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Abstract: This work describes a method for processing XPath on a relational 
back-end that significantly limits the number of SQL joins required, takes 
advantage of the strengths of modern SQL query processors, exploits XML 
schema information and has low implementation complexity. The method is 
based on the splitting of XPath expressions into Primary Path Fragments (PPFs) 
and their subsequent combination using an efficient structural join method, and is 
applicable to all XPath axes. A detailed description of the method is followed by 
an experimental study that shows our technique yields significant efficiency 
improvements over other XPath processing techniques and systems. 

1 Introduction  

In the past few years the adoption of XML for a variety of roles in e-business applica-
tions has increased significantly and continues to increase. XML is increasingly used 
as a data exchange/messaging format between applications or Web services [22], as a 
data model for middleware-based data integration [23] and as a data model for storing 
and querying application data [24]. Given the growing importance and presence of 
XML data, the need to query and maintain them arises in most of the above cases. At 
the same time, business applications as always rely heavily on agreed-upon schemas 
and descriptions for data modeling (in the case of XML, XML Schema [25] or DTD). 
XML storage and query systems fall into three main categories: 
− Native XML systems [29,30] that use storage models indexing and querying 

mechanisms specially designed for XML data. Storage models are based on path 
sequences, flat files [31], tree-based node clustering [Natix] or other techniques.     

− XML-shredding systems [2,3,4,5,18] that decompose XML documents into rela-
tions, store them in RDBMSs and process them using RDBMS machinery. 

− Hybrid approaches that store XML as CLOBs/BLOBs into relational tables, 
either exclusively or in combination with shredding [26]. 

XML shredding techniques can be schema-oblivious, where the relations into 
which XML is translated are fixed irrespective of the XML document structure, as in 
the Edge mapping [1]. There, all element nodes are stored as tuples in a single central 
relation. Alternatively, shredding can be schema-aware [4,5], where the relational 
schema constructed is adapted to the XML schema information available.   



Because of the wide availability, robustness and manageability of RDBMSs, the 
shredding and hybrid solutions have received a lot of attention. Several techniques 
and systems have been proposed [2,3,11,12] for SQL-based XML processing, sup-
porting large subsets of well-known XML query languages, namely XQuery[7] or 
XPath[6]. These systems and techniques translate expressions of these languages into 
SQL equivalents and execute them on relational back ends. In earlier attempts, e.g., 
[4], the SQL translations had a large number of foreign-key joins, usually propor-
tional to the number of steps in paths. This technique was unable or inefficient to 
handle a series of XPath features, such as the descendant ‘//’ and several other axes, 
recursion and wildcards (‘*’).  Several techniques have been proposed to tackle the 
above problems. For schema-oblivious mappings, efficient methods such as region 
encoding [2] and dewey encoding [9] have been proposed to encode both structural 
relationships among elements and ordering information, and to transform structural 
relationships such as “descendant” into range comparisons. These techniques, by 
themselves, do not accelerate simple path traversals: again the number of joins is 
proportional to the number of steps. Regarding schema-aware mapping, for example, 
schema information can has been used to eliminate redundant joins [11], whereas 
recursive queries can be handled using the recursion capabilities of SQL99 [12]. 

This work describes a novel XPath processing approach that yields significant per-
formance benefits while being quite easy to implement and combine with existing 
techniques. A key novel concept of our approach is the Primitive Path Fragment 
(PPF), which is a syntactic unit of an XPath expression. PPFs can be efficiently 
evaluated in a holistic fashion using a root-to-node path index and regular expression 
matching, to eliminate the need for structural joins. We describe Primitive Path 
Fragments and their processing in Section 4.3. The second important part of our ap-
proach is a method based on the properties of Dewey encoding [9] for efficiently 
performing the necessary structural joins between PPFs. Our implementation of 
Dewey encoding, its properties and its use for joining PPFs are described in Section 
4.2. The complete XPath to SQL translation algorithm is presented in Section 4.3.  

PPF-based XPath processing can be applied both to schema-oblivious and schema 
aware XML shredding. In schema-aware shredding, data are apportioned into several 
relations. The existence of schema information and its utilization in the translation, 
allows for optimizations, such as avoiding redundant root-to-node path filtering, as 
discussed in Section 4.5. The experimental evaluation in Section 5.1 confirms the 
benefits of applying the PPF-based processing in conjunction with schema-aware 
XML shredding. Hence this work focuses on such a translation scheme, describing it 
briefly in Section 3. Our implementation of PPF-based processing is built on top of 
an Oracle 10g-based XML management system using schema-aware XML shredding. 
In our experimental study, which is in Section 5, we are comparing our technique to 
the latest version of MonetDB/XQuery, our implementation of XPath accelerator on 
top of Oracle 10g, and the built-in XPath processor of a major commercial RDBMS, 
on a large number of representative XPath queries on different data sets. We discuss 
related work in Section 6 and present our conclusions in Section 7. 

In summary, we show how PPF-based XPath processing can handle efficiently a 
large subset of XPath 2.0 that includes all XPath axes, path union, nested expressions, 
and logical, arithmetic and position predicates. PPF-based XPath processing offers a 
comprehensive solution to the problem of XPath processing that exploits the 



strengths of relational query processing and optimization with minimal tuning and 
gives significant performance gains over existing techniques with much less imple-
mentation complexity.     

2 Background 

2.1 XML data model, XML Schema and XPath 

An XML document can be represented as a rooted, ordered, labeled tree, where each 
node corresponds to an element or a text value. The edges represent (direct) element-
subelement or element-value relationships. Tags, IDs, IDREFs and other attributes 
are modeled by node labels consisting of a set of attribute-value pairs. The ordering 
of sibling nodes implicitly defines a total order on the nodes in a tree, obtained by a 
preorder traversal of the tree nodes. Figure 1(b) shows the tree representation of an 
XML document, where the numbers outside the nodes represent node identifiers.  

