameters such as response time guarantees and cost. Such applica-
tions commonly arise in businesses aiming to minimize the cost of running business critical
applications and support customer QoS demands.
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How can these purposes be achieved? Kra [19] at IBM’s Grid computing identified six levels of
Grid-based applications, grouped according to batch vs service-based: (1) batch anywhere; (2) inde-
pendent concurrent batch; (3) parallel batch; (4) service; (5) parallel service and (6) tightly coupled
parallel program. As can be seen, the levels of Grid-enabled applications go from independent or
loosely coupled applications to tightly coupled ones.

Much of the current research effort are devoted to bridging the gap between the existing Grid
middleware and application-level needs. The development of Grid application software, such as
GrADS [20], aims at facilitating and simplifying the development, execution, monitoring and
tuning applications on the Grid.

2.1. Grid middleware and communication libraries

A major concern in Grid systems is that of dealing with the high degree of heterogeneity of
resources. The unified virtual view of Grid systems and the efficient and transparent access
to computational resources are achieved by Grid middleware. Grid middleware aims at inte-
grating heterogenous resources, abstracting from low-level characteristics, efficient assignment
of resources, job/application allocation and execution, monitoring, data access and transfer and
secure access. Grid middleware can be seen as distributed software that enables the communica-
tion between applications and the underlying computational platforms and, as such, it should be
as complete and generic as possible in terms of operations/services offered to match any needs
of applications to be build on top of it. Owing to such vital functionalities, Grid middleware is
considered as the backbone of Grid computing systems.

Considerable research efforts are currently devoted to the design and implementation of Grid
middleware. Since Grid systems are natural continuation of parallel and distributed systems, the
existing middleware and communication libraries used in parallel and distributed systems, such as
Condor, MPI and PVM, were extended to support Grid-enabled applications. Certainly, the existing
libraries show several limitations when faced to Grid infrastructures; therefore, new middleware
and communication libraries are proposed by the Grid computing community to cope with new
characteristics of such systems and thus match the needs of the development of large-scale Grid
applications. Below we briefly consider some of them, actually widely used by the Grid computing
community.

MPI-based middleware. Message Passing Interface (MPI) is established as the main communi-
cation libraries in the development of parallel scientific applications. Message passing paradigm
is more appropriate for tightly coupled parallel applications rather than loosely coupled Grid
model; however, new versions of the library appeared upon Grid computing attempting to improve
the performance of the MPI collective communications for fault tolerant MPI implementations.
MPICH-G2 [21] is a Grid-enabled implementation of the MPI, which allows to couple multiple
heterogenous machines to run MPI applications. PArallel Computer eXtension to MPI (PACX-
MPI) [22] enables an MPI application to run on a meta computer consisting of several, possibly
heterogeneous machines, each of which may itself be massively parallel. MagPIe library [23] imple-
ments MPIs collective operations with optimizations for cluster wide-area systems. FT-MPI [24]
is another implementation of MPI aiming to overcome MPI static process model and controlling
failure modes by the applications.

Java RMI-based middleware. Owing to its platform independence feature, Java is expected to
be of growing importance for the development of Grid middleware. MPJ (MPI Java) [15] is the
MPI-like Message Passing for Java, attempting to establish a standard Java parallel programming
APIs after MPI. Other efforts use Java’s RMI. GMI [25] is a generalization of Java’s RMI for
parallel programming, whereas RepMI [26] is a compiler-based approach for object replication in
Java. It implements a MagPIe-like broadcast operation for Grid environments.

NetSolve/GridSolve. NetSolve/GridSolve [3] are among the first Grid middleware used for high
performance computing. NetSolve aims at using the best computational resources on a network.
Fault-tolerance and load-balancing are also features of the NetSolve system to achieve high perfor-
mance. It should be noted however that NetSolve is based on the client–server RPC model and has
thus the limitations of a centralized system in contrast to full-featured Grid systems that are cheaper
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than a server farm approach. It specializes for coarse-grain task parallelism. Another limitation of
NetSolve is the lack of universal interface; its interface protocol can only be applied to the clients
of the NetSolve system.

