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A COMPONENT ARCHITECTURE

FOR THE MESSAGE PASSING INTERFACE (MPI):

THE SYSTEMS SERVICES INTERFACE (SSI) OF LAM/MPI

Abstract

by

Jeffrey M. Squyres

This work presents the design and implementation of a component system architec-

ture in LAM/MPI, a production quality, open source implementation of the MPI-1 and

MPI-2 standards. Previous versions of LAM/MPI, as well as other MPI implementations,

are based on monolithic software architectures that – regardless of how well-abstracted

and logically constructed – are highly complex software packages, presenting a steep

learning curve for new developers and third parties. As a result, parallel researchers face

enormous logistical and technical difficulties when using or adapting existing implemen-

tations for their own work. Not only are existing code bases typically locked into highly-

specific implementation models (effectively preventing extensions that did not already

conform to existing models), but the time investment required to train a researcher in a

complex software system can be prohibitive. To address these issues, the current version

of LAM/MPI has been re-architected to utilize a component system architecture consist-

ing of four component frameworks and a meta framework that ties them together. Each

component framework was designed from analysis of prior monolithic implementations

of LAM/MPI and represents a major functional category: run-time environment startup,

MPI point-to-point communication, MPI collective communication, and parallel check-



Jeffrey M. Squyres

point/restart. The result is an MPI implementation that is highly modular, has published

abstraction and interface boundaries, and is significantly easier to develop, maintain, and

use as a vehicle for research. Performance results are shown demonstrating that this

component-based approach provides identical (if not better) performance compared to

prior monolithic-based implementations.



To all those who waited for me.

ii



CONTENTS

FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xvi

ACKNOWLEDGMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xvii

CHAPTER 1: INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Preventing Code Base Fracturing. . . . . . . . . . . . . . . . . . . . . . 4
1.2 Contribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Document Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CHAPTER 2: BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 The Message Passing Interface (MPI). . . . . . . . . . . . . . . . . . . 11
2.2 The LAM Implementation of MPI. . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Layered Design. . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Open Source Model. . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Software as a Research Artifact. . . . . . . . . . . . . . . . . . 17
2.2.4 Software Engineering. . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 The Evolution of LAM/MPI . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Component Programming. . . . . . . . . . . . . . . . . . . . . 24
2.3.2 The System Services Interface (SSI). . . . . . . . . . . . . . . . 25

2.4 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
2.4.1 Component Programming. . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Run-Time Environment Startup. . . . . . . . . . . . . . . . . . 27
2.4.3 MPI Point-to-Point Message Passing. . . . . . . . . . . . . . . . 29
2.4.4 MPI Collective Message Passing. . . . . . . . . . . . . . . . . . 29
2.4.5 Parallel Checkpoint/Restart. . . . . . . . . . . . . . . . . . . . 30
2.4.6 Fault Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

CHAPTER 3: THE SYSTEM SERVICES INTERFACE. . . . . . . . . . . . . . 34
3.1 Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

3.1.1 Multiple Frameworks. . . . . . . . . . . . . . . . . . . . . . . . 36

iii



3.1.2 Run-Time Module Selection. . . . . . . . . . . . . . . . . . . . 36
3.1.3 LAM and MPI Component Types. . . . . . . . . . . . . . . . . 38
3.1.4 Module Services. . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.5 Static and Dynamic Modules. . . . . . . . . . . . . . . . . . . . 39

3.2 Implemented Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Configuration and Compilation. . . . . . . . . . . . . . . . . . 40
3.2.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.4 Loading / Unloading. . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.5 Parameter Passing. . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.6 Thelaminfo Command . . . . . . . . . . . . . . . . . . . . . 43
3.2.7 Common Selection Schemes. . . . . . . . . . . . . . . . . . . . 43

CHAPTER 4: RUN-TIME ENVIRONMENT STARTUP . . . . . . . . . . . . . . 46
4.1 Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

4.1.1 LAM Daemon-Based Run-Time Environment. . . . . . . . . . . 48
4.1.2 Remote Process Startup Case Study:rsh / ssh . . . . . . . . . 49
4.1.3 Remote Process Startup Case Study: The Portable Batch System

(PBS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
4.1.4 Action Abstractions . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.5 Additional Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.6 Module Selection. . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.7 Rendezvous Algorithms. . . . . . . . . . . . . . . . . . . . . . 58

4.2 Implemented Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1 Thebproc Module . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Theglobus Module . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.3 Thersh Module . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.4 The PBStm Module . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
4.3.1 Correctness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Thebproc Module . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.3 Theglobus Module . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.4 Thersh Module . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.5 The PBStm Module . . . . . . . . . . . . . . . . . . . . . . . . 69

CHAPTER 5: MPI POINT-TO-POINT COMMUNICATION. . . . . . . . . . . . 74
5.1 Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

5.1.1 Prior Implementation. . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.2 Data Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.3 Module Selection and Initialization. . . . . . . . . . . . . . . . 80
5.1.4 Adding and Removing Processes. . . . . . . . . . . . . . . . . . 81
5.1.5 Request Lifecycle. . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.6 Progression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.1.7 “Fast” Send and Receive. . . . . . . . . . . . . . . . . . . . . . 83
5.1.8 Memory Management. . . . . . . . . . . . . . . . . . . . . . . 84
5.1.9 Checkpoint / Restart Functionality. . . . . . . . . . . . . . . . . 84
5.1.10 Module Finalization . . . . . . . . . . . . . . . . . . . . . . . . 84

iv



5.2 Implemented Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.1 Thelamd Module . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.2 Thetcp andcrtcp Modules . . . . . . . . . . . . . . . . . . . . 87
5.2.3 The Shared Memorysysv andusysv Modules . . . . . . . . . . 89
5.2.4 The Myrinetgm Module . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
5.3.1 Correctness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.2 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

CHAPTER 6: MPI COLLECTIVE ALGORITHMS. . . . . . . . . . . . . . . . .102
6.1 Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

6.1.1 Layered over Point-to-Point. . . . . . . . . . . . . . . . . . . .105
6.1.2 Dedicated Communication Channels. . . . . . . . . . . . . . . .106
6.1.3 Hierarchicalcoll Modules . . . . . . . . . . . . . . . . . . . . .106
6.1.4 Module Lifecycle. . . . . . . . . . . . . . . . . . . . . . . . . .108

6.2 Implemented Modules. . . . . . . . . . . . . . . . . . . . . . . . . . .111
6.2.1 Thelam basic Module. . . . . . . . . . . . . . . . . . . . . . .111
6.2.2 Thesmp Module . . . . . . . . . . . . . . . . . . . . . . . . . .112

6.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
6.3.1 Correctness. . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
6.3.2 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . .118

CHAPTER 7: PARALLEL CHECKPOINT / RESTART . . . . . . . . . . . . . .131
7.1 Checkpoint-Based Rollback Recovery. . . . . . . . . . . . . . . . . . .132

7.1.1 Uncoordinated Checkpointing. . . . . . . . . . . . . . . . . . .133
7.1.2 Coordinated Checkpointing. . . . . . . . . . . . . . . . . . . .134
7.1.3 Communication-Induced Checkpointing. . . . . . . . . . . . . .134
7.1.4 Other Uses of Checkpoint/Restart. . . . . . . . . . . . . . . . .135

7.2 Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
7.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
7.2.2 Prepare For Checkpoint. . . . . . . . . . . . . . . . . . . . . .139
7.2.3 Checkpoint. . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
7.2.4 Continue After Checkpoint. . . . . . . . . . . . . . . . . . . . .143
7.2.5 Restart After Checkpoint. . . . . . . . . . . . . . . . . . . . . .143
7.2.6 Module Selection Mechanism. . . . . . . . . . . . . . . . . . .144
7.2.7 Interaction With Other Modules. . . . . . . . . . . . . . . . . .145

7.3 Implemented Modules. . . . . . . . . . . . . . . . . . . . . . . . . . .146
7.3.1 Theblcr Module . . . . . . . . . . . . . . . . . . . . . . . . . .146
7.3.2 Theself Module . . . . . . . . . . . . . . . . . . . . . . . . . .149

7.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
7.4.1 Correctness. . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
7.4.2 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . .154

CHAPTER 8: CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . .161
8.1 The SSI Meta Framework. . . . . . . . . . . . . . . . . . . . . . . . . .163
8.2 Theboot Component Framework. . . . . . . . . . . . . . . . . . . . .164

v



8.3 Therpi Component Framework. . . . . . . . . . . . . . . . . . . . . . .165
8.4 Thecoll Component Framework. . . . . . . . . . . . . . . . . . . . . .165
8.5 Thecr Component Framework. . . . . . . . . . . . . . . . . . . . . . .166
8.6 Delivered Software and Documentation. . . . . . . . . . . . . . . . . .166
8.7 Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166

APPENDIX A: SSI FRAMEWORK INTERFACE . . . . . . . . . . . . . . . . .170
A.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

A.1.1 The Prefix Rule. . . . . . . . . . . . . . . . . . . . . . . . . . .171
A.1.2 Function Parameters. . . . . . . . . . . . . . . . . . . . . . . .171
A.1.3 Historical Names. . . . . . . . . . . . . . . . . . . . . . . . . .171
A.1.4 Common LAM Types, Variables, and Functions. . . . . . . . . . 172

A.2 Directory Layout and Contents. . . . . . . . . . . . . . . . . . . . . . .172
A.3 Configuring the Module. . . . . . . . . . . . . . . . . . . . . . . . . . .173

A.3.1 Generatingconfigure Scripts. . . . . . . . . . . . . . . . . .173
A.3.2 Runningconfigure Scripts . . . . . . . . . . . . . . . . . . .178

A.4 Building the Module . . . . . . . . . . . . . . . . . . . . . . . . . . . .184
A.5 Installing the Module. . . . . . . . . . . . . . . . . . . . . . . . . . . .185
A.6 Module Source Code. . . . . . . . . . . . . . . . . . . . . . . . . . . .185

A.6.1 Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
A.6.2 The Base Module Datatype:lam ssi t . . . . . . . . . . . . . 188
A.6.3 Module Open Function. . . . . . . . . . . . . . . . . . . . . . .190
A.6.4 Module Close Function. . . . . . . . . . . . . . . . . . . . . . .191
A.6.5 Example Usage: Thetcp rpi Module . . . . . . . . . . . . . . .192
A.6.6 Module Parameters. . . . . . . . . . . . . . . . . . . . . . . . .192

APPENDIX B: PARALLEL JOB STARTUP COMPONENT INTERFACE. . . . 195
B.1 Services Provided by theboot Component Framework. . . . . . . . . . 195

B.1.1 Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . .195
B.1.2 Internal Type:struct lamnode . . . . . . . . . . . . . . . .196
B.1.3 Internal Type:struct psc . . . . . . . . . . . . . . . . . . .197
B.1.4 Internal Type:lam ssi boot proc t . . . . . . . . . . . . . 198
B.1.5 Global Variable:int lam ssi boot base server port . 198
B.1.6 Global Variable:int lam ssi boot optd . . . . . . . . . . 199
B.1.7 Utility Function:bhostparse() . . . . . . . . . . . . . . . .199
B.1.8 Utility Function:hbootparse() . . . . . . . . . . . . . . . .200
B.1.9 Utility Function:lam deallocate nodes() . . . . . . . . . 200
B.1.10 Utility Function:lam ssi boot base find boot schema() 202
B.1.11 Utility Function:lam ssi boot base find hostname() . 203
B.1.12 Utility Function:lam ssi boot base lamgrow() . . . . . . 203
B.1.13 Utility Function:lam ssi boot base ioexecvp() . . . . . 204
B.1.14 Utility Function: lam ssi boot base send lamd info -

args() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205
B.1.15 Utility Function:lam ssi boot build inet topo() . . . 206
B.1.16 Utility Function:lam ssi boot do commonargs() . . . . 206
B.1.17 Built-in Algorithms. . . . . . . . . . . . . . . . . . . . . . . . .207
B.1.18 TCP-Based Startup Rendesvouz Protocols. . . . . . . . . . . . . 208

vi



B.2 boot Component Framework Module API. . . . . . . . . . . . . . . . .210
B.2.1 Data Item:lsb meta info . . . . . . . . . . . . . . . . . . .212
B.2.2 Launch Function:lsb init . . . . . . . . . . . . . . . . . . .212
B.2.3 Launch Function:lsb finalize . . . . . . . . . . . . . . . .213
B.2.4 Launch Function:lsba parse options . . . . . . . . . . . . 213
B.2.5 Launch Function:lsba allocate nodes . . . . . . . . . . . 213
B.2.6 Launch Function:lsba verify nodes . . . . . . . . . . . . 214
B.2.7 Launch Function:lsba prepare boot . . . . . . . . . . . . 215
B.2.8 Launch Function:lsba start rte procs . . . . . . . . . . 215
B.2.9 Launch Function:lsba deallocate nodes . . . . . . . . . 216
B.2.10 Algorithm Callback Function:lsba start application . . 216
B.2.11 Algorithm Callback Function:lsba start rte proc . . . . 217
B.2.12 Rendezvous Function:lsba open srv connection . . . . . 218
B.2.13 Rendesvouz Function:lsba send lamd info . . . . . . . . . 218
B.2.14 Rendesvouz Function:lsba receive lamd info . . . . . . 219
B.2.15 Rendesvouz Function:lsba close srv connection . . . . 219
B.2.16 Rendesvouz Function:lsba send universe info . . . . . 220
B.2.17 Rendesvouz Function:lsba receive universe info . . . 220

APPENDIX C: MPI POINT-TO-POINT COMMUNICATION COMPONENT IN-
TERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222
C.1 Services Provided by therpi SSI . . . . . . . . . . . . . . . . . . . . . .222

C.1.1 Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . .222
C.1.2 Internal Type:struct gps . . . . . . . . . . . . . . . . . . .223
C.1.3 Internal Type:struct proc . . . . . . . . . . . . . . . . . .223
C.1.4 Internal Type:struct req . . . . . . . . . . . . . . . . . . .225
C.1.5 Internal Type:struct comm . . . . . . . . . . . . . . . . . .231
C.1.6 Internal Type:struct group . . . . . . . . . . . . . . . . .233
C.1.7 Internal Type:struct status . . . . . . . . . . . . . . . .235
C.1.8 Internal Type:struct lam ssi rpi envl . . . . . . . . . . 235
C.1.9 Internal Type:struct lam ssi cbuf msg . . . . . . . . . . 236
C.1.10 Global Variable:struct proc *lam myproc . . . . . . . 238
C.1.11 Utility Function:lam memcpy() . . . . . . . . . . . . . . . . .238
C.1.12 Utility Function:lam ssi rpi base alloc mem() . . . . . 239
C.1.13 Utility Function:lam ssi rpi base free mem() . . . . . . 239
C.1.14 Utility Functions: Unexpected Message Buffering. . . . . . . . 239

C.2 rpi Component Framework Module API. . . . . . . . . . . . . . . . . .240
C.2.1 Restrictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .241
C.2.2 Data Item:lsr meta info . . . . . . . . . . . . . . . . . . .241
C.2.3 Function Call:lsr query . . . . . . . . . . . . . . . . . . . .243
C.2.4 Function Call:lsr init . . . . . . . . . . . . . . . . . . . . .243
C.2.5 Function Call:lsra addprocs . . . . . . . . . . . . . . . . .244
C.2.6 Function Call:lsra finalize . . . . . . . . . . . . . . . . .245
C.2.7 Function Call:lsra build . . . . . . . . . . . . . . . . . . .246
C.2.8 Function Call:lsra start . . . . . . . . . . . . . . . . . . .246
C.2.9 Function Call:lsra advance . . . . . . . . . . . . . . . . . .247
C.2.10 Function Call:lsra destroy . . . . . . . . . . . . . . . . . .248
C.2.11 Function Call:lsra iprobe . . . . . . . . . . . . . . . . . . .248

vii



C.2.12 Function Call:lsra fastrecv . . . . . . . . . . . . . . . . .249
C.2.13 Function Call:lsra fastsend . . . . . . . . . . . . . . . . .250
C.2.14 Function Call:lsra alloc mem. . . . . . . . . . . . . . . . .250
C.2.15 Function Call:lsra free mem . . . . . . . . . . . . . . . . .251
C.2.16 Function Call:lsra interrupt . . . . . . . . . . . . . . . .251
C.2.17 Function Call:lsra checkpoint . . . . . . . . . . . . . . .252
C.2.18 Function Call:lsra continue . . . . . . . . . . . . . . . . .253
C.2.19 Function Call:lsra restart . . . . . . . . . . . . . . . . . .253
C.2.20 Data Member:lsra tv queue support . . . . . . . . . . . 253

APPENDIX D: MPI COLLECTIVE ALGORITHMS COMPONENT INTERFACE255
D.1 Services Provided by thecoll Component Framework. . . . . . . . . . . 255

D.1.1 Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . .255
D.1.2 Communication During Initialization. . . . . . . . . . . . . . .256
D.1.3 BLK* Constants. . . . . . . . . . . . . . . . . . . . . . . . . . .256
D.1.4 Utility Function:lam mkcoll() . . . . . . . . . . . . . . . . .256
D.1.5 Utility Function:lam mkpt() . . . . . . . . . . . . . . . . . .256
D.1.6 Utility Function:lam err comm() . . . . . . . . . . . . . . .257
D.1.7 Datatype Accessor Functions. . . . . . . . . . . . . . . . . . . .257

D.2 coll Component Framework Module API. . . . . . . . . . . . . . . . .260
D.2.1 Layered Point-to-Point Implementations. . . . . . . . . . . . . .260
D.2.2 Hierarchical Implementations (Sub-Communicators). . . . . . . 264
D.2.3 Intracommunicators and Intercommunicators. . . . . . . . . . . 267
D.2.4 Checkpoint / Restart Functionality. . . . . . . . . . . . . . . . .267
D.2.5 MPI Exceptions and Return Values. . . . . . . . . . . . . . . .269
D.2.6 Data Member:lsc meta info . . . . . . . . . . . . . . . . .270
D.2.7 Function Call:lsc thread query . . . . . . . . . . . . . . .270
D.2.8 Function Call:lsc query . . . . . . . . . . . . . . . . . . . .270
D.2.9 Data Member:lsc has checkpoint . . . . . . . . . . . . . 271
D.2.10 Function Call:lsca init . . . . . . . . . . . . . . . . . . . .271
D.2.11 Function Call:lsca finalize . . . . . . . . . . . . . . . . .272
D.2.12 Function Call:lsca checkpoint . . . . . . . . . . . . . . .272
D.2.13 Function Call:lsca continue . . . . . . . . . . . . . . . . .273
D.2.14 Function Call:lsca restart . . . . . . . . . . . . . . . . . .273
D.2.15 Function Call:lsca interrupt . . . . . . . . . . . . . . . .274
D.2.16 Function Call:lsca allgather . . . . . . . . . . . . . . . .274
D.2.17 Function Call:lsca allgatherv . . . . . . . . . . . . . . .275
D.2.18 Function Call:lsca allreduce . . . . . . . . . . . . . . . .275
D.2.19 Function Call:lsca alltoall . . . . . . . . . . . . . . . . .275
D.2.20 Function Call:lsca alltoallv . . . . . . . . . . . . . . . .276
D.2.21 Function Call:lsca alltoallw . . . . . . . . . . . . . . . .276
D.2.22 Function Call:lsca barrier . . . . . . . . . . . . . . . . . .277
D.2.23 Data Member:int lsca bcast optimization . . . . . . 277
D.2.24 Function Call:lsca bcast . . . . . . . . . . . . . . . . . . .277
D.2.25 Function Call:lsca exscan . . . . . . . . . . . . . . . . . . .278
D.2.26 Function Call:lsca gather . . . . . . . . . . . . . . . . . . .278
D.2.27 Function Call:lsca gatherv . . . . . . . . . . . . . . . . . .278
D.2.28 Data Member:int lsca reduce optimization . . . . . 279

viii



D.2.29 Function Call:lsca reduce . . . . . . . . . . . . . . . . . . .279
D.2.30 Function Call:lsca reduce scatter . . . . . . . . . . . . . 279
D.2.31 Function Call:lsca scan . . . . . . . . . . . . . . . . . . . .280
D.2.32 Function Call:lsca scatter . . . . . . . . . . . . . . . . . .280
D.2.33 Function Call:lsca scatterv . . . . . . . . . . . . . . . . .280

APPENDIX E: PARALLEL CHECKPOINT / RESTART COMPONENT INTER-
FACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282
E.1 Services Provided by thecr Component Framework. . . . . . . . . . . . 282

E.1.1 Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . .282
E.1.2 Module Selection Mechanism. . . . . . . . . . . . . . . . . . .283
E.1.3 Internal Type:lam ssi crmpi base handler state t . . 283
E.1.4 Global Variable:lam ssi crmpi base handler state . . 284
E.1.5 crlam Utility Function: lam ssi crlam base checkpoint() 284
E.1.6 crlam Utility Function: lam ssi crlam base continue() 284
E.1.7 crlam Utility Function: lam ssi crlam base restart() . 285
E.1.8 crlam Utility Function: lam ssi crlam base create restart -

argv() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285
E.1.9 crlam Utility Function: lam ssi crlam base do exec() . 285
E.1.10 crmpi Utility Function: lam ssi crmpi base checkpoint() 286
E.1.11 crmpi Utility Function: lam ssi crmpi base continue() 287
E.1.12 crmpi Utility Function: lam ssi crmpi base restart() . 287

E.2 crlam Component Framework Module API. . . . . . . . . . . . . . . .288
E.2.1 Data Member:lscrl meta info . . . . . . . . . . . . . . . .288
E.2.2 Function Call:lscrl query . . . . . . . . . . . . . . . . . . .288
E.2.3 Function Call:lscrla checkpoint . . . . . . . . . . . . . .290
E.2.4 Function Call:lscrla continue . . . . . . . . . . . . . . .291
E.2.5 Function Call:lscrla disable checkpoint . . . . . . . . 291
E.2.6 Function Call:lscrla enable checkpoint . . . . . . . . . 292
E.2.7 Function Call:lscrla finalize . . . . . . . . . . . . . . .292
E.2.8 Function Call:lscrla init . . . . . . . . . . . . . . . . . . .292
E.2.9 Function Call:lscrla restart . . . . . . . . . . . . . . . .293
E.2.10 Function Call:lscrla lamcheckpoint . . . . . . . . . . . 294
E.2.11 Function Call:lscrla lamrestart . . . . . . . . . . . . . .294

E.3 crmpi Component Framework Module API. . . . . . . . . . . . . . . .295
E.3.1 Data Member:lscrm meta info . . . . . . . . . . . . . . . .296
E.3.2 Function Call:lscrm query . . . . . . . . . . . . . . . . . . .296
E.3.3 Function Call:lscrma init . . . . . . . . . . . . . . . . . . .296
E.3.4 Function Call:lscrma finalize . . . . . . . . . . . . . . .297
E.3.5 Function Call:lscrma app suspend . . . . . . . . . . . . . 297

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299

ix



FIGURES

2.1 High-level architecture of LAM/MPI. . . . . . . . . . . . . . . . . . . . 13
2.2 LAM/MPI as a component system architecture containing component

frameworks and modules.. . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 SSI is the top tier that binds together the individual component frame-
works, and indirectly the modules that they contain.. . . . . . . . . . . . 35

3.2 Sample outputs from thelaminfo command. The first command shows
all availablerpi modules and their associated versioning data; the second
command shows thesysv rpi module parameters and their default values.44