The structure of an XML document can be described by an XML Schema. An 
XML Schema can be represented as a directed graph [12], where vertices correspond 
to element definitions and edges represent nesting relationships. A simple XML 
Schema graph is illustrated in Figure 1(a). An element node in a document described 
by an XML Schema instantiates a particular type defined in the schema. 

XPath [6] is a language for locating XML nodes. The main construct of XPath is 
the path expression which consists of a sequence of steps, separated with the ‘/’ char-
acter, to address nodes within the XML representation of an XML document. Each 
step has three parts: an axis, such as child, parent and descendant, which defines the 
structural relationship of nodes to be selected with respect to those selected by the 
preceding step, a node test which defines the name or the kind of nodes to be selected 
and, optionally, one or more predicates which set further restrictions to the nodes to 
be selected. Wildcards (‘*’) can be used as node tests that select nodes regardless of 
their name. For example, the XPath expression ‘/A/*[C//F=2]’ returns elements that 
are children of element ‘A’, and have at least a child element ‘C’, which has at least 
one descendant element named ‘F’ with text value equal to 2.  

2.2 XML element position representation 

A key issue for efficient XML processing is an appropriate representation of the posi-
tions of XML elements. In order to preserve the document order of elements and also 
to test more directly the structural relationship among nodes, we use dewey en-coding 
[9]. Dewey encoding assigns to each node a vector that represents the path from the 
document’s root to the node. Each component of the path represents the local order of 
an ancestor node. The dewey encoding for each element of Figure 1(a) is shown in 
Figure 1(c). Dewey encoding, like other positional encodings such as region encoding 
[9] and ORDPATH [19], allows the transformation of structural relationships, such as 
descendant or sibling, into number or string comparisons of the encodings. For ex-
ample, a tree node n encoded as n1.n2….nk is a descendant of tree node m encoded as 
m1.m2…mf iff k>f and n1. n1.n2….nf = m1.m2…mf.   



 id par dewey position XML schema Type 
1  1 A 
2 1 1.1 B 
3 2 1.1.1 C 
4 3 1.1.1.1 D 
5 2 1.1.2 C 
6 5 1.1.2.1 E 
7 6 1.1.2.1.1 F 
8 6 1.1.2.1.2 F 
9 2 1.1.3 G 
10 1 1.2 B 
11 10 1.2.1 G 
12 11 1.2.1.1 G 

 

 
   

 
(a).              (b).                         

(c). 
Graph representation    Sample XML document XML element descriptors 
  of an XML Schema      conforming to Schema 

Fig. 1. 

3 XML Schema-To-Relational Mapping 

In order to represent XML elements in relational structures, we have defined 4 de-
scriptors that characterize all element nodes, as shown in Figure 1(c). Apart from 
node id and Dewey position, mentioned earlier, we also keep a node’s parent id. 
Moreover, we associate with each element a root-to-node path id.  Path ids and their 
use as an index are described in the next Section. We describe below how these de-
scriptors as well as text and attribute values are stored in relational structures. 

Even though PPF-based processing can be used effectively with schema-oblivious 
XML shredding, as we will see in Section 5, it yields greater benefits used on top of a 
schema-aware XML to relational translation, and this is what we focus on. 

Our system takes as input the XML Schema’s graph representation and creates the 
respective relational structures according to a fixed set of mapping rules, where:  
− each complex type is mapped into a separate relation,  
− each element definition is also mapped into a separate relation, unless it is of a 

globally defined, already mapped complex type,  
− text and attribute nodes of an element are mapped into columns of the appropri-

ate type in the element’s corresponding relation 
Each relation has a primary key ‘id’ column that stores the element id, and one or 

more foreign key columns referring to all possible parent relations, for storing ele-
ment nesting relationships. Note that, in case of recursive schemata where a complex 
type contains elements of the same complex type, the corresponding relation main-
tains a foreign key relationship to itself. Relations that correspond to document ele-
ments have an additional column, named ‘doc_id’, to distinguish documents from one 
another. Finally, Dewey position is stored in the ‘dewey_pos’ column as a binary 
string. The specific encoding and its properties are discussed in Section 4.2.   

Note that our mapping scheme does not use inlining [5], namely, the mapping of 
certain element definitions into columns instead of separate relations. This technique 



is mainly used to reduce the total number of relations and, subsequently, the number 
of structural joins in the SQL translations. As we discuss in section 4, PPF-based 
processing eliminates many of these joins in a different effective fashion.  

3.1 Root-to-node path index and other relational indices 

We store for each element node its root-to-node path and use it as an index. Since, for 
a typical set of XML documents conforming to an XML schema, the total number of 
distinct paths is expected to be much smaller than the total number of nodes, all paths 
are stored in a separate relation, named ‘Paths’. All mapping relations maintain a 
foreign key reference to this relation, in a column named ‘path_id’. The ‘Paths’ rela-
tion is filled gradually during insertions: when an element is to be inserted, its path 
will be inserted in the ‘Paths’ relation, as long as it hasn’t been already inserted dur-
ing a previous element insertion. As we discuss further in Section 4.1, Primitive Path 
Fragments of an XPath query can be handled by applying simple regular expression 
filtering over root-to-node paths, which significantly reduces the number of structural 
joins in the final SQL statement. 

For each relation, the following relational indexes are also created and maintained: 
an index for the ‘id’ column, one index for each parent foreign-key column and one 
concatenated (composite) index on columns dewey_pos and path_id. In our current 
implementation, all indices are created as standard B-trees and hence the overall cost.  

4 XPath-To-SQL Translation 

This section describes PPF-based XPath processing. A key novel concept of our ap-
proach is the Primitive Path Fragment (PPF), which is a syntactic unit of an XPath 
expression. PPFs can be efficiently evaluated in a holistic fashion using a root-to-
node path index and regular expression matching, to eliminate the need for structural 
joins. In particular, a PPF can be handled by a natural join of a single relation with 
the ‘Paths’ relation, followed by an appropriate restriction in the ‘where’ clause of the 
SQL statement. This restriction filters the root-to-node paths against a regular expres-
sion derived from the step sequence of the fragment. We describe Primitive Path 
Fragments and their processing in the next section.  