Globus and Globus-based middleware. Globus Toolkit [4] is the most widely used middleware for
Grid applications. It allows finding resources, running applications, dealing with heterogeneity and
security issues. It is an integrated toolkit of Grid services offering resource allocation and process
management, communication services, authentication and security services, system monitoring,
remote data access, etc. Owing to its wide use, Globus has been integrated by other projects such
as Condor-G, MPICH-G2 and NetSolve. Condor-G [27] is the combination of Condor and Globus
projects. Security and resource access in multi-domain environments, management of computation
and harnessing of resources as well as task brokerage are its distinguished features. Condor-G
can be used as front-end to a computational Grid and provides job management and monitoring,
logging, notification, among others. MPICH-G2 [21] and NetSolve [28] are other examples of
integration with Globus using services from the Globus Toolkit.

gLite. gLite§ is another middleware for Grid computing, which provides a framework for building
Grid applications through an integrated set of components that support resource sharing. gLite is
developed as part of the Enabling Grids for E-sciencE (EGEE) project. The gLite Grid services
follow a Service-Oriented Architecture, aiming to facilitate compliance with Grid standards, such
as Open Grid Service Architecture (OGSA). One distinguished feature of gLite is that users can
implement services according to their particular needs without having to use the systems as a
whole.

BOINC. The Berkeley Open Infrastructure for Network Computing (BOINC) is an open platform
that tries to benefit distributed computing from infra-utilized computational resources (PCs that
donate cycles). Although originally designed for volunteer computing, it is appropriate for Grid
computing as well, especially for desktop Grids. It is based on client/server setting, where the
server generates work units, that is, executable and data input files, send them to clients (PCs)
and collects results from them. Owing to its volunteering nature, there are security issues and it is
expected that volunteers will return correct computational results. In fact, BOINC can be seen as
more appropriate for P2P systems and has become popular by Seti@Home projects.

SunGrid Engine. The Grid Engine [29] is a software project for distributed computing by Sun
Microsystems and hosted by CollabNet. Its aim is to provide distributed resource management
software for wide ranging requirements from compute farms to Grid computing. The Grid Engine
software accepts jobs submitted by users and uses resource management policies to schedule them
on to the Grid. This process is transparent to the user, namely, users are not concerned about where
the jobs are allocated. The Grid Engine is mostly oriented to support Campus Grids, that is, Grids
made up of computing resources of multiple projects or departments within an organization.

Concurrency and Coordination Runtime (CCR). CCR [30] is an asynchronous programming
library based on .Net framework for robotics. In fact, it is not only limited to modelling robotic
applications but can be also used as a general programming paradigm through efficient thread
management. Recently, CCR has been investigated as a paradigm for integrating Grid computing
and multicore systems [31].

Zenturio. Zenturio [32] is an middleware for experiment management of parallel and distributed
applications on cluster and Grid architectures. It is based on Web services standards and the
Globus toolkit. A directive-based language (in the Fortran HPF and OpenMP style) called
ZEN is used to specify value ranges for arbitrary application parameters, including loop and
array distributions, software libraries and algorithms, interconnection networks or execution
machines.

Other Grid middleware and tools. Other Grid middleware and tools have been developed or are
currently under development in the context of many research projects on Grid computing. Askalon
[33], CometG [34] and PadicoTM [35] are other examples of middleware and environments for
Grid application development.

§http://glite.web.cern.ch/glite/.
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2.2. Programming languages and models for grid systems

Features of the conventional parallel programming models [36] are also desirable for Grid program-
ming models. Yet, due to heterogeneous and dynamic nature of Grid systems, new programming
tools should support specific characteristics of Grid applications and environments. As stated by
Foster and Kesselman [1]: ‘Grid environments will require a rethinking of existing programming
models and, most likely, new thinking about novel models more suitable for specific characteristics
of Grid applications and environments’. We briefly consider here recent development in languages
and runtime environments for Grid computing. (The reader is referred to [37, 38], for surveys on
Grid programming models.)

Programming, languages and runtime environments. One common observation is that up-to-
date programming tools and languages are insufficient to support the effective development of
Grid applications. In particular, the lack of a simple, standard programming interface that hides
complexities of Grid systems makes difficult and tedious their programming.

Grid Execution Language (GEL) [39] is a scripting language for programming parallel appli-
cations for a Grid environment. The language is aimed to facilitate coping with high-latency
communications and heterogeneity in Grid environments. GEL’s semantics provides constructs
for while loops, conditionals and explicitly parallel execution. In the Grid-Occam project [40],
a parallel programming language to support programming in heterogeneous Grid environments is
also developed. GAP [41] is a high-level programming toolkit for Grid-enabled applications devel-
oped by the GridLab project. It aims at bridging the gap between the existing Grid middleware and
application-level needs through a unified simple programming interface to the Grid infrastructure.
Abacus [42] is a service-oriented programming language for Grid applications. Abacus offers a
service abstraction at language level and hides the user from low-level details of service deploy-
ment supported by the compiler and the runtime system. Lightweight Java task-spaces framework
[43] is suited for applications that require inter-task communication. The framework is charac-
terized by decentralization, direct communication between tasks through tuple space distributed
over the worker hosts. Assist [44] is a prototype of parallel programming environment in which
Grid applications are built as compositions of components. It is based on Web Services and the
CORBA Component Model. Grid/ML [45] is a high-level ML-like language (for functional paral-
lelism) developed as part of the ConCert Grid framework. The language is especially suited for
handling/overcoming security concerns in the dissemination of Grid programs.