4.1 Sample parallel applications started withrsh (or ssh ). . . . . . . . . . . 47
4.2 Booting the LAM run-time environment usingrsh or ssh . . . . . . . . 51
4.3 Starting a parallel application using PBS’s TM interface (tm spawn()

is the interface function for starting processes under PBS’s control). PBS
is able to track resource utilization for the entire application.. . . . . . . 52

4.4 Example architecture of PBS over four nodes. There is one instance each
of the PBS server and scheduler, and per-node instances of the MOM.. . 53

4.5 Booting the LAM run-time environment using the PBS TM interface.. . 54
4.6 Sample boot schema for theglobus boot component framework. Each

line can specify a differentprefix and CPU count. . . . . . . . . . . . 61
4.7 Execution time forlamboot in seconds usingssh , rsh , and TM on the

AVIDD-B cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 AnMPI Comm contains anMPI Group. TheMPI Group contains a set
of references to entries in the process list. Each process entry contains a
GPS.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

5.2 State progression of an MPI request. After a request is created, it is au-
tomatically put in theinit state. Note that upon finishing thedonestate,
non-persistent requests are destroyed, but persistent requests are moved
back to theinit state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 MPI message passing using thelamd rpi module in two scenarios: (a)
when the source process is on node 0 and the destination process is on
node 1, and (b) when the source and destination processes are on the
same node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

5.4 Ping-pong bandwidth measurements between two AVIDD-B nodes us-
ing gigabit Ethernet for communication. This graph compares the per-
formance of raw TCP, thetcp rpi module (LAM 7), and the TCP RPI
implementation (LAM 6).. . . . . . . . . . . . . . . . . . . . . . . . . . 95

x



5.5 Ping-pong bandwidth measurements between two AVIDD-B nodes us-
ing gigabit Ethernet for communication. This graph shows the effect of
increasing the eager/rendesvouz message to increase performance of mes-
sages between 128 KB and 1 MB in thetcp rpi module.. . . . . . . . . . 96

5.6 Ping-pong bandwidth measurements between two AVIDD-B nodes using
gigabit Ethernet for communication. This graph shows the absolute band-
width difference between the thetcp rpi module (LAM 7) and the TCP
RPI implementation (LAM 6). . . . . . . . . . . . . . . . . . . . . . . . 97

5.7 Ping-pong bandwidth measurements between two AVIDD-B nodes using
gigabit Ethernet for communication. This graph shows the percentage
bandwidth difference between the thetcp rpi module (LAM 7) and the
TCP RPI implementation (LAM 6). . . . . . . . . . . . . . . . . . . . . 98

5.8 Ping-pong bandwidth measurements on one AVIDD-B node using shared
memory for communication. This graph compares the performance of the
sysv rpi module (LAM 7) to the SYSV RPI implementation (LAM 6).. . 99

5.9 Ping-pong bandwidth measurements on one AVIDD-B node using shared
memory for communication. This graph compares the performance of the
usysv rpi module (LAM 7) to the USYSV RPI implementation (LAM 6).99

5.10 Ping-pong bandwidth measurements between two AVIDD-B nodes us-
ing Myrinet for communication. This graph compares the performance
of raw GM and thegm rpi module (LAM 7) – there was no GM RPI
implementation in LAM 6. . . . . . . . . . . . . . . . . . . . . . . . . .100

5.11 Ping-pong bandwidth measurements between two AVIDD-B nodes us-
ing Myrinet for communication. This graph compares the percentage of
bandwidth difference between raw GM and thegm rpi module (LAM 7). 101

6.1 Four processes are distributed across two nodes.MPI COMM WORLD
contains all four processes. Two sub-communicators (shown vertically)
each contain the two processes local to their respective nodes. One “bridge”
communicator (shown horizontally) contains a representative process from
each node.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

6.2 Phases in the life of acoll module. When a module is created, the se-
lection process determines whichcoll module will be used. The selected
module is then initialized and is ready for normal use (i.e., invoking col-
lectives) and checkpoint/restart services. When the communicator is de-
stroyed, thecoll module finalizes itself for that scope.. . . . . . . . . . . 108

6.3 MagPIe algorithm for broadcast from process 0. Process 0 sends to its
peer on the remote node (process 3). Each then do a local broadcast to
the remaining processes on their nodes (processes 1 and 2, and processes
4 and 5, respectively).. . . . . . . . . . . . . . . . . . . . . . . . . . . .114

6.4 Pseudocode showing theMPI BCAST implementation using a hierarchi-
cal implementation approach.bridge root , bridge comm, local -
root , andlocal commare all calculated and initialized during the per-
communicator initialization and are cached on the communicator.. . . . 114

6.5 Wall-clock execution time forMPI ALLREDUCE on the AVIDD-B clus-
ter with a 4 MB message on varying numbers of processes using thesysv
rpi module and the SYSV RPI implementation.. . . . . . . . . . . . . .120

xi



6.6 Wall-clock execution time forMPI ALLREDUCE on the AVIDD-B clus-
ter with a 4 MB message on varying numbers of processes using thetcp
rpi module and the TCP RPI implementation.. . . . . . . . . . . . . . .121

6.7 Wall-clock execution time forMPI ALLREDUCE on the AVIDD-B clus-
ter with a 4 MB message on varying numbers of processes using the
usysv rpi module and the USYSV RPI implementation.. . . . . . . . . 121

6.8 Wall-clock execution time forMPI ALLTOALL on the AVIDD-B cluster
with a 4 MB message on varying numbers of processes using thesysv
rpi module and the SYSV RPI implementation.. . . . . . . . . . . . . .122

6.9 Wall-clock execution time forMPI ALLTOALL on the AVIDD-B cluster
with a 4 MB message on varying numbers of processes using thetcp rpi
module and the TCP RPI implementation.. . . . . . . . . . . . . . . . .122

6.10 Wall-clock execution time forMPI ALLTOALL on the AVIDD-B cluster
with a 4 MB message on varying numbers of processes using theusysv
rpi module and the USYSV RPI implementation.. . . . . . . . . . . . . 123

6.11 Wall-clock execution time forMPI BARRIER on the AVIDD-B clus-
ter on varying numbers of processes using thesysv rpi module and the
SYSV RPI implementation.. . . . . . . . . . . . . . . . . . . . . . . . .123

6.12 Wall-clock execution time forMPI BARRIER on the AVIDD-B cluster
on varying numbers of processes using thetcp rpi module and the TCP
RPI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

6.13 Wall-clock execution time forMPI BARRIER on the AVIDD-B cluster
on varying numbers of processes using theusysv rpi module and the
USYSV RPI implementation.. . . . . . . . . . . . . . . . . . . . . . . .124

6.14 Wall-clock execution time forMPI ALLREDUCE on the AVIDD-B clus-
ter with a 4 MB message on varying numbers of processes using thesysv
rpi. This graph shows a comparison of thelam basic andsmp coll mod-
ules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

6.15 Wall-clock execution time forMPI ALLREDUCE on the AVIDD-B clus-
ter with a 4 MB message on varying numbers of processes using thetcp
rpi. This graph shows a comparison of thelam basic andsmp coll mod-
ules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

6.16 Wall-clock execution time forMPI ALLREDUCE on the AVIDD-B clus-
ter with a 4 MB message on varying numbers of processes using the
usysv rpi. This graph shows a comparison of thelam basic andsmp
coll modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127

6.17 Wall-clock execution time forMPI BARRIER on the AVIDD-B cluster
with a 4 MB message on varying numbers of processes using thesysv rpi.
This graph shows a comparison of thelam basic andsmp coll modules. 128

6.18 Wall-clock execution time forMPI BARRIER on the AVIDD-B cluster
with a 4 MB message on varying numbers of processes using thetcp rpi.
This graph shows a comparison of thelam basic andsmp coll modules. 128

6.19 Wall-clock execution time forMPI BARRIER on the AVIDD-B cluster
with a 4 MB message on varying numbers of processes using theusysv
rpi. This graph shows a comparison of thelam basic andsmp coll mod-
ules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

6.20 Wall-clock execution time forMPI BCAST on the AVIDD-B cluster with
a 4 MB message on varying numbers of processes using thesysv rpi. This
graph shows a comparison of thelam basic andsmp coll modules. . . . 129

xii



6.21 Wall-clock execution time forMPI BCAST on the AVIDD-B cluster with
a 4 MB message on varying numbers of processes using thetcp rpi. This
graph shows a comparison of thelam basic andsmp coll modules. . . . 130

6.22 Wall-clock execution time forMPI BCAST on the AVIDD-B cluster with
a 4 MB message on varying numbers of processes using theusysv rpi.
This graph shows a comparison of thelam basic andsmp coll modules. 130

7.1 A message-passing system consisting of 3 processes. The blocks on each
line represent when the checkpoint was taken; the line drawn between
them establishes the global state. (a) shows an example of a consistent
global state where messagem1 is recorded as having been sent by process
P0 but not yet received by processP1, and (b) shows an example of an
inconsistent global state in which messagem2 is recorded as having been
received byP2 but not yet sent byP1 [35]. . . . . . . . . . . . . . . . . .133

7.2 Three phases of checkpoint services in LAM/MPI parallel applications.. 138
7.3 Sequence of events in the checkpoint phase.. . . . . . . . . . . . . . . .139
7.4 Sequence of events when the application thread is executing outside the

MPI library when a checkpoint request arrives. Although the checkpoint/-
continue phases are shown here, the same sequence occurs in the restart
phase (albeit in a different process).. . . . . . . . . . . . . . . . . . . .141

7.5 Sequence of events when the application thread is blocking in the MPI
library when a checkpoint request arrives. Although the checkpoint/con-
tinue phases are shown here, the same sequence occurs in the restart phase
(albeit in a different process).. . . . . . . . . . . . . . . . . . . . . . . .142

7.6 Sequence of events in the continue phase.. . . . . . . . . . . . . . . . .143
7.7 Sequence of events in the restart phase.. . . . . . . . . . . . . . . . . .144
7.8 Draining TCP sockets before checkpoint: (a) Processes A and B ex-

change the sent/received byte counter information using LAM’s out-of-
band communication system. (b) Processes A and B receive data from
the in-band channel until their counters match what was received in (a).. 146

7.9 Template for BLCR callback functions. The state of the entire process (in-
cluding the callback’s execution) is saved during thecr checkpoint()
call. The return value fromcr checkpoint() indicates whether the
process continued after the checkpoint or was started in a new process.. . 148

7.10 Theblcr module inmpirun propagates the checkpoint request by using
LAM run-time environment services to launch acr checkpoint for
every MPI process.. . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

7.11 Wall clock execution time for checkpointing serial processes of varying
sizes using BLCR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155

7.12 NetPIPE throughput on AVIDD-B cluster of thetcp module compared to
thecrtcp module, both with and without checkpointing support enabled.. 156

7.13 Depiction of the message passing during a checkpoint, including the ar-
tificial “sync message” inserted solely for measuring the magnitude of
LAM overhead. The upper bound of LAM overhead is therefore the time
interval between (a) and (b).. . . . . . . . . . . . . . . . . . . . . . . .159

7.14 Wall clock time of LAM overhead to checkpoint a parallel job with dif-
fering numbers of processes. Two outputs are shown; one with individual
process sizes of approximately 1 MB, the other with 256 MB processes.. 160

xiii



8.1 LAM/MPI is a component system architecture that manages multiple dif-
ferent component frameworks (or “types”); zero or more modules may be
available from a given type. This figure depicts a component type withN
modules, and showsmpirun passing in run-time parameters to moduleB.164

A.1 Theconfigure.params file for thetcp rpi module.. . . . . . . . . . 176
A.2 Sample version file for a module. This file will resolve to the full version

string “7.1.2cvs1”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177
A.3 Sample top-levelMakefile.am for building thetcp rpi module. Logic

based on theLAMBUILD LOADABLEMODULEdecides whether to build
the module statically or dynamically.. . . . . . . . . . . . . . . . . . . .186

A.4 SampleAMCPPFLAGSrequired to find the LAM header files. Note that
the build directory is explicitly included in order to support VPATH builds
properly, even though it will be redundant in non-VPATH builds.. . . . . 187

A.5 Definition of thelam ssi t type. . . . . . . . . . . . . . . . . . . . . .189
A.6 Definition of thelam ssi rpi t type. . . . . . . . . . . . . . . . . . .192
A.7 Definition of thelam ssi rpi t type for thetcp rpi module. Note the

NULL used for the close function; thetcp module does not have a close
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193

A.8 Functions for registering and looking up module parameters.. . . . . . . 194

B.1 struct lamnode definition. . . . . . . . . . . . . . . . . . . . . . .196
B.2 Example boot schema file.. . . . . . . . . . . . . . . . . . . . . . . . .197
B.3 struct psc definition. . . . . . . . . . . . . . . . . . . . . . . . . . .198
B.4 lam ssi boot proc t enumerated type definition.. . . . . . . . . . . 198
B.5 Abbreviated samplestart rte proc() function. . . . . . . . . . . . 201
B.6 Theboot type for exporting the initialization and finalization API func-

tion pointers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210
B.7 Theboot type for exporting the main action API function pointers.. . . . 211

C.1 struct gps : GPS type; unique process identification in a LAM uni-
verse. It is mainly used for MPI process identification and LAM out-of-
band messaging.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223

C.2 struct proc : Process entry.. . . . . . . . . . . . . . . . . . . . . .224
C.3 struct req : Underlying structure forMPI Request , part 1. . . . . 226
C.4 struct req : Underlying structure forMPI Request , part 2. . . . . 227
C.5 struct com: Underlying structure forMPI Comm. . . . . . . . . . . 232
C.6 struct group : Underlying structure forMPI Group . . . . . . . . . 234
C.7 struct status : Underlying structure forMPI Status . . . . . . . 234
C.8 struct lam ssi rpi envl : General structure for envelopes.. . . . 235
C.9 struct lam ssi rpi cbuf msg: Unexpected message bodies.. . . 237
C.10 struct lam ssi rpi 1 1 0: The rpi basic type for exporting the

module meta information and initial query / initialization function pointers.241
C.11 struct lam ssi rpi actions 1 1 0: The rpi type for exporting

API function pointers.. . . . . . . . . . . . . . . . . . . . . . . . . . . .242

D.1 SampleMPI BARRIER implementation. . . . . . . . . . . . . . . . . .258

xiv



D.2 SampleMPI REDUCE implementation. Note the Fortran flag on the
op variable than indicates a different calling convention for the reduction
function. In this case, the reduction function is in Fortran and therefore
the datatype needs to be passed as its Fortran integer handle, not its C
pointer handle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259

D.3 Thecoll type for exporting the basic API function pointers and flags.. . . 261
D.4 Thecoll type for exporting the majority of the collective API function

pointers (part 1 of 2).. . . . . . . . . . . . . . . . . . . . . . . . . . . .262
D.5 Thecoll type for exporting the majority of the collective API function

pointers (part 2 of 2).. . . . . . . . . . . . . . . . . . . . . . . . . . . .263
D.6 Sample code showing conditional profiling build.. . . . . . . . . . . . . 265
D.7 Sample code creating a hidden communicator.. . . . . . . . . . . . . . .266
D.8 Sample MPI exception in a back-end collective implementation.. . . . . 269

E.1 Thelam ssi crmpi base handler state t type and its possible
values.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283

E.2 lam ssi crlam 1 1 0 t : Thecrlam basic type for exporting the mod-
ule meta information and initial query function pointer.. . . . . . . . . . 288

E.3 lam ssi crlam actions 1 1 0 t : The crlam type for exporting
API function pointers.. . . . . . . . . . . . . . . . . . . . . . . . . . . .289

E.4 struct lam ssi crmpi 1 0 0: Thecrmpi basic type for exporting
the module meta information and function pointers.. . . . . . . . . . . . 295

E.5 struct lam ssi crmpi actions 1 0 0: The crmpi type for ex-
porting API function pointers. . . . . . . . . . . . . . . . . . . . . . . .295

xv



TABLES

1.1 Partial listing of MPICH derivatives and related packages. . . . . . . . . 6
1.2 Total line counts for each part of the contribution in this work. . . . . . . 10

2.1 Partial list of Linux distributions, open source BSD distributions, and
clustering projects that are known to include LAM/MPI. . . . . . . . . . 16

2.2 LAM/MPI’s formally supported platforms. . . . . . . . . . . . . . . . . 19
2.3 Line counts for various types of files in the LAM/MPI code base. . . . . 20
2.4 LAM/MPI’s formally supported compilers. . . . . . . . . . . . . . . . . 23

4.1 Summary of Run-Time Environment Results. . . . . . . . . . . . . . . . 67
4.2 Description of the University of Pennsylvania Liniac testbed cluster. . . 67
4.3 Description of the Indiana University Computer Sciencebitternut

andsawtooth nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Description of the Indiana University AVIDD-B and Open Systems Lab

Thumb clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 Accounting information from PBS on the Thumb cluster. . . . . . . . . 73

5.1 Test code coverage ofrpi modules . . . . . . . . . . . . . . . . . . . . . 94

6.1 Summary of MPI Collective results on 1 node. . . . . . . . . . . . . . .117
6.2 Summary of MPI Collective results for2M nodes . . . . . . . . . . . . . 117
6.3 Summary of results for(2M + X) nodes. . . . . . . . . . . . . . . . . .118
6.4 Test code coverage ofcoll modules. . . . . . . . . . . . . . . . . . . . .119

7.1 Collective MPI functions tested with checkpoint / restart functionality. . 152
7.2 Point-to-point MPI functions tested with checkpoint / restart functionality152
7.3 Description of the Indiana University Computer Science Thor cluster. . . 153
7.4 Checkpoint / restart overhead measurements in LAM/MPI on the Thor

cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
7.5 Wall-clock execution time of the LU NAS parallel benchmark with check-

points being taken at different frequencies. . . . . . . . . . . . . . . . .160

A.1 Componentconfigure script output variables for the LAM library . . 182
A.2 Componentconfigure script output variables for the MPI library. . . 182
A.3 Componentconfigure script output variables for user MPI applications183

xvi



ACKNOWLEDGMENTS

This work was supported by a grant from the Lilly Endowment, National Science

Foundation grants 0116050, EIA-0202048, and ANI-0330620, the U.S. Department of

Energy under Contract No. DE-AC03-76SF00098. This work was performed using com-

putational facilities at Indiana University, the University of Toronto, the University of

Pennsylvania, and the College of William and Mary. The College of William and Mary’s

resources were enabled by grants from Sun Microsystems, the National Science Founda-

tion, and Virginia’s Commonwealth Technology Research Fund.

xvii



CHAPTER 1

INTRODUCTION

The Message Passing Interface (MPI) is thede factostandard for message passing

parallel programming of large-scale distributed systems [48, 52, 57, 58, 91, 120]. Imple-

mentations of MPI comprise the middleware layer for a wide variety of high-performance

computing environments. Providing networked, message passing services to parallel ap-

plications, MPI implementations therefore play a critical role in overall performance as

well as functionality delivered to the application.

MPI implementations are available from a variety of sources, ranging from research

projects to production quality products. Research-oriented MPI implementations can be

found at many academic institutions and are typically targeted at studying specific is-

sues in parallel computing. Many such implementations are intended only for research

purposes; they are neither designed to be utilized by real users, nor are they necessarily

complete implementations of the MPI-1 and MPI-2 standards. Two notable open source

packages that provide a balance of cutting-edge research and a production-quality im-

plementation are LAM/MPI [19, 127]1 and MPICH [51, 59]. Other production-quality

MPI implementations are distributed by high-speed networking hardware vendors, clus-

ter resellers, and independent software vendors (ISVs) – many of which are derived from

LAM/MPI and/or MPICH.
1The word “LAM” used to be an acronym for “Local Area Multicomputer,” a name which has long

since fallen into disuse. “LAM” is now used as the project’s name, not as an acronym. The standalone
name “LAM” is frequently used as an abbreviation of “LAM/MPI.”
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The MPI standard is so large that any implementation of it necessarily involves an

extensive set of design and implementation choices. Parallel researchers therefore need

platforms to develop, experiment, test, and deploy their work. Common approaches in-

clude either implementing a subset of MPI functionality sufficient to support their re-

search or modifying an existing open-source MPI implementation. Implementing MPI,

or even a subset of MPI, is such a large task that it frequently cannot be justified when the

desired goal is to develop and experiment with only a small portion of MPI functionality.

Similarly, the MPI standard is so large and diverse that modifying an existing implemen-

tation, even if it is well-abstracted and logically constructed, is an unwieldy task (at best)

for external developers attempting to understand its source code. Both methods available

to third party researchers therefore involve enormous logistical and technical difficulties

that must be solved before any development can be started. Such issues typically require

a large initial time investment to solve, which may be prohibitive.

This is particularly evident when developing emerging high-performance hardware

platforms. Since the majority of high-performance computing (HPC) codes are writ-

ten with MPI, it is vital to establish an MPI implementation for the new platform as

quickly as possible. This immediately enables not only real-world applications to utilize

the new platform, but also many established MPI benchmarks and testing tools. This has

the side-effect of feeding back into the design cycle; user applications and well-known

benchmarks can be used as test suites to stress test the new platform.

This work shows that the use of component abstractions within an MPI implementa-

tion addresses these issues. The use of components allows small, independent modules to

implement discrete, well-defined functionality that are inherently easier to maintain than

large, monolithic architectures. For example, third parties need only learn about the com-

ponents relevant to their work, not the rest of the MPI implementation. Additionally, since

modules are designed to be deployable units, not only can third parties independently de-
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velop and distribute their own modules, sets of modules can be composed in unique ways

by the end-user and/or parallel environment at run-time to form an MPI implementation

that is specifically tailored to the environment in which it is running.

This approach shows the value of using component-based programming in scientific

computing: complex functionality can be broken down into its most fundamental ab-

stractions and implemented as part of large-scale software systems with no loss in per-

formance. The use of well-designed components in an MPI implementation significantly

lowers the overhead required by third party researchers to conduct parallel research. For

example, if new algorithms for MPI collective functions could be implemented as a mid-

dleware “plug-in,” the focus of the work would be on the collective algorithms – not on the

logistical and technical details surrounding the collective algorithms. Additionally, since

a complete MPI implementation is used as the framework for the research, real-world

MPI applications can be used for testing and verification of the module. Even unmodi-

fied legacy MPI applications can be used; its calls toMPI BARRIER, for example, will

automatically be routed to the new plug-in.

Simply put, having the ability to easily and selectively replace a variety of small,

specific portions of an MPI implementation at run-time empowers third party research in

a way that has not previously been available. This work explores these concepts both in

theory and in implementation, and demonstrates that abstractions required to support it

do not negatively impact performance.

The LAM implementation of MPI has therefore been re-architected to utilize a com-

ponent system architecture consisting of four component frameworks and a meta frame-

work that ties them together. These component frameworks were designed from analysis

of major functionality categories from prior monolithic implementations of LAM/MPI:

run-time environment startup, MPI point-to-point communication, and MPI collective

communication. The designs of these frameworks were validated by creating multiple
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modules for each. Some modules are “component-ized” versions of prior LAM/MPI

functionality while others represent new capabilities largely made possible by the com-

ponent architecture.

Coordinated asynchronous checkpoint/restart of parallel MPI applications is entirely

new functionality; it was implemented as the fourth component framework. Its com-

ponent specifications were designed from an analysis of the actions required by several

back-end checkpoint systems. Two different checkpoint/restart modules have been im-

plemented, verifying the approach taken in its framework.

