The Journal of Systems and Software 83 (2010) 1983-1994

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Dependency-aware maintenance for highly available

service-oriented grid
Hai Jin®*, Yaqin Luo?, Li Qi®P, Jie Dai?, Song Wu?

@ Huazhong University of Science and Technology, Wuhan, 430074, China
b China Development Bank, Beijing, 100037, China

ARTICLE INFO

Article history:

Received 12 November 2007

Received in revised form 26 May 2010
Accepted 26 May 2010

Available online 16 June 2010

Keywords:

Dynamic maintenance
Grid services

Service dependency
Availability

ABSTRACT

When the scale of computational system grow from a single machine to a Grid with potentially thou-
sands of heterogeneous nodes, the interdependencies among the resources and software components
make management and maintenance activities much more complicated. One of the most important chal-
lenges to overcome is how to balance maintenance of the system and the global system availability. In
this paper, a novel mechanism is proposed, the Cobweb Guardian, which provides solutions not only to
reduce the effects of maintenance but to remove the effects of dependencies on system availability due to
deployment dependencies, invocation dependencies, and environment dependencies. By using the Cob-
web Guardian, Grid administrators can execute the maintenance tasks safely at runtime whilst ensuring
high system availability. The results of our evaluations show that our proposed dependency-aware main-
tenance mechanism can significantly increase the throughput and the availability of the whole system

at runtime.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Today’s web or Grid services are usually composed by several
standalone services that present useful functionalities. Examples
include (i) online digital album that is composed by simple stor-
age services and metadata management services; (ii) execution
management system that consists of information services, authen-
tication and authorization services, data transferring services, and
so forth. Within these composite services, the service components
would be partitioned, replicated, and aggregated to achieve high
availability and scalability, especially when the system experiences
high growth in service evolution and users’ demands. However
from the experience of Chinagrid Support Platform (CGSP) (Wu et al.,
2005) and VEGA (Xu et al., 2004), the incremental scale and com-
plexity of Virtual Organizations (VO) (Foster et al., 2001) make the
management and deployment increasingly complicated and much
more difficult to execute. Even at a moderate scale data center, a
system update might affect more than 1000 machines, since most
of them are interdependent on each other (Talwar et al., 2005).
It means that the maintenance to a service component should be
carefully contained to ensure the continuously correct execution
of affected services. Further more, the availability of management
components during the maintenance needs to be kept in a com-

* Corresponding author.
E-mail address: hjin@hust.edu.cn (H. Jin).

0164-1212/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j,js5.2010.05.068

paratively high level in order to continually react to the service
requests. In traditional distributed systems, the related services
might have to be shut down temporally during the maintenance.
However some critical commonly used business services such as
Bank services must provide services continuously in 24 hours per
day since any unpredictable pause from the maintenance will lead
to a big lost.

Specifically, for Grid administrators, the maintenance for ser-
vices is running through the whole lifecycle of service components.
Each service component in Grid has five status: released, d eployed,
initiated, activated, and destroyed (Hai Jin et al., 2007). According to
these status, the maintenance tasks include publish, deploy, unde-
ploy, upgrade, configure, activate, and deactivate. How to coordinate
these maintenances without sacrificing the utilization of target
resources and the availability of the whole system is indeed a great
challenge.

As shown in Fig. 1, we take the realistic logs of CGCL (a domain of
ChinaGrid) as an example. During the observed 60 h (from 00:00:00
GMT+8 Jul 18, 2008 to 12:00:00 GMT+8 Jul 20, 2008), the Grid
infrastructure with 41 HPC nodes! was continuously serving the
requests from ten users(Fig. 1(c)). Obviously, it is impossible to
complete a upgrade request of infrastructure services (e.g. trans-
ferring services, authentication services, and so forth) since there is

1 The detailed configuration can be found at http://grid.hust.edu.cn/hpcc/index.
php.

dx.doi.org/10.1016/j.jss.2010.05.068
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:hjin@hust.edu.cn
http://grid.hust.edu.cn/hpcc/index.php
dx.doi.org/10.1016/j.jss.2010.05.068

1984 H. Jin et al. / The Journal of Systems and Software 83 (2010) 1983-1994

Fig. 1. Service running statistics in a domain of ChinaGrid.

no time slot for this request. In addition, all user applications were
running upon those critical infrastructure services. There would
be 33 running services and 28 new requests failed (as shown in
Fig. 1(a)) if we run the upgrade at time slot 7 (as shown in Fig. 1(b))
during which there were fewest running requests when we take
sub-optimal solution. Therefore, the traditional maintenance can
significantly affect system availability. Further more, more requests
will be rejected due to the maintenance if the upgrade cannot be
finished in an hour.

From this scenario, a sophisticated maintenance mechanism
is needed to facilitate administrator in many ways. First, admin-
istrator needs not to issue the maintenance tasks for each
service component in serial each time. Next, the maintenance
mechanism should take the invocation dependencies during
runtime into account to choose solutions that can provide
higher availability. More over, multiple maintenance granular-
ity should be supported in maintenance mechanism to reduce
the effects from environment. Finally, the deployment (or ver-
sioning) dependencies between services must be detected in
advance before the maintenance, so to reduce the need of making
changes and the possibility of making errors to specific mainte-
nance.

The dependencies technologies have been investigated since
desktop computing (Yau and Tsai, 1987; Sangal et al., 2005). They
are widely used for optimizing in software engineering area. How-
ever, the static and simple approaches cannot guarantee system
efficiency and availability at runtime as services components dis-
tributed widely in Grids. This paper recognizes the importance of
distributed service maintenance and its challenges. The main goal
of our study is to answer the following questions. How to guarantee
high availability of the whole system when a maintenance applied

to some service components with complicated dependencies, espe-
cially for the essential services?

In this paper, we propose a new maintenance mechanism,
named C obweb Guardian, which supports multiple granularities
(service-, container-, and node-level) maintenance to reduce the
effects from environment dependencies. In addition, the Cobweb
Guardian manages a dependency map that is initially provided
by automatic detector or Grid administrators. When a mainte-
nance request arrives, the Cobweb Guardian recognizes the related
dependencies using dependency map to generate an optimized
maintenance solution which can reduce the dependency effects.
Further more, Cobweb Guardian provides the session management
for maintenance to avoid the possible failures brought by depen-
dency hierarchal.