Parallel and distributed models for Grids. Parallel and distributed models employed for Grid
applications are essentially those from traditional parallel and distributed computing such as Shared
Memory Model, Threads/OpenMP, Message Passing Model, Object and Service Oriented Models
as well as their hybridizations. Yet, due to the intrinsics characteristics of Grid infrastructures, those
models need adaption in order to efficiently exploit the parallel nature of Grid systems. It should
be noted that heterogenous Grid systems are most suited for embarrassingly parallel applications.
In most cases, the explicit degree of parallelism to exploit in a particular application is upon the
Grid programmer who will provide task decomposition for that application.

Classical parallel models, such as Master–Worker, Task Farming, Parametric Computation and
Divide-and-Conquer, are commonly used in Grid applications. On the other hand, adaption of
workflow models has been proposed for Grid applications having dependencies among their tasks
in order to exploit coarse-grain, dataflow-like parallelism. Finally, some models are also proposed
to address needs of specific classes of applications. For instance, the IBM’s Compute Grid program-
ming includes two programming models, namely, transactional batch and compute-intensive, within
the WebSphere Software. In this case, a compute Grid application is a J2EE application that
conforms to the aforementioned Grid programming models.

Task, data parallelism and their combination. Task and data parallelism are two traditional
models for parallel applications. The former exploits functional parallelism features and is achieved
by distributing processes on different nodes of the system. The later exploits parallelism by
distributing data across the nodes of the system. With the advent of Grid computing, the exploitation
of both modes of parallelism can enable the solution of multidisciplinary applications in which a
large amount of data has to be accessed. Current Grid middleware do not fully benefit features
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of both parallel models; unified frameworks and languages that support both forms of parallelism
are lacking in Grid computing, although there are some proposals [46, 47] in this direction. One
additional challenge in the Grid context is the need to access data sources and repositories having
different formats and structures requiring the integration of semantic datagrid features. Finally, the
Grid middleware should also offload the query processing to databases (scheduling and resource
allocation) to support parallelism.

3. P2P PARADIGM FOR PARALLEL PROCESSING

While Grid computing was originated in the scientific community and was as at the very beginning
conceived as a way for harnessing more processing power for the development of large-scale
distributed applications, P2P computing only recently has started to consider features of using
P2P technologies for large-scale distributed systems. Early studies [13] addressed issues for P2P
systems, given the important differences in sharing files vs sharing computation and computational
resources. Special emphasis is put on the need for scalability of P2P applications that would require
keeping knowledge of a small fraction of global state in each peer, the need for load-balancing,
its separation from the P2P application, deploying internet services by overlaying, etc.

P2P technologies can contribute in several ways to large-scale parallel and distributed systems
and applications; however, the most important one is collaborative and contributory computing.
Harnessing the power of networked PCs, through CPU scavenging and volunteer computing [16],
P2P systems are showing their great potential in solving complex problems. It should be noted
however that in P2P distributed projects, the performance is usually ‘best effort’-like as compared
with high-performance Grid. Nonetheless, P2P systems each time more are able to leverage high
rates of throughput (currently processing at rates of few Terabytes), which is significant processing
power for data-intensive applications.

Despite recent advances, there are still many issues that prevent P2P from being widely used
as paradigm for parallel processing, which on the other hand shed light on why Grid computing
is to date more successful than P2P computing for parallel processing.

Scalability: Unlike current Grid systems, which tend to be moderate to medium size, P2P systems
can actually be very large, virtually joining millions of peers. This is a great feature of P2P
systems regarding the computing capacity but at the same time poses a big challenge: how to
make a huge P2P system reliable for distributing computing out of unreliable P2P clients?

Standardization: Creating standard interfaces is a problem for both Grid and P2P systems. Still,
Grid computing community is devoting significant efforts to create a standard Grid interface for
the development of Grid-enabled applications that would offer authentication, resource discovery
and allocation, efficient scheduling. Globus Toolkit and OGSA implementations are efforts
toward this standardization. In the P2P side, up to date, there are no general-purpose P2P systems
in use; rather, P2P systems have been developed to support specific services. Also, one can
find many independent clients running on the same peer machine, with the peer belonging to
different P2P networks (each one using different protocols). Moreover, in general there is no
data sharing among different P2P applications.