The frameworks were specifically designed to be lightweight and efficient; negligible

overhead is introduced by the additional abstractions. A meta framework provides an

additional layer of commonality and interaction; it ties the four component frameworks

together and allows modules in different frameworks to interact with each other. The meta

framework is named the System Services Interface (SSI) of LAM/MPI. The SSI manages

the modules in all four component frameworks. It allows multiple shared library modules

to be available at run-time, selectively loading the ones that are needed. This has two

important side effects: 1) the choice of which module(s) to use is performed at run-time,

and 2) since modules exist as standalone shared libraries, an MPI application can use any

module without recompiling/relinking.

The end result is an MPI implementation that is inherently modular, has high message-

passing performance, publishes abstraction and interface boundaries, and is significantly

easier to develop, maintain, and use as a vehicle for research than its monolithic prede-

cessors.

1.1 Preventing Code Base Fracturing

The MPICH project from Argonne National Labs was developed as a reference im-

plementation while the MPI-1 standard was being written. It provided valuable insights
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and sanity checks on the ideas proposed for the MPI-1 document. By providing stable,

usable software immediately available upon the completion of MPI-1, it was also there-

fore instrumental in advocating the use of MPI to both end users and vendors. As a direct

result, MPICH became a standard implementation of MPI; many vendors and ISVs have

used MPICH as the basis for their MPI implementation in custom parallel hardware and

software environments.

Table 1.1 is a list of several recent MPICH-related and derivative projects; other

MPICH-derived projects exist (including vendor MPI implementations) but are not listed

for the sake of brevity. The Table lists each package as a “Patch” if it is distributed as a

patch to the main MPICH distribution [55], “Full” if it includes a full MPICH distribu-

tion, or “Add on” if the software is additional functionality and is not compiled as part of

MPICH.

While the number of MPICH-derivative works is a testimony to the success of the

MPICH project, it presents practical difficulties for researchers/developers, users and sys-

tem administrators, and ISVs. Developers need to keep up with MPICH releases in order

to keep their software stable. For example, Myricom releases a new version of MPICH-

GM (supporting high speed communication over Myrinet networks) to accompany every

major MPICH release, costing developer time and resources. More specifically, each

project – especially the “full” distributions – are a fork in the MPICH development tree.

Significant time and effort is required to merge in the changes from each new MPICH

release.

Each package is also mutually exclusive from the others; some cannot be combined

without a considerable amount of additional work. For example, the MPICH-GM product

cannot be easily extended to include the checkpointing work from the MPICH-V project

to produce MPI programs that run natively over Myrinet networks with checkpointing

support. Among the packages that can be combined (e.g., packages that add a entirely
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TABLE 1.1

Partial listing of MPICH derivatives and related packages

Project Name Distribution Description

MP-MPICH Full Multi-platform MPICH, providing drivers for the
SCALI network interconnect (Theinsch-Westfalische
Technische Hochschule, Aachen, Germany)

MPI/GAMMA Patch MPI over the Genoa Active Message Machine net-
work (University of Genova, Italy)

MPICH-g2 Patch MPI for Globus/Grid environments (Northern Illinois
University)

MPICH-GM,
MPICH-MX

Full MPICH tuned for Myrinet networks (Myricom)

MPICH NT Full Support for Microsoft Windows platforms (Argonne
National Labs)

MPICH-SCore Full Support for SCore software and hardware environ-
ments (PC Cluster Consortium)

MPICH-
V [16]

Patch Three different versions of checkpointing support for
MPICH (Paris-Sud University, Paris, France)

mpiexec Add-on Support for MPICH to run in Portable Batch Sched-
uler (PBS) environments (Ohio Supercomputing
Center)

MVAPICH,
MVAPICH2,
MIBAPICH

Patch Three different versions of patches to MPICH and
MPICH2 for support of Infiniband networks (Ohio
State University)

MVICH Patch Support for VIA networks (Lawrence Berkeley Labs)

Open MOSIX Patch Add support for Open MOSIX clusters to MPICH

Quadrics MPI Full MPI for the Quadrics network interconnect
(Quadrics)

Scyld MPI Full Bootstrapping to start MPICH jobs on BProc clusters
(the Scyld Computing Corporation)

Unnamed Patch Incomplete port of MPICH to Cygwin environ-
ments (Institute for High Performance Computing
and Databases, St. Petersburg, Russia)
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new, non-conflicting directory into the MPICH source tree [55]), the MPICH architecture

only allows building one communications device at a time. So even if the differences

between MPICH and MPICH-GM could somehow be added to the MPICH-V project,

the result would still not yield checkpointable MPI programs running over Myrinet.

Another problem is that users and/or system administrators must install each pack-

age separately, and then ensure to use the correct installation when compiling and run-

ning their MPI applications. This can be a significant logistical challenge. Additionally,

since some of the projects listed in Table1.1originally forked from different versions of

MPICH, user MPI application behavior can vary depending on which package is used.

ISVs need to support every MPI implementation that their customers use (which may

include different versions of the same implementation – commercial Quality Assurance

procedures typically require separate testing on each). In particular, for ISVs that do not

distribute source code, the management of binary applications for potentially multiple

versions of each MPI implementation can be cost-prohibitive.

Additional conclusions that can be drawn from Table1.1(which is admittedly abbre-

viated – there are additional MPICH-related and MPICH-derived projects not listed):

• There are researchers, developers, and vendors who are leveraging their work into
an MPI implementation.

• By adapting an existing MPI implementation, these researchers, developers, and
vendors clearly do not want to write their own MPI implementation.

Developers are thereforewilling to use MPI implementation tools, but until this point,

have only had the option of either using/adapting MPICH or starting a new MPI imple-

mentation. Of the two, using the infrastructure in MPICH is clearly a better choice, but is

still quite limiting.

MPICH and its derivatives are not the only MPI implementations available; there

are many independent implementations available, some of which were either forked or

strongly influenced by LAM/MPI. Hence, the current state of the art is users and develop-
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ers utilizing multiple MPI implementations, none of which are compatible, all of which

require separate installation, and the combination of which present significant logistical

challenges for system administrators and software distributors.

This dissertation shows that the use of components as an MPI implementation tool

fulfills the requirements of third party developers and solves many of the problems cited

above. As will be discussed later in this document, forks from the main LAM code base

are unnecessary because modules can be deployed either in conjunction with or separately

from LAM’s main distribution. Additionally, LAM need only be installed once; all other

functionality – even from third parties – can be added to an existing LAM installation.

This simultaneous installation allows the composition of available modules (e.g., check-

pointing support can be combined with network interconnects), which significantly cuts

down on the logistics required for users, system administrators, and ISVs, yet still allows

running parallel MPI applications natively in multiple environments.

1.2 Contribution

This work comprised of taking a stable version of LAM/MPI, v6.5, transforming it

into a component system architecture, converting its existing functionality into a set of

modules, and writing additional modules to introduce new functionality. This entailed

the following high-level efforts:

• Factor the major functionality of LAM/MPI into individual component architec-
tures. Three component architectures were identified: “boot” (run-time environ-
ment startup, Chapter4), “rpi” (MPI point-to-point communications, Chapter5),
and “coll” (MPI collective communications, Chapter6).

• Abstract the functionality required and design component interfaces for each archi-
tecture.

• Implement each of the component interfaces in their respective architectures and
adapt the rest of the LAM code base to call them, as appropriate.

• Convert existing LAM functionality into component modules and write one or more
new modules of each component type both to validate the interfaces as well as to
add new functionality to LAM.
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• Write technical documentation for all component interfaces, enabling third parties
to write components (AppendicesA, B, C, D, andE).

• Implement a component system architecture for loading and unloading modules,
providing run-time module selection and parameter passing, and allowing interop-
eration between component architectures.

At the same time, parallel checkpoint/restart capabilities were added to LAM/MPI in

a different research effort and were therefore absorbed into the “component-ization” pro-

cess. The checkpoint restart abstractions resulted into two new component architectures:

“crlam” and “crmpi” (frequently referred to collectively as “cr”, Chapter7).

Since this work was absorbed into an already-existing code base, it is difficult to quan-

tify exactly how much code is specifically attributable to this effort. Table1.2 provides

line counts for each part of the contribution (some counts are approximate) to provide a

rough order of magnitude of the scale of this work. “Accurate” means that the file and

line count is fairly accurate in terms of unique contribution of this work. “Approximate”

means that at least some portion of the line count was adapted from LAM/MPI 6.5. Note

that theboot component architecture was jointly designed with Brian Barrett (who also

implemented most of thetm module), and thecr component architecture was jointly de-

signed with Sriram Sankaran (who also implemented most of theblcr modules).

This newly-architected system – including initial checkpoint/restart support – was

first released as LAM/MPI v7.0 in the summer of 2003. Research and development has

continued since that point; this dissertation contains additional work that is not contained

in v7.0. The completed implementation of all ideas presented in this work is expected to

be released as v7.1 in May 2004.

1.3 Document Organization

Chapter2 provides a more in-depth background of MPI, the LAM implementation

of MPI, and how LAM evolved from a monolithic MPI implementation to a component
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TABLE 1.2

Total line counts for each part of the contribution in this work

Description Type File count Line count

Component system architecture Accurate 16 2,929

boot component architecture and modules Accurate 64 8,709

coll component architecture and modules Approximate 79 11,711

cr component architecture and modules Accurate 43 5,158

rpi component architecture and modules Approximate 189 51,798

LATEX component architecture documentation Accurate 57 11,470

Totals 448 91,775

system architecture. The SSI meta framework is discussed in Chapter3. Chapters4, 5,

6, and7 discuss the four different component frameworks: run-time environment startup

(named “boot”), MPI point-to-point communication (called “rpi,” an acronym for MPI

Request Progression Interface), MPI collective communication (abbreviated “coll”), and

parallel checkpoint/restart (named “cr”), respectively. Chapter8 presents conclusions and

lists future work directions.

Finally, AppendicesA, B, C, D, andE provide technical and implementation details

for each of the frameworks (the SSI,boot, rpi, coll, andcr, respectively). These Appen-

dices are presented in the same order as their corresponding chapters.
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CHAPTER 2

BACKGROUND

This chapter expands upon the brief Introduction chapter and provides a background

for framing the work described in this dissertation. Concrete motivations are listed as to

why this work is both relevant and necessary to advance the field of high-performance

computing, specifically in the area of message passing library implementations.

Section2.1provides a short background on the Message Passing Interface (MPI), fol-

lowed by an overview of the LAM implementation of MPI in Section2.2. The evolution

of LAM/MPI and motivation for this dissertation are provided in Section2.3. Section2.4

provides a summary of related works to this project. Finally, experimental setup for all

results presented in this dissertation is described in Section2.5.

2.1 The Message Passing Interface (MPI)

There are two documents that specify the MPI application programmer’s interface

(API): MPI-1 [91] and MPI-2 [48]. The MPI-1 document, released in 1994, specifies a

basic parallel infrastructure as well as multiple modes of sends, receives, and collective

operations. The interface is specified in C [76] and Fortran 77. One of its major design

goals was to allow application portability between different kinds of parallel hardware;

applications written on clusters of commodity hardware should be able to be run on tra-

ditional “big iron” machines with little or no change. The MPI-2 document, released
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in 1997, specifies extensions to MPI-1, including one-sided communication operations,

dynamic process control,1 and C++ bindings for MPI.

Implementations of the MPI specification are available from a wide variety of sources.

Parallel hardware vendors, high-speed networking vendors, and independent software

vendors provide MPI implementations fine-tuned for their run-time environments. Gov-

ernment and academic researchers develop MPI implementations to study issues sur-

rounding high-performance computing; such implementations range from research pro-

jects to production quality products.

2.2 The LAM Implementation of MPI

LAM/MPI is an open source, freely available implementation of the MPI standard [19,

127, 135]. It implements the complete MPI-1 standard and much of the MPI-2 standard,

including dynamic process control, one-sided communication, C++ bindings, and MPI

I/O (through ROMIO [138, 139]). The project is currently developed by the Open Sys-

tems Laboratory at Indiana University and is available under a BSD-like license.

Since its inception in 1989, the LAM project has grown into a mature code base

that is both rich with features and efficient in its implementation, delivering both high

performance and convenience to MPI users and developers. LAM/MPI is shipped by

most Linux and BSD distributions, resold by Linux vendors and ISVs, and downloaded

by users around the world. LAM enjoys a wide-ranging user base, active user mailing

lists, and community participation.

2.2.1 Layered Design

Figure2.1 shows that LAM/MPI is comprised of two main sub-systems: the LAM

run-time environment and the MPI communications layer. For performance reasons, both

1MPI-1 was criticized for not including dynamic process capabilities, since prior systems such as the
Parallel Virtual Machine (PVM) [32, 12, 13, 47] did. As such, dynamic process control was added in
MPI-2.
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User Application

MPI Layer

Operating System

LAM Layer

Figure 2.1. High-level architecture showing the user’s MPI application, the MPI layer,
the LAM layer, and the underlying operating system.

layers interact directly with the operating system; requiring the MPI layer to utilize the

LAM layer for all MPI communications would impose a significant overhead.

LAM Run-Time Environment Layer

The LAM layer includes both the LAM run-time environment and a companion li-

brary providing C API functions to interact with it. The run-time environment is based on

user-level daemons; it provides services such as message passing, process control, remote

file access, and I/O forwarding. Many of these services are utilized by MPI processes.

A user starts the LAM run-time environment with thelamboot command which, in

turn, launches a LAM daemon on each node that will be used. After the run-time envi-

ronment is established, parallel MPI applications can be run. When the user is finished,

the lamhalt command is used to kill the LAM daemon on every node, terminating the

run-time environment.

MPI Communications Layer

The MPI layer provides the MPI API functions as described in the MPI-1 and MPI-

2 standards. This includes functions such asMPI INIT, MPI SEND, MPI RECV, etc.

Since MPI specifies a large number of interface functions, the logic required to support

all the top-level API functions and effect the behavior described in the specification is
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fairly complex. The MPI layer uses services from both the LAM layer and the operating

system to perform this job.

2.2.2 Open Source Model

The LAM/MPI project embraces the open source model for software development [30].

Among the reasons for this is that some of the benefits of open source mirror that of suc-

cessful research: peer review, wide-spread adoption, and contributions from third parties.

This became particularly evident when LAM’s source code repository was opened for

anonymous, read-only access to the public in 1999; there has been a slow-but-steady

stream of contributors – many from academic institutions around the world – who study

the internals of LAM and offer critiques, enhancements, and bug fixes.

Active public mailing lists provide not only direct interaction between real-world

users and the LAM/MPI research and development team, but also a valuable teaching

tool for junior LAM developers. New students on the LAM project are exposed to real-

world challenges and have to learn how to research unfamiliar topics and find correct

solutions. Requiring junior developers to reply to user e-mail has proven to be an ex-

cellent educational device, and helps students bridge the gap from their undergraduate

studies to their graduate career.

Although the exact membership change frequently, as of this writing, there are nearly

650 subscribers from around the world on the public LAM mailing lists. Subscribers post

all manner of issues about LAM, including:

• Questions about MPI.

• Questions about LAM-specific behavior of MPI functionality.

• Questions about the internals of LAM’s implementation.

• Suggestions to other users.

• Requests for features or support for new environments, platforms, and compilers.

• Bug reports.
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• Fixes and additions to LAM.

• Challenges and requests for justification.

The last item is perhaps among the most relevant for the research aspects of the LAM

project: continual peer review of LAM’s methodology and source code. It is not uncom-

mon for a subscriber to ask why a specific functionality was implemented in a given way,

or how might a particular new feature be implemented. This forces the LAM group to

justify its approach in a manner that satisfies the community.

The LAM developers also use the public lists to announce new versions, discuss new

directions, and solicit feedback from real-world users. The availability of the LAM de-

velopers and open access to its source code provide the capability for research interaction

that used to only be available at physical conferences and meetings. For example, it is not

uncommon for users to post questions to the list which lead to lengthy off-list discussions

about specific research topics. The two-way interaction ensures that the LAM project

stays relevant to users, remains current with leading-edge research, and communicates

the project’s current status to the community.

For system administrators and end users, stable source code and binary packages are

available from LAM’s public web site (http://www.lam-mpi.org/ ) under a li-

cense similar to the well-known BSD license [96]. This allows LAM/MPI to be included

in all major Linux and open source BSD distributions that include parallel and/or clus-

tering [103, 121, 112] software (see Table2.1), and also allows independent software

vendors to resell LAM/MPI as part of their commercial packages. LAM’s web site and

downloadable software are mirrored at nine sites around the world, spanning Asia, North

America, and Europe.
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TABLE 2.1

Partial list of Linux distributions, open source BSD distributions, and clustering projects

that are known to include LAM/MPI

Package type Name

Linux distribution Arch
Yellow Dog / Black Lab
cAos
Debian
Gentoo
MSC.Linux
Red Hat / Fedora
Slackware
SuSE

BSD distribution FreeBSD
NetBSD
OpenBSD

Clustering package Mandrake CLIC
OSCAR [60] (and derivatives)
ROCKS [101]
Warewulf [82]
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2.2.3 Software as a Research Artifact

“Success” in academic fields is typically defined by how many peer-reviewed journal

and conference publications an individual has. This is certainly a fine measure of achieve-

ment, but it overlooks software as a significant artifact of research. Indeed, publishing

peer-reviewed software can require just as much work – if not more – than authoring a

textual publication.

In conjunction with a textual publication, released software offers significantly more

validation of research than would otherwise be possible. Indeed, the software used to

generate the results in a textual publication are an integral part of the scientific method

and the process of discovery. This software should therefore also be peer-reviewed for

applicability, technique, and correctness. This is unfortunately not always possible; for

example, intellectual property issues may not permit open distribution of certain source

or binary code used in research.

A committee of the National Research Council published a report in 1994 specifically

addressing the fact that software can be a significant artifact of research [97]. The report

recommends that tenure-track faculty who specialize in experimental computer science

and engineering should be given due consideration for research artifacts other than tra-

ditional publications, such as significant software artifacts. The following is an excerpt

from the report:

Universities should recognize that an experimentalist being considered for
tenure or promotion may have ... nonstandard forms of dissemination (e.g.,
distribution of software artifacts) ... A judgment should be based on the pres-
ence of absence of the following:

• One or more computational impact-producing artifacts completed;

• Research results disseminated to and used by the community

• ...

In the spirit of “software is just as important and publications,” this dissertation is ac-

companied by a full software implementation of the concepts and ideas contained herein.
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Version 7.1 of the LAM implementation of MPI is expected be released in May 2004.

2.2.4 Software Engineering

High-quality software clearly must have a solid theoretical basis. Years of research

have produced abstractions, models, and algorithms for all manner of different issues in

computer science. However, the reduction of those ideas to software is, in itself, research.

For example: theory can be reduced to software in many different ways; which is the

best one? How is the implemented software certified against the original theory? Few

academic software projects manage to project remain coherent and stable yet continue to

grow and be a viable platform for new research. Even fewer manage to produce publicly-

available software that can be used to replicate results. As such, both the reduction of

theory to practice and the management of large software projects are open research ques-

tions in themselves.

LAM has confronted these issues and become not only a successful academic research

project, but also a community-recognized leader in open source MPI implementations.

Indeed, LAM/MPI is included in all major Linux and BSD distributions that include

clustering support, is resold by ISVs with parallel products, and is downloaded from its

main web site an average of 140 times a day. Two major reasons that LAM is so successful

are: 1) great pains are taken to ensure that the software “just works” on as wide a variety of

POSIX platforms as possible, and b) those wishing to conduct parallel computing research

can reproduce published LAM results. Both of these reasons have wide-reaching effects

in the day-to-day research put into the project as well as the management of the LAM

code bas.

Configuration and Installation

The “it just works” philosophy and the reproducibility requirement demand that LAM

be able to run on a wide variety of POSIX platforms. However, every POSIX platform
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TABLE 2.2

LAM/MPI’s formally supported platforms

Linux 2.4.x OpenBSD 3.2, 3.3
Solaris 7, 8, 9 AIX 5.1
IRIX 6.5 OS X 10.2, 10.3

is slightly different – the LAM source code must be customized for each particular en-

vironment in which it will be compiled. As such, LAM includes a configuration process

that has been extensively tested on many modern POSIX platforms. Table2.2 lists the

platforms that LAM is formally tested on.

LAM uses a GNU Autoconf-generated “configure ” script for this purpose that is

comprised of almost 9,400 lines of M4 preprocessor directives and shell script “source

code.” Autoconf parses the shell script and M4 preprocessor code to generate the final

configure script which is run by end-users. The resultingconfigure script cus-

tomizes the LAM source code for a particular platform. It does this by:

• Searching for C, C++, and Fortran compilers.

• Searching for various characteristics about each compiler, such as datatype sizes
and alignments.

• Searching for SSI components to configure, compile, and install.

• Testing for specific characteristics of the underlying operating system.

Note that for every test or action in theconfigure script, there is a corresponding

reaction in the LAM source code. For example, if compiling on certain versions of AIX,

specific kernel functions must be used for governing socket behavior (different than for

all other POSIX platforms). As another example, LAM includes four entirely different

implementations of file descriptor passing; which one a given system uses is determined

by theconfigure script.
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TABLE 2.3

Line counts for various types of files in the LAM/MPI code base

Line count File type

9,391 M4, shell script, Perl
10,424 Automake source

211,832 C source code
10,487 C++ source code
33,005 C header files

10,963 LATEX user-level documentation
11,195 Manual pages

297,297 Total

After LAM has been configured, it must be built and installed. LAM uses the GNU

Automake tool to generate over 200 Makefiles that are used to build itself. A single,

top-level “make all install ” command will build and install all of LAM and its

components.

Coding Practices

LAM is a large software project, consisting of almost 200 directories and nearly 2,000

source code files; total line counts are listed in Table2.3. While no complex software

is ever completely free of bugs, the LAM development team follows standardized cod-

ing practices derived from the GNU Coding Standards [36] to both create commonality

throughout the code base as well as enforce defensive coding practices. For example, all

code in LAM must meet the following requirements:

• Code must compile without warnings on all compilers on all platforms with com-
piler “pickyness” options enabled. LAM’sconfigure script detects many com-
piler types automatically, and when being built by developers, automatically en-
ables the correct compiler options to enable “picky” behavior. For example, when
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compiling with the GNU compilers, the following flags are used: “-Wall -Wun-
def -Wno-long-long -Wno-long-double ”.

• Code must function properly in 32 and 64 bit environments. LAM is regularly
tested in both environments with various memory-checking debuggers and stan-
dardized test suites aimed at identifying data size problems.

• Resources must not be leaked. For example, all code must be certified as free of
memory leaks and no detectable buffer overflows by memory-checking tools such
as the Linux Valgrind package and the Solaris Fortebcheck debugger before it
can be included in LAM.

All three conditions are regularly tested, both manually by developers and automat-

ically by test scripts. Every night, a “snapshot” distribution is created from the latest

revisions in the LAM source code repository. This snapshot is subjected to a full battery

of compilation and run-time regression tests (some of which are described in later chap-

ters). The results of this testing are e-mailed to the LAM development team. This quickly

identifies a wide range of coding errors, such as failing to compile, breaking MPI func-

tionality, etc. Developers quickly learn to thoroughly test their code before committing it

to the repository for fear of having their bugs broadcast to the group the next morning.

Other development practices include:

• The LAM development team physically meets every week to discuss the status of all
current projects. Face-to-face whiteboard discussions have proven invaluable as a
team-building concept; no amount of e-mail or instant messenger traffic can replace
the high-bandwidth information exchange that can occur in person. Additionally,
the weekly meetings allow the group to stay focused on common goals and ensure
that all projects are moving in the same general development direction. Even though
each developer is typically only working on a small portion of LAM, everyone has
generalized knowledge of the entire project.