The rest of this paper is as follows. In Section 2 we describe the
problem statement and the motivations. In Section 3 we present
an overview of architecture and details about design, and imple-
mentation. In Section 4 we evaluate our approach by different test
cases. In Section 5 we explore the related works including our for-
mer efforts, and in Section 6 we conclude this paper with a brief
discussion of future research.

2. Motivations
2.1. Concepts

Before further discussions some basic concepts are introduced:
e Service Components in a Grid or web-based system are hosted

in some specific container such as Globus Toolkit 4 Java WS
Core (Foster, 2006) and provide a set of operations to public

H. Jin et al. / The Journal of Systems and Software 83 (2010) 1983-1994 1985

that can be used to compose new services. The communications
between them are usually encapsulated in a Message by some
protocol such as SOAP. In addition, we define the service that
is composed by some other service components as Composite
Service.

Dependency in this paper denotes a kind of relationship between
the service components and hosting environment. The correct
execution of a service component is always depending on the
hosting environment, the dependent calling services, and the
dependent deployment service.

Maintenance to a Grid or a distributed web services based system
denotes a set of tasks (e.g. deploy, undeploy, and so on) to some
particular service components distributed in Internet-connected
computing resources. Normally these requests are delivered by
the administrators. However by invoking the maintenances auto-
matically, the Grid system is capable of self-healing, self-growing,
and dynamical provisioning.

To state the problem clearly, two metrics are defined for the
dynamic maintenance.

2.1.1. Maintenance time

In the distributed environment, the maintenance time (marked
as t) for specific service component (r) is decided by the time of
transferring maintenance related packages (t;, e.g. installing pack-
ages, patches, or configuration files), the time of deploying these
packages (tg), the time of pending invocation requests (t,) due to
dependencies, and the time of reloading container or essential com-
ponents (t-). Among them, the pending and reloading periods are
rather dynamical during the maintenance. Meanwhile most com-
ponents would be unavailable during these two periods. Formula
(1) denotes this equation.

Sr

() =te+ta+ »_[tp(s) + ()] + tr(r) (1)

s

In Formula (1), the Sr is the set of service components on which
the maintained service component r is depending. The Zf’ [tp(s) +
tr(s)] denotes that the pending time and reloading time of r is
decided by the related components recursively.

We suppose that the task covers n service components that
distributed in m resources (n>m). In ideal, the shortest main-
tenance time (lower bound) obtained is to deploy these service
components to the resources in parallel. And the longest main-
tenance time (upper bound) obtained is to maintain these
service components in different resources in serial and with the
possible penalty. The actual maintenance time is exposed in
Formula (2).

n
maxl(t) <t <m- Zti 4D - tpen (2)
i

The t! means the average maintenance time for the ith service in
the target collection of maintenance task. And the p is the failure
possibility of maintenance while e, is the penalty caused by the
maintenance failure.

2.1.2. Availability

The availability (marked as A) that we defined in this paper
is the proportion of available time at which the system is and be
capable of executing correctly. More specifically, we define the avail-
ability (in Formula (3)) of the system during the maintenance is
the ratio of system’s available time to the longest maintenance
time (i.e. watching period). The symbol | J in Formula (3) means
the combination of pending and reloading time instead of the
sum of them since the pending and reloading period might be

overlapped during the transfer or deployment of these service
components.

U+
_ T

i

A=1 (3)

From the two metrics above, we can find that a good maintenance
solution is usually coming with less maintenance time and higher
availability. To achieve that, we will do the analysis for different
dependencies in the next sections. For evaluation convenience, we
also introduce the Loss Rate, the ratio of failure requests to the total
requests during the watching period. Actually, it appears as the
inverse proportion to the availability.

2.2. Dependencies in Grid

As mentioned in Section 1, service dependency is common and
complicated in service-oriented Grids. From the view of Grid devel-
opers, the composite service always depends on a bunch of other
service components. On the other side, from the view of Grid
administrators, the correct deployment or maintenance of service
components also depends on the target hosting containers. Based
on the literature (Chu et al., 2005; Talwar et al., 2005) and our
experience (Qi et al., 2007), we classify the dependencies into three
main types: deployment dependency, invocation dependency and
environment dependency.

Deployment dependency: The successful pre-deployment of

related services is always necessary basis of a service deployment.

In addition to that, the version problem during the maintenance

also drives us to focus more on the dependencies between the

pre-deploying components and deployed service components. In
desktop systems, the Berkeley DB3 is used to record the deploy-
ment dependencies for Linux’s RPMs (Mugler et al., 2005). In
distributed computing environment, the deployment of a service
component (e.g. Wikipedia website) requires a database compo-
nent of a specific version (e.g. MySQL-server-4.0.20-0) must be
pre-installed in the remote site for initialization. If Grid admin-
istrator ignores this dependency, the maintenance will fail. The
configuring dependency discussed in the literature (Talwar et al.,

2005) can be included in deployment dependency.

Invocation dependency: It represents key feature of SOA that usu-

ally exists between composite services (Chu et al., 2005; Wu et

al., 2005). We describe three kinds of invocation dependency as
examples:

e AND-dependency describes the aggregating relation of service
components. The typical scenario is the executing system in
a Grid. The execution management (e.g. Grid Resource Allocate
and Management, GRAM Foster, 2006) is AND depending on the
information systems (e.g. Monitoring and Discovery System, MDS
Foster, 2006), data file-transfers (e.g. Reliable File Transferring
service, RFT Foster, 2006), and some other system functional
services.

e XOR-dependency means the replication relation. It can be
explained as switch-case logic in Java. The requests to com-
posite service will be delivered randomly to the depending
components. This kind of dependency is common in today’s Data
centers. For instance, the Data metadata manager is usually dis-
patching the requests to the Replica services.