Fault-tolerance: Grid systems can be considered as more problematic regarding fault-tolerance due
to their centralized nature, whereas P2P systems are in principle more robust. However, in practice
it is difficult to build robust P2P applications, especially, in the presence of task dependencies.
Popular P2P applications, such as Seti@Home using BOINC are in fact client/server approaches.
Decentralization and dynamism are thus not taken full advantages in the current P2P systems.

Efficiency: The efficiency of the P2P systems depends much on the contributed bandwidth and other
peer resources (storage, processing power, etc.). Incentive mechanisms, such as using bandwidth
as currency, are very important in this context to increase the efficiency of the system. Some
P2P networks implement the ‘give-to-get algorithm’ to solve shortcomings in P2P file-sharing
systems. Thus, implementing give-to-get algorithms so that any peer is both a contributor and a
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beneficiary of the shared resources would increase the systems’ efficiency also for the case of
parallel applications.

Security: P2P systems have all security issues of volunteer computing. Peers might wish to hide
personal identifying information; hence, maintaining anonymity is each time more important to
contributing peers. Detecting malicious peers, such as those who can falsify and return incorrect
results or distributing malicious executable programs to peers, etc. are important problems in P2P
systems. Such problems are, for instance, found with the BOINC system, although it implements
some mechanisms for preventing them.

These issues, although not altogether, are addressed in the P2P middleware, considered in the
next section.

3.1. P2P middleware and programming models

As in the case of Grid computing, middleware and communication libraries are vital for the
development of P2P-enabled applications. Compared with the Grid systems, there have been
proposed fewer middleware and communication libraries for P2P systems. They are based on three
architectures: client/server, pure P2P (fully decentralized) and hybrid (super-peer) architectures.
Current research focus is on general-purpose P2P middleware to support P2P applications. We
briefly review some of them next.

JXTA Library. JXTA [14] is a library¶ consisting of a set of generalized P2P protocols. The
set of protocols can be used as a basis for the implementation and deployment of P2P networks.
JXTA protocols in fact aim to standardize the way peers discover other peers in the network, peer
communication, organization of peers in peergroups, the announcement and discovery of services in
the network, etc. Moreover, security services are offered in using JXTA protocols (confidentiality,
authentication, data integrity, etc.).

A JXTA-based P2P network consists of a set of interconnected peers, which can be self-organized
in groups and offer common services to the rest of the network. Services are announced using
XML documents, the so-called, advertisements. Advertisement is an important piece in a JXTA
network; through advertisements peers can join other peers, be aware and use available services
in the network. Among others, there are peer advertisements for peergroup, pipes, rendezvous
and peer information. Messages are XML documents encapsulating routing information, credential
information (binary data can be also encoded and included) and are sent through pipes.

JXTA-based networks can have four types of peers: minimal edge peer, which can send and
receive messages but cannot send or save in its local cache advertisements; full edge peer, which
can send and receive messages and also save advertisements in its local cache but cannot handle
advertisements for resource discovery; rendezvous peer, which besides the aforementioned proper-
ties is able to handle advertisements for resource discovery. It should be noted that each peergroup
must have at least a rendezvous peer. When a peer wants to join a peergroup, it searches for
a rendezvous peer. Moreover, rendezvous peers keep lists of other known rendezvous and peers
connected to them. The rendezvous peer is also known as super-peer (aka ultra-peer) and is the
kind of peer that plays a crucial role in a JXTA network. Finally, relay peers keep information about
routing of other peers and routing of messages. In particular, relay peers help sending messages
of peers to other peers they do not have access to.

Peers use several protocols for communication and accomplish their functionalities. Essentially
there are six protocols in JXTA; it should be noted that a peer need not implement all these
protocols but only those required for its specification. These protocols are: peer discovery protocol,
which serves for announcing resources (peers, groups, pipes, services, etc.) and discovers other
peers’ resources; peer information protocol, which serves for getting state information (time, state,
traffic, . . .); peer resolver protocol, which serves for sending generic requests to one or more peers,
usually for information exchange; pipe binding protocol, which serves for establishing virtual

¶Open source community project https://jxta.dev.java.net/.
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communication channels (pipes); endpoint routing protocol, which serves for finding routing to
other peers through relay peers; and, rendezvous protocol, which enables peers for subscribing to
service propagation.

As can bee seen from the above description, JXTA features, such as stable API, NAT and firewall
traversal, decentralized architecture and scalability, make it appropriate for developing higher-level
middleware.

JXTA-based middleware. Several middleware based on JXTA have been reported in the literature.
These include JXTA-Overlay, P3, JXTPIA, Jalapeno, JNGI, JXTA-Grid, OurGrid, Triana and
Xeerkat. We briefly describe them next.