The hierarchical relationship of each consecutive pair of such fragments is handled 
by theta-joining the two relations with appropriate lexicographic comparison between 
their dewey_pos columns. We describe the method for combining PPFs in Section 
4.2. The complete XPath to SQL translation algorithm is presented in Section 4.3, 
while additional optimizations are described in Sections 4.4 and 4.5.  

4.1 Identifying and Processing Primitive Path Fragments 

Let’s suppose we want to translate the XPath expression ‘/A/B/C/*/F’ into an equiva-
lent SQL statement for documents conforming to the XML schema shown in Figure 
1(a). Taking into account the graph representation of the schema and its relational 



mapping, it is easy to conclude that F is the only relation that could potentially store 
the ‘F’ elements defined by the given XPath expression. Each tuple in ‘F’ is assigned 
a path-id number referring to a certain root-to-node path in the ‘Paths’ relation. 
Therefore, the tuples corresponding to the required ‘F’ elements can be retrieved with 
a single SQL select statement that joins relations ‘F’ and ‘Paths’ and adds a restric-
tion to the ‘path’ column of the ‘Paths’ relation so as to match the path ‘/A/B/C/*/F’. 
SQL’s LIKE operator, in combination with string manipulation functions, could han-
dle such simple pattern matching. To deal with more complex patterns, as are many 
XPath expressions, we translate the path into a simple regular expression and then use 
a regular expression filtering function, within the SQL statement, to perform the 
matching. Several commercial RDBMSs (e.g., mySQL, Oracle 10g) have incorpo-
rated such functions into their function library. We use the REGEXP_LIKE function 
of Oracle 10g which follows the exact Extended Regular Expression (ERE) syntax 
and semantics defined in the POSIX [17].  

Path id filtering helps us handle certain sequences of steps in an XPath expression. 
The steps of such a sequence must  

• all have only forward axes or only backward axes and,  
• they must not have predicates, except for the last step.  

We call such paths Forward Simple Paths and Backward Simple Paths respec-
tively. Table 1 illustrates several forward and backward simple paths and their corre-
sponding regular expression equivalents. 

Table 1. Examples of mapping forward or backward paths into regular expressions 

Forward or Backward Path Regular expression 
//B/C ‘^.*/B/C$’ 
/A/B//F ‘^A/B/(.+/ )?F$’ 
//C/*/F ‘^.*/C/[^/]+/F$’ 
/parent::F/ancestror::B/parent::A ‘^.*/A/B/(.+/ )?F$’ 

More specifically, we divide the main path of an XPath expression which we call 
‘Backbone Path’, as well as the paths included in predicates, into fragments, named 
‘Primitive Path Fragments’ (PPFs). 

Definition: We call ‘Primitive Path Fragment’, a sequence of one or more consecu-
tive steps of an XPath expression for which one of the following is true: 

a) It is a forward simple path  
b) It is a backward simple path 
c) It is a single step whose axis is one of the following: following, following-

sibling, preceding or preceding-sibling  

Recall that a forward or backward simple path can have predicate(s) only in the 
last step, thus a predicate in an intermediate step of a forward or backward path al-
ways separates the path into two PPFs. Our PPF-processing system parses the XPath 
expression and creates a corresponding syntax tree. It navigates through the tree rep-
resentation of the XPath expression, by traversing the Backbone Path. During this 
traversal, the system identifies PPFs and assigns a schema relation to the last step of 
each PPF (using the graph representation of the schema). We call the last step of a 
PPF the Prominent Step and the respective relation Prominent Relation of the PPF.  



The detailed algorithm for gradually building the SQL equivalent of the XPath ex-
pression is presented in Section 4.3 and examples are shown in Table 3. The case 
where we need to assign multiple relations to the last step of a PPF (e.g., if the last 
step has a wildcard) is addressed in Section 4.4.   

4.2 Joining PPFs 

Let’s suppose that we want to translate the XPath expression ‘/A[@x=4]//C’. It is 
obvious that, in addition to ‘C’,  the ‘A’ relation must also be involved in the SQL 
statement, since we need to set a restriction on the ‘x’ column of this relation (x=4). 
Dewey encoding is used in order to join the two relations in such a way so as to sat-
isfy the ‘//’ axis. In particular, in order for two elements to have an ancestor-
descendant relationship, the Dewey vector of the former must be a prefix of the 
Dewey vector of the later [9], and similar conditions hold for the structural relation-
ships corresponding to the other XPath axes.   

We implement the Dewey position of a node as a binary string consisting of one or 
more components of 3 bytes each. So, if d(n) denotes the Dewey position of node n 
and k is its level, we have d(n)=C1||C2||…||Ck, where ‘||’ is the binary string concate-
nation operator and Ci a component of the dewey vector.  
Each component has its first bit equal to zero, thus ranging from 0 up to 7FFFFF (in 
hex notation).  Using this representation, we can use simple lexicographical compari-
sons between the Dewey positions of two nodes in order to perform a structural join 
over any XPath axis, as shown by the lemmas below.   

Let ‘⎨’, ‘⎬’ be the operators for lexicographically ‘greater’ and ‘smaller’ respec-
tively. In what follows, we use the hexadecimal notation for Dewey positions.  
 
Lemma 1:Node n2 is a descendant of node n1 if and only if  

d(n2) ⎬ d(n1) ∧ d(n2) ⎨ d(n1) || ‘F’  
 
Lemma 2: Node n2 is a following node of n1 if and only if: d(n2)⎬  d(n1) || ‘F’     

Proofs of the two lemmas can be found in Appendix A. In a similar manner, we 
can prove we can use lexicographical comparisons over dewey positions to handle all 
XPath axes. Table 2 (1-6) lists the XPath axes and the respective conditions in SQL, 
assuming that relations R2 and R1 correspond to two consecutive steps of a path, the 
second of which having the axis shown in the left column. 