• Source code is tracked through the Subversion version control system. Code changes,
additions, deletions, branches and releases – all are coordinated through through
the source code repository. History of code is maintained, and all commits to the
repository are accompanied by a meaningful log message. The ability to look at the
genealogy of code, particularly when trying to understand a specific segment, can
be extraordinarily useful in the comprehension process.

• Commits to the LAM code repository are e-mailed to all developers. This not
only allows an informal peer-review process, it actually encourages it. In practice,
developers actuallydo read other developers’ code, and when appropriate, make
comments, point out mistakes, etc. Peer-reviewed code commits – even though an
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information mechanism – has helped LAM’s overall code quality. Additionally,
this mechanism keeps all developers generally informed of what changes are being
made to the code.

• All bugs and issues are logged to a bug tracking system. Bugs and issues used to
be tracked in people’s memories, or when fortunate, in text files. Using a formal
bug tracker has proven to be invaluable: long-standing bugs are tracked, new ideas
are not forgotten, and bugs are assigned to specific developers. Issue tracking even
allows the breakdown of complex new tasks (not necessarily bugs) into small pieces
that can be individually tracked. The entire process is available to all developers;
every developer can query the status of a bug to see its current status.

• New functionality in LAM must be accompanied with corresponding regressions
tests proving that it is working properly. These tests are added to the nightly auto-
mated testing harness; any future code changes will be checked against these tests.
Hence, the nightly builds use an ever-increasing set of tests to provide correctness
checks on all code in the LAM repository.

• Before releasing, a series of “release candidate” tarballs are created and tested thor-
oughly on every supported platform. All of the above criteria are re-certified (no
compiler warnings, memory-debugger clean, 32 and 64 bit clean, etc.) on every
platform before it can be released.

These concepts are not revolutionary in themselves; indeed, they are common in com-

mercial circles. LAM simply uses these “best practices” and management tools together

in an attempt to keep a coherent and stable code base. This is absolutely critical for both

the “it just works” philosophy and the reproducibility requirement. These practices con-

tributed to the successful release of the first version of LAM’s component architecture

(version 7.0) in the summer of 2003, supporting all the platforms listed in Table2.2 and

all the compilers listed in Table2.4. Version 7.0 represented a major overhaul of the LAM

code base (orienting it to a component system architecture). Using these coding practices,

only minor bugs have been identified (and subsequently fixed) since the original 7.0 re-

lease. Most bugs were on platforms or compilers that the LAM team did not have access

to, and were therefore not originally tested.

22



TABLE 2.4

LAM/MPI’s formally supported compilers

GNU 2.9x, 3.x Absoft Fortran 7.5
Portland 5.x Intel 5.x, 6.x, 7.x, 8.x
Solaris Forte 5, 6 IBM xlc 6.0
OS X xlc 6.0, xlf 8.1 IRIX MIPSPro 7.4

2.3 The Evolution of LAM/MPI

LAM/MPI is a large software package, consisting of hundreds of directories and thou-

sands of files. Research, development, and maintenance of this code base – even for the

LAM/MPI developers – is a complex task. Even though the LAM/MPI source code is

fairly well structured (in terms of file and directory organization), contains many well-

abstracted and logically separated functional code designs, and includes several flexible

internal APIs, new LAM/MPI developers are inevitably overwhelmed when learning to

work in the code base. Third party developers and researchers attempting to extend the

LAM/MPI code base – or even tounderstandthe code base – are frequently stymied

because of the intrinsic complexities of such a large software system. Hence, not only

does it take a long time to train new LAM developers, significant external contributions

to LAM/MPI are fairly rare; most contributions tend to be small, specific patches.

For these reasons, a natural evolutionary step for LAM was to transform itself into a

modular, component-based architecture. This dissertation presents the component system

architecture of LAM/MPI: the System Services Interface (SSI).
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2.3.1 Component Programming

Component programming is not a new concept; it is widely used in industry and is

gaining popularity in academic circles. As its name implies, the central concepts in com-

ponent programming are about composing units (typically at run-time) together to effect

functioning systems [132]. A componentis defined as “an executable unit of indepen-

dent production, acquisition, and deployment that can be composed into a functioning

system.” It is typically comprised of classes, procedures, and/or functions that export a

well-defined interface. Amoduleis a component paired with resources. A module’s in-

terface is invoked by a higher-levelcomponent framework. The framework is responsible

for discovering, marshaling, and utilizing individual modules. The framework sets poli-

cies about how the component interfaces are used and is typically focused on a specific

system, architecture, or task.

It is common for an application to have multiple component frameworks, each per-

forming some specific function. It is therefore necessary to have a “component framework

framework” for managing them. This “meta framework” is called acomponent system.

Similar to a component framework itself, the system defines fixed policies about usage

and interaction between its frameworks.

Components are frequently confused with objects. It should therefore be noted that

component programming is both distinct from and complementary to the concepts of

object-oriented programming and software layering. Component programming canuse

object-oriented code and software layering, but does not necessarily imply either of them.

For example, components can range from purely functional implementations with a sin-

gle software layer to fully object-oriented implementations with deeply nested, layered

software abstractions.

One of the main philosophical differences between components and objects is that
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components have noexternallyobservable state.2 It follows that modules therefore do

not have a unique identity; they cannot be distinguished from copies of themselves. Con-

versely, objects are units of instantiation; by definition, multiple instances of the same

class are distinguishable from each other.

2.3.2 The System Services Interface (SSI)

The LAM SSI is a component system that provides run-time services to effect an MPI

implementation at run-time. This architecture is divided into three distinct tiers: the com-

ponent system itself, four component frameworks, and component modules in each of

the frameworks. SSI, the component system, manages the four component frameworks.

It provides the overall architecture and interaction between the component frameworks,

including the ability to accept run-time parameters from higher-level abstractions (e.g.,

mpirun ) and pass them down through the component frameworks to individual mod-

ules. Each component framework (sometimes referred to ascomponent types), in turn,

manages zero or more modules. A framework will discover, load, utilize, and unload

modules [45, 85, 46]. Modules adhere to the interface prescribed by the component type

that they belong to, and provide requested services to higher-level tiers and other parts of

LAM/MPI. Figure 2.2shows this relationship graphically.

A module is defined as a “deployable unit” meaning that each module is a self-

contained set of source code. It has its own directory structure and can configure, build,

and install itself. The SSI frameworks will automatically detect each component and in-

voke the corresponding hooks during LAM’s overall configuration, building, installation,

and run-time phases.

This system architecture naturally fosters a “plug-n-play” approach to the services

that LAM and MPI utilize. Modules can be added to an existing LAM installation where

2Although modules may haveinternal state, this state may not affect external behavior between subse-
quent invocations.
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Figure 2.2. LAM/MPI is a component system architecture that manages multiple different
component frameworks (or “types”); zero or more modules may be available from a given
type. This figure depicts a component type withN modules, and showsmpirun passing
in run-time parameters to moduleB.

they will be automatically integrated into the run-time environment of MPI processes. At

run-time, LAM will compose a system based on the available modules and the run-time

environment that it discovers. The result will be an MPI implementation uniquely suited

to the environment in which is it running.

2.4 Related Work

2.4.1 Component Programming

Component systems are used in a wide variety of environments. Common systems in-

clude: the Object Management Group’s (OMG) Common Object Request Broker Archi-

tecture (CORBA) specifications [95, 94], Sun’s Java and its five related component fam-

ilies (JavaBeans, servlets, Enterprise JavaBeans, and J2EE application components), and

Microsoft’s component technologies (COM [148] and COM+ [26], OLE/ActiveX [25],

.NET [106]). Each of these technologies have varying degrees of industry traction, but

taken together, represent a how much of the world’s software is written. The concepts
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from these component architectures inspired some of the designs in this work. None

of these architectures were directly used because they were too heavyweight, had com-

mercial restrictions, or were generalized solutions mainly intended for web-based and

client/server applications.

In the academic/research community, component usage is becoming popular. For ex-

ample, the Common Component Architecture (CCA) Forum is defining specifications

for high-performance component frameworks [2]. The Heterogeneous Adaptable Recon-

figurable Networks System (HARNESS) project [11] extensively used the concepts of

components and plug-ins to build distributed virtual machines; components are loaded

into daemons at run-time to effect specific types of run-time environments. Although

many other academic projects – too numerous to mention here – use the concepts of com-

ponents and modules, the CCA and HARNESS are good representative examples. Both

the CCA and HARNESS are closer in scope to what is required than the commercial

component technologies listed above, but they are still too general of a solution (e.g., in

HARNESS, an entire MPI implementation is a module); the SSI is specifically targeted

at the services required for an MPI implementation – and nothing else – thereby allowing

it to use abstractions specifically created for MPI-related issues and functionality.

Other, component-related technologies are also widely used. The Netscape web browser

popularized the concept of a “plug-in module,” a concept that still exists in all modern web

browsers. Users can “plug-in” new software components to provide added functionality

to the browser. Indeed, the “plug-in” concept is used in many kinds of architectures; op-

erating systems such as Solaris, Linux, and the BSD flavors all use kernel modules for

extending the services that are offered to applications.
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2.4.2 Run-Time Environment Startup

Parallel applications are required to run in a wide variety of run-time environments.

Some of these include: the Portable Batch Scheduling (PBS) system [98, 102, 143], the

Load Sharing Facility (LSF) HPC batch system [105], the Simple Linux Utility for Re-

source Management (SLURM) [70] system, the Sun Grid Engine (SGE) system [130,

131], the Quadrics Resource Management System (RMS) [107, 108], the Beowulf Dis-

tributed Process Space (BProc) [64, 65], the Computational Plant (CPlant) [113] Portals

project [18], the IBM Parallel Operating Environment (POE) [119], traditionalrsh /ssh -

oriented clusters, and Grid-based environments.

MPICH provides sophisticated scripting inmpirun through a combination of config-

uration-time and run-time selection to decide how to launch a parallel job. The MPICH

distribution includes support for several run-time environments. MPI implementations

derived from MPICH typically add anothermpirun that uses a new native run-time

environment launch mechanism, if necessary. Although modular in nature, this is not

component programming. The scripts are interdependent and cannot simply be “plugged

in” at run-time without modifications to the central script libraries.

Other MPI implementations (including the prior generation of LAM/MPI) usually

only supported one type of run-time environment, typically eitherrsh /ssh or whatever

job-launching service was available in the implementation’s native environment. Native

execution in additional environments was typically only provided by vendors to support

their products, or system administrators to support their specialized systems.

The closest comparison to aboot component framework is grid-related technologies.

But grid solutions are much more wide-reaching than what theboot framework seeks to

accomplish; connecting widely disparate systems with different users and heterogeneous

resources is far beyond the scope ofboot. Although complex in itself, theboot is only

intended to start LAM executables in relatively heterogeneous systems.
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2.4.3 MPI Point-to-Point Message Passing

Almost all modern MPI implementations have some form of modular system for dif-

ferent implementations of point-to-point message passing. As the reference MPI imple-

mentation that was created alongside the MPI-1 standard, MPICH built on decades of

message passing research by creating the Abstract Device Interface (ADI) [55] enable

support for different underlying network interconnects. A formal interface was speci-

fied; the decision of which network to use was made at configuration / compilation time.

Over the years, the ADI has grown and changed (MPICH2 is using ADI-3 [56]); many

implementations have been written for different kinds of networks.

Most other MPI implementation have followed this example. Prior generations of

LAM had the Request Progression Interface (RPI), which included similar configure /

compile-time selection of network protocols, but also included command line options

that allowed limited run-time selection capabilities.

In version 4.0 of the Sun HPC Cluster Tools, Sun MPI included support for Loadable

Protocol Modules (LPM). This is quite similar to therpi component framework, but tai-

lored for the Sun implementation of MPI. Sun offers three LPMs with their distribution:

shared memory, TCP, and remote shared memory. Myricom wrote an LPM for their pro-

prietary network (Myrinet) and distributes it from their web site. Therpi framework built

on and expanded many of the ideas in Sun MPI.

2.4.4 MPI Collective Message Passing

There is a wealth of literature available on parallel collective algorithms. The diver-

sity in research has shown that there is no generalized set of algorithms that apply to all

situations. The performance of a collective algorithm depends on multiple factors, in-

cluding the communication patterns of the application, the underlying network topology,

and the amount of data being transferred. Indeed, since MPI has become the predominant
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message passing API, renewed interest and research has been cultivated in the collective

algorithms used in MPI implementations.

Many modern MPI implementations use function pointers (sometimes cached on a

per-communicator basis), such that a developer familiar with the implementation can eas-

ily change which algorithms are used. MPI applications, therefore, do not have a portable

mechanism to change these algorithms at run-time. There do not appear to be any existing

MPI implementations that use a component-based approach to collective algorithms.

2.4.5 Parallel Checkpoint/Restart

Checkpoint/restart for sequential programs has been extensively studied. Libckpt [104]

is an open source library for transparent checkpointing of Unix processes. Condor [86,

87, 88, 89, 134] is another system that provides checkpointing services for single process

jobs on a number of Unix platforms. The CRAK (Checkpoint/Restart As a Kernel mod-

ule) project [151, 152] provides a kernel implementation of checkpoint/restart for Linux.

CRAK also supports migration of networked processes by adopting a novel approach to

socket migration. BLCR (Berkeley Lab’s Checkpoint/Restart) [33] is a kernel implemen-

tation of checkpoint/restart for multi-threaded applications on Linux [20]. Libtckpt [31]

(different than Libckpt) is a user-level checkpoint/restart library that can also checkpoint

POSIX threads applications.

In the context of parallel programs, there are vendor implementations of checkpoint/-

restart for MPI applications running on some commercial parallel computers [27, 10].

Some implementations are also available for checkpointing MPI applications running on

commodity hardware. CoCheck [128, 129] is one such tool for PVM and MPI applica-

tions. It is built into a native MPI library called tuMPI and layered on top of a portable

single-process checkpointing mechanism [49, 86]. One drawback to CoCheck is that a

checkpoint request cannot be processed when a send operation is in progress. Conse-
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quently, if a matching receive has not been posted by the peer, there is no finite bound

on the time taken for the checkpoint request to complete. Also, checkpointing could

change the semantics of MPI’s synchronous sends in CoCheck: an anticipated receive

could cause the return of the send instead of the actual receive by the application.

A checkpoint/restart implementation for MPI at NCCU Taiwan uses a combination

of coordinated and uncoordinated strategies for checkpointing MPI applications [84]. It

is built on top of the NCCU MPI implementation [24], and uses Libckpt as the back-

end checkpointer. Checkpointing of processes running on the same node is coordinated

by a local daemon process, while processes on different nodes are checkpointed in an

uncoordinated manner using message logging.

Other research-quality checkpointing systems have also been implemented: [1, 15,

110, 111].

A limitation of the existing systems for checkpointing MPI applications on com-

modity clusters is that they are implemented using MPI libraries that primarily serve

as research platforms and are not widely used. Another drawback of some of these

checkpoint/restart systems is that they are tightly coupled to a specific single-process

checkpointer. Since single-process checkpointers usually support a limited number of

platforms, this limits the range of systems on which MPI applications can be checkpointed

to those that are supported by the underlying checkpointer.

2.4.6 Fault Tolerance

Checkpoint/restart is only one area of the larger field of fault tolerance. Although not

addressed in this work, other areas of fault tolerance have been researched extensively.

One of the problems in modern cluster-based systems is the loosely-coupled nature of the

environment. Simply detecting that an error has occurred and then bringing all remain-

ing processes into consensus that both a) an error has occurred, and b) where the error

31



occurred is a complex problem. Research has shown that in a truly asynchronous system,

this is impossible [40, 144, 28]. Therefore, to solve this problem in a practical manner,

some degree of synchronization must be introduced into the system [22, 29, 62].

Multiple approaches have been proposed for MPI implementations [54], although

all are designed with the assumption that the MPI program itself is correct and that

failure originated from outside of the application (e.g., hardware or network failures).

FT/MPI [10] takes the approach of replicating software and hardware such that if any one

element fails, a counterpart can take over and continue the application. FT-MPI [37, 38]

(distinct from FT/MPI) focuses on detecting failures within existing MPI semantics (us-

ing distributed, semi-synchronous methods) and passing control back to the application

for handling. LA-MPI [3, 50] implements transparent data integrity and device failover;

if the interconnection network transmits incorrect data or fails during a run, LA-MPI will

automatically re-transmit or switch to a different network.

2.5 Experimental Setup

The results reported in this document were obtained from a variety of sources, each

relevant to the particular experiment being performed. As such, the hardware used for

each experiment is described in each results section throughout the document.

The software used for experiments was consisted of several common packages. The

Network Protocol Independent Performance Evaluator v3.6 (NetPIPE) [118], the NAS

Parallel Benchmarks v2.4 [4, 5, 6], and the Pallas MPI Benchmarks v2.2.1 [100] were

used for performance and correctness testing. NetPIPE is a program that performs ping-

pong tests, using messages of increasing size between two processes across a network

in order to measure communication performance. The NAS Parallel Benchmarks is a

suite of application kernels that test several different computational and communication

patterns in parallel environments. The Pallas MPI Benchmarks are a collection of bench-
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marking routines for point-to-point and collective algorithm performance distributed from

Intel GmbH, Software and Solutions Group.

The operating system, hardware, compiler, and compiler flags used for each test is

described where the results are given in each chapter.

Two versions of LAM/MPI were used for testing: LAM/MPI v6.5.9 (the previous

generation of LAM/MPI, reflecting a monolithic architecture) and a development version

of the LAM/MPI code base (what will soon become LAM/MPI v7.1). These two versions

are referred to as “version 6” and “version 7” throughout the text, respectively. The

user account used for testing used thetcsh shell with a.tcshrc that contained one

statement setting$PATH. SSH keys were setup for password-less / passphrase-less login

for ease of testing.
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CHAPTER 3

THE SYSTEM SERVICES INTERFACE

To create the LAM component system architecture, existing abstractions within the

LAM/MPI code base were identified and re-factored to formalize their concepts and inter-

faces. This led to the natural creation of three component frameworks: run-time environ-

ment startup, MPI point-to-point communications, and MPI collective communications.

Each of these sub-systems represented a major functionality group and had at least some

level of abstraction within the LAM and MPI layers; the challenge was to convert their

form without changing their function or overall performance.

At the same time, parallel checkpoint/restart functionality was introduced to LAM

in a different research effort. This new functionality was originally added in a functional

and deeply-integrated manner. But as the benefits and results of the component system ar-

chitecture became clear, checkpoint/restart functionality was abstracted into a component

framework with a corresponding component interface.

LAM therefore ended up with five component-based frameworks: the SSI meta frame-

work, run-time environment startup (named “boot”), MPI point-to-point communication

(called “rpi,” an acronym for MPI Request Progression Interface), MPI collective com-

munication (abbreviated “coll”), and parallel application checkpoint/restart (abbreviated

“cr”). This chapter describes the SSI meta framework and how it manages the other four

frameworks. AppendixA is an in-depth technical reference for the services provided by

the SSI.
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Figure 3.1. SSI is the top tier that binds together the individual component frameworks,
and indirectly the modules that they contain.

Acknowledgements:All design and implementation of the SSI meta framework dis-

cussed in this chapter is new work and was performed by me.

3.1 Design

The SSI is the meta framework that ties together the individual component frame-

works that comprise LAM/MPI. It was designed to represent the common functionality

aspects of the component frameworks as well as provide communication and interaction

between them. Policies laid out by the SSI govern much of how each of the component

frameworks operate. Hence, although each framework is distinct, SSI manages them and,

indirectly, the modules that they contain. See Figure3.1.

The SSI was created with the following design goals:

• Allow multiple frameworks to co-exist within individual LAM and MPI processes.

• Delay the decisions about which modules to use until run-time. Criteria for such
decisions are framework-specific.

• Continue the strict abstraction barrier between the LAM and MPI layers as origi-
nally designed in prior versions of LAM.

• Provide common services to component frameworks for acting on modules.

• Allow modules to be statically linked into executables or dynamically loaded into
processes at run-time.
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The secondary design goals of easing maintenance, creating original configurations

by composing software units in unique ways, and enabling third parties to create modules

are not explicitly listed because they are inherent to component-based systems. Each of

these goals is discussed below.

3.1.1 Multiple Frameworks

Since LAM uses four component frameworks, a higher-level architecture system is

necessary to have them act as a single, cohesive system. Without this, each component

framework would implement much of the same infrastructure as its peers, and all interac-

tion between them would be awkward at best. Thus, the SSI was created specifically to

allow multiple frameworks that could interact with each other in a single process.

3.1.2 Run-Time Module Selection

Previous monolithic versions of LAM/MPI had only one replaceable sub-system: the

underlying transport protocols for MPI point-to-point communication. Implementations

existed for TCP, UDP, and shared memory. Although modular in nature, the decision of

which transport implementation to use could only be made when LAM was configured

and compiled. Additionally, each transport implementation offered a small number of

adjustable parameters for changing run-time behavior. These, also, could only be changed

when LAM was configured and compiled.

While this mechanism was effective, it forced users who wanted to experiment with

multiple network types to not only have multiple installations of LAM/MPI (one for each

network transport / parameter settings pair), but also to compile their MPI application

with each LAM installation. This typically turned into a logistical nightmare. Separate

directory trees needed to be maintained for each LAM installation; users typically needed

to modify thePATHin their shell startup files (e.g.,.bashrc , .profile , .cshrc ,

etc.) depending on which LAM installation they wanted to use. Further, users needed to
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ensure that their MPI application was compiled and run with the same LAM installation.

ISVs who sell MPI-based products were also significantly affected. ISVs are in the

unfortunate position of needing to support every MPI implementation that their customers

use. This means potentially adapting their software for each MPI implementation, testing

on each platform/MPI implementation combination, and shipping different executables

to each customer depending on their back-end MPI implementation. Although this can

actually be cost-prohibitive, it is the state of today’s industry simply because of the nature

of MPI implementations that are currently available.

With a component-based approach – allowing multiple MPI point-to-point transport

modules to exist in a single application and converting all the adjustable parameters to

be sensitive to run-time values – only one installation of LAM is necessary. Similarly,

the user’s application only needs to be compiled once. Configuration values (to include

choosing which transport module to use) can be varied by composing different point-to-

point transport modules and passing different configuration parameters at run-time. This

not only greatly simplifies the logistics issues for the end user (and the system admin-

istrator supporting the end user), it also enables MPI-based ISVs to dramatically reduce

the complexity of their binary distributions – one binary distribution can now function

in a wide variety of LAM/MPI environments.1 Finally, this component-based approach

makes testing and maintenance significantly easier for the LAM developers.

The benefits of run-time selectable/parameterized modules also apply to the other

three component types (run-time environment startup, MPI collective communication,

and parallel checkpoint/restart). This represents a giant leap forward in the functionality

delivered to system administrators, end users, and LAM developers.

1Although ISVs would strongly prefer if they could distribute one binary that will work with any MPI
implementation on a given platform, even a component-based approach is not enough to create such uni-
versal transparency. Component-based solutions are a step in the right direction, but a universal solution
will require consensus between MPI implementations, which is as much a social problem as it is a technical
problem.
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Note that the selection of which module(s) are used at run-time is a framework-level

decision. The user may indicate preferences regarding which module(s) are used, but

each component framework makes the final decision. For example, if a user indicates

they they want to use a Myrinet-based module for point-to-point communication but no

Myrinet hardware is found to be available at run-time, therpi framework may either print

a suitable error message or choose another module.