JXTA-Overlay‖ [48, 49] project is an effort to use the JXTA technology for building an overlay
on top of JXTA offering a set of basic primitives that are most commonly needed in P2P applications.
It comprises primitives for peer discovery, peer resources discovery, resource allocation, task
submission and execution, File/data sharing, discovery and transmission, instant communication,
peer group functionalities (rooms, etc.) and monitoring of peers, groups, tasks, etc. This set of basic
functionalities is intended to be as complete as possible regarding the needs of P2P applications,
which can be built on top of the overlay. One of the characteristics of the primitives offered by
the JXTA-Overlay is their genericity and independence from the applications that will be using
them, yet allowing to keep the intrinsic decentralized nature of Grid/P2P systems. Regarding
the architecture, JXTA-Overlay is based on a broker–client model, implemented as a broker and
a client layer, respectively. Brokers are the governors of the JXTA P2P network as they are in
charge of achieving efficient resource allocation functionalities, resource monitoring, management
of executable tasks, etc. Note that broker peers extend rendezvous peer and do not interact with
final user applications; therefore, they represent just one layer. The client layer is in charge of
receiving and managing all events generated at the application level due to calls to the primitives.
In this way, we achieve the set of primitives to be completely decoupled of any application as
the client layer will allow (final) user applications to transparently communicate with the overlay.
Several economic-like models have been implemented for selecting peers in job executions [48].
JXTA-Overlay has been tested through two different types of applications. The first is a distributed
application that processes large log data files in regularly sequenced data (RSD) format. The second
one is to create a group-ware environment for students of a virtual university. Both applications
showed the feasibility of the overlay approach.

Personal Power Plant (P3) [50] is another middleware using JXTA library aimed at supporting
common requirements of P2P software. P3 consists of a job management subsystem, a job monitor
and parallel programming libraries. P3 creates a JXTA-supported peer group called a job group
for each job that is submitted by a parallel application. The experimental evaluation of this library
[50] showed an overhead in terms of communication performance although a cluster on Gigabit
Ethernet LAN was used as infrastructure.

JXTPIA [51] is a JXTA-based P2P network interface and architecture comprising home-
work distribution module, trigger distribution module and data sharing module. JXTPIA
aims at supporting Grid computing through resources allocation, task scheduling and task
assignments.

Jalapeno [52] is intended for supporting task execution in a desktop Grid. It consists of manager,
worker and task submitter hosts. Jalapeno is appropriate as a framework for solving embarrassingly
parallel applications in which the problem is split into smaller independent sub-problems. JNGI [53]
is another JXTA-based framework for job executions using computational peers in the P2P network.
Jobs are split and distributed among several peers. It is claimed that by providing redundancy
within peer groups, it is ensured that failures do not affect job completion. OurGrid [54] addresses
the use of an economic model for resource sharing in Grids. It uses JXTA protocols for basic P2P-
functionalities such as peer discovery and message broadcasting. Triana [55] is an open-source
problem-solving environment especially as a workflow manager for Grid applications. Xeerkat∗∗

‖https://jxta-overlay.dev.java.net/.
∗∗Xeerkat http://code.google.com/p/xeerkat/.
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is a JXTA-based framework that uses a worker/hiring analogy to establish computational Grids.
It uses an agent computing model where an agent runs a number of available services.

XtremWeb. XtremWeb [56] is a Java-based software for the development and deployment of
light-weight Grids, namely Grids based on desktop PCs. It is mainly addressed for developing
embarrassingly parallel applications (parametric model). The computing resources are provided
on a volunteer-basis. XtremWeb architecture is made up of Client, Coordinator and Workers and
uses a pull model in which Workers initiate communications to request jobs from Server. Worker’s
results are sent to the Coordinator (result collector). In a P2P scenario, XtremWeb can be used
to build centralized P2P systems in which a Worker behaves as a Client. Jobs submitted by the
Client are registered on the Server and scheduled on Workers. Communications between different
parts of XtremWeb include remote procedure call messages and data transfers.

P2P-MPI. P2P-MPI [57] is a middleware for developing embarrassingly parallel applications
by grouping computing resources of desktop Grids. Typically, a user can request P2P-MPI to
transparently find a given number of processors for running a Java application, using the P2P-MPI
message passing library, which in turn conforms to MPJ.

Other middleware include Omnix [58], BestPeer [59], IRIS [60] and PeerBus [61], whose
descriptions are omitted here.

Shared data programming model. One of the most important features of P2P systems is data
sharing among peers in the network. In fact, data sharing and data parallelism are not yet fully
exploited in P2P systems. Mechanisms for data sharing and transfer, data publishing and replication,
data discovery and access are common to e-Science applications. JUXMEM [62] is a JXTA-based
interface to shared data programming on the Grid.