OR-dependency denotes that the requests to some composite

services could be ignored in some specific cases. This kind of

dependency can be mapped to the try. .. catch... finally logic in

Java. For example, the front end service usually choose cache

service for information system first, however it could be trans-

1986 H. Jin et al. / The Journal of Systems and Software 83 (2010) 1983-1994

ferred to real data base when reading cache failed. That is, front
end service tries to dispatch request to real database query-
ing when reading cache failed. In the above scenario, the front
end service OR-depends on cache service and database querying
service.
Environment dependency: The maintenance for a service might
jointly affect other services’ maintenance when some functional
services are hosted by same computational node, For example, the
Data and the Info service have been deployed on a same container.
Despite they are neither deployment nor invocation depended on
each other, when doing the Data service maintenance, the avail-
ability and throughput of Info service is jointly affected due to the
restart task of the container which was delivered by the mainte-
nance of Data service.

2.3. Maintenance solution and dependencies

We introduced the metrics and three dependencies in Section
2.1 and 2.2. And in this section, we will use these metrics for
evaluating current solutions and approaches for distributed main-
tenance.

Till today, the most popular approaches for distributed mainte-
nance is still built on shell scripts (e.g. Bash shell or Perl scripts) and
executed in serial. Typical system includes OSCAR (Oscar), Beowulf
(Beowulfintroduction and overview), and so on. With performance
demands growing, the maintenance solution is being implemented
in advanced parallel program. The SmartFrog (Smart frog project)
proposed by HP, ProActive (Proactive project) proposed by INRIA,
and MPICH-G2 (Karonis et al., 2003) proposed by Globus Alliance
are ever adopted to implement parallel maintenance toolkit. There
are two types of solutions which have different features of mainte-
nance time and availability.

2.3.1. Language-based maintenance in parallel
By using this solution, we can get maintenance time easily if we
ignore all dependencies:

t= m':ax(t") (4)

In addition, the availability of the system can be calculated as:

n i i
B max[, (t; +t})
n
> ¢
i=0

However, if there is a deployment dependency, the availability will
drop to zero and will be unable to recover even after the main-
tenance completed. The reason is that the ignore of deployment
dependency will lead to the failure of depending service compo-
nent while the depended services are maintained as normal. The
whole system becomes unavailable since then.

On the other hand, this approach is unacceptable either if
there are invocation dependencies (e.g. OR- and XOR-dependency).
Because whatever the composite service or its service components
finish maintenance first, the availability of system will decline.

A=1 (5)

2.3.2. Script-based maintenance in serial

As another frequently used approach for daily maintenance, the
script-based maintenance in serial cost much more time to finish
the maintenance compared to parallel one (As shown in Formula

(6)).

t= zm:t" (6)

And the availability can be presented as:

m
(t;' +r£’)
A=1-2=_ (7)

n
2!
i=0

In Formula (7), the m means the maintenance steps to be executed
for n services. It depicts that the availability during this solution is
lower than the parallel one.

Although the serial approach does not lead to deployment
dependency problem, it is still unacceptable in most maintenance
cases for its poor availability and efficiency.

2.4. Objectives

Section 2.3 discusses the shortages of traditional maintenance
approaches since the service dependencies must be taken into
account. The motivations to build a highly available maintenance
mechanism include:

2.4.1. Improve the global availability during the maintenance

The executions of upgrade, undeploy, and deactivate tasks are
inevitable to make some service components inaccessible. It can
definitely bring chained reactions to the components that are
invocation-depending on them. And finally lower down the avail-
ability of the whole system. Also, the environment dependency is
another factor to lower down the availability of the whole sys-
tem. Grid administrator needs a effective mechanism to balance
the global availability and demands of maintenance.

2.4.2. Reduce the possible failures of maintenance

As discussed in Section 2.1, the maintenance will failed if the
deployment dependency has been ignored. Especially in the highly
distributed Grid, the failure will be jointly amplified to the whole
system and make it crashed down eventually. The traditional main-
tenance approaches (e.g. manual, script-, and language-based in
Talwar et al., 2005) cannot resolve this problem well without han-
dling the dependencies. On the other hand, when a service is being
deployed or upgraded, the maintenance will fail if the target envi-
ronment lacks its depending service packages (i.e. environment
dependency). To avoid that, the maintenance mechanism should
be able to find out these depending components and deploy them
first.

2.4.3. Improve the efficiency of maintenance

As mentioned in Section 1, most of maintenance tasks can be
propagated to the related resources in parallel to reduce mainte-
nance time. We try to find out an optimized solution to balance
the parallelism and correctness when introduce the dependency
factors.

3. Design of Cobweb Guardian

In this section, we will demonstrate our design of maintenance
mechanism to shield the effects from various dependencies. The
mechanism in our design has a two layered architecture which can
efficiently record and parse dependencies automatically.

3.1. Architecture

As shown in Fig. 2, the two layers are the Cobweb Guardian (CG)
and Atomic Guardian (AG). A CG communicates with multiple AGs
to execute the maintenance tasks for the Grid. Cobweb Guardian is
composed of four function modules:

H. Jin et al. / The Journal of Systems and Software 83 (2010) 1983-1994 1987

Fig. 2. Guardian software architecture.

(1) Session Control module is mainly in charge of controlling the
progress of the maintenance. In addition to that, it also prop-
agates the maintenance tasks to the target replica Atomic
Guardian.

(2) Dependency Optimizer is the kernel module of CG. It parses
administrator’'s command and then matches the command
requirements to the existing dependency maps. The depen-
dency relations in dependency map store at corresponding
tables in MySQL database with version 5.0.33.

(3) Authorization module is designed for examining all of the
maintenance requests to prevent the whole system from unpre-
dictable dangers (e.g. the requests to deploy Trojan viruses).

(4) Policy module is designed for administrator to execute on
demand maintenance.

Atomic Guardian, the actual maintenance executors, is imple-
mented based on our former works (Qi et al.,2007). AG also consists
of four parts:

(1) Notification module reports the maintenance status to depend-
ing services and the Cobweb Guardian. With this module,
administrators can track the process of each maintenance task
and detect possible failures at any time. The notifications would
only be sent to peers which depend on the service under main-
tenance.

(2) Validation module is the sink of peer container’s Notification
module. AG will execute reloading or pending actions defined
in policies to issue the corresponding notifications.