Table 2. Axes handled using Dewey encoding 

Axis SQL Condition  
descendant/            
descendant-or-self 

R2.dewey_pos BETWEEN R1.dewey_pos AND 
R1.dewey_pos||‘F’ 

(1) 

ancestor/                 
ancestor-or-self 

R1.dewey_pos BETWEEN R2.dewey_pos  AND 
R2.dewey_pos||‘F’   

(2) 

following R2.dewey_pos > R1.dewey_pos || ‘f’ (3) 
following-sibling R2.dewey_pos > R1.dewey_pos  AND R1.par_id = R2.par_id (4) 
preceding R1.dewey_pos > R2.dewey_pos || ‘f’ (5) 
preceding-sibling R1.dewey_pos > R2.dewey_pos  AND R1.par_id = R2.par_id (6) 



 
Notice that parent and child axes can be handled either with Dewey order compari-

son or with foreign key referencing, with a join between the same two relations in 
both cases, but on different columns. In particular, the join conditions for these two 
axes (following the notation of Table 2) are: for child, R2.par_id = R1.id, and for 
parent, R2.id = R1.par_id. Our algorithm uses the second way, because it is expected 
to be faster: foreign key and primary key columns, which are integers, are much 
smaller than dewey_pos columns, which are binary strings of variable length, and 
moreover equijoins perform generally better than theta-joins on an RDBMS. For 
examples, see Table 3 (2) in the next Section.   

4.3 PPF-based XPath processing Algorithm  

Each time a Primitive Path Fragment is parsed, the procedure presented in Algo-
rithm 1 is executed to gradually build the SQL equivalent of the XPath expression.   

The algorithm adds the name of the prominent relation in the ‘from’ clause (line 1) 
and the appropriate restrictions in the ‘where’ clause of the SQL statement (lines 2-
14). The restrictions depend on the type of the PPF and whether it is the first in the 
backbone path or not.  If the last step of the PPF has predicate(s), then one or more 
sub-selects are created and added in the main SQL statement (lines 15-16).   

If it is a forward PPF, the prominent relation is joined with the ‘Paths’ relation, to 
which, in turn, a restriction is set filtering the root-to-node path column (lines 2-3) so 
as to match the regular expression derived from the PPF. If there are one or more 
consecutive forward PPFs just before the current PPF, then the regular expression 
includes the entire forward path.   

 
Algorithm 1  SQL Gradual Building per PPF parsing  
parsePPF(PPF curPPF){ 
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SQLStmt.getFromClause().AddRelation(  
  curPPF.getPromintentRelation()); 
 if (curPPF.isForward()){ 
 SQLStmt.JoinWithPaths(curPPF.getProminentRelation(),  

   curPPF.getMaxFarwardPath().createRegularExpr()); 
 } 
 else if (currentPPF.isBackward(){ 
  SQLStmt.JoinWithPaths(  
   curPPF.getPrevPPF().getProminentRelation(),  
   curPPF.getBackwardPath().createRegularExpr()); 
} 
else{ 

  SQLStmt.JoinWithPaths(curPPF.getProminentRelation(),  
   “^./” + curPPF.getLastStepName() + “$”) 
} 

 if (PPF.notFirst()){ 
  if (PPF.isSingleStep()&&  
  PPF.getLastStep().getAxis() == “parent”)  

   SQLStmt.FKStructuralJoin( 
   curPPF.getProminentRelation(), 
   curPPF.getPrevPPF().getProminentRelation()); 
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  else if (PPF.isSingleStep()&&  
  PPF.getLastStep().getAxis() == “child”)  

   SQLStmt.FKStructuralJoin( 
   curPPF.getPrevPPF().getProminentRelation(),  
   curPPF.getProminentRelation()); 

  else  
   SQLStmt.DeweyStructuralJoin( 
   curPPF.getPrevPPF().getProminentRelation(),  
   curPPF.getProminentRelation(), 
   curPPF.getStructuralRelationship()); 

 }  
 if (curPPF.getPredicates()!=NULL) 
  SQLStmt.getWhereClause().AddPredicates(  
   curPPF.getPredicates());  

} 

 
For a backward PPF, the prominent relation of the previous PPF is joined with the 

‘Paths’ relation with the restriction that the path column matches the regular expres-
sion derived from the path of the current PPF (lines 4-5). For a single-step PPF whose 
axis is one of the subsequent: following-sibling, following, preceding-sibling or pro-
ceeding, the prominent relation is joined with the ‘Paths’ relation, with the restriction 
that the path column ends with the step’s name test (lines 6-7). Table 4 shows 2 ex-
amples with PPFs that have the following-sibling and preceding axes. 

If the PPF is not the first of the backbone path, then its prominent relation is also 
joined (structural join, using Dewey encoding) with the prominent relation of the 
previous PPF (lines 8-14). Particularly, if the current PPF is a multiple-step PPF or a 
single-step PPF whose axis is not child or parent, like those shown in Table 3 (1) and 
(3) (grey parts of SQL statements) and Table 5, then this join occurs over the 
dewey_pos columns of the two relations (lines 13-14), according to Table 1. Other-
wise, if the PPF has only one step with the child or parent axes, the join is a natural 
join on the foreign-key reference (lines 9-12), as illustrated in Table 3 (2). 

Table 3. Forward (1,2) and Backward (3)  PPFs translation examples 

XPath SQL Translation  
/A[@x=3]/B/C//F  select distinct F.id, F.dewey_pos, F.text  

from A, F, Paths F_Paths 
where F.path_id = F_paths.id   
and REGEXP_LIKE(F_Paths.path, ‘/A/B/C/.*/F’) 
and C.dewey_pos between A.dewey_pos and 
A.dewey_pos||’f’  and A.x=3 
order by F.dewey_pos 

(1) 

/A[@x=3]/B … select … from A, B, Paths B_Paths 
where B.path_id = B_Paths.id and B_paths.path = ‘/A/B’ 
and B.A_id = A.id  and A.x=3 … 

(2) 

//F/parent::D/ 
ancestor::B… 

select … from F, Paths F_Paths, B, … 
where F.dewey_pos between  B.dewey_pos and 
B.dewey_pos ||‘f’  
and F.path_id = F_Paths.id and 
REGEXP_LIKE(F_Paths.path, ‘.*/B/.*/D/F’) 

(3) 



Table 4. Translation examples of steps with following-sibling (1) and preceding axes (2) 

XPath SQL Translation  
//D[@x=4]/ 
following-sibling::E … 

select … from …D, E, … 
where  E.dewey_pos > D.dewey_pos   
and D.C_id = E.C_id and D.x=4 ... 