Efficient query-based programming model. Efficiently querying the network is a key issue in
P2P programming. Despite recent advances, there are still many shortcomings in this regard. Teaq
[63] addresses the efficient distribution of processes in the network according to peers’ processing
capabilities and efficient querying of programming-level objects in the network. Other XML-based
queries, such as XQuery and XPath, are also being addressed in the P2P programming to efficiently
query collections of XML data.

4. GRID AND P2P-ENABLED E-SCIENCE APPLICATIONS

Grid computing has shown its usefulness for a family of applications arising in science and
engineering. The Grid infrastructure used for this purpose is identified as e-Science, defined as a
‘set of advanced technologies for collaboration and sharing resources across the Internet, so-called
Grid technologies, and technologies integrated with them’. e-Science stands for a new research
field that focuses on collaboration for solving complex problems from science and engineering
using new computational paradigms and infrastructures. From an application perspective, e-Science
embraces a large family of applications, although at the beginning Grid technology consisted
mainly of purely scientific applications. Simulation-driven or experiment-driven applications, such
as parametric modelling, parameter sweep applications, Monte-Carlo simulations, are examples of
successful e-Science applications.

Presently, e-Science applications span domains such as chemistry and physics, medical and life
sciences, engineering and design, mathematics, economics, business and finance, environmental
science, earth sciences and astronomy, etc. Nowadays, the number of applications with e-Science
keeps growing in new areas of science and engineering. In [64], the authors provide a classifica-
tion of different approaches for e-Science Grid infrastructures in solving complex problems. The
multi-disciplinary nature of e-Science applications as well as the cross-domain collaboration of
researchers and Grid infra-structures and virtual laboratories make Grid technologies promising
collaborative technologies.

P2P paradigm is increasingly contributing to e-Science. P2P-enabled e-Science applications
became popular by the SETI@Home project of massively distributing computing for protein
folding, detecting intelligent life outside earth, etc. P2P paradigm has also started to be considered
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in combinatorial optimization (e.g. for branch-and-bound algorithms [65, 66] and evolutionary
algorithms [67]) and data mining [68].

5. INTEGRATED APPROACHES FOR GRID AND P2P SYSTEMS

As can be seen from the exposition in previous sections, Grid and P2P systems have followed
different trajectories motivated by different needs and users’ interest and supported by rather
different developing and research communities. Fortunately, both paradigms are evolving in a way
that each time they share more common characteristics. Among these characteristics, we distinguish
the cooperative model for solving complex problems. Grid and P2P systems have common intrinsic
features of large distributed systems and both of them are concerned with harnessing and sharing of
computationally resources. In fact, they can benefit from each other characteristics. Grid systems
can benefit from P2P techniques of resource discovery, decentralization, replication and scalability,
which are extensively addressed in the P2P literature. In this sense, P2P systems can provide
more flexibility to Grid approaches. For instance, resource and service discovery approach in Grid
systems is centric or hierarchic-based, whereas P2P systems use advanced presence mechanisms of
peers. By implementing P2P-like presence and discovery mechanisms, Grid systems will be able
to use in a decentralized and efficient way smaller groups of resources within the whole system.
On the other side, P2P systems can benefit from resource allocation, scheduling, load-balancing
techniques, security techniques, etc. developed for Grid systems.

Currently there are no proposals for P2PGrid middleware that would support best features
of both paradigms; however, there are attempts to develop such integrated approaches. OGSA
model is one such example, in which Grid, P2P and Web Service concepts are merged. Also,
efforts are being done at the infrastructure level, such as mixing clusters and desktop machines for
P2P-based computational Grids (e.g. [69–71]) or the PlanetLab platform [72] as a testbed for Grid-
P2P applications.

6. CASE STUDY: PARALLEL PROCESSING USING JXTA-OVERLAY MIDDLEWARE

In this section we present an application, developed on top of JXTA-Overlay middleware, for
parallel processing of log data files of a virtual campus.

6.1. Log data files of virtual campuses

Virtual campuses, virtual organizations and emerging virtual institutions [2] are new ways of orga-
nizing community-based activities by using IT technologies. These new paradigms of organization
are sustained by the common interest of the members of the community to achieve their goals.
Thus, in the case of virtual campuses, which is one of the most widely used of virtual organizations
in the today’s teaching and learning activity, the members of the campus pursue academic goals.
In such context, log data are important for the description and studying students’ behavior and
navigation patterns when interacting with the virtual campus.