(3) Maintenance Interface accepts the requests from Session Con-
trol of CG and then executes the deploy, upgrade, or activate
works by interacting with the management module of hosting
container, e.g. HAND (Qi et al., 2007).

(4) Axis handler implements Apache Axis (version 1.2) handler
interface invoke() and is designed to record the different invo-
cation dependencies from the input and output message flow.
Any recorded peer would be notified by the Notification mod-
ule during the maintenance. It can efficiently help CG reducing
the overhead.

By implementing the two layers, the deployment dependencies
can be recorded and managed by CG, and the invocation depen-
dencies can be correctly collect by the AG’s handler. We can record,
parse, analyze and then use these dependencies to reduce the main-
tenance time and improve the global availability.

In the next section, we will describe our solutions to optimize
the maintenance procedure using the recorded dependencies in
detail.

3.2. Environment dependency-aware maintenance in three
granularities

By receiving and analyzing the maintenance requests, CG can
adapt to different granularities (maintenance in service level, con-
tainer level, and node level) according to related environment
dependencies. Obviously the efficient reduction of maintenance
granularity can help improving the efficiency of maintenance.
Three-layer architecture (as shown in Fig. 3) is proposed in
Cobweb Guardian to reduce the effects of dependency hierar-
chal.

Service level: It exists as a manager in the target hosting environ-
ment. The service-level maintenance means that all maintenance
tasks are isolated for target service component. The reloading or
pending operations are only executed as units of services. There-

1988 H. Jin et al. / The Journal of Systems and Software 83 (2010) 1983-1994

Fig. 3. Three-Layer architecture for maintenance.

fore other services in the same environment will not be affected.

Container level: It works in the hosting environment. Unlike
service-level maintenance, the reloading or pending operations
are for the whole container. That is, if a service needs to be main-
tained, the other services in the same container are also putted into
the maintenance. This level is implemented widely in commonly
used applications such as GT4, MySQL server, and HTTPD servers.
Despite the granularity of this level is more complicated than

service-level, it can save much time when maintaining a bunch of
service components in a same container.

Node level: The reloading or pending operations in node level will
affect a bunch of computing nodes from the global view. It adopts
the maintenance policies among different containers. By commu-
nicating with the maintenance manager in service and container
level separately (as shown in Fig. 3), it can promise that the opti-
mized and safe maintenance solutions are adopted. For instance,

we can avoid the effects from environment during the node level
maintenance.

3.3. Deployment dependency-aware propagating maintenance

Similar to the actions of RPM (Mugler et al., 2005) manager in
Linux system, the CG will check the dependency before the mainte-
nance and generate the critical maintenance path to propagate the
tasks. CG provides the session control mechanism to guarantee the
execution of maintenance. The idea is from the parallel topologi-
cal sorting algorithm (Kimelman and Zernik, 1993) and dynamical
maintenance for k-connectivity Graph (Liang et al., 2001). CG prop-
agates the maintenance tasks to the depending services first to
guarantee the correct execution of the maintenance procedure.
If the propagations are finished in k steps, the time cost of this
solution can be calculated as:

k NORE
t= max(t) (8)
—
The s(i) in Formula (8) means the parallel maintenances for step i.
And the availability is:

k

Z(tﬂt},)

- (9)
Dt
i=0

It denotes that the maintenance time is longer than the sim-
ple parallel solution in Section 2.3. However this solution can
assure the correctness of maintenance for Grid administrators.
Algorithm 1 demonstrates this procedure. Line 4 is to com-
bine the possible maintenance tasks that deployment dependency
related.

A=1

3.4. Invocation dependency-aware grouping maintenance

To achieve higher availability during the maintenance, the dif-
ferent semantics of invocations are differentiated by AG.

(i) For AND-dependency. The maintenance for any service with
this kind of dependency will lower the global availability since
the unavailability of any component can be chained transmit-
ted to the whole system. The best solution is to propagate all
maintenances to the target containers at the same time.

H. Jin et al. / The Journal of Systems and Software 83 (2010) 1983-1994 1989

(ii) For XOR- and OR-dependency. Because the ordinary requests
are always dispatched to the composite services in proper
policy (e.g. round robin, random, or load balanced policy),
the global availability can be raised if the maintenance for
composite services can be executed in groups. Formula (10)
describes the improved availability by using this approach. The
pi (0<p;<1)in Formula (10) means the possibility of dispatch-
ing requests to the maintenance containers. In addition, the t°
means the maintenance time of the front end service compo-
nent.

k
$+$+z)rW+g)
=1 (10)

n
Dt
i=0

However the maintenance time is also increased since we add
the groups in serial (the bigger k in Formula (8)) for the main-
tenance. Algorithm 2 depicts the process of grouping the target
resources. From line 7 to 9 we can find that CG will group OR and
XOR-depending service components and maintain them earlier
in the group (with higher priority).

A=1-

3.5. Grouping maintenance with feedback

Although the grouping solution in Section 3.4 improves the
availability by sacrificing the maintenance time, it also brings in
some unpredictable factors to the system. For instance, some crit-
ical invocations will be rejected randomly. CG can provide the
feedback notification interface for the Grid applications. By check-
ing the status of remote service component, the Grid applications
can bypass the requests to suitable maintenance service compo-
nent. In this solution, the availability can be improved much while
the cost is mainly from the maintenance of composite service com-
ponent.

4+t

n
Dt
i=0

Formula (11) proved that the availability of this solution is better
than serial, propagating, grouping maintenance solutions. Similar
to Algorithm 2, Algorithm 3 groups the depending services first.
The difference (line 10-12) is that the CG will query the feedback
status from these remote service components in this solution. If one
of them is unavailable, its priority value would be decreased and
the its maintenance would be postponed.

A=1

(11)

1990 H. Jin et al. / The Journal of Systems and Software 83 (2010) 1983-1994

4. Evaluations

We evaluated our implementation on Chinagrid test bed. Ser-
vices in our experiments are deployed on Chinagrid Support
Platform v2.0.1 (Wu et al., 2005).

Our evaluation has the following objectives:

e Demonstrate the improved availability by comparing the tradi-
tional maintenance approach with Cobweb Guardian.

e Compare the availability and throughput of different mainte-
nance solutions of Cobweb Guardian when the maintenance
happened in different levels.

e Demonstrate the effectiveness of dependency-aware mechanism
with feedback under different maintenance granularity circum-
stances in improving service availability and throughput.