3.1.3 LAM and MPI Component Types

As shown in Figure2.1 (page13), LAM is divided into two layers: the LAM run-

time environment and the MPI layer. Previous versions of LAM have maintained a strict

abstraction separation between the two layers, thereby preserving logical separations of

services and data flow. Although MPI is now the “main product” of LAM, and it is highly

unlikely that anyone outside the LAM development team will write LAM-only programs,

it was decided that the separation of the LAM and MPI abstractions were important for

design and maintenance reasons. The new component system architecture therefore also

needed to support the abstraction separation between LAM and MPI.

Hence, the majority of the SSI actually resides in the LAM layer, allowing both the

LAM and MPI layers to use it. The component frameworks themselves, however, are split

across the two layers. Theboot framework resides in the LAM layer since it deals with

starting LAM processes. The MPI-specific components (rpi andcoll) logically reside in

the MPI layer. The checkpoint/restart component is actually split in two parts –crlam

andcrmpi – which, as their names imply, reside in the LAM and MPI layers, respectively.

This is because checkpoint/restart affects both layers and different actions need to occur

in each.
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3.1.4 Module Services

There are common actions which need to be invoked by the component frameworks

for every module with only minor variations. Parameterized versions of these actions are

therefore located in the SSI for global access. These services include:

• Configuration and compilation of the module

• Installation of the module (whether static or dynamic)

• Versioning of both the interface used by the module and the module itself

• Loading and unloading of the module at run-time (whether static or dynamic)

• Registering, accepting, and passing module parameters

These services are discussed in more detail in Section3.2.

3.1.5 Static and Dynamic Modules

For convenience, modules can be statically linked into the LAM and MPI libraries.

Existing configure/build systems, such as the GNU Autoconf, Automake, and Libtool

suites, enable this functionality. All modules that are distributed with LAM/MPI currently

default to static building.

In order to encourage third-party module development, separate configuration, com-

pilation, deployment, and installation also needs to be possible. Specifically, a module

needs to be able to be built in its own source tree (outside of the LAM source tree) and

linked into a shared library that LAM can find and open at run-time. This gives third

parties the capability of distributing binary-only modules (which is important to ISVs) as

well as installing modules into an existing LAM installation. Modules therefore do not

need to be distributed with the main LAM/MPI software package; any third party can

distribute their module (in source or binary form) and simply it install where LAM ex-

pects to find dynamically-loadable modules. This enables the developers to focus on their

modules instead of planning how to integrate them into an existing LAM installation, or,

worse, forcing the use of multiple LAM installations.
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3.2 Implemented Services

The SSI provides common services to all modules, regardless of which component

framework uses them.

3.2.1 Configuration and Compilation

By definition, a module is a deployable unit and therefore needs to be configured and

compiled. All the modules included in the LAM/MPI distribution use the GNU tools

Autoconf, Automake, and Libtool, and therefore have their own “configure ” scripts

(used to find the compiler, run tests to determine operating system characteristics, etc.)

and “make” hierarchies.

The SSI provides templates and additional “helper” macros forconfigure scripts

and building procedures. In most cases, the SSI significantly reduces the workload for

module authors by automatically providing a templatedconfigure script suitable for

most module configuration and setup.

3.2.2 Installation

Once a module has been compiled, it must be installed. For static modules, this means

placing the output library in a well-known location in the build tree. This enables the

LAM build process to find and incorporate the module into the LAM or MPI library

(whichever is appropriate for the module’s component type). The output library does not

need to be installed anywhere; its entire contents will be contained in the LAM or MPI

library.

For dynamic modules, installation essentially entails copying the shared library con-

taining the component to the location where LAM expects to find run-time loadable mod-

ules. The SSI framework in LAM and MPI executables will then be able to find and load

the module at run-time.
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3.2.3 Versioning

Each module contains three pieces of versioning information: the version of the SSI

that it conforms to, the name and version of the component framework that it adheres to,

and its own name and version number. The SSI uses this information for two purposes.

First, it checks the SSI version, component framework name, and component framework

version to see how it should interact with the module. This triple corresponds to a specific

interface that must be used to communicate with the module.

Second, the SSI ensures that the aggregate set of modules used in a given application

(serial or parallel) agree both in name and in version. The SSI defines two identically

named modules to have compatible versions if the major and minor version numbers

are the same (the release version number is for information only; it is ignored during

version number comparisons). For example, twofoo modules having versions v1.2.3 and

v4.5.6 would not be considered compatible, but versions v1.2.3 and v1.2.8 are considered

compatible.

3.2.4 Loading / Unloading

When a LAM or MPI process starts, relevant component frameworks will load their

respective modules. This is always a two phase operation: 1) finding statically linked

modules already loaded in the process space, and 2) finding shared library modules that

can be dynamically loaded into the process space.

Static modules are found by traversing a global array of module references (indexed

by component framework) that was constructing when LAM was configured and com-

piled. Dynamic modules are found by looking in a list of directories and eagerly loading

all modules of the desired component type.

As each module is found, it is initialized by invoking the module’s “open” function.

This function allows the module to perform basic queries of the run-time environment
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and determine if it can be used in the process. If the module determines that the run-time

environment is not suitable, it will return a failure status from the open function causing

the framework to close and unload it. Otherwise, the module will return a success status

and the framework adds it to the list ofavailablemodules.

Thescopeof a module is the set of conditions in which it can be used. For example,

some component frameworks will only select one module for the life of the process, while

other frameworks may select a different module for every MPI communicator. Both the

scope and the selection algorithm used are defined by each component framework. These

are therefore discussed in later chapters.

3.2.5 Parameter Passing

One of the major reasons for using components in LAM/MPI is the idea of customiz-

ing the MPI implementation at run-time to the particular environment in which it is op-

erating. A companion concept to this idea is the ability to send arbitrary parameters

from higher level abstractions (such asmpirun ) to modules in LAM and MPI processes.

LAM allows such parameters to be passed on the command line or through environment

variables.

To this end, the SSI provides a central parameter service where modules can register

the parameters that they want to receive (indexed by name). Modules can then request

values for the parameters that they have registered. The SSI uses a hierarchical search to

find parameter values: the command line is searched first, followed by the environment,

and finally a default value is used if no other value is found.

A centralized service for module parameters has several benefits. First, only one

generic command line option is necessary for passing all parameters. For example:� �
shell$mpirun−ssi parametername value−np 4 mympi program� �

Here,mpirun is launching four instances of the MPI executablemy mpi program

42



and passing each of them the module parameter named “parameter name” with a

value of “value ”. Similarly, a common form for environment variables can be used to

pass module parameters:� �
shell$LAM MPI SSI parametername=value

shell$export LAM MPI SSI parametername

shell$mpirun−np 4 mympi program� �
This example is the same as the previous; four instances ofmy mpi program are

launched and each are passed the “parameter name” module parameter. Only the

mechanism for specifying the parameter is different.

The centralized service handles the bookkeeping of parsing, analysis, and parameter

propagation to all parallel processes. This allows construction of master lists (indexed by

component type) of all module parameters and default values, enabling utilities such as

the laminfo command to display them to the user.

3.2.6 Thelaminfo Command

Thelaminfo command is one of the tools included in the LAM/MPI software pack-

age.laminfo provides diagnostic information about all static and dynamic modules that

it is able to find. For example,laminfo can report the versioning data from each mod-

ule, the parameters that the module accepts, and the parameters’ corresponding default

values. Such diagnostic information can be valuable to end users, system administrators,

third party developers, and the LAM developers. Figure3.2 shows sample output from

the laminfo command.

3.2.7 Common Selection Schemes

Although the selection algorithm of a given component type is specific to its compo-

nent framework, most use a similar algorithm.
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� �
shell$ laminfo−version rpi full

SSI rpi: crtcp (SSI v1.0, API v1.1, Module v1.0.1)
SSI rpi: lamd (SSI v1.0, API v1.0, Module v7.0)
SSI rpi: tcp (SSI v1.0, API v1.0, Module v7.0)
SSI rpi: sysv (SSI v1.0, API v1.0, Module v7.0)
SSI rpi: usysv (SSI v1.0, API v1.0, Module v7.0)

shell$ laminfo−param rpi sysv
SSI rpi: parameter ‘‘rpisysvpollyield’’ (default value: ‘‘1’’)
SSI rpi: parameter ‘‘rpisysvpoolsize’’ (default value: ‘‘16777216’’)
SSI rpi: parameter ‘‘rpisysvmaxalloc’’ (default value: ‘‘1048576’’)
SSI rpi: parameter ‘‘rpisysvshort’’ (default value: ‘‘8192’’)
SSI rpi: parameter ‘‘rpisysvpriority’’ (default value: ‘‘30’’)� �

Figure 3.2. Sample outputs from thelaminfo command. The first command shows all
availablerpi modules and their associated versioning data; the second command shows
thesysv rpi module parameters and their default values.

The selection of which module to use in a given scope is always determined from the

available module list. Each component framework mandates both query/initialization and

finalization functions. During selection, all the modules in the available list are queried

to determine if they can run, and if so, what theirpriority is. Priorities are integers in the

range of[0, 100], with 100 being the highest. The module with the highest priority will

typically be selected as the winner; the losing module(s) will be ignored in the selection

scope. If there is a tie, LAM is free to select any of the modules with the highest priority.

Although the exact meanings of priorities are arbitrary, the following guidelines are

provided for module authors in assigning priority values:

• A priority of 0 should be interpreted as “if nothing else is available, this one will
work.” It is typically reserved for a lowest common denominator type of module.

• A priority of at least 50 should be given when a module detects that it is running
in its “native” environment. For example, iflamboot is executed in a PBS batch
queuing environment, thetm boot module will return a priority of at least 50 be-
cause it knows that it can run.

• A priority of at least 75 should be given when a module detects that it is running
in its “native” environment and a compile-time switch was enabled to make that
module the default for its type.
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• A priority of 100 should be reserved for modules thatmustbe selected.

If a module does not have a parameter named “<type> <module> priority ”,

the SSI framework will create one and assign it a default value of zero. It is recommended

that module authors create their own priority parameter and assign it a reasonable default

value.
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CHAPTER 4

RUN-TIME ENVIRONMENT STARTUP

MPI applications are run in a variety of parallel environments. Users of traditional

Beowulf-style clusters have grown accustomed to usingrsh or ssh to start MPI pro-

cesses on remote nodes as shown in Figure4.1. While effective,rsh andssh cannot

necessarily provide tightly-integrated job control. Although recent versions ofssh usu-

ally ensure to kill all processes when, for example, control-C is pressed in the launching

application, some processes may still be orphaned on remote nodes (and keep running in

the background). Additionally, the use ofrsh andssh does not scale to large clusters

consisting of hundreds or thousands of nodes.1

For these reasons, prior versions of LAM/MPI did not directly launch MPI processes

via rsh andssh . It was decided that starting the run-time environment occurs much less

frequently than running MPI applications, particularly while developing and debugging.

Therefore, the latency ofrsh andssh should only be incurred once while launching a

network of user-level LAM daemons. These daemons are then used to provide definitive

job control and monitoring that is not possible throughrsh andssh . Once the daemon

network is established, commands such asmpirun send UDP messages to the daemons

in order to launch and kill remote MPI processes.

Other environments, such as batch schedulers, provide their own interface for launch-

1ssh , in particular, does not necessarily scale well because of its noticeable latency when utilizing
strong authentication mechanisms.
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Figure 4.1. Sample parallel applications started withrsh (or ssh ).

ing, monitoring, and killing processes on remote nodes. These interfaces typically include

tightly-integrated job control, provide accurate accounting details, and disallow running

on resources that are not allocated to a given job. In such environments, it is clear the

MPI implementation should use the provided job control mechanisms rather thanrsh

andssh .

Unfortunately, open source MPI implementations – including LAM/MPI – tradition-

ally only directly supportedrsh andssh . Support for specialized environments was

typically provided through patches from third party contributors, workarounds such as

rsh andssh replacements, or redistribution of customized MPI implementations that

were modified to use customized external job control mechanisms.

This chapter discusses theboot component framework and how it addresses these

problems by providing a dynamic mechanism to add support for arbitrary run-time envi-

ronments to LAM/MPI. AppendixB provides a detailed technical reference of theboot

component framework.

Acknowledgements:Theboot component interface was jointly designed with Brian

Barrett, who also implemented most of thetm boot module. Brian, Nicholas Henke, and
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myself jointly wrote thebproc module. Vishal Sahay, under my direction, designed and

wrote theglobus module. Thersh /ssh functionality was adapted from older LAM/MPI

functionality and converted into thersh module by me. The design and implementation

of the component architecture was performed by me.

4.1 Design

The main design goal of theboot component framework is to allow LAM/MPI to

use existing run-time environments.rsh andssh support (which is just anotherboot

module) should only be used only when no other job control mechanism is available.

To create a suitable component interface, it was necessary to study the abstract actions

required to start processes remotely. Two run-time launch mechanisms were primarily

studied to categorize remote-launch actions:rsh / ssh and the Portable Batch System

(PBS) [98, 102].

4.1.1 LAM Daemon-Based Run-Time Environment

As with previous versions, thelamboot command is used to launch a LAM-specific

run-time environment. A single LAM daemon is launched on each physical node that will

be used. This process is commonly referred to asbootingthe LAM run-time environment

(and hence the “boot” component framework name). The node that runslamboot is

called theorigin node. During the boot, each LAM daemon is told how many “CPUs”

it should use for MPI processes on that node. This CPU count is not bound to an actual

number of CPUs; indeed, it is typically provided by the user. The CPU count is simply a

management abstraction telling LAM how many processes can typically be launched on

a particular node.

Once the LAM daemon run-time environment is established, it is referred to as the

LAM universe. The LAM universe provides a variety of services to programs that run in
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it, such as job control, I/O forwarding, and basic message passing. The message passing

services are usually referred to as “out of band” throughout this document; MPI commu-

nications are considered “in band.” In fact, all universe-provided services are dependent

on the out of band messaging. For example,mpirun uses the job control mechanisms

to launch MPI processes by sending out of band control messages to the relevant LAM

daemons.

The role of theboot component framework is therefore to launch LAM daemons, pass

startup parameters (such as CPU counts), and make the daemons aware of each other. It

is invoked by thelamboot command and controls how daemon processes are invoked

on all nodes that will be used.

4.1.2 Remote Process Startup Case Study:rsh / ssh

Using rsh andssh to start processes on remote nodes is relatively straightforward

and fairly well understood. Usingrsh / ssh has both benefits and drawbacks:

• Benefit: straightforward, well-understood execution model that has been used for
years.

• Benefit: automatic standard output and standard error forwarding from remote pro-
cesses.

• Drawback: potentially poor job control; hitting control-C in the launching applica-
tion, for example, may or may not reliably kill all processes on remote nodes.

• Drawback: potentially large latency (especially withssh when using its strong
authentication mechanisms) that impacts effective scalability.

The interface forrsh andssh has not changed significantly in many years. Both

commands are fairly interchangeable from an invocation perspective.2 Hence, the steps

required to launch remote processes is virtually identical between the two.

2Although using some of the more complexssh authentication mechanisms takes considerably more
user-level setup thanrsh ’s primitive .rhost -based authentication.
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When usingrsh or ssh to launch LAM daemons, the user must supply a list of hosts

(typically in a host file, commonly referred to as aboot schema) on which to start the

daemons. With this file, starting the LAM daemons requires the following steps:

1. Parse the command line to find the boot schema filename.

2. Parse the boot schema file and generate a list of nodes. For each node:

• Identify the node IP name/address to use. If a name, verify that it is able to be
resolved into an IP address.

• Identify the CPU count for this node

3. Check for errors in the node list.

• Verify that the current node is in the node list.

• Verify that 127.0.0.1 is not used in conjunction with any other addresses.

4. For each node in the node list:

• Launch a child process to run anrsh or ssh command line that launches a
LAM daemon on the node. Wait for the child process to complete.

• Wait for the newly-spawned LAM daemon to “call back” and send its location
information (e.g., its IP address, the UDP and TCP ports that it is listening on,
etc.). Save this information.

5. Broadcast the full set of LAM daemon location information (including the per-
daemon CPU counts) to each newly-spawned LAM daemon.

6. Exit lamboot .

Note that the LAM daemon is not launched directly viarsh or ssh ; instead, LAM

launches a “helper” executable namedhboot on remote nodes to facilitate job control

issues. Among other reasons, this ensures thatrsh andssh can terminate successfully

even though the LAM daemon has been forked into the background.

The resultingrsh / ssh boot process is shown in Figure4.2.
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Figure 4.2. Booting the LAM run-time environment usingrsh or ssh .

4.1.3 Remote Process Startup Case Study: The Portable Batch System (PBS)

As its name implies, PBS is a batch scheduling system for workload management; it

coordinates the utilization of dedicated and shared resources. PBS was initially developed

at NASA but was later commercialized by Veridian software. It is now developed and

marketed by Altair Grid Technologies, LLC. There are currently three versions of PBS

available:

• OpenPBS [98]: open source, available at no cost. OpenPBS has not undergone any
substantial development for several years.

• PBS/Pro [102]: commercialized product (not free). PBS/Pro is marketed, devel-
oped, and sold by Altair Grid Technologies, LLC.

• Torque [143]: open source, available at no cost. Torque is effectively a “fork” of
the OpenPBS project that is under active development.

All three of these software systems are interchangeable from an MPI implementation’s

perspective, and therefore are collectively referred to as “PBS” throughout this document.

PBS provides a C library interface called the Task Management (TM) interface [99]

for job control in the PBS environment. PBS’s TM interface is a subset of the PSCHED

interface [61]. The PSCHED API aimed to provide a complete interface for parallel job
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Figure 4.3. Starting a parallel application using PBS’s TM interface (tm spawn() is
the interface function for starting processes under PBS’s control). PBS is able to track
resource utilization for the entire application.

and resource management. Utilizing the TM interface results in an application startup

similar to that shown in Figure4.3. All processes started by the TM interface remain

under PBS control, allowing both guaranteed resource cleanup and accurate process ac-

counting.

PBS is composed of three main services: a scheduler, a server, and a per-node con-

trol daemon (referred to as the Machine Oriented Mini-server, or MOM), shown in Fig-

ure4.4. The scheduler provides job-to-node mappings and handles queue management.

The server handles communication between services as well as accounting logs. There

is one scheduler and one server per cluster. The PBS MOM executes on every node and

provides a number of health and process control features. The MOMs are also used by

the server and TM interface for job startup.

PBS is typically utilized by submitting scripts to the batch scheduler, creating a queued

job. These scripts (or the command line used to submit them) specify run-time parame-

ters such as how many nodes to use, how long the job is expected to run, etc. PBS allows

specification of parallel jobs either by indicating how many nodes to use or how many
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Figure 4.4. Example architecture of PBS over four nodes. There is one instance each of
the PBS server and scheduler, and per-node instances of the MOM.

“virtual CPUs” to use. A “virtual CPU” (or VCPU) is PBS’s abstract concept of a CPU,

and may actually be located on any physical node. It maps almost exactly to LAM’s con-

cept of “CPU”: a VCPU is not closely bound to a physical CPU, and is only intended as

a management abstraction.

When the scheduler finds enough resources to run a job, it allocates a set of VCPUs

to the job and starts the script running on the node corresponding to the first allocated

VCPU. The script is expected to do everything that is required to run the job, including –

if necessary – starting processes in parallel.

Assuming that a PBS job script invokes thelamboot command, starting the LAM

daemons using the TM interface requires following steps:

1. Ensure that the process is actually running in a PBS job.

2. Invoke the TM initialization function.

3. Generate a list of nodes.

• Query TM for a list of VCPUs on which the job is allowed to run.
• Cross-reference the VCPUs with additional information provided by TM to

calculate a minimum set of VCPUs that represents each physical node in the
job exactly once (recall thatlamboot starts exactly one LAM daemon on
each physical node). Convert this VCPU set to be a list of nodes. Also count
how many VCPUs appear on each physical node.
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Figure 4.5. Booting the LAM run-time environment using the PBS TM interface.

4. For each node in the node list:

• Invoke thetm spawn() function to launch a LAM daemon on each node.

• Wait for the newly-spawned LAM daemon to “call back” and send its location
information (e.g., its IP address, the UDP and TCP ports that it is listening on,
etc.). Save this information.

5. Broadcast the full set of LAM daemon location information (including the per-
daemon CPU counts) to each newly-spawned LAM daemon.

6. Invoke the TM finalization function.

7. Exit lamboot .

The resulting TM boot process is shown in Figure4.5. Note that thehboot command

is not necessary in a TM environment;hboot is designed to overcome specific problems

with rsh andssh , and is therefore not pictured in Figure4.5.

4.1.4 Action Abstractions

Examining the steps taken to create LAM universes in the two case studies, the com-

mon actions can be reduced down to two main abstractions:

• Generate a list of nodes, count how many CPUs appear on each node, and launch a
LAM daemon on each.
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• Perform a rendezvous between the newly-launched LAM daemons andlamboot
such that every daemon becomes aware of its peers.

The specific mechanisms used for the first abstraction are quite different between the

two scenarios, but the end result is the same: a LAM daemon is running on each target

node. The mechanisms used for the second abstraction are almost identical between the

two scenarios. From this analysis, it is clear that there are at least two distinct function-

ality categorizations: identifying / launching LAM daemons and performing the startup

rendezvous. Although there can be overlap between these two categories for ease of im-

plementation or optimizations (e.g., launch a LAM daemon and wait for it to send back

its location information), the two categories still perform different functions.

A third category is also possible. In both scenarios, the phrase “for each node in the

node list...” was used to indicate an action that needed to be performed on all nodes

(particularly with respect to launching a process on a node). There are many algorithms

that can be used to implement a “for each item in a list” operation: linear, linear win-

dowed, fixed tree traversal, etc. Therefore, a third functionality category of launching is

the algorithm used to traverse all the nodes in the list.

Putting all three of these categories together, along with the similarities and differ-

ences of the case study scenarios, above, the list below itemizes the abstract actions that

need to be supported by aboot module. Each item is marked with “[Launch] ,” “ [Ren-

dezvous],” or “ [Algorithm] ” to indicate its functionality category.

1. [Launch] Parse command line options. If necessary, parse the command line and
find the argument specifying the boot schema filename.

2. [Launch] Allocate nodes. Construct the node list and count CPUs on each node.
Data can be obtained from either the boot schema file or some external source (e.g.,
the TM interface).

3. [Launch] Verify nodes. Ensure that all entries in the node list are valid (e.g., can
resolve all names to IP addresses) and that there are no other errors in the list.

4. [Launch] Prepare to boot. This is actually a new step that is not required by either
rsh / ssh or PBS, but it is a natural location for a “hook” that support for future
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run-time environments may require – a last place for any additional setup work
before actually starting remote processes.

5. [Rendezvous]Open server port. Open an incoming / server-side port to accept
incoming connections (for use in the next step).

6. [Algorithm] Start processes. Use some algorithm to perform these actions for each
node:

• [Launch] Start a LAM daemon on a specific node.

• [Rendezvous]Receive LAM daemon location information from the newly-
started daemon.

7. [Rendezvous]Close server port. Disable accepting new connections.

8. [Rendezvous]Broadcast information. Loop over the array of started LAM dae-
mons and send the full set of LAM daemon location information obtained in the
previous step.

9. [Launch] Free resources. Now that all daemons have started, free any resources
that were allocated during the boot.

Notably absent from this list are the[Rendezvous]client-side actions that are required

in the LAM daemon. The followingboot actions are therefore used by the LAM daemon:

1. [Rendezvous]Send the location information for this LAM daemon back tolamboot .

2. [Rendezvous]Receive the full set of location information about all LAM daemons
from lamboot .