As a real example, the Open University of Catalonia (http://www.uoc.edu) offers distance educa-
tion through the Internet in different languages to about 40 000 students, lecturers and tutors.
Students and other users (lecturers, tutors, administrative staff, etc.) continuously browse virtual
individual or community areas. All users’ requests are chiefly processed by a collection of Apache
web servers as well as database servers and other secondary applications, all of which are providing
service to the whole community. For load balance purposes, all HTTP traffic is smartly distributed
among the different Apache web servers available and each web server stores in a log file each user
request received and the information generated from processing it. Once a day, all web servers in
a daily rotation merge their logs producing a single, very large log file containing the whole user
interaction with the campus performed in the last 24 h. A daily log file size may be up to 10 GB.
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Algorithm 1 Master processing: Phase I
1: Read the configuration file.
2: Compute the chunk size, nb_lines, according to the number of chunks specified in configu-

ration file.
3: repeat
4: Read nb_lines lines from the log data file and create a chunk with them.
5: if (transmission mode is FTP) then
6: Upload the chunk at FTP server
7: else
8: Store chunk at local cache.
9: end if

10: until (the log data file has been completely scanned)
11: for all (chunk files) do
12: Create a job request;
13: Submit job request to JXTA-Overlay platform.
14: end for

Algorithm 2 Master processing: Phase II
1: repeat
2: Receive partial results from peers.
3: Append, in the correct order, the result to the final file.
4: Delete chunk files from FTP or from local storage.
5: until (there are messages from peers to receive)

This huge amount of information needs pre-processing to remove non-relevant information and
then can be processed for extracting useful information.

6.2. Parallel processing using JXTA-overlay

The log data files of the virtual campus follow an RSD pattern. In such format, log data are
textual, event or record oriented and the boundaries between events/records are easily identifiable.
The RSD format of log data is an important feature for its parallel processing. Indeed, since the
boundaries between events/records are easily identifiable, processing log data files falls into the
family of embarrassingly parallel applications.

The parallel implementation is based on a Master–Worker paradigm. The log data file is split off
into several parts (the number of such parts depending on how peer worker nodes will participate
in the processing as well as the chunk size). The chunk files are sent to peers for processing. At the
end, the master node collects partial solutions from peer nodes and composes the final result. The
main steps followed by the master, brokers and peers for log file processing in the JXTA-Overlay
platform are shown in Algs. 1, 2 and 3.

Both FTP and JXTA direct transfer were implemented for file transfer from the Master to worker
peer nodes and were experimentally studied to identify the impact of data transmission on the
overall performance.

6.3. P2P infrastructure and experimental setup

The P2P network using the JXTA-Overlay was deployed in the nodes of nozomi cluster
(at nozomi.lsi.upc.edu) and nodes of the PlanetLab infrastructure. The former were used to
deploy broker nodes, whereas the latter to deploy client peers without graphical user interface
(called SimpleClient peers). Additionally, two PCs and a laptop of standard configurations were
used to deploy client peers with graphical user interface (called GUIClient peers). In the experi-
mental study, one of the GUIClient peers was used as master node, which runs the main flow of
processing.
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Algorithm 3 JXTA-Overlay processing
1: while (there are job requests) do
2: Job request is received by a broker;
3: The broker selects a worker peer according to peer selection models specified at configuration

file;
4: The broker allocates the request to the selected worker peer;
5: The worker peer, upon receiving and accepting the request, notifies it to the broker;
6: if (transmission mode is FTP) then
7: The worker peer downloads the chunks from FTP server;
8: else
9: The worker peer requests chunk file to the broker;

10: end if
11: The worker peer sequentially processes the chunk file;
12: The worker peer sends to the Master the result;
13: end while

PlanetLab nodes used as SimpleClients (abbreviated SCx below) comprised the following nodes:

• ait05.us.es (SC1),
• planetlab1.hiit.fi (SC2),
• planetlab01.cs.tcd.ie (SC3),
• planetlab1.csg.unizh.ch (SC4),
• edi.tkn.tu-berlin.de (SC5),
• lsirextpc01.epfl.ch (SC6),
• planetlab1.itwm.fhg.de (SC7),
• planetlab-1.ssvl.kth.se (SC8).

A log file of 100 MB (roughly 300 000 lines) was processed. Besides processing it as a whole,
it was also split into 4 and 16 parts (‘chunks’) of the same size. Each experiment was run for five
independent times to avoid biased results and average results are reported.

The evaluated scenarios. We give below the scenarios for evaluating the performance of the
parallel processing at the JXTA-Overlay. They consisted of the following:

1. Pre-processing: the master node splits the file in as many parts as indicated in the configura-
tion. If the transfer mode is the FTP, then the master uploads the chunks to the FTP server; if
the transfer mode is JXTA direct transfer, then the master stores the chunks locally and sends
them to the selected worker nodes afterwards upon request. The graphical representation of
the pre-processing time is shown in Figure 1.