(1) 

//D[@x=4]/  
preceding::H…  

select … from …D, H, … 
where  D.dewey_pos > H.dewey_pos  || ‘f’ and D.x=4 ... 

(2) 

 
Logical predicates are handled as follows: We assume that a predicate consists of 

one or more predicate clauses, combined with logical operators (or, and, not()). Each 
predicate clause can be a path, a comparison between a path and an atomic value, or a 
comparison between paths (predicate join-clause). The logical structure of an XPath 
predicate is translated into a corresponding logical structure in the ‘where’ clause of 
the SQL statement (with the same combination of logical operators and parentheses), 
where each predicate clause is translated into an ‘exists()’ clause, incorporating a sub-
select statement. In what follows, a step of the XPath expression on which a predicate 
is attached is called a predicated step.   

If the predicate clause is a (relative) path or a comparison between a path and an 
atomic value, the respective sub-select statement is created similarly to the main SQL 
statement for a given backbone path (as in lines 1-14). The difference is that the 
prominent relation of the first PPF of the path inside the predicate clause, (which is 
included in the ‘from’ clause of the sub-select statement) is joined appropriately in 
the outer SQL select statement to the relation corresponding to the predicated step. 
An example is shown in Table 5 (1).  

If a predicate clause consists only of a Backward Simple Path, instead of joining 
the prominent relation of this path to the relation corresponding to the predicated step, 
we can once again exploit path id filtering. Particularly, we add an additional restric-
tion to the root-to-node path of the predicated step so as to match the regular expres-
sion equivalent of the backward path within the predicate clause. Table 5 (2) shows 
an example with a predicate which consists of two backward path predicate clauses. 

Table 5. Translation examples of XPath expressions containing predicates 

Axis SQL Condition  
/A/B[C/*/F=2].. select … from B, Paths B_paths, … 

where B.path_id = B_paths.id and B_paths.path = ‘/A/B’ 
and exists (  
select null from F, Paths F_paths 
where F.path_id = F_paths.id and REGEXP_LIKE(F_Paths.path, 
‘/A/B/C/.*(/)?F’) 
and F.dewey_pos between B.dewey_pos and  B.dewey_pos || ‘f’  and 
F.text = 2) … 

(1) 

//F[parent::D or 
ancestor::G] … 

select … from F, Paths F_paths, … 
where F.path_id = F_paths.id and 
REGEXP_LIKE(F_Paths.path, ‘^.*/G/.*(/)?F’) 
or  REGEXP_LIKE(F_Paths.path, ‘^.*/D/F$’’) … 

(2) 

 



Finally, if the predicate clause is a comparison between two relative paths, the re-
spective sub-select includes all the prominent relations of the PPFs of the first path, 
joined properly, all the prominent relations of the PPFs of the second path, also joined 
properly, and an additional theta-join between the relations corresponding to the last 
PPF of each path.1 

After all PPFs have been parsed, the SQL statement is completed by adding the 
‘distinct’ SQL keyword before the projection, so as to avoid duplicates in results, and 
also the ‘order by’ clause, at the end of the statement, applied on the dewey_pos col-
umn of the prominent relation of the last PPF, so that the tuples of the results are 
retrieved in document order.  

4.4 Eliminating SQL Splitting 

As we saw in the previous sections, the prominent step of each PPF causes a relation 
to be added in the final SQL statement. If the prominent step of a PPF corresponds to 
more than one relation, the SQL statement needs to be split into multiple statements 
combined by UNION. For example, the XPath expression ‘A/B/*[//F]’ contains two 
PPFs: the ‘A/B/*’ and ‘//F’, the first of which, evaluated over the XML Schema of 
Figure 1(a), corresponds to two relations. The SQL translation of the expression has 
two SQL statements, with different FROM clauses. We call this SQL splitting.  

Prominent steps of PPFs that appear in predicates do not cause SQL splitting. If 
such a PPF corresponds to multiple relations, then, instead of splitting the entire SQL 
statement, only the sub-select corresponding to the predicate clause is split into mul-
tiple sub-selects, one for each relation, separated with the ‘OR’ operator.  An example 
is illustrated in Table 6.  

Table 6. SQL translation of XPath query which contains a predicate with an ambiguous path  

Axis SQL Condition 
/A/B[C/*]… select … from B, Paths B_paths, …  

where B.path_id = B_paths.id and B_paths.path = ‘/A/B’ 
and exists ( select null from D, Paths D_paths 

Where D.path_id = D_paths.id and  
REGEXP_LIKE(D_Paths.path, ‘/A/B/C/.*(/)?’)  
and D.dewey_pos between D.dewey_pos and D.dewey_pos|| ‘f’) 

or exists ( select null from E, Paths E_paths 
where E.path_id = E_paths.id 
and REGEXP_LIKE(E_Paths.path, ‘/A/B/C/.*(/)?’)  
and E.dewey_pos  between E.dewey_pos and E.dewey_pos || ‘f’) … 

 
SQL splitting is a significant issue for existing schema-aware XPath to SQL trans-

lateon techniques [11]. Consider the XPath expression ‘/A/B[@x=4]/C/*/F’. If we 
use existing methods for schema-aware SQL translation, we must first find all possi-
ble relation sequences corresponding to the path ‘/A/B/C/*/F’, which are A-B-C-D-F 
and A-B-C-E-F, and then create a separate SQL statement for each such sequence, 

                                                           
1 The condition of the theta-join is a comparison between the appropriate columns. The SQL 

comparison operator is derived from the XPath comparison operator of the predicate clause. 



where the relations would be joined (natural joins) per consecutive pair. A more ad-
vanced algorithm, such as the one presented in [11], detects that elements B can be 
nested only to elements A, which means that the join between relations A and B is 
redundant and could be omitted. In contrast, using PPF-based processing, only rela-
tions B and F need to be joined, whereas the wildcard is incorporated into an appro-
priate regular expression filtering on the root-to-node path values, without the need of 
using two SQL statements. 