4.1. Test environment

Unless stated, experiments in this paper were conducted on
two rack-mounted Linux clusters: One is with 16 1 GHz Pentium III
nodes (each with 512 MB memory). Each node runs Redhat Linux
with kernel version 2.4.20-8. The Java runtime version is J2SDK
1.5.0_.06-b05 implemented by SUN. The other one employs 20 dual
1.3 GHz Itanium2 servers. The nodes inside the cluster are con-
nected with a 100Mbps Ethernet switch. Each node runs Red hat
Linux with kernel version 2.4.0-2. The Java runtime version is J2SDK
1.5.0.03-b07 implemented by BEA. The two clusters are also con-
nected with bandwidth 100 Mbps.

To support the correct execution of test case, we installed MPICH
(version 1.2.4) and image processing toolkits on the target systems
in advance.

Abbreviations: Here is a list of the abbreviations that we will
use in the rest of this section:

e NonD denotes the normal maintenance solution in parallel like
ProActive, or SmartFrog without dependency consideration;

e SRL is to maintain the services by calling shell scripts in serial;

e CG-0 is the simple deployment dependency-aware propagating
solution without optimization for invocation dependency;

® CG-1 means invocation dependency-aware grouping mainte-
nance solution;

e CG-2 is the grouping maintenance solution with feedback;

e REQ in the diagrams denotes the fixed request rate for particular
service components.

4.1.1. Application for benchmark

Our experiments are running on a typical executing system,
called General Running Service(GRS, S1), implemented by CGSP.
As shown in Fig. 4, the GRS includes six service components:
authentication service (Auth, S2), information service (Info, S3),
data management service (Data, S4), cache service (Cache, S5), col-
lecting service (Collect, S6), and replication service (Replica, S7).
The executing job issued in our experiment is a MPI-based image
processing application (Haifang et al., 2005) that is deployed in our
Chinagrid test bed. When a job request arrives, GRS parses it and
then contacts with the Auth component to check the validity, the

H. Jin et al. / The Journal of Systems and Software 83 (2010) 1983-1994 1991

Fig. 4. Service dependencies in CGSP’s execution system.

Info component to get job’s executing information, and the Data
component to fetch the staging data respectively. More particu-
larly, the Info component will try to fetch the job information from
the Cache first, invoke the Collect component to query in back-
end database when failed. On the other hand, the Data component
adopts a replication to store and load the staging data (usually a
sample image). The staging data can have multiple partitions for
Info and GRS. The detailed semantic about CGSP’s execution system
can be investigated in the literature (Wu et al., 2005). By injecting
the maintenances procedure to these services lively, we can inspect
the capability of Cobweb Guardian.

4.2. Deployment dependency-aware propagation

To investigate the efficiency of the propagation and the effects
from deployment dependency, we employ the GRS service at 6
requests per second in this experiment. We run the experiment for
140s. Atsecond 15, we inject the maintenance procedure to the GRS
(including upgrades for Auth, Info, Data service components, and
itself) which then becomes unresponsive for a while after injection.
We tested three solutions: NonD, SRL, and CG-0 in this experiment.

Fig. 5. The throughput of execution service during the maintenance.

Fig. 6. Throughput of Info.

Fig. 5 shows the throughput of three solutions during the
30-second watching period. The system works well before main-
tenance injection. When maintenances start at second 15, the
throughputs of the system with different approaches were all
falling down to zero. Although the NonD solution finished the
maintenance earliest (shown in Fig. 5), the system could not work
correctly any more. The maintenance for GRS component with this
solution failed finally since it didn’t consider about deployment
dependencies between the services components. The SRL solution
costs too much time to complete and affect system availability
much compared to CG-0 although it successful finished main-
tenance. Against these two solutions, CG-0 realizes the highest
efficiency. It lost 49.1% requests since the AND-depended service
components are unavailable when any related service (i.e. Auth,
Info, and Data) is under the maintenance.

4.3. Invocation dependency-aware grouping maintenance

In the next two experiments, we took the Info service to evaluate
the effectiveness of CG for improving service availability upon dif-
ferent invocation-dependencies. We set the system at 10 requests
per second to Info service.

4.3.1. OR-dependency

As shown in Fig. 6, we started maintenance solutions CG-0 and
CG-1 respectively both at second 15. CG-0 propagated the main-
tenance tasks to the target containers that deployed Cache and
Collect service components and then to the nodes with Info ser-
vice. The whole procedure cost 62.97 s. However, from Table 1, we
can find that the throughput during CG-0 execution is falling down
near to zero. In addition to that, there are 57.9% lost requests in the
watching period (defined in Section 2).

Compared to CG-0, the CG-1 optimized the solution for
OR-dependency. The CG maintained the targeted containers in
sequential with different priorities. The improvement of this solu-

Table 1
Comparison of experimental results.

Appr Maintain RespTime (ms) Thrput LossRatio (%)
CG-0 Before 443.9 9.51 0

During N/A 0.86 57.9
CG-1 Before 463.8 9.92 0

During 929.8 7.08 25.6

1992 H. Jin et al. / The Journal of Systems and Software 83 (2010) 1983-1994

Fig. 7. Response time of Info.

tion is obvious: first, the throughput during the maintenance
is improved to 7.08 requests per second. Although the average
response time is 929.8 ms which is about double of that before
maintenance, the loss rate reduces from 57.9% to 25.6% with com-
parison to CG-0. Meanwhile, the 25.6% is the minimum cost for
all solutions because the maintenance for Info service is the key
maintenance and is hard to avoid according to system execution
semantics. From Fig. 7, we can identify that the throughput of
CG-1 is falling down to about 7.3 from second 57 because the
requests to Cache services were failed when they were under
maintenance. Thus the requests were sent to the Collect service
instead.

Fig. 7 denotes the response time for the procedures men-
tioned above. We can easily find that the average response time
is increasing when Cache service began to maintain (at second
57).This increase is acceptable against solution CG-0. However, the
improvement of CG-1 sacrificed the maintenance time, we had to
take more 32.985 seconds to finish the maintenance job.