2. Processing at broker peer site: Here we measure the time needed by broker peer to process
and allocate the job execution requests. For each request, the broker has to select among all
available peers, the ones that will process the job execution request (in case there are more
parts than peers, as it is the case of 16 chunks, some peers receive more than one part; in this
latter case, the broker is in charge of achieving load-balancing among peers and re-submitting
the job execution request to another peer in case of failure). The graphical representation of
the processing at broker site is shown in Figure 2.

3. Receiving the file or chunk files for processing: In this step, the whole file or chunk files are
received by the worker peers for processing either from an FTP server or by direct transfer
from the master node. The time for this step thus depends on the chunk size as well as the
transmission mode. The graphical representation of the file reception time (for the case of
JXTA direct transfer) is shown in Figure 3.

As can be seen from Figure 3, the time for transmitting the whole file is considerably
larger than sending the file by chunks. For instance, when the file is split into 16 parts (each
of about 6.25 MB) the direct transfer time takes in average 1.47 min.

4. Processing the chunk file: This step consists of running the sequential program at peers’ sites
for processing the chunk files. The processing time is graphically shown in Figure 4. In the
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Figure 3. File transfer time from master node to peers.

figure, we also show the sole processing time vs downloading the file from the FTP server
and processing.

We also show the processing time (see Figure 5) for just one chunk file of 25 MB (that
would result from splitting the 100 MB into four chunks) and that of 6.25 MB (that would
result from splitting the 100 MB into 16 chunks).

5. Sending the result to Master: Upon finishing, peers send the result of processing the chunk file
to the Master. The time required for completing this step again depends on peers’ networking
connections. As can be seen from Figure 6, one of the peers (SC7) appeared to be as a
bottleneck in communicating the results.

Finally, the total processing time is graphically shown in Figure 7 by using different peer
selection models (see line 4 in Alg. 3). In the figure, the peer selection methods are abbreviated
as follows: EcFTP: economic based selection model using FTP; EcTr: economic-based selection
using JXTA transfer; PriceFTP_s: price-based model using FTP (peers having the same priority);
PriceTr_s: price-based model using JXTA transfer (peers having the same priority); PriceFTP_q:
price-based model using FTP (quickest peer); PriceTr_q: price-based model with quick peer
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using JXTA transfer (quickest peer). (The reader is referred to [48] for details of peer selection
models.)

As can be seen from Figure 7, a considerable reduction was achieved in the overall processing
time by partitioning the original log data file into 16 chunks that are processed in the JXTA-
Overlay platform. The use of different peer selection methods showed to be useful in reducing the
processing time, especially when the JXTA direct transfer is used.

The experimental analysis also pointed out the need to achieve different degrees of granularity
(chunk size) instead of using the same size for all chunks. Indeed, as can be seen from the
experimental results (see Figures 2 and 6) the overall processing time is conditioned by the
computational characteristics and networking connections of peer nodes.

(The reader is referred to [73] for a similar approach, but implemented using Grid services [74]
and Globus Toolkit.)
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Figure 7. Total processing time of the 100 MB log data file in the JXTA-Overlay platform.

7. CONCLUSIONS

Grid computing originated in the scientific community in response to the need for harnessing
more processing power for the development of large-scale distributed applications. P2P computing
only recently has started to be used for large-scale distributed systems based on collaborative and
contributory computing models. Harnessing the power of networked PCs, through CPU scavenging
and volunteer computing, is enabling P2P systems to leverage high rates of throughput.

The analysis of the existing Grid middleware, programming tools and languages showed that they
do not fully support the effective programming and development of Grid applications. In particular,
the lack of simple, standard programming interfaces that hide complexities of Grid systems makes
difficult and tedious the programming task in Grid systems. Nonetheless, Grid computing has
shown to be more successful for parallel and distributing computing than P2P systems. Despite
recent advances, there are still many issues, such as scalability, standardization, efficiency and
security, that prevent P2P from being fully exploited and widely used as paradigm for parallel
processing.

Although Grid and P2P systems have followed different trajectories and are motivated by
different needs and users’ interest and supported by rather different developing and research
communities, both paradigms are evolving in a way that each time they share more common char-
acteristics. Among these characteristics, we distinguish the cooperative model for solving complex
problems by exploiting the large computing capacity by harnessing and sharing of computationally
resources. As such, Grid and P2P systems can benefit from each other features to improve the
overall system’s performance.

Finally, there is a clear need for integrated frameworks for Grid and P2P, namely middleware
that would support best features of both systems. Models, such as OGSA, which merge Grid, P2P
and Web Service concepts, are showing their usefulness in this regard.
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