The combination of root-to-node path filtering, Dewey encoding and schema-
aware mapping can reduce the incidence of SQL splitting, and the concomitant prob-
lems of multiple query optimization faced in that case by an RDBMS. 

4.5 Omitting Unnecessary Root-To-Node Path filtering 

Combining schema knowledge with root-to-node path ids gives an optimization op-
portunity not present in schema-oblivious systems: under certain circumstances path 
id filtering is redundant and can be omitted. For example, consider the XPath query 
‘/A/B/C/D’. According to the XML Schema (Figure 1), the only possible root-to-
node path of elements ‘D’ coincides with the path of the XPath query. Therefore, 
there is no need to join relations ‘D’ and ‘Paths’.  

We avoid the unnecessary path index lookup (which results in an SQL join) in the 
following way: After the corresponding graph for an XML Schema has been created, 
we mark all nodes of the graph that have a unique path towards the root node of the 
graph with a ‘U-P’ (Unique Path) tag, all nodes of the graph that have at least one 
cycle in a path towards the root with a ‘I-P’ (Infinite Paths) tag and, finally, the re-
maining graph nodes with a ‘F-P’ (Finite Paths) tag. ‘F-P’ nodes are also assigned a 
list of all possible root-to-node paths. An example is shown in Figure 2.  

 

 
        (a)        (b) 

Fig. 2. Marking the XML Schema graph 

Relations corresponding to ‘U-P’ graph nodes are never joined to the Path relation. 
When an ‘F-P’ relation is involved in an SQL statement, after translating the PPF 
path into a regular expression, we test the root-to-node paths of the respective node 
graph against the regular expression. The relation is joined to the Paths relation and 
the regular expression restriction is added only if there is at least one such path that 
doesn’t match. Finally, a ‘I-P’ relation is always joined to the Paths relation with the 
‘path’ column filtered by the regular expression. 



5 Experimental Evaluation 

In this section we present the results of the experimental testing of the performance of 
PPF-based processing. We use Oracle 10g (release 10.1 for Windows) as our 
RDBMS backend. First, we compare PPF-based processing on a schema-aware 
XML-to-relational system against a schema-oblivious version of same. Moreover, we 
compare the performance of PPF-based processing with the MonetDB/XQuery [18], 
which is an XQuery implementation on the MonetDB server backend, the XPath 
Accelerator mapping scheme [2], which we implemented over Oracle 10g, and a 
major commercial RDMS with a built-in XML shredding mechanism. 

Table 7. The XPath queries used for DBLP XML document  

QD1 //inproceedings/title[preceding-sibling::author = 'Harold G. Longbotham'] 
QD2 /dblp/inproceedings[year>=1994]//sup 
QD3 /dblp/inproceedings/title/sup 
QD4 //i[parent::*/parent::sub/ancestor::article] 
QD5 /dblp/inproceedings[author=/dblp/book/author]/title 

 
We experiment with both synthetic and real data. For synthetic data we use the 

XMark [20] benchmark variation for XPath, called XPathMark [21]. Using the 
XMark XML generator, we created two XML documents of 12 and 113 MBs. From 
the query set of the benchmark we chose a subset of 16 queries, shown in Appendix 
B, that are compatible with the XPath subset supported by our system. We also added 
XPath query Q-A: /site/open_auctions/open_auction[bidder/date = interval/start] 
which contains a join predicate clause. We also use the 130MB DBLP XML data-
base.2 The query set for this database is shown in Table 7.  

Experiments were performed on a Pentium 4 PC at 3GHz with 1 GB RAM, run-
ning Windows XP. All the queries were executed against a cold cache. For each 
query we recorded the average time for 5 repetitions.   

5.1 Schema-aware vs. Schema oblivious storage 

PPF-based processing can be applied both in a schema-aware and a schema-oblivious 
setting. Moreover, some of the individual techniques we use, notably exploiting 
Dewey encoding for structural join, have been employed in the context of schema-
oblivious systems. We implemented a variation of PPF-based processing tailored to 
an Edge-like mapping and compared its performance with the PPF-based processing 
algorithm described in the previous Section. The results confirm our intuition, that 
apportioning  XML content into several relations leads to better query execution 
performance, and support our decision to focus on implementing and improving PPF-
based processing on a schema-aware system (our schema-based optimizations are 
described in Section 4.5). 

                                                           
2 Available from http://www.cs.washington.edu/research/xmldatasets/ 
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Fig. 3.  Schema-aware vs schema-oblivious PPF-based Processing performance 
   

The results of the experiments are shown in figure 3. The most remarkable differ-
ences are observed in queries involving structural joins, such as Q6, Q7, Q-A, DQ2 
and DQ5. This is due to the fact that, in the schema-oblivious version, these joins are 
self-joins that join a large relation to itself, in contrast with schema-aware structural 
joins that join much smaller relations. Even when a concatenated (composite) index is 
used in the dewey_pos and path_id columns, which is the case, this is larger in the 
schema-oblivious mapping, compared to all such indices for each mapping relation in 
the schema-aware mapping, thus the number of I/O is much bigger. Q12 and Q13 
also perform remarkably worse in the schema-oblivious version of PPF-based proc-
essing.  Another factor is that an extra join must take place, since in Edge-like map-
ping schemes attributes cannot be inlined as columns in the central element relation. 
Therefore, they are mapped either as separate tuples in the central relation or as tuples 
in a separate relation exclusively dedicated for attribute storage3 