4.3.2. XOR-dependency

We repeated the experiment for Data service component
(XOR-dependency). This time we introduced solution CG-2. This
maintenance solution would feed back the maintenance status to
the user-level applications. With these status feedback, some meth-
ods can be taken to avoid the accesses to the services that are
under maintenance. To keep the consistency, we start the three
maintenances at second 15 respectively too.

Fig. 8 describes the procedure: The CG-0 solution acted simi-
larly like before. It blocked all requests to the Data service during
the maintenance. Hence the throughput for CG-0 is lowest. How-
ever the CG-1 solution acted not well either. Although it improved
the throughput to some extend (from 0 to 4.71), the loss rate is
about 52.1% which is just a minor improvement to CG-0's 53.9%.
The main reason is that the CG-1 cost more time to finish the main-
tenance than CG-0 as the Data service was always trying to deliver
the requests to the Replica services during maintenance while these
requests were failed definitely. Unlike CG-0 and CG-1, Solution CG-
2 worked far better. It cost same time to finish maintenance like
CG-0. However it gave better throughput (6.56), lower loss rate
(25.9%), and better response time for normal requests (478 ms).
Table 2 lists the average response time, throughput, and loss rate
respectively for these three solutions in different stages (before and
during) of maintenance. It clearly reflects the variations discussed
above.

Fig. 8. The throughput of the virtual data center service during the maintenance.

Table 2
Comparison of experimental results.

Appr Maintain RespTime (ms) Thrput LossRatio (%)
CG-0 Before 552.5 9.21 0
During N/A 0.01 53.9
CG-1 Before 405.6 9.43 0
During 933.2 4.71 52.1
CG-2 Before 405.1 10.07 0
During 478.5 6.56 259

4.4. Environment dependency-aware maintenance in different
granularities

To demonstrate the enhancement on environment dependency,
we executed the upgrade for Info service component meanwhile
the Data service component was deployed in the same container.

Fig. 9 described the results. Fig. 9A denotes container-level
maintenance and Fig. 9B is in service-level. As shown in this fig-
ure, in the container-level maintenance, the Data service was also
unavailable when Info service is under upgrading. However, the
maintenance for Info service in service level did not affect the access
to Data service. In addition to that, the maintenance time in service-
level (14.6 s) was also less than container-level (23.6s). This result

Fig. 9. Maintenance in different granularity for environment dependency.

H. Jin et al. / The Journal of Systems and Software 83 (2010) 1983-1994 1993

Fig. 10. Throughput variance when dynamically changing the services.

proved that the availabilities for Data and Info service components
were enhanced.

4.5. Evaluation for dynamicity

According to the realistic statistics in Section 1, the biggest
convenience for VO users is completing admin maintenances on
infrastructure transparently and efficiently. In this experiment, we
investigated the effectiveness for dynamical variation which is very
common for Grid services. Besides the normal maintenance (trans-
fer the upgrading packages, reload the hosting container, and so
on) for Data and its Replica services, an un-deployment is executed
for one of its replica.

The CG-1 solution is used in this experiment. Fig. 10 depicts
the throughput’s variation during maintenance. From the figure,
we can find that after the whole maintenance the throughput
was falling down to 2/3 of original throughput before the mainte-
nance. This result proved that the Replica service was un-deployed
successfully. In addition, the throughputs were lowering down in
three stages during the maintenance procedure since the Cob-
web Guardian blocked the requests to the service components
which were under maintenance. Meanwhile, the loss rate during
the maintenance is 25.7%. It is close to its minimal value.

5. Related works

The approach of maintenance software (or services) by explor-
ing the dependencies among the software components has been
widely discussed.

In the age of OO programming, Yau and Tsai (1987) proposed
an approach using first-order logic for knowledge representation
of software component interconnection information to facilitate
the validity and integrity checking of the interconnection among
software components during software development or modifica-
tion. They used Component Interconnection Graph (CIG) to express
the invocation dependencies. However the CIG cannot explain well
the dependencies among different nodes when shift from object-
oriented to service-oriented architecture.

Sangal et al. (2005) invented a dependency structure matrix to
describe the dependencies among legacy software. It is efficient for
exploring the software architecture from the view of software engi-
neering. With a pity, they did not discuss the dynamic dependencies
at runtime which are common in distributed and dynamical Grids.
The dependency structure matrix is not convenient for dynamic
deployment in Grid.

Service capsule proposed by Chu et al. (2005) is a new mech-
anism that supports automatic recognition of dependency states
and pre-dependency management for thread-based services. Nev-
ertheless capsule focus more on fault tolerant instead of the
maintenance. In addition, it works for the multi threading cluster
servers and can not process complicated dependencies.

System availability is an important issue for distributed systems,
which has been addressed extensively in the literature (Qi et al.,
2007; Talwar et al., 2005; Chu et al., 2005). Typical metrics for mea-
suring the overall system reliability are MTBF (mean time between
failures) and MTTR (mean time to recovery). It often takes a long
period of time to measure these metrics. Recently, the fault injec-
tion has been proposed as an effective but less time-consuming
means to assess the system availability (Nagaraja et al., 2003).

In our former work (Qi et al., 2007), the two approaches
(named service- and container-level) of dynamic deployment were
proposed to enhance the availability of service infrastructure.
The experiment result proved that the system availability can
be improved to some extend by choosing the smaller granular-
ity deployment (service level). However, whatever service- or
container-level, the availability improvement is limited in infras-
tructure layer. It can’t promise the global availability, especially
when there were complex invocation dependencies among the ser-
vices in different containers.

The Configuration, Description, Deployment and Lifecycle Manage-
ment (CDDLM) specification (Configuration, 2005) proposed by OGF
and the Installable Unit Deployment Descriptor (IUDD) (Installable)
proposed by W3C are both the specifications to standardize the
maintenance works for distributed software or services. But the
two specifications do not promise the quality of maintenance tasks
and the runtime availability during the maintenance. The Smart-
Frog (Smart frog project) project is a classic change-and-configure
management tool for distributed services. However SmartFrog
cannot promise the availability during the maintenance. OGSACon-
fig (Ogsaconfig; Smith and Anderson, 2004) aims at dynamically
reconfiguring fabrics to enable each fabric to support a wider range
of applications. CFengine (Cfengine) is designed as a reaction to
the complexity and non-portability of shell scripting for Unix con-
figuration management. CFengine and SmartFrog which based on
the script and principles lacks the automaticity when configure the
whole system while our Cobweb mechanism can automatically dis-
cover the dependencies to form a dependency map and then report
to related components to avoid unnecessary lost.