All of these actions (for bothlamboot and the LAM daemon) have been mapped to

module interface functions and are described in AppendixB.

Note that modules may choose to perform no-ops for some actions. For example,

when booting in a PBS job, there is no boot schema to parse. Similarly, there is no need

to verify resulting the node list because all the nodes were received directly from the

TM interface and therefore all nodes must be valid. Another example is the algorithm;

it may either custom-written for a module or use common, pre-packaged algorithms that

are provided by theboot framework.
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4.1.5 Additional Tools

Other LAM commands also use theboot component framework.recon is essen-

tially a “dry run” of lamboot ; it tries to launch processes on remote nodes and reports

success or failure back to the user. This tool is mainly used to ensure that users have their

settings for password-less login viarsh or ssh setup properly.wipe is a carryover

from whenrsh was the main/only mechanism for launching remote nodes, and the LAM

run-time environment was not as mature and stable as it is now. If something went wrong

with the run-time environment, thewipe command would usersh or ssh to launch

“killer” processes on each node to kill the LAM daemon, release all resources, etc.

Although these two commands need to utilize the[Launch] and [Algorithm] func-

tional categories of theboot module interface, they clearly do not need to utilize the

[Rendezvous]functionality. As such, the functions described in AppendixB are prop-

erly parameterized such that a flag controls whether the[Rendezvous]functionality is

used or not.

The lamgrow command is used to grow an existing LAM universe by one node. It

must be run from within a existing universe and have the new node specified on the com-

mand line. Aboot module will be used to launch an additional LAM daemon (including

performing the[Rendezvous]) and integrate it into the existing universe.

When theboot component framework was implemented, thelamboot , recon ,

wipe , and lamgrow commands were transformed into simplistic engines that essen-

tially invoke functions on the selectedboot module to effect the actions in the sequence

shown in Section4.1.4. Each engine is slightly different; the boot framework provides

the flexibility to implement all four commands.
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4.1.6 Module Selection

The selection process forboot modules uses the simplistic priority-based system de-

scribed in Section3.2.7. Essentially: theboot component framework queries all available

modules for 1) whether they can run or not, and 2) an associated priority. All modules

who reply that they can run are ranked by order of their priority. The module with the

highest priority is selected; all others are finalized and closed.

The selection of whichboot SSI module to use persists through the life of the LAM

universe. This is not only governed by the fact that the LAM daemons will make a

boot module selection when initially launched (and keep using that selection until they

terminate), it simply does not make sense to change theboot module selection after the

LAM universe has been established.

Hence, since all LAM processes will only exist within the timeframe of a single LAM

universe, the scope of theboot module selection is the life of the process (in the case of

the LAM daemon, this coincides with the life of the universe). As such, there will only

ever be oneboot module selected during a given process.

No LAM-provided out-of-band communication is available betweenboot modules of

peer processes because by definition, there is no LAM run-time environment when the

boot modules are initialized. Hence, consensus of whichboot to use must be able to

be achieved independently, or utilize communication channels that are provided by the

underlyingboot module’s mechanism.

4.1.7 Rendezvous Algorithms

The algorithm used to start execution over a set of nodes is up to each module; a

module can provide its own functionality or use one of the generic algorithms provided

by theboot component framework. The provided algorithms provide all the structure and

bookkeeping necessary to launch across a set of nodes (including error detection).
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If a module chooses to utilize the built-in algorithms, it provides function pointers for

callbacks before invoking the algorithm function. The algorithm function will then iterate

over all nodes in the set, invoking the module’s callback functions to launch executables

on remote nodes. The callback functions required by the provided algorithms are marked

as “[Algorithm] ,” and are described in SectionB.2 (page210). If a module chooses not

to use these algorithms, the callback functions do not need to be provided;NULL should

be specified for these function pointers.

The following generic algorithms are provided in LAM/MPI:

• Linear: A linear approach is used to launch a set of processes: each process is
individually started and, if requested, the rendezvous protocols are executed. The
next process is not started until the current process has been fully established. This
is the simplest algorithm.

• Linear / windowed: Well-suited for remote agents that do not need to wait for
remote processes to complete launching, this algorithm uses a linear approach with
a sliding window for remote process rendezvous callbacks – never allowing more
thanN callbacks to be outstanding at any given time. This algorithm is typically
only useful for launching LAM daemons (i.e., processes that require callbacks to
the booting agent) when hiding the latency involved in remote launching and/or
startup protocols is noticeable. If the startup rendezvous protocols are not required,
this algorithm is exactly equivalent to the linear algorithm.

4.2 Implemented Modules

Severalboot modules have been implemented and included in the LAM/MPI distribu-

tion, allowing LAM/MPI to be executed in a variety of different run-time environments.

4.2.1 Thebproc Module

The Beowulf Distributed Process Space (BProc) is set of Linux kernel modifications,

utilities and libraries which allow a user to start processes on other machines in a Beowulf-

style cluster [64, 65, 117]. Remote processes started with this mechanism appear in the

process table of the front-end machine in a cluster. Processes therefore achieve node inde-

pendence; they can be launched on the front-end cluster machine and moved to compute

nodes for execution.
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The bproc module uses the BProc C interface functionbproc vexecmove() to

launch LAM daemons. This function executes a new LAM daemon and then moves it out

to the target node using internal BProc mechanisms. Althoughbproc vexecmove()

accepts a list of nodes on which to start processes, the LAM daemons are launched in

a linear fashion because each one requires slightly different command line arguments.

The wipe and recon commands, however, launch the same executable command on

every target node. They can therefore launch across a list of nodes in a single call to

bproc vexecmove() .

Similar to a traditionalrsh /ssh -based cluster, the normal usage of LAM/MPI on a

BProc cluster is to launchlamboot on the cluster front-end node with a booth schema

listing all the hosts that will be in the LAM universe. LAM/MPI launches a LAM daemon

on each node (including the front-end node). However, most BProc clusters utilize the

front-end node for BProc management, general logins, compilations, etc. It is typically

not appropriate to run computationally-intensive codes on the BProc front-end node.

As such, thebproc module takes advantage of an abstraction that already existed in

the LAM/MPI code base: the ability to “schedule” processes based on attributes in the

LAM universe. Specifically, thebproc module automatically marks the front-end node

as “non-schedulable.” Hence, commands such as the following:� �
shell$mpirun C mympi application� �
will run my mpi application on all CPUs in the LAM universeexceptthe BProc

front-end node.

4.2.2 Theglobus Module

Globus is a software toolkit aimed at running applications on systems that coordinate

resources using standard, open, general-purpose protocols and interfaces to deliver non-

trivial qualities of service but who are not subject to centralized control [44]. The Globus
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� �
# Globus boot schema
inky.my cluster:12853:/O=MegaCorp/OU=Mine/CN=HPC prefix=/opt/lam cpu=2
pinky.your cluster:3245:/O=MegaCorp/OU=Yours/CN=HPC prefix=/opt/lam cpu=4
blinky.his cluster:23452:/O=MegaCorp/OU=His/CN=HPC prefix=/opt/lam cpu=4
clyde.hercluster:82342:/O=MegaCorp/OU=Hers/CN=HPC prefix=/software/lam� �
Figure 4.6. Sample boot schema for theglobus boot component framework. Each line
can specify a differentprefix and CPU count.

Toolkit is an open architecture, open source software distribution containing software

tools that make it easier to build Grid infrastructures and Grid applications [42, 43].

The globus module for LAM/MPI supports limited Globus functionality; only the

Globus “fork” scheduler is supported. Starting the LAM run-time environment in Globus

environment makes use of the Globus Resource Allocation Manager (GRAM) client

globus-job-run . Although theglobus module will report itself available ifglobus-

-job-run can be found in locations specified by the$PATHor $GLOBUSLOCATION

environment variables, the default priority is low enough that it is never selected automat-

ically. The user must manually select to use theglobus module.

Hosts in the boot schema file are listed by their Globus contact strings [75, 41]. For

example, in cases where the Globus gatekeeper is running as ainetd service on the

node, the contact string will simply be the hostname. Each host in the boot schema must

also have a “prefix ” key indicating the absolute directory where LAM/MPI is installed.

This value is mandatory because Globus does not source users’ shell startup files when

launching executables remotely, and therefore the$PATHenvironment variable may or

may not reflect where the LAM executables are located. Figure4.6 shows an example

boot schema with Globus contact strings.

Theglobus module iterates over the contact strings and essentially invokesglobus-

-job-run with each of them. In most other ways, theglobus module functions just like
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thersh module.

4.2.3 Thersh Module

The functionality of thersh module is outlined in thersh / ssh case study earlier

in this chapter (Section4.1.2). Although it is still a popular choice among small- to mid-

sized clusters, it is, by far, the slowest of theboot modules. Since the linear algorithm is

used, the time per daemon launch is significantly higher forrsh andssh as compared to

the other boot modules. Although there is no technical restrictions for booting arbitrarily

large number of nodes, the wall clock execution time can grow quite large.

ssh typically offers better job control thanrsh (e.g., control-C propagation is more

reliable), usually leading to fewer orphaned processes when a user interrupts a parallel

job. Butssh can be considerably slower thanrsh , leading to [further] scalability prob-

lems.

Benefits of thersh boot module include its strong heterogenity support. There are no

central decisions about where the LAM executables are located in the filesystem. Hence,

as long as the$PATHenvironment variable is set correctly on each node, the LAM dae-

mon executable will be found and launched.

4.2.4 The PBStm Module

The functionality of the PBStm module is outlined in the PBS case study earlier in

this chapter (Section4.1.3). There are several benefits to using the TM interface:

• Start LAM run-time environment in a “native” fashion.rsh or ssh are not used,
and may actually be disabled in some cases (to prevent users from logging on to
nodes that are not allocated to them).

• Provide guaranteed cleanup of resources. For example, if a job’s time limit expires,
PBS is aware of all processes on all nodes in the job, and can therefore reliably find
and kill them. This is in contrast to whenrsh or ssh is used to start jobs on nodes
in a PBS job; in such cases, PBS is unaware of thersh /ssh -started processes and
is therefore unable to kill them. This has been a significant headache to system
administrators as some processes may continue running after PBS thinks that the
job has been killed.
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• Accurate resource accounting. Since the PBS daemons are ancestors of all pro-
cesses started using the TM interface, they have access to full accounting informa-
tion about executed applications. Accurate resource accounting is important for fair
scheduling policies, organizations that bill for computer time, error analysis, etc.

• The asynchronous nature of the TM interface functiontm spawn() allows LAM
to launch daemons in parallel. Hence, the startup time of the LAM universe un-
der PBS was dramatically reduced (as compared torsh andssh ) even for small
numbers of nodes.

Resource Cleanup

When PBS is going to prematurely kill a job, the MOMs in the job will first send

a SIGTERMsignal to the POSIX process group of all processes that they are aware of.

When using the TM interface, the MOMs are aware of all job processes (as compared to

when usingrsh /ssh , where PBS is only aware of processes on the first node), and can

therefore send aSIGTERMto the LAM daemon on each node.

The LAM daemon catches theSIGTERMand initiates an orderly shutdown process.

It kills all MPI jobs, releases all held resources, and finally exits. Each MOM will wait

up to 30 seconds for all process to exit. If not all processes quit, the MOM will use the

uncatchableSIGKILL to kill them. Once all jobs have finished, the MOM terminates the

job and releases the resources back to the scheduler.

TM Shortcomings

The TM interface has its own shortcomings. For example, for a set of processes

launched viatm spawn() , if any one of them exits, PBS will kill all the rest. This is

not technically a problem since the LAM daemons persist for the entire universe, but for

daemon-less MPI run-time environments (a potential future direction for LAM/MPI), this

could cause unexpected behavior for MPI applications with significant code afterMPI -

FINALIZE.

Other aspects of the TM interface present issues for implementors of middleware

but do not appear to exist for any technical reason. For example, additional work must
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be performed by the middleware to map VPUs to physical nodes. Providing interface

functions or data structures to provide this information directly would be beneficial to

application writers.

TM requires that the full path to the executable be given totm spawn() . LAM must

therefore be installed in the same location on all nodes in the cluster. Multi-architecture

support is therefore more difficult if LAM is installed on a networked filesystem shared

across the cluster. This is in contrast to thersh boot module, where the$PATH en-

vironment variable is used on each node to find the relevant executables. This allows

LAM/MPI to be installed in different locations on each node, enabling multi-architecture

support through the use of node-specific path settings. However, most PBS installations

are homogeneous clusters, so this limitation is not seen as unworkable.

Finally, atm spawn multiple() , similar in functionality toMPI SPAWN MUL-

TIPLE, potentially allowing for a faster, more direct launch mechanism. This was sug-

gested in the PSCHED API, but was not implemented in PBS’s TM API.

4.3 Results

All the modules listed in Section4.2were implemented. LAM 6 could only natively

launch processes inrsh /ssh environments; a single installation of LAM 7 can natively

launch processes in BProc, Globus,rsh /ssh , and PBS environments. Without this ca-

pability, not only are different installations of MPI required to run in parallel, but also

different implementations (this is the current state of the art; see Section1.1). Although

MPICH provides some level of scripting support for choosing a different job-launching

mechanisms, it is aimed at support for launching with different communication devices,

not necessarily different run-time systems. This is one of the reasons that thempiexec

project was implemented as a standalone utility and not part of MPICH; the infrastructure

in MPICH did not adapt well to the native PBS run-time environment. Support for a small
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number of run-time environments are supported (e.g., Globus), but typically only where

the run-time environment is related to the communications device.

4.3.1 Correctness

Eachboot module was checked for functional correctness. Correctly-functioning

boot modules start a LAM universe and seed it with meta-data (e.g., peer LAM dae-

mon location information, CPU counts, etc.).boot modules can also be used to grow

and shrink a LAM universe. Note, however, thatboot modules arenot part of the actual

run-time of the universe – they are only responsible forestablishingthe universe. Hence,

testing the functionality of aboot module can be limited to attempting to launch, grow,

and shrink a LAM universe, and then testing to see if the universe is functioning correctly

after theboot module completed its work.

Although each module has different capabilities (corresponding to its back-end run-

time environment), the following actions were tested on the modules as relevant:

1. Test 1: Boot a LAM universe with thelamboot command.

Successful completion of thelamboot command means that 1) all LAM dae-
mons were successfully started, b) each communicated their identity back tolamboot ,
and c) each received a broadcast of the union of their peers’ location information.

2. Test 2: Verify that the universe is functioning.

The lamnodes , tping , mpirun , and lamexec commands were used for
this test. Thelamnodes command queries the local LAM daemon for a list of
all the LAM daemons (and corresponding daemon attributes) in the universe and
displays them. Iflamnodes correctly displays this information from any node in
the universe, then that LAM daemon correctly received all the data originally sent
from lamboot .

Thetping command “pings” each LAM daemon, soliciting a response from its
central engine. Successful completion of thetping command means that every
LAM daemon in the universe has entered its main processing loop and is responding
to network requests.

The mpirun and lamexec commands launch MPI and non-MPI processes
across the LAM universe, respectively. Successfully running either of these com-
mands (e.g., “lamexec N uptime ”) means that thempirun / lamexec com-
mand was able to communicate with the LAM daemon on each node and tell it to
launch a command (“uptime ”). A variety of LAM daemon services are involved
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in this action; if it succeeds, the LAM daemons are in their main processing loops
and correctly processing several different kinds of network requests.

3. Test 3: Remove a node from the universe with thelamshrink command.

This action involves editing the peer and routing tables in each LAM daemon.
The lamshrink command must contact each LAM daemon and tell it to remove
an entry from its tables. Once complete, Test 2 is used to verify that the universe is
still functioning correctly. If it is, it means that theboot module correctly deleted
entries from each LAM daemon’s tables.

4. Test 4: Add a node to the universe with thelamgrow command.

The lamgrow command performs essentially the same actions aslamboot ,
but after a universe has already been established. Iflamgrow succeeds, it means
that a new LAM daemon has been launched, it has called back tolamgrow to
identify itself, and has received a list of its peers. Additionally, theboot module in
lamgrow sends an updated table entry to all other LAM daemons in the universe.
Upon successful completion, Test 2 is used to check that the universe is functioning
correctly.

5. Test 5: Verify external data, such as run-time statistics.

Some modules, such as thetm module, provide additional services. As described
in the testing section below, thetm module allows the PBS run-time system to
track statistics of the processes that it launches. Upon successful completion of the
universe, PBS can be queried to see how much CPU time and memory was used.
These values should match the sum of all jobs launched in the LAM universe.

A summary of these tests is listed in Table4.1. “
√

” indicates that a test passed; “NA”

indicates that a test did not apply to a given module. Each test system is described in

detail in the text of its corresponding module’s subsection.

4.3.2 Thebproc Module

Thebproc module was tested on the University of Pennsylvania’s testbed Liniac clus-

ter, described in Table4.2.

The Clubmask [66] system was used to reserve nodes, andlamboot was used with

a hostfile consisting of the reserved nodes and the BProc head node. A LAM daemon

was successfully launched and moved to each target node, as confirmed by manually

examining the process list. Thelamnodes command confirmed that all nodes in the

hostfile were successfully in the universe;tping was able to contact each LAM daemon.
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TABLE 4.1

Summary of results

Test System Test 1 Test 2 Test 3 Test 4 Test 5

bproc Liniac cluster
√ √ √ √

NA

globus IU CS workstations
√ √ √ √

NA

rsh AVIDD-B cluster
√ √ √ √

NA

tm AVIDD-B, Thumb clusters
√ √

NA NA
√

TABLE 4.2

Description of the University of Pennsylvania Liniac testbed cluster

Number of nodes 4

Processor type Pentium III
Processor count 2
Processor speed 1.13 GHz
Cache size 512 KB
RAM 2 GB

Operating system Red Hat 7.2 (plus updates)
Linux kernel version 2.4.20

Compiler GNU, v2.96
Compiler flags -O3 -pthread

Interconnects used Gigabit Ethernet

Other relevant softwareClubmask 0.6, BProc 3.2.6
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TABLE 4.3

Description of the Indiana University Computer Sciencebitternut andsawtooth

nodes

bitternut node sawtooth node

Processor type Pentium III Pentium IV
Processor count 2 1
Processor speed 900 MHz 1.7 GHz
Cache size 2.0 GB 512 KB
RAM 2.0 GB 512 MB

Operating system Red Hat 7.2 (plus updates)Red Hat 7.3 (plus updates)
Linux kernel version 2.4.9 2.4.18

Compiler GNU, v2.96 GNU, v2.96
Compiler flags -O3 -pthread -O3 -pthread

Interconnects used Fast Ethernet Fast Ethernet

Other relevant softwareGlobus Toolkit v2.2 Globus Toolkit v2.2

Similarly, lamshrink was successfully able to remove a node from the universe and

lamgrow was able to add a node into the universe. The results of each were tested with

the lamnodes andtping commands to verify correct functionality.

4.3.3 Theglobus Module

The globus module can only utilize the “fork” scheduler in Globus systems, and

was only tested between two machines each running a Globus Gatekeeper on the Indiana

University Computer Science local area network. The descriptions of these machines are

listed in Table4.3

lamboot was used with a hostfile consisting of the contact strings forsawtooth

andbitternut . A LAM daemon was successfully launched on each target node via

globus-job-run , as confirmed by manually examining the process list on each node.
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The lamnodes and tping commands were used to verify that all nodes were in the

universe and were responding properly. Similarly,lamshrink was successfully able to

removesawtooth from the universe, andlamgrow was able to add it back into the

universe. The results of each were tested with thelamnodes andtping commands to

verify correct functionality.

4.3.4 Thersh Module

The rsh module was tested on the Indiana University Analysis and Visualization of

Instrument-Driven Data / Bloomington (AVIDD-B) cluster. All functions were tested

with both thersh andssh command. The AVIDD-B cluster is described in Table4.4.

Resource accounting tests were performed on the Indiana University Open Systems Lab

Thumb cluster, also described in Table4.4.

As described in Section4.2.3, the rsh module is a port of the maturersh -based

implementation from LAM/MPI version 6. Testing was comprised of booting different

numbers of nodes on AVIDD-B using a hostfile. In all cases, a LAM daemon was success-

fully launched on each target node viarsh (ssh was tested similarly), as confirmed by

manually examining the process list on each node.lamnodes andtping verified that

all nodes existed in the universe and were responding properly. Similarly,lamshrink

was successfully able to remove random nodes from the universe;lamgrow added them

back. lamnodes andtping were used to verify the stability of the universe after each

step.

4.3.5 The PBStm Module

Thetm module was tested on the same AVIDD-B cluster as thersh module.

Testing comprised of requesting jobs from PBS with varying sizes (from 1 to 96

nodes) and runninglamboot . No hostfile was specified; the list of nodes was di-

rectly obtained from PBS’s TM interface. In all cases, a LAM daemon was success-
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TABLE 4.4

Description of the Indiana University AVIDD-B and Open Systems Lab Thumb clusters

AVIDD-B cluster Thumb cluster

Number of nodes 96 4

Processor type Xeon Pentium III
Processor count 2 1
Processor speed 2.4 GHz 730 MHz
Cache size 512 KB 256 KB
RAM 2.5 GB 512 MB

Operating system Red Hat 7.3 (plus updates)Red Hat 9 (plus updates)
Linux kernel version 2.4.20-29.7-smp 2.4.20-28.9

Compiler GNU, v2.96 GNU, v3.2.2-5
Compiler flags -O3 -pthread -O3 -pthread

Interconnects used Gigabit Ethernet, Myrinet
(GM library v1.6.5)

Fast Ethernet, Myrinet
(GM library v2.0.9)

Other relevant softwareTorque v1.0.1p5, Maui
Scheduler [67, 68]
v3.2.6p6

OSCAR 3.0, OpenPBS
v2.3.16 (OSCAR), Maui
Scheduler v3.2.5p2 (OS-
CAR)
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fully launched on all target nodes and a LAM universe was established.lamnodes and

tping were used as with testing the previousboot modules; both showed that the LAM

universe was functioning properly.

Thetm module does not supportlamshrink andlamgrow on the rationale that in

a job allocated by a static batch environment such as PBS, there is little need to shrink

and grow a LAM universe.

Faster Startup

A side-effect of using the TM interface is that the LAM RTE startup time using the

tm boot module is significantly faster than using thersh module, as shown in Figure4.7.

Faster startup (compared to the traditionalrsh /ssh method) is beneficial in terms of

scalability, and is therefore important to the end user.

There are two reasons for the decrease. First,rsh must authenticate every time a

remote process is launched, whereas the MOMs only authenticate at startup (ssh is par-

ticularly slow because of its complex authentication algorithms). Second, thetm boot

module uses the linear windowed algorithm. Thetm module is capable of sending con-

trol messages out serially, but does not wait for the response before sending the next

control message.

Process Accounting

With rsh or ssh , PBS is only able to log the resources used by the processes on the

first node in the job. The use of the TM interface allows PBS to generate accurate process

accounting for the entire job. Using the accounting logs provided by the PBS server, CPU

time and memory usage can be tracked in addition to wall-clock time. Table4.5provides

resource information for the execution of a test program that runs a computational kernel

for approximately 35 seconds. The accounting information in the Table is from PBS on

the Thumb cluster comparing a job run on 1 node and 4 nodes. It shows almost identical
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Figure 4.7. Execution time forlamboot in seconds usingssh , rsh , and TM on the
AVIDD-B cluster.

results between the single node jobs for thersh andtm modules. For the four node jobs,

the rsh module shows results similar to the one node jobs; the main difference is the

6 extra seconds necessary to executessh to three remote nodes. For thetm module,

the wall clock time is approximately the same, but the CPU time and memory usage is

roughly four times that of the single nodetm job, showing that PBS was able to accurately

measure the CPU time for the entire job.