5.2 Performance evaluation of PPF-based processing   

The comparison among PPF-based processing, MonetDB/XQuery and XPath Accel-
erator scheme is indicative and does not allow us to draw absolute conclusions. We 
should take into account that the two systems are implemented over different DBMS 
back-ends, the comparison of which is beyond of the scope of this paper. Moreover, 
MonetDB/XQuery employs a number of optimizations, most notably the use of stair-
case joins for structural join. Combining PPF-based processing with join techniques 

                                                           
3 We used the second option 



specifically designed for XML data, such as staircase join, is the topic of future work.  
The comparison between PPF-based processing and our implementation of XPath 
Accelerator is more direct and allows us to draw more concrete conclusions about the 
benefits of PPF-based processing. Notice that the translation of the test queries into 
SQL was made manually following strictly the ‘Staked Out Query Window Sizes’ 
algorithm presented in [2]. As for the commercial RDBMS, the built-in shred-
ding/XPath processing mechanism supports only three of the XPathMark queries, and 
hence it is not shown in the Figures below (the numbers are available in Appendix C).  
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Fig. 4.  Comparison of PPF-based processing to other systems/techniques 
 
The two major reasons why PPF-based processing outperforms the other systems in 
almost all queries are the following:  



• the joins performed in PPF-based processing occur between much smaller 
relations, and  

• the number of joins in an average SQL translation is much smaller due to the 
handling of PPFs using regular expression filtering.  

These two factors do not affect all queries. For example, queries Q6, Q7 and QD2 
involve structural joins that cannot be removed with root-to-node path filtering. Q6 
on the large XMark document and DQ2 are faster in MonetDB possibly because of 
other optimizations applied by MonetDB, the staircase join being one of these. We 
will explore combining such optimizations with our techniques as part of future work.  
Notice especially the performance gains of PPF-based processing on Q5 and QD4. 
Our technique achieves this level of performance because these queries involve 
predicate clauses consisting only of backward simple paths, a case which our algo-
rithm handles completely by exploiting path id filtering (see Table 5-2) instead of 
using structural joins. 

6 Related Work 

Numerous systems and techniques have been developed in the last few years [4,5] 
that map XML structures to relations using schema information. Shrex [4] is a system 
for shredding, loading and querying XML documents using relational systems. The 
mapping mechanism is flexible, allowing the user to define mapping practices. The 
XPath-To-XML translation mechanism is rather conventional, since it handles paths 
with sequential foreign key joins, in contrast to our proposal which involves root-to-
node path filtering. Shrex also suffers from the problem of SQL splitting, which we 
tackle, as described in section 3.4. In [11] an algorithm is presented which, under 
certain circumstances, alleviates the SQL splitting problem removing at the same time 
joins which are implied by the schema as redundant. Our proposal alleviates the SQL 
splitting problem and reduces the number of joins by using PPF-based processing, 
and uses schema information in order to reduce redundant root-to-node path filtering, 
as described in Section 3.5. The evaluation of recursive paths is handled in [12], 
where an algorithm is presented exploiting recursion capabilities of SQL99. In our 
approach, recursive queries are not considered as a separate problem: a recursive path 
will be translated into an appropriate regular expression which will be used to detect 
all matching root-to-node paths.  

For schema-oblivious mappings, one of the most comprehensive proposals is 
XPath Accelerator [2], based on region encoding. XQuery/MonetDB [18] is an 
XQuery implementation based on the XPath Accelerator on top of the MonetDB 
DBMS. It supports a large portion of the XQuery recommendation achieving, at the 
same time, remarkably good performances due to several optimizations and advanced 
query processing techniques, such as the staircase joins. A detailed comparison of 
PPF-based encoding to XPath Accelarator and MonetDB/XQuery can be found in 
Section 5.2. Other Edge-oriented proposals exploit also region encoding, such as [8] 
and XRel[3]. In [3], region encoding is combined with root-to-node path storage in 
order to reduce the number of structural joins. Instead of region encoding, [16] uses 
an update-friendly variation of dewey encoding, called ORDPATH [19], in combina-



tion to root-to-node path storage. However both [3] and [16] support only forward 
axes and moreover their root-to-node path testing cannot discriminate between wild-
cards and ‘//’. In particular, XRel does not handle wildcards, whereas [16] handles ‘//’ 
with structural join.   

7 Conclusions and Future Work 

In this paper, we describe a framework based on identifying, processing and com-
bining Primitive Path Fragments for processing XPath expressions on a relational 
back-end. Our technique significantly limits the number of SQL joins required, takes 
advantage of the strengths of modern SQL query processors and exploits XML 
schema information to achieve big performance gains with low implementation com-
plexity. Based on our work and the experimental results so far, we can conclude that 
PPF-based processing is an efficient and easy to implement technique for handling a 
large XPath subset, including all axes, on top of a relational back end. Root-to-node 
path indexing is very beneficial for PPF processing when combined with regular 
expression matching, and is used to holistically process a PPF without any structural 
joins. We believe that PPF-based processing can be easily adapted to native XML 
processing systems, and can be combined with native XML join techniques such as 
twig join [28], yielding performance benefits simply by reducing the number of joins 
required for a specific XPath expression. We are currently exploring this issue.  

Schema-aware mapping can benefit query performance as long as it is combined 
with proper XML structural encoding techniques, such as presented in this paper. 
Furthermore, by exploiting XML Schema information, in some cases even root-to-
node path filtering is redundant and, thus can be omitted.   

Our PPF-based XPath to SQL translation algorithm leads to SQL queries that in-
volve only the necessary relations, with the minimum number of structural joins and 
the maximum exploitation of root-to-node path ids. Our technique also deals with the 
problem of SQL splitting, which is common for schema aware mapping systems.   