Due to the complexity of networking environment, the P2P-
based computing infrastructure are much harder to maintain.
Tamimi (2007) proposed an automated peer-to-peer security-
update services. To protect the network against malicious
computers that may join in to spread infected files, authors address
more on security instead of the dynamicity of infrastructure.
By combining semantic technologies, Zhuge et al. (2005) inves-
tigated the deployment of a scalable distributed trie index for
broadcast queries on key strings, propose a decentralized load bal-
ancing method for solving the problem of uneven load distribution
incurred by heterogeneity of loads and node capacities. Different
from scalability, our solution concentrate much on dynamicity of
highly shared Grid infrastructure.

Talwar et al. (2005) compared manual, script-, language-, and
model-based deployment solutions in terms of scale, complexity,
expressiveness, and barriers for distributed services. Despite the
dependency problem was discussed, the effects to the availability of
the whole system during deployment for system was not discussed
in that paper.

Nagaraja et al. (2004) discussed the operator mistakes in Inter-
net services. The paper demonstrates how to detect the operator
mistakes via the creation of a validation environment that is an
extension of the online system, where components can be validated

1994 H. Jin et al. / The Journal of Systems and Software 83 (2010) 1983-1994

using real workloads before they are migrated into the running ser-
vice. However this solution is to detect and avoid the maintenance
mistakes, it cannot optimize the runtime availability.

6. Conclusion and future works

In this paper, we propose the Cobweb Guardian which is a
dependency-aware maintenance architecture for service-oriented
Grids. By investigating effects from different dependencies at
runtime (including invocation-, deployment-, and environment-
dependency), the Cobweb Guardian can automatically generate the
optimized solutions for the maintenance in distributed Grids. The
evaluation results demonstrate the effectiveness of the Cobweb
Guardian of improving the availability and throughput during the
maintenance.

The further works include the investigation on fault tolerance
for distributed maintenance since the failed maintenance affects
the availability of the whole system. In addition to that, the chal-
lenge from the Quality of Service at runtime is another important
expanding point of our CG system.

Acknowledgments

This work is supported by ChinaGrid project, China Next Gen-
eration Internet Project under Grant CNGI2008-109, National
High-Tech R&D Plan of China under Grant 2006AA01A115, Pro-
gram for New Century Excellent Talents in University under Grant
NCET-07-0334.

References

Beowulf introduction and overview. http://www.beowulf.org.

Cfengine. http://www.cfengine.org/.

Ogsaconfig. http://groups.inf.ed.ac.uk/ogsaconfig/.

Oscar: A packaged cluster software stack for high performance computing.
http://www.openclustergroup.org/.

Proactive project. http://proactive.inria.fr/.

Smart frog project. http://www.hpl.hp.com/research/smartfrog/.

Configuration, deployment description language and management. Technical
report, Open Grid Forum, 2005.

Installable unit deployment descriptor specification. Technical report, W3C, 2005.

Chu, L., Shen, K., Tang, H., Yang, T., Zhou, J., 2005. Dependency isolation for
thread-based multi-tier internet services. In: INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings
IEEE, vol. 2, pp. 796-806.

Foster, 1., 2006. Globus toolkit version 4: Software for service-oriented systems.
Journal of Computer Science and Technology 21, 513-520.

Foster, 1., Kesselman, C., Tuecke, S., 2001. The anatomy of the grid: enabling scal-
able virtual organizations. International Journal of High Performance Computing
Applications 15(3),200-222,474ZP Times Cited:312 Cited References Count:63.

Hai Jin, SWJ.D., Qi, L., Luo, Y., 2007. Dependency-aware maintenance for dynamic
service grid. In: Proceedings of the 36th International Conference on Parallel
Processing (ICPPO7). IEEE Computer Society, pp. 64-72.

Haifang, Z., Xuejun, Y., Hengzhu, L., Yu, T., 2005. First evaluation of parallel meth-
ods of automatic global image registration based on wavelets. In: International
Conference on Parallel Processing, 2005. ICPP 2005., pp. 129-136.

Karonis, N.T., Toonen, B., Foster, 1., 2003. Mpich-g2: a grid-enabled implementation
of the message passing interface. Journal of Parallel and Distributed Computing
63 (5), 551-563.

Kimelman, D., Zernik, D., 1993. On-the-fly: Topological sort a basis for interactive
debugging and live visulization of parallel programs. In: Proceedings of the 1993
ACM/ONR Workshop on Parallel and Distributed Debugging, San Diego, CA, pp.
12-20.

Liang, W.,Brend, R., Shen, H., Aug 2001. Fully dynamic maintenance of k-connectivity
in parallel. IEEE Transactions on Parallel and Distributed Systems 12 (8),
846-864.

Mugler, J., Naughton, T., Scott, S.L., 2005. Oscar meta-package system. In: High Per-
formance Computing Systems and Applications, 2005. In: 19th International
Symposium on HPCS 2005, pp. 353-360.

Nagaraja, K., Li, X., Zhang, B., Bianchini, R., 2003. Using fault injection and modeling
to evaluate the performability of cluster-based services. In: Proceedings of the
4th USENIX Symposium on Internet Technologies and Systems.

Nagaraja, K., Oliveria, F., Bianchini, R,, et al., Dec 2004. Understanding and deal-
ing with operator mistakes in internet services. In: Proceedings of 6th USENIX
Symposium on Operation Systems Design and Implementation (OSDI'04), San
Francisco, CA, pp. 61-76.

Qi, L., Jin, H., Foster, 1., Gawor, J., Feb 2007. Hand: Highly available dynamic deploy-
ment infrastructure for globus toolkit 4. In: Proceedings of the 15th Euromicro
Conference on Parallel, Distributed and Network-based Processing, Naples, Italy,
pp. 155-162.