Resource Cleanup

Through both the use of the PBS MOMs to start applications and theSIGTERMhan-

dling in the LAM daemons, LAM is able to properly return resources to the system after

job execution. Several scenarios were tested on the Thumb cluster, including the follow-

ing:

• Allocate a PBS job, runlamboot in the PBS job, run an MPI job to completion,
run lamhalt to take down the LAM universe, and exit the PBS job.
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TABLE 4.5

Accounting information from PBS on the Thumb cluster

Module Number of nodes Wall clock time CPU time Memory

rsh 1 36s 34s 2,228 KB
tm 1 35s 34s 2,992 KB

rsh 4 41s 35s 2,800 KB
tm 4 37s 135s 10,488 KB

• Allocate a PBS job, runlamboot in the PBS job, run an MPI job to completion,
and exit the PBS job (with the LAM universe still running).

• Allocate a PBS job, runlamboot in the PBS job, run an MPI job, and exit the
PBS job (with the MPI job and LAM universe still running).

• Allocate a PBS job, runlamboot in the PBS job, and exit the PBS job (with the
LAM universe still running).

In all cases, thetm module is able to catch theSIGTERMsent by PBS and kill any

MPI jobs and cleanly shut down the LAM universe.
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CHAPTER 5

MPI POINT-TO-POINT COMMUNICATION

By definition, MPI libraries are intrinsically centered around passing messages be-

tween MPI processes. Point-to-point latency and bandwidth measurements are two met-

rics that are commonly used to rate the efficiency of an MPI implementation. While

these are certainly not the only relevant metrics of performance, they are a good indi-

cator of how strongly the high-performance computing community values efficient and

robust communication libraries. Communication-intensive parallel applications tend to

be sensitive to latency and bandwidth constraints and will perform poorly if the MPI

implementation cannot deliver efficient message passing.

Although commodity fast and gigabit Ethernet networks are still commonplace, pro-

prietary, high-speed network interconnects have risen in popularity in parallel computing

environments. Among the more popular include Myrinet, Quadrics, and Infiniband. It

is not uncommon for organizations to have parallel resources with one or more of these

interconnects. Previous monolithic MPI implementations (including LAM/MPI) could

only support one underlying network at a time, leading to significant logistical issues for

users and ISVs.

In order to achieve high performance, an MPI implementation must utilize low-level

interfaces and protocols as close to the underlying interconnection hardware as possible.

Modern high-speed interconnects provide companion software libraries that deliver low

latency and high bandwidth (among other characteristics). A well-architected MPI imple-

74



mentation can utilize these libraries in a modular fashion; incorporating new underlying

communication transports should require little or no changes in the upper layers of the

MPI implementation and cause no performance degradation due to additional abstraction

layers.

This chapter describes therpi component type in LAM/MPI, the back-end compo-

nent framework for LAM’s point-to-point MPI functionality. “rpi” is an acronym for

Request Progression Interface, reflecting its central philosophy of tracing the life of a

point-to-point MPI request from creation to destruction. Similar to the other component

frameworks in LAM/MPI, therpi framework supports the dynamic loading of multiple

modules at run-time, thereby addressing many of the issues outlined above. AppendixC

provides a detailed technical reference of therpi component framework.

Acknowledgements:Therpi component interface design was strongly influenced by

the point-to-point design in LAM/MPI v6.5. Thecrtcp module (described more fully

in Chapter7) is an adaptation of thetcp module, and was initially created by Sriram

Sankaran. Thetcp, lamd, sysv, usysv modules were implemented by me based on their

corresponding RPI implementations in LAM v6.5. The design and implementation of

the component architecture and the implementations of thegm module both represented

entirely new work that was performed by me.

5.1 Design

The core abstractions in therpi component framework revolve around the life of a

point-to-point MPI request: its creation, initialization, advancement, and destruction.

This design creates a natural mapping between top-level MPI API functions and the back-

end implementation – an essentially one-to-one mapping of MPI functionality to to the

back-end module. This allows great flexibility in module implementation abstractions.

The rpi also includes other utility functionality such as “special” memory management
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and checkpoint/restart support. Although multiplerpi modules can be available at run-

time, only onerpi module will be selected to be used within an MPI process; all MPI

processes in a parallel application must select the same module. Hence, the scope of an

rpi module’s selection is the duration betweenMPI INIT andMPI FINALIZE.

The rpi component type is used to perform point-to-point message passing between

MPI processes. It accepts MPI requests from the MPI layer and passes the associated

messages to the destination process (including, potentially, itself). It also accepts mes-

sages from peer processes and passes them up to the MPI layer when a matching receive

request is found. Note that the MPI layer does not know (or care) how messages move

between processes; all it knows is that a request was created, progressed, and completed.

This abstraction barrier gives therpi module complete control over how it effects sending

and receiving.

High level operations such as buffer packing/unpacking, handling of buffers for buf-

fered sends, and message data conversion are handled by the MPI layer. Therpi module is

therefore only responsible for moving messages between MPI processes across its target

communications architecture. This philosophy is in accordance with one of the core def-

initions of components: a module is intended to be focused on a specific purpose and/or

architecture. In this case, eachrpi module targets a specific communications architecture.

5.1.1 Prior Implementation

As described in Section3.1.2, prior versions of LAM/MPI had a compile-time sys-

tem that supported multiple RPI implementations. The API for RPI implementations was

well-defined and therefore was a logical choice to be the first component designed in

LAM/MPI. As such, the RPI design was converted into therpi component framework.

In addition to using component methodology, therpi framework incorporated new func-

tionality that was not part of the original RPI design: memory management and check-

76



point/restart support.

5.1.2 Data Structures

The MPI layer maintains three data structures that are shared with the selectedrpi

module: the process list, MPI requests, and the active request list. Althoughrpi modules

can cache information in these data structures, most of the data members are managed by

the MPI layer. Therpi module must therefore treat these data members as as read-only.

Process List

Each process in a LAM universe can be uniquely identified by itsGlobal Process

Space(GPS) location information. MPI processes identify peer processes by their GPS

data in conjunction with additional MPI-specific attributes in aprocess entry. To enable

MPI-2 dynamic functionality, MPI processes are therefore always identified by their pro-

cess entry – not their rank inMPI COMM WORLD (since there may be multipleMPI -

COMM WORLD instances) [53]. Hence, the source and destination rank arguments in

top-level MPI functions are always resolved to corresponding process entries. Therpi

module, therefore, is oriented towards communicating with process entries, not commu-

nicators and ranks.

DuringMPI INIT, each MPI process sends its GPS location information back tompi-

run . A GPS instance is a unique locater used for identifying LAM processes in the

universe, usually in conjunction with LAM’s out-of-band communication system. Once

mpirun receives GPS data from all MPI processes that it launched, it broadcasts the

union of data to all MPI processes. Each MPI process uses this GPS data to create the

initial entries in its process list.

Sets of process entry references are contained in MPI groups. MPI groups, in turn,

are contained in MPI communicators. Specifically, the GPS data frommpirun is used

for the initial seeding of entries in the process list. This list is then used to create an MPI
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MPI_Comm
MPI_Group

Process
GPS

Figure 5.1. AnMPI Comm contains anMPI Group. TheMPI Group contains a set of
references to entries in the process list. Each process entry contains a GPS.

group, which is then used to createMPI COMM WORLD. A similar process is used to

createMPI COMM SELF. This data hierarchy is shown in Figure5.1.

MPI COMM SPAWN andMPI COMM SPAWN MULTIPLE are similar tompi-

run . Both are invoked collectively over a communicator. The process corresponding

to rank 0 in the communicator performs the role ofmpirun : it launches new processes,

collects GPS data from them, and then broadcasts the collated set. Note that since the chil-

dren need to become aware of their parents, the spawning process includes the parent’s

GPS data in the broadcast (mpirun , by definition, has no parent processes; it includes a

zero-length set of parent GPS data in its broadcast). The children create process entries

from the GPS data (including entries for their parents). Three groups (and communica-

tors) are therefore created from this set:MPI COMM WORLD andMPI COMM SELF

(as described above), and the communicator that is returned if the children invokeMPI -

COMM GET PARENT. The spawning parent will then broadcast children’s’ GPS data

to its peers in the spawning communicator. The parents create entries in their process lists

for the children, and form a group which is then used to create the intercommunicator

that is returned fromMPI COMM SPAWN[ MULTIPLE]. Similar procedures are used

for MPI COMM ACCEPT, MPI COMM CONNECT, andMPI COMM JOIN.

Processes are always added to the process list in sorted order. The sorting criteria is

unimportant; all that matters is that the same sort algorithm is used in all processes. For
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example, at the end ofMPI INIT all processes inMPI COMM WORLD have exactly

the same process list. Similarly, at the end of MPI-2 dynamic functions, although all

processes may not have the exact same process list, the entries that are common will

have the same relative ordering. Since spawning (either viampirun or MPI-2 dynamic

functions) is always a synchronous action, and the relative ordering of process lists is

guaranteed to be identical in all connected MPI processes, distributed blocking algorithms

can be utilized without deadlock. A common example of this is the pairwise setup of

point-to-point communication channels; as long as all connected processes follow the

same order of process connection, deadlock will not occur.

Each process entry has a generic pointer that can be used by the selectedrpi module

to cache peer-specific information. For example, in a TCP-basedrpi module, this infor-

mation may include the IP address and port number that the peer is listening on, and a file

descriptor for a socket opened to that peer.

MPI Requests

An MPI request is created for most send and receive communications. It contains

all the parameters from the top-level MPI API call as well as fields for internal tracking,

status, flags, a reference to the process entry of the peer, etc. The request also has a

generic pointer whererpi modules can cache arbitrary data. For example, a TCP-based

rpi module may need to keep a count of how many bytes have been sent or received so

far on this request.

Request List

The request list is a global list of all currentlyactive requests. An active request

is defined as one that is in the process or sending, receiving, or waiting to be sent or

received. Most requests are immediate moved into the active state, but persistent requests,

for example, are not. Persistent requests are initially set in thestartstate; they are moved
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into the active state after they have been passed toMPI START. Any request that enters

the active state is placed on the request list. It is therpi module’s responsibility to identify

new requests on the list and start progressing them.

The rpi module does not modify the request list itself; it can only modify the data

that it has cached on process entries and requests, and the state field on the request. The

MPI layer will detect changes in the state field and remove the request from the active list

when appropriate.

5.1.3 Module Selection and Initialization

An rpi module is selected in a manner similar to the algorithm outlined in Sec-

tion 3.2.7. Each available module’s query function is invoked to find out if the module

wants to run and its associated priority. Modules that want to run are ranked in prior-

ity; the module with the highest priority is selected. All other modules are closed and

finalized.

The selected module has its initialization function invoked. It accepts a list of peer

process entries (based on the GPS data received frommpirun or one of the spawning

parent processes). Most modules simply invoke the “addprocs” function with the process

list (see below).

The module also returns the maximum communicator ID (CID) and tag value that

it allows. These values are propagated to the relevant areas in the MPI layer for error

checking purposes. Most modules will be able to support the full range of CID and tag

values (i.e., the maximum integer value supported by the type), but at least one of LAM’s

rpi modules packs the CID and tag into a bit-mapped field, and therefore must constrain

their values.
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5.1.4 Adding and Removing Processes

When a process entry is added to or removed from the process list, the selectedrpi

module must be informed. Two module API functions must be provided for this purpose:

“addprocs” and “rmprocs,” respectively. Modifying the process list is a synchronous ac-

tion (i.e., it is acceptable to block); it will only happen duringMPI INIT, MPI FINALIZE,

or the MPI-2 dynamic function calls. Process entries are reference counted; their inclu-

sion in a group increments the reference count. When all groups containing a process are

freed (e.g., when connected processes disconnect), the process entry’s reference count

will go to zero, naturally triggering cleanup procedures for relevant data structures.

The addprocs function does whatever therpi module needs in order to setup point-to-

point communication. That may involve exchanging some data using LAM’s out-of-band

communication system, opening additional communication channels, or simply saving

location information for later use. Therpi module typically caches information on the

new process entry as a result of the initial setup. Since adding processes is a synchronous

action and all processes have the same ordering in their process list, it is known that all

peers will be adding processes simultaneously, and blocking actions (such as opening

sockets) can proceed in a known, deadlock-free order.

Similarly, the rmprocs function frees any resources associated specifically with the

process entry and clears any cached data.

5.1.5 Request Lifecycle

As the name “Request Progression Interface” implies, therpi component interface

follows the life of an MPI request. Movement of bytes in a message attached to a request

is therefore a side-effect; it is not directly part of this API.

A request’s life follows this cycle (shown in Figure5.2):

• Building. Storage is allocated and initialized with request data such as datatype,
tag, etc. The request is placed in theinit state. It is not to be progressed and is
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DestructionDone

Active

Start

InitCreation

Figure 5.2. State progression of an MPI request. After a request is created, it is automati-
cally put in theinit state. Note that upon finishing thedonestate, non-persistent requests
are destroyed, but persistent requests are moved back to theinit state.

therefore not linked into the active request list.

• Starting. The request is now made a candidate for progression and is linked into
the active request list.

It is not necessary at this stage for any data transfer to be done by therpi module,
but this is not precluded. All that is required is that the request’s progression state
be correctly set. Depending on therpi module and the circumstances, the request
will be moved into thestart, active, or donestate.

• Progression.The request is progressed in stages until it is complete. The request
is moved from thestart state to theactivestate as soon as any data is transferred.
It is is moved from theactiveto thedonestate once all data is transferred and all
required acknowledgments have been received or sent.

• Completion. When completed, the request is either reset to theinit state ready for
restarting (if persistent) or destroyed (if non-persistent).

5.1.6 Progression

Each module has anadvancefunction that is the main entry point into its progression

engine. When the advance function is invoked, therpi module generally performs the

following actions:

• Looks for new items in the active request list and starts them.

– For send requests: Because of MPI’s strong message ordering guarantee, mes-
sages may not get sent immediately, but instead queued up behind other mes-
sages that are awaiting transmission.
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– For receive and probe requests: Search through messages that have been re-
ceived but not yet matched with a request. If a match is found, either complete
the request (if the message has already been fully received) or mark it in the
active state and let it progress normally (if the message has not yet been fully
received).

• Attempts to progress any send requests in the active state. Continue progressing
any messages awaiting transmission, and/or check for completion of previously
sent messages.

• Checks for and handles incoming traffic to progress receive requests in the active
state. Match incoming messages with pending receive requests and receive the
message data into the corresponding request’s buffer. Incoming messages that do
not match any pending requests areunexpected, and are queued separately.

Each module will likely perform these actions differently, depending on the nature of

the underlying communications architecture.

5.1.7 “Fast” Send and Receive

An optimization is included in the top-levelMPI SEND andMPI RECV functions:

if the active request list is empty when these functions are invoked, and if therpi module

supports it, the correspondingfastsend or receive function will be invoked on the module.

No request is made for fast sends and receives; the entire queue structure is bypassed.

The overriding assumption is that since there is nothing else pending transmission or

reception, this message can be sent or received directly, thereby avoiding some latency.

Depending on the underlying communications architecture, fast functions may require

considerable logic to be able to handle partial sends, interleaved receives, rendesvouz

protocols, etc. For example, thetcp rpi module included in the LAM/MPI distribution

has fairly lengthy fast send and receive implementations. This is justified because it

noticeably decreases the latency of eager messages, particularly when both sender and

receiver use the fast implementations.
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5.1.8 Memory Management

MPI-2 introduced two memory allocation functions:MPI ALLOC MEM andMPI -

FREE MEM. As described in the MPI-2 standard, message passing and remote memory

access operations run faster in some systems when accessing specially allocated memory.

These functions allow the MPI implementation to provide the user will “special” memory

that can be used for these purposes.

Therpi interface has two back-end functions to handle these MPI calls. If the selected

rpi module supports these functions, they are invoked when the corresponding top-level

MPI functions are called. It is the module’s responsibility to perform any tracking nec-

essary for special memory allocated and freed by these functions, as well as recognizing

the ability to leverage the use of such special memory in data transfer operations (i.e., dis-

tinguish “special” memory from “regular” memory). If therpi module does not provide

these functions, the normal C librarymalloc() andfree() are used.

5.1.9 Checkpoint / Restart Functionality

rpi modules can insert arbitrary functionality during relevant phases of LAM’s check-

point/restart procedures. Details of how therpi component framework is used in check-

pointing are described in Chapter7.

5.1.10 Module Finalization

The “rmprocs” interface function mentioned in Section5.1.4is actually a special case

of module finalization. Therpi module’s finalize interface function accepts a pointer to a

process entry. If this pointer is non-NULL, therpi module must only finalize its use of that

process entry. This will only happen for MPI-2 dynamic processes; entries that represent

peer processes inMPI COMM WORLD will not be finalized untilMPI FINALIZE.

During MPI FINALIZE, the finalization function is invoked with aNULL argument,
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signifying that all MPI point-to-point communication is now complete and the process is

ending. The module can clean up all process entry references that it still has, shut down

any network connections, release resources, etc. This is the last function invoked before

the module is closed.

5.2 Implemented Modules

Six rpi modules are included in LAM/MPI version 7:lamd, tcp, crtcp, sysv, usysv,

and gm. Several of these modules were ported from previous versions of LAM/MPI

(lamd, tcp sysv, andusysv). These previous RPI implementations needed to be adapted

to therpi component framework and have their functionality augmented to include new

interface functions that were not previously supported. Thecrtcp module is a modifica-

tion of thetcp module and is described below. Thegm module is new to LAM version 7;

it was implemented solely within therpi component framework.

Although all the modules are implemented differently, they each have at least some

common characteristics. For example, most make the distinction between short messages

(usually sent eagerly) and long messages (usually sent with a rendesvouz protocol, poten-

tially using RDMA). These modules serve both as reference message passing algorithms

as well as verification of therpi module interface design.

5.2.1 Thelamd Module

Thelamd rpi module uses the LAM out-of-band communication mechanism for MPI

communication. In prior, monolithic implementations of LAM/MPI, daemon-based com-

munication was the only mechanism available for MPI messages. It has been ported to all

new versions of LAM/MPI since then (including converting it to anrpi module) mainly

as a reference implementation for the RPI abstraction.

Using thelamd module, MPI messages originate in a source process and are sent
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Figure 5.3. MPI message passing using thelamd rpi module in two scenarios: (a) when
the source process is on node 0 and the destination process is on node 1, and (b) when the
source and destination processes are on the same node.

first to the local LAM daemon, then to the destination LAM daemon, and finally to the

destination process. When the source and destination processes are on the same machine,

then the local and destination LAM daemon are effectively the same – only one LAM

daemon is involved. Figure5.3shows these scenarios graphically. While this model does

create additional latency by adding network hops, it has been maintained in LAM because

it offers true asynchronous message passing progress.

All messages sent from process to the local LAM daemon are sent eagerly. Similarly,

when the message has been fully transmitted to the destination LAM daemon, the destina-

tion process eagerly receives it in a single transfer. This model allows the MPI library to

send an entire message to the local LAM daemon and then return to the user application

while the LAM daemon progresses sending the message to the remote LAM daemon.

A limitation of the lamd rpi module is that due to the nature of LAM’s out-of-band

messaging, MPI tags and communicator identifiers are bit-packed into fixed-width fields.

These fields are relatively small and are unlikely to be changed due to their wide usage

throughout the LAM code base. This directly impacts both the maximum values that can

be used for tags and the number of communicators that can be used in an MPI process.

Although both values are within the limits specified by the MPI standard, some MPI
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applications make implicit assumptions about arbitrarily large integer tag values that will

cause run-time errors with thelamd module.

Although clearly not suitable for all applications, thelamd rpi module can provide

high performance for parallel applications that rely on asynchronous message passing

progress and are not sensitive to latency.

5.2.2 Thetcp andcrtcp Modules

Originally written in 1996, the TCP-based MPI point-to-point was the second RPI

implementation to be written. It pioneered LAM’s use of “client-to-client” (so called

“c2c”) communication – the concept of sending MPI messages directly from one process

to another without an intermediary agent (such as a LAM daemon).

This led to the initial abstractions to allow compile-time switching, which later evolved

into limited support for run-time switching between the TCP and LAM daemon imple-

mentations. Both the LAM daemon and c2c implementations could be compiled in to

a single MPI process and a run-time switch chose which to use. This approach worked

well, but the interfaces to the implementations were not identical, forcing many special

cases in the MPI layer to decide which RPI implementation to call, different handling for

the two different message passing models, and other internal accounting issues. As such,

it was not a pure component-based approach.

Socket Management

LAM’s tcp rpi module implements MPI point-to-point message passing over TCP

sockets. DuringMPI INIT, the tcp module uses LAM’s out-of-band communications to

exchange TCP port numbers between peer processes and open sockets accordingly. At

the end ofMPI INIT, therefore, each MPI process has a TCP socket open to every other

MPI process. A similar procedure occurs during the MPI-2 dynamic functions (MPI -

COMM SPAWN, MPI COMM SPAWN MULTIPLE, MPI COMM ACCEPT, MPI -
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COMM CONNECT, andMPI COMM JOIN); TCP sockets are opened between newly-

connected MPI processes.

Maintaining open TCP sockets to all MPI processes is beneficial for two reasons.

First, it is convenient from an implementation standpoint (there is no need to handle asyn-

chronous incoming socket connection requests). Second, all setup overhead is incurred

during MPI INIT and the MPI-2 dynamic functions; MPI message passing is never de-

layed by socket rendesvouz and initialization. However, this approach does have the

notable drawback of creating scalability issues for large parallel applications. For exam-

ple, most operating systems only support a fixed number of file descriptors per process.

In order to scale to thousands of MPI processes, operating system parameters may need

to be adjusted to increase the number of file descriptors in each process. The number of

file descriptors should not be increased to be arbitrarily large since each descriptor re-

quires memory and resources – a balance needs to be found for a given application, target

environment, and operating system.

The main difficulty in a non-blocking TCP message passing system is the fact that

TCP supports partial reads and writes. This forces single-threaded message passing sys-

tems (such as LAM/MPI) to have a polling-based, re-entrant state machine that maintains

the state of messages with relation to the socket that they are traveling across. A sin-

gle message may take multiple iterations through the state machine before it is actually

transferred.

Thecrtcp Module

A second TCP-based module was implemented when checkpoint/restart support was

added to LAM/MPI:crtcp. Thecrtcp module is identical to thetcp module except that it

supports checkpointing and restarting. Specifically, it will react to incoming checkpoint

signals and drain the network of messages before allowing the checkpoint to continue.
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Additionally, upon restart (in a new process), it will mark all sockets as stale and re-invoke

the addprocs function to create new connections.crtcp is distinct fromtcp because of

slight performance degradation due to additional thread-level locking that is required.

Hence,crtcp should only be used when checkpoint/restart services are required. LAM’s

checkpoint/restart services are discussed in further detail in Chapter7.

5.2.3 The Shared Memorysysv andusysv Modules

The sysv andusysv modules use TCP for communication with MPI processes on

different nodes and shared memory for processes on the same node. The only difference

between the two modules is the mechanism used for locking access to shared resources:

the sysv module uses System V semaphores while theusysv module uses spin locks.

Semaphores will generally provide better performance when there are more MPI pro-

cesses on a machine than CPUs; a case where processes must yield to each other. Spin

locks obtain better performance when the number of MPI processes on a node is less than

or equal to the number of CPUs. In this case, each process will spin in a tight loop waiting

for access and will never be forced to yield.