We are currently investigating techniques for increasing the efficiency of XPath 
processing by exploiting special features of commercial RDBMSs. An interesting 
question for our technique, explored also in [27] (though with a focus on XML pub-
lishing), is how to teach the RDBMS optimizer to produce more efficient query plans. 
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Appendix A  

Lemma 1:Node n2 is a descendant of node n1 if and only if  
d(n2) ⎬ d(n1) ∧ d(n2) ⎨ d(n1) || ‘F’ 

 
Sketch of Proof. Only if: Since n2 is a descendant of n1, d(n1) is lexicographically 

smaller than d(n2), so  d(n2)  ⎬ d(n1). We also know that d(n1) is a prefix of d(n2), so:  

d(n2) = d(n1) || S, where S = C2, k+1 || C2, k+2 || …|| C2, l. (1) 

Each Dewey component represents a number from 0 to 7FFFFF, so:  

C2, k+1  ⎨ ‘7FFFFF’ ⇒ C2, k+1  ⎨ ‘F’ ⇒ C2, k+1 || C2, k+2 || …|| C2, l ⎨ ‘F’  S ⎨ ‘F’ ⇒  
)1(

⇒
d(n1) || S ⎨ d(n1) || ‘F’.  Consequently: d(n2) ⎨  d(n1) || ‘F’.   
 

If:  d(n1) ⎨ d(n2) ⎨ d(n1) || ‘F’ ⇒ d(n1) is a prefix of d(n2) ⇒ n2  descendant of n1.  ♦ 
 

Lemma 2: Node n2 is a following node of n1 if and only if: d(n2)⎬  d(n1) || ‘F’     

Sketch of Proof. In order for n2 to be a following node of n1:  
(d(n2)⎬  d(n1)) ∧ ¬(n2 descendant of n1) ⇔   
(d(n2)⎬  d(n1) ) ∧ ¬ (d(n2) ⎬ d(n1) ∧ d(n2) ⎨ d(n1) || ‘F’) ⇔  
(d(n2)⎬  d(n1) ) ∧ ( d(n2) ⎨ d(n1) ∨ d(n2) ⎬  d(n1) || ‘F’  ) ⇔   
d(n2) ⎬ d(n1) ∧ d(n2) ⎬  d(n1) || ‘F’ ⇔ d(n2) ⎬  d(n1) || ‘F’. ♦ 

Appendix B: XPathMark queries used in Section 5 

Q1 /site/regions/*/item 
Q2 /site/closed_auctions/closed_auction/annotation/description/parlist/listitem/ text/keyword 
Q3 //keyword 
Q4 /descendant-or-self::listitem/descendant-or-self::keyword 
Q5 /site/regions/*/item[parent::namerica or parent::samerica] 
Q6 //keyword/ancestor::listitem 
Q7 //keyword/ancestor-or-self::mail 
Q9 /site/open_auctions/open_auction[@id='open_auction0']/bidder/preceding-sibling::bidder 
Q10 /site/regions/*/item[@id='item0']/following::item 
Q11 /site/open_auctions/open_auction/bidder[personref/@person='person1'] 

/preceding::bidder[personref/@person='person0'] 
Q12 //item[@featured='yes'] 
Q13 //*[@id] 
Q21 /site/regions/*/item[@id='item0']/description//keyword/text() 
Q22 /site/regions/namerica/item | /site/regions/samerica/item 
Q23 /site/people/person[address and (phone or homepage)] 
Q24 /site/people/person[not(homepage)] 



Appendix C: Aggregate Experimental Results Table 

 # of 
nodes 

PPF Edge-
like PPF 

XQuery/ 
MonetDB 

Com-
mercial 
RDBMS 

XPath 
Accel. 

#  of 
nodes 

PPF Edge-
like PPF 

XQuery/ 
MonetDB 

Com-
mercial 
RDBMS 

XPath 
Accel. 

Q1 2175 0.06 0.49 0.85 N/A 0.68 21750 0.48 1.26 0.85 N/A 3.40 
Q2 361 0.09 0.15 0.54 N/A 0.31 4127 0.22 0.69 1.125 N/A 3.04 
Q3 7014 0.06 1.11 0.57 N/A 0.98 69969 0.79 1.52 0.54 N/A 6.84 
Q4 3514 0.21 0.24 0.46 N/A 8.86 34879 0.41 1.24 0.73 N/A 4.34 
Q5 1100 0.07 0.20 1.01 N/A 0.83 11000 0.14 0.36 21.28 N/A 2.57 
Q6 2778 0.18 2.8 0.76 N/A 0.20 27878 1.35 22.1 0.76 N/A 4.6 
Q7 883 0.12 1.2 0.46 N/A 0.18 8884 0.62 2.65 0.93 N/A 3.70 
Q9 3 0.11 0.67 0.51 N/A 0.9 8 0.20 0.92 0.78 N/A 3.71 
Q10 2174 0.09 0.52 0.59 N/A 1.36 21749 0.35 0.68 1.42 N/A 25.18 
Q11 1 0.17 0.58 0.65 N/A 1.24 0 0.42 0.65 4.43 N/A 14.17 
Q12 227 0.06 0.76 0.71 N/A 0.71 2210 0.11 3.91 3.20 N/A 5.29 
Q13 6025 0.22 1.15 1.10 N/A 0.96 60250 0.87 7.11 8.17 N/A 6.53 
Q21 1 0.09 0.4 0.6 N/A 1.53 1 0.23 0.75 0.93 N/A 14.15 
Q22 1100 0.27 0.31 0.57 N/A 0.57 11000 0.70 0.85 0.79 N/A 2.22 
Q23 952 0.24 0.54 0.54 0.42 1.48 9506 0.50 2.73 0.73 1.42 3.69 
Q24 1304 0.09 0.82 0.56 0.53 0.59 12762 0.20 1.39 1.04 0.32 3.42 
QA 8 0.18 0.42 1.40 1.48 0.96 64 1.39 8.67 3.20 3.03 11.2 

 
 

 # of 
nodes 

PPT Edge-
like PPT 

MoneDB 
/XQuery 

XPath 
Accelerator

QD1 2 3.11 7,6 22,93 18,53 
QD2 465 3,09 53,71 1,86 114,88 
QD3 577 0,09 1,89 1,18 15,97 
QD4 1 0,07 0,16 8,17 8,15 
QD5 12178 4,58 55,62 5,18 ∞ 