Sangal, N., Jordan, E., Sinha, V., et al., 2005. Using dependency models to manage
complex software architecture. In: Proceedings of the OOPSLA’05, pp. 167-176.

Smith, E., Anderson, P., 2004. Dynamic reconfiguration for grid fabrics. In: Pro-
ceedings of the Fifth IEEE/ACM International Workshop on Grid Computing, pp.
86-93.

Talwar, V., Qinyi, W., Pu, C., Wenchang, Y., Gueyoung,]., Milojicic, D., 2005. Com-
parison of approaches to service deployment. In: Proceedings of the 25th IEEE
International Conference on Distributed Computing Systems, 2005. ICDCS 2005,
pp. 543-552.

Tamimi, Z.M., 2007. Automated peer-to-peer security-update propagation network.
In: ICCOMP’07: Proceedings of the 11th WSEAS International Conference on
Computers. World Scientific and Engineering Academy and Society (WSEAS),
Stevens Point, Wisconsin, USA, pp. 557-564.

Wu, Y., Wy, S,, Yu, H., Hu, C., October 2005. Cgsp: An extensible and reconfigurable
grid framework. In: Proceedings of the 6th International Workshop on Advanced
Parallel Processing Technologies, Hong Kong, China, pp. 292-300.

Xu, Z., Li, W., Zha, L., 2004. Vega: a computer systems approach to grid computing.
Journal of Grid Computing 2 (2), 109-120.

Yauy, S., Tsai, J., 1987. Knowledge representation of software component intercon-
nection information for large-scale software modifications. IEEE Transactions
on Software Engineering SE-13 (3), 342-355.

Zhuge, H., Sun, X,, Liy, J., Yao, E., Chen, X., Dec 2005. A scalable p2p platform for the
knowledge grid. I[EEE Transactions on Knowledge and Data Engineering 17 (12),
1721-1736.

Hai Jin is a Cheung Kung Scholars Chair Professor of computer science and engineer-
ing at the Huazhong University of Science and Technology (HUST) in China. He is
now Dean of the School of Computer Science and Technology at HUST. Jin received
his PhD in computer engineering from HUST in 1994. In 1996, he was awarded a
German Academic Exchange Service fellowship to visit the Technical University of
Chemnitz in Germany. Jin worked at The University of Hong Kong between 1998
and 2000, and as a visiting scholar at the University of Southern California between
1999 and 2000. He was awarded Excellent Youth Award from the National Science
Foundation of China in 2001. Jin is the chief scientist of ChinaGrid, the largest grid
computing project in China, and the chief scientist of National 973 Basic Research
Program Project of Virtualization Technology of Computing System. Jin is a senior
member of the IEEE and a member of the ACM. Jin is the member of Grid Forum Steer-
ing Group (GFSG). He has co-authored 15 books and published over 400 research
papers. His research interests include computer architecture, virtualization tech-
nology, cluster computing and grid computing, peer-to-peer computing, network
storage, and network security. Jin is the steering committee chair of International
Conference on Grid and Pervasive Computing (GPC), Asia-Pacific Services Comput-
ing Conference (APSCC), International Conference on Frontier of Computer Science
and Technology (FCST), and Annual ChinaGrid Conference. Jin is a member of the
steering committee of the IEEE/ACM International Symposium on Cluster Comput-
ing and the Grid (CCGrid), the IFIP International Conference on Network and Parallel
Computing (NPC), and the International Conference on Grid and Cooperative Com-
puting (GCC), International Conference on Autonomic and Trusted Computing (ATC),
International Conference on Ubiquitous Intelligence and Computing (UIC).

Yaqin Luo is a PhD candidate in computer science at Huazhong University of Sci-
ence and Technology, China. She received her B.E. degree in computer science
at Huazhong University of Science and Technology, China. Her current research
interests include grid computing and cloud computing, failure-aware resource man-
agement in distributed computing and virtualization technology. She received the
excellent thesis award of Hubei province, China, in 2004.

Li Qi is a software engineer and project manager in China Development Bank. He
received his B.E., M.S. and PhD degrees in computer science at Huazhong University
of Science and Technology, China. His current research interests are grid computing,
cloud computing, and financial IT.

JieDaiis a PhD candidate in Hong Kong University of Science and Technology, China.
He received his B.E. and M.S. degrees in computer science at Huazhong University of
Science and Technology. His research interests include grid computing and mobile
computing.

Song Wu is a professor of computer science and engineering at Huazhong University
of Science and Technology (HUST) in China. He received his PhD from HUST in 2003.
He is now the Vice Head of Computer Engineering Department at HUST. He is also
served as the Vice Director of Service Computing Technology and System Lab (SCTS)
and Cluster and Grid Computing Lab (CGCL) of HUST now. His current research
interests include grid/cloud computing and virtualization technology. He has been
involved in the most important Grid projects (CNGrid and ChinaGrid) of China for
more than 5 years.

http://www.beowulf.org
http://www.cfengine.org/
http://groups.inf.ed.ac.uk/ogsaconfig/
http://www.openclustergroup.org/
http://proactive.inria.fr/
http://www.hpl.hp.com/research/smartfrog/

	Dependency-aware maintenance for highly available service-oriented grid
	Introduction
	Motivations
	Concepts
	Maintenance time
	Availability

	Dependencies in Grid
	Maintenance solution and dependencies
	Language-based maintenance in parallel
	Script-based maintenance in serial

	Objectives
	Improve the global availability during the maintenance
	Reduce the possible failures of maintenance
	Improve the efficiency of maintenance

	Design of Cobweb Guardian
	Architecture
	Environment dependency-aware maintenance in three granularities
	Deployment dependency-aware propagating maintenance
	Invocation dependency-aware grouping maintenance
	Grouping maintenance with feedback

	Evaluations
	Test environment
	Application for benchmark

	Deployment dependency-aware propagation
	Invocation dependency-aware grouping maintenance
	OR-dependency
	XOR-dependency

	Environment dependency-aware maintenance in different granularities
	Evaluation for dynamicity

	Related works
	Conclusion and future works
	Acknowledgments
	References