For off-node communication,sysv andusysv directly invoke thetcp module by ex-

ploiting knowledge of thetcp module’s internals. This is an abstraction violation that has

existed for several years and was not fixed in the recent conversion to a component-based

architecture. For on-node communication, one System V shared segment is shared by all

MPI processes on the same node. This segment is logically divided into three areas. The

total size of the shared segment (in bytes) allocated on each node is

(2× C) + (N × (N − 1)× (S + C)) + P

whereC is the cache line size,N is the number of processes on the node,S is the maxi-

mum size of short messages, andP is the size of the pool for large messages,

The first area (of size(2×C)) is for the global pool lock. Thesysv module allocates
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a set of six semaphores for each process pair communicating via shared memory. In

some environments, the operating system may need to be reconfigured to allow for more

semaphore sets if running tasks with many processes communicating via shared memory.

The second area is for “postboxes,” or short message passing. A postbox is used

for one-way communication between two processes. Each postbox is the size of a short

message plus the length of a cache line. There is enough space allocated for(N×(N−1))

postboxes. The maximum size of a short message is a configurable module parameter.

The final area in the shared memory area (of sizeP ) is used as a global pool from

which space for long message transfers is allocated. Allocation from this pool is locked

by either a System V semaphore or a spin lock, as described above. The size of this pool

is a configurable module parameter. LAM will try to determine a reasonable value forP

at configuration time if none is explicitly specified. Larger values should improve per-

formance (especially when an application passes large messages) but will also consume

more system resources.

5.2.4 The Myrinetgm Module

Thegm rpi provides low latency, high bandwidth message passing over Myrinet net-

works. It uses the Myricom-provided GM message passing library for communication.

The GM library interfaces with a companion kernel module to perform data transfer to

and from the Myrinet hardware. GM’s semantics are unfortunately quite different than

MPI’s semantics; significant bookkeeping and infrastructure had to be implemented in

thegm module to effect MPI semantics with GM.

The GM kernel module uses operating system bypass mechanisms to interface di-

rectly with RAM; data is directly read from and written to target buffers. This requires

that buffers shared with the Myrinet hardware must be “pinned” down in memory – they

cannot be allowed to be paged out by the operating system. Hence, when a buffer is pro-
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vided to the Myrinet hardware, it must be guaranteed not to move elsewhere in physical

memory before the data transfer is complete.

The gm module must actively pin all buffers before they can be used with the GM

library. Operating systems typically have limits as to how much physical memory can

be pinned (either with hard-coded values or resource exhaustion constraints), so thegm

module must keep track of all pinned memory. Additionally, when pinned resources

are exhausted (i.e., when thegm module attempts to pin new memory and fails), an

LRU cache is employed to un-pin memory that is no longer actively being used for data

transfers. Both pinning and unpinning memory are slow operations.

Note that freeing memory that is still pinned causes problems within the Myrinet ker-

nel module. Calls tosbrk(2) , the function which returns memory to operating system,

must be intercepted. Whensbrk() is invoked, thegm module queried to see if any of

the memory to be returned is still pinned. If it is, the module unpins it, and then allows

sbrk() to continue [76].

The GM message passing model is based on event polling [92]. For example, a sender

provides a message buffer to the GM library and then polls an event queue. The Myrinet

hardware and kernel module progress the data transfer independent of the originating

process and place an event in the sender’s event queue when it has completed. Similarly,

receivers pass buffers to the GM library and are notified via the event queue when a

message has been received.

Recent versions of the GM library have included the RDMA “put” and “get” opera-

tions that exhibit slightly lower latency than their send and receive counterparts. Thegm

module currently utilizes these operations for long message transfers.
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5.3 Results

The rpi framework is intended to provide an abstraction layer to implement different

network transport mechanisms for message passing. Performance is critical; the compo-

nent framework cannot be responsible for added latency or loss of bandwidth.

Two main types of tests were run on the implementedrpi modules – correctness and

performance.

5.3.1 Correctness

For correctness, anrpi module has to be able to pass blocking, non-blocking, and per-

sistent messages in all modes of MPI point-to-point communication: standard, buffered,

synchronous, and ready. This is a complex feature set, and is difficult to implement; heavy

testing is required before arpi module can be considered to be functioning properly.

The basis of a correct test is whether a receiver’s message buffer contains the data that

it is supposed to contain (as designated by that test). Specific operations are invoked on

input data that are expected to generate specific output. If the output does not match the

expected result, the test is ruled to have failed. The tests used were derived from the IBM

MPI test suite. Over time, tests have been modified and new tests have been added. All

tests have been run in LAM/MPI as well as other MPI implementations to verify that they

are correct.

The LAM test suite calls every MPI point-to-point function in a wide variety of sce-

narios. It invokes every mode of MPI point-to-point communication, in all three flavors

(blocking, non-blocking, persistent). Additionally, the suite contains tests of collective

operation. LAM’scoll modules are implemented on top of point-to-point functionality,

and therefore effectively add more tests that stress anrpi module. Since the fundamental

philosophy behind anrpi module is the life of an MPI request, the implementation model

that it naturally tends to evoke essentially have a one-to-one mapping with the MPI com-
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munication modes (and blocking/persistent characteristics).1 For example, a buffered

send will invoke the general “send” code path in anrpi module with a small special case

for the buffered mode. Other tests are used to generate specific MPI behavior unrelated to

the communication mode such as unexpected messages, “overtaking” messages, complex

message matching, etc.

Coverage analysis was performed using the GNU Coverage tool (“gcov ”) on Linux.

The gvoc tool was invoked for every test described above and recorded every line in

the LAM source code that was accessed. Table5.1 shows the percentages of code that

were accessed. Note that the percentages are deceptively low; a post-mortem analysis of

exactly which lines were accessed showed that the majority of lines not accessed were

the result of error condition testing. For example, none of the tests pass bad input to MPI

functions (e.g., incorrect datatypes, invalid buffers, etc.), and none of the Unix system and

library calls failed unexpectedly during the tests. Hence, these code paths (which mainly

consisted of passing an error up the call stack) were not exercised, and this accounted

for the seemingly-low coverage percentages. The one exception is thegm module – it

has a fairly low coverage percentage (56%). This is due to the fact that Solaris-specific

code was not activated in the Linux tests (the Myrinet GM library performs differently on

Solaris than on any other operating system). Some code paths are also not being stressed,

indicating that more tests need to be written for thegm module.

5.3.2 Performance

For performance, the goal is to ensure that the abstractions added by the componenti-

zation in LAM 7 did not significantly affect performance as compared to LAM 6. Since

the main point-to-point transport engines essentially did not change between LAM 6 and

7, measuring the performance of each RPI implementation in LAM 6 against its corre-

1This is, of course, not the only way to implement anrpi module. But all the modules included in the
LAM distribution use these kinds of models.
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TABLE 5.1

Test code coverage ofrpi modules

Module Coverage

gm 56%
lamd 81%
tcp 77%
sysv 82%
usysv 86%

spondingrpi module in LAM 7 will show the difference in infrastructure overhead.

Note, however, that the implementations arenotexactly identical between LAM 6 and

7 – other changes were made to the infrastructure and to the individual message transport

engines. Most were small and only for portability between different flavors of POSIX,

but at least one change had a large effect on overall performance, and therefore must be

taken into account.

A memcpy() optimization was added in LAM 7 which dramatically increases local

memory copy transfer rates (indeed, without the optimization, transfer rates are extremely

erratic). This makes the performance of LAM 7 inherently better than that of LAM 6 in

most cases, particularly for the shared memory transports. As such, in order to compare

only the effects of the componentization in LAM 7, thememcpy() optimization was

added to the LAM 6 version used for these experiments.

The rpi performance comparisons described below were run with the NetPIPE ana-

lyzer [118] on the AVIDD-B cluster described in Section4.3.4. The entire cluster, includ-

ing the networks used, was otherwise dormant while the experiments were conducted.
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Figure 5.4. Ping-pong bandwidth measurements between two AVIDD-B nodes using
gigabit Ethernet for communication. This graph compares the performance of raw TCP,
thetcp rpi module (LAM 7), and the TCP RPI implementation (LAM 6).

Thetcp andcrtcp Modules

The tcp andcrtcp modules are identical except for additional bookkeeping required

for checkpointing incrtcp. As such, the performance of thetcp module is measured

here; the performance of the additional overhead required by thecrtcp is measured in

Chapter7.

Figure5.4shows ping-pong performance across gigabit Ethernet of raw TCP, thetcp

rpi module in LAM 7, and the TCP RPI implementation in LAM 6. The performance is

essentially identical across most message sizes. The only noticeable difference is a dip

in both the LAM 6 and LAM 7 performance at 64 KB. This corresponds to LAM’s de-

fault size to switch between an eager send and a rendesvouz protocol, suggesting that the

crossover size should be increased to accommodate the high bandwidth and low latency

of the gigabit Ethernet.
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Figure 5.5. Ping-pong bandwidth measurements between two AVIDD-B nodes using
gigabit Ethernet for communication. This graph shows the effect of increasing the ea-
ger/rendesvouz message to increase performance of messages between 128 KB and 1
MB in the tcp rpi module.

Thetcp rpi module has a run-time parameter allowing the short/long boundary size to

be changed. Figure5.5 shows the effects of increasing this boundary from 128 KB to 1

MB. In an attempt to be easier to read, the graph shows only messages sizes starting with

128 KB. The Figure shows that as the short message boundary increases, the bandwidth

also increases to be almost identical to raw TCP.

Figure 5.6 shows the absolute difference between LAM 7 and LAM 6 ping-pong

measurements. Figure5.7 shows the same values, but expressed as a percentage differ-

ence. Short messages (≤ 10 KB) exhibit variances of up to±6.5%, but these percentages

actually reflect small values and are likely due to experimental noise. For example, in

Figure5.7, the largest difference is at message size of 509 bytes: LAM 7 reports 30.0

Mbps while LAM 6 reports 32.1 Mbps – a difference of 2.1 Mbps. Indeed, this exper-

iment was actually run multiple times – similar graphs showing approximately±6.5%
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Figure 5.6. Ping-pong bandwidth measurements between two AVIDD-B nodes using
gigabit Ethernet for communication. This graph shows the absolute bandwidth difference
between the thetcp rpi module (LAM 7) and the TCP RPI implementation (LAM 6).

were always generated, but the message sizes where the peaks and valleys were located

differed in every run for the small message sizes.

Thesysv andusysv Modules

Figures5.8and5.9show comparisons of the two shared memory point-to-point trans-

ports. Thesysv rpi module performs almost identically as the SYSV RPI implementa-

tion, and actually outperforms LAM 6 for large message sizes. Theusysv rpi module

performs slightly worse than the USYSV RPI implementation, but eventually outper-

forms LAM 6 for large message sizes. Note that the USYSV code uses busy-waiting on

dedicated processors and is therefore extremely latency-sensitive. However, the band-

width difference is actually quite small, and is overtaken for large message sizes. One

identifiable cause for the difference is the cost of calling a function through a pointer ver-

sus direct addressing. An additional pointer dereference is required, leading to at least
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Figure 5.7. Ping-pong bandwidth measurements between two AVIDD-B nodes using gi-
gabit Ethernet for communication. This graph shows the percentage bandwidth difference
between the thetcp rpi module (LAM 7) and the TCP RPI implementation (LAM 6).

some of the overhead shown in Figure5.9.

Thegm Module

The performance of the newgm rpi module cannot be compared to LAM 6 since there

was no prior GM RPI implementation. As such, its performance can only be compared

to native GM message passing. Figure5.10shows that thegm module’s performance is

only slightly lower than native GM message passing.

Figure5.11shows percentage difference in bandwidth between GM and the first ver-

sion of thegm rpi module. Small messages show about a 10-12% overhead compared

to native GM. This is mainly due to the 36 byte envelope that accompanies all MPI mes-

sages. Mid-sized messages jump in overhead, ranging from 15 to 33% as compared to

native GM. Further study optimization is clearly required for mid-level messages. Large

message sizes perform well, leveling off around 3-4% overhead as compared to native
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CHAPTER 6

MPI COLLECTIVE ALGORITHMS

Although the performance of the MPI collective operations [48, 52, 57, 58, 91, 120]

can be a large factor in the overall run-time of a parallel application, their optimization

has not necessarily been a focus in some MPI implementations until fairly recently [137].

Such implementations typically only included linear and/or logarithmic collective algo-

rithms that provided correct answers but not necessarily in an optimized manner. Other

MPI implementations (such as vendor-provided MPI implementations) provided at least

some algorithms tuned for specific software/hardware environments.

MPI collectives are only a small portion of a compliant, production-quality implemen-

tation of MPI; implementors tend to give a higher priority to reliable basic functionality of

all parts of MPI before spending time tuning and optimizing the performance of smaller

sub-systems. As long as the MPI implementation’s collectives returned correct answers,

MPI implementors could overlook their performance deficiencies and instead focus on

other issues (such as MPI-2 features such as dynamic processing and one-sided commu-

nication).

As a direct result, the MPI community has undertaken active research and develop-

ment of optimized collective algorithms [21, 63, 73, 136, 145]. Although design and

theoretical verification is the fundamental basis of a new collective algorithm, it must

also be implemented and used in both benchmark and real-world applications (poten-

tially in a variety of different run-time / networking environments) before its performance
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can be fully understood. The full cycle of design, development, and experimental testing

allows the refinement of algorithms that is not possible when any of the individual steps

are skipped.

Much research has been conducted in the area of optimized collective operations re-

sulting in a wide variety of different algorithms and technologies. The solution space is

vast; determining which collective algorithms to use in a given application may depend on

multiple factors, including the communication patterns of the application, the underlying

network topology, and the amount of data being transferred. Hence, one set of collective

algorithms is typically not sufficient for all possible application / run-time environment

combinations. This is evident in the range of literature available on different algorithms

for implementing the MPI collective function semantics.

There are significant barriers to entry for third party researchers when implementing

new collective algorithms. Complex practical issues arise when testing new algorithms

with a wide variety of MPI applications in a large number of run-time environments. To

both ease testing efforts and to make the testing environment as uniform as possible, it is

best if MPI test applications can utilize the new algorithms with no source code changes.

This will even allow real world MPI applications to be used to for testing purposes; the

output and performance from previous runs (using known correct collective algorithms)

can be compared against the output when using the collective algorithms under test.

Common approaches for third parties have included the following:

• Use the MPI profiling layer. This is exactly what the MPI profiling layer is for:
intercepting MPI functions (and potentially replacing them with something else
entirely). Any MPI implementation with a profiling layer and any legacy MPI ap-
plications can therefore be used with no changes. But the MPI profiling system
only allows one replacement layer at a time; replacing collective functions with al-
ternates would disallow other MPI performance tools that use the profiling layer,
for example.

• Edit an existing MPI implementation. To date, this is probably the most common
approach; download an open source MPI implementation and edit the back-end
implementation. This also allows unmodified MPI applications to use new algo-
rithms. The obvious drawback is that an MPI implementation is a large software

103



project; finding right data structures and functions to re-implement the collective
algorithms, as well as observing any documented (or undocumented) restrictions
in the collectives may be a challenge. Some MPI implementations make this eas-
ier than others (e.g., replacing sets of function pointers on communicators), but it
still requires either modification of the MPI implementation or breaking abstraction
barriers to modify opaque MPI data structures. Hence, the learning curve to add or
replace functionality in the MPI implementation may be quite large. Additionally,
editing an MPI implementation effectively “forks” the source code – all changes
will need to be applied to future versions, likely causing recurring maintenance
issues.

• Create a new MPI implementation. Entirely new MPI implementations have been
created simply to design, test, and implement new MPI collective algorithms [74,
21]. Although all aspects of the MPI collective algorithms can therefore be con-
trolled, and unmodified MPI applications can use the new algorithms, the overhead
to produce a working MPI implementation is enormous. The time necessary to
create a new MPI implementation is likely to be prohibitive.

• Use alternate function names. This is perhaps the easiest of approaches; implement
a newMPI BARRIER algorithm in a C function namedMy MPI Barrier() .
This method has fewer implementation restrictions than the previous approaches,
but has the significant drawback that legacy MPI applications will not use the new
algorithms without either a source code change or a re-compilation with header
files that remap the MPI collectives to the new functions. While this approach is a
fine model for development, it may make testing and deployment difficult.

This chapter describes thecoll component type in LAM/MPI, and how it avoids the

problems of the approaches listed above and provides a per-communicator algorithm se-

lection mechanism from the set of available modules. AppendixD provides a detailed

technical reference of thecoll component framework.

Acknowledgements:The lam basic module was strongly influenced by the collec-

tive algorithms in LAM/MPI v6.5. The design of the interface and component architecture

as well as the implementation ofsmp module were both new work and performed by me.

6.1 Design

The main design goal of thecoll component framework is to allow easy implementa-

tion of new MPI collective algorithms. To that end, since every algorithm is different, the

simplest interface abstraction is to have a different function for every top-level MPI col-
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lective function. This allowscoll modules to focus on high-performance implementations

of algorithms rather than an arbitrarily complicated module interface.

Top-level MPI collective functions have been reduced to thin wrappers that perform

error checking before invoking back-endcoll module interface functions. The scope of

a coll module is a communicator. Specifically, onecoll module is assigned to each com-

municator; this module is used to implement all MPI collectives that are invoked on that

communicator. For example,MPI BCAST simply checks the passed parameters for er-

rors and then invokes the back-end broadcast function on thecoll module assigned to the

communicator.

The framework actually specifies two function pointers for each top-level MPI collec-

tive; one for intracommunicators and one for intercommunicators. Since the algorithms

for each, by definition, will be different, it makes sense to split them into two different

functions. The top-level MPI function will invoke the correct function depending on the

type of the communicator.

Modules are free to implement the standardized MPI semantics in any way that they

choose. Most, however, use one or more of the following models: layered over point-to-

point, alternate communication channels, or layered over anothercoll module.

6.1.1 Layered over Point-to-Point

A simple implementation model is to utilize MPI point-to-point functions to send data

between processes. For example, usingMPI SEND andMPI RECV to exchange data

is both natural and easy to understand, freeing thecoll module author to concentrate on

the module’s algorithms and remain independent of how the underlying communication

occurs. This model has been used extensively by MPI implementations [19, 51] and third

party collective algorithm researchers [79].
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6.1.2 Dedicated Communication Channels

Recently, researchers have been exploring the possibility of avoiding MPI point-to-

point functionality, and instead using alternate communication channels for collective

communications. Some network interfaces contain native primitives for collective opera-

tions and/or streamlined one-sided operations which can lead to significant performance

gains as compared to using traditional point-to-point methods. Examples of alternate

communication channels that at least partially support collective operations include (but

are not limited to): shared memory [90], UDP multicast [74], Myrinet [150], and Infini-

band [80].

MPI collectives are synchronous in nature, allowing a considerably simpler imple-

mentation model compared to those required to support MPI’s point-to-point functional-

ity. Complications arise, however, when supporting multi-threaded MPI applications that

allow independent progress in each thread. For example, multiple threads in a process

may simultaneously invoke the samecoll module on different communicators. LAM/MPI

does not yet supportMPI THREAD MULTIPLE, so this is not [yet] much of a factor.

Hence,coll modules utilizing their own communication channels can utilize simplistic

models.

6.1.3 Hierarchicalcoll Modules

Thecoll framework was carefully designed such thatcoll modules can be re-used at

run-time in two ways.

First, thecoll module “lam basic,” as its name implies, is a basic implementation of

all of the MPI collectives. It can be used with any communicator and topology, although

typically with less-than-optimal performance. The purpose of this module is to provide a

baseline implementation of as many MPI algorithms as possible, allowing other modules

to use its routines as necessary. For example, a module that only provides an optimized
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Figure 6.1. Four processes are distributed across two nodes.MPI COMM WORLD con-
tains all four processes. Two sub-communicators (shown vertically) each contain the two
processes local to their respective nodes. One “bridge” communicator (shown horizon-
tally) contains a representative process from each node.

scatter algorithm implementation will automatically use the methods from thelam basic

module for all other collective routines. This allows the optimized scatter module to be

used in any MPI program even though it only implements a small number of new/opti-

mized routines.

A second, more complex, model involves using a hierarchy ofcoll modules to imple-

ment a single, top-level MPI collective. This is useful when a collective is invoked on a

communicator that spans multiple kinds of networks. For example, Figure6.1shows two

SMPs, each running two MPI processes. A single, top-level MPI communicator contains

all four processes. Thecoll module used by the top-level communicator creates three

sub-communicators: one for each SMP (containing the two processes on each node), and

a third “bridge” communicator connecting one representative process from each node.

Note that each sub-communicator will have its owncoll module. This hierarchical ar-

rangement of communicators effectively allows each network to utilize its own optimized

coll module, resulting in an efficient movement of data across each medium.

This model will be explained in more detail in Section6.2.2, where thesmp coll
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Figure 6.2. Phases in the life of acoll module. When a module is created, the selec-
tion process determines whichcoll module will be used. The selected module is then
initialized and is ready for normal use (i.e., invoking collectives) and checkpoint/restart
services. When the communicator is destroyed, thecoll module finalizes itself for that
scope.

module will be discussed as an example implementation.

6.1.4 Module Lifecycle

Since there are potentially manycoll scopes per process, modules have a distinct

lifecycle in each scope. There are five phases in acoll module’s lifecycle: selection,

initialization, checkpoint / restart, normal operation, and finalization. Figure6.2 shows

these phases and the corresponding MPI functions that trigger them. Note that a module

may be involved in multiple lifecycles simultaneously;coll modules have a one-to-many

relationship with communicators.

Selection

As each communicator is created (includingMPI COMM WORLD andMPI COMM -

SELF), a coll module is selected from all available modules. The algorithm used is es-

sentially the same as what is described in Section3.2.7; all available modules are passed

108



the newly-created communicator and asked if they want to run. If the module wants to

run, it provides a priority. The priorities of all modules who want to run are ordered and

the module with the highest priority is selected.

Note that no modules are closed as a result of not being selected. Since selection is a

per-communicator basis, available modules are not closed untilMPI FINALIZE.

Initialization

Once acoll module is selected for a given communicator, it is initialized. Specif-

ically, the module’s initialization function is invoked, passing the target communicator

as an argument. The initialization function performs any one-time setup required by the

module. By definition, a communicator’s member processes and ordering are static, al-

lowing a module’s initialization routine to pre-compute any data structures that will later

be used during collective routines. This design emphasizes the potential run-time opti-

mizations that can be obtained by shifting as much overhead calculation and coordination

to the one-time initialization function as possible. This can reduce the amount of com-

putational overhead in the run-time of collective routines. Thecoll framework provides a

hook on the communicator for the module to cache its pre-computation results. All sub-

sequent phases in the module’s lifecycle are invoked relative to a communicator for which

it was selected; the communicator is passed as an argument to all invocation functions.

This allows the module to retrieve its communicator-specific pre-computation data when

a collective function is invoked.

Note that the pre-computing efforts may include coordination with other MPI pro-

cesses in the communicator (e.g., via MPI point-to-point functions). Constructing effi-

cient, deadlock-free coordination algorithms is made easier by the fact that all processes

in the communicator will be initializing theircoll module at the same time (since com-

municator construction is synchronous).
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The MPI standard states that only one collective may be invoked on a communicator

at a time (including communicator constructors and destructors). Hence, even though

the selection or initialization functions of a given module may be executed in multiple

threads simultaneously, they will be operating on different communicators. This design

encourages modules to only use private data that is cached on the target communicator,

and is therefore not likely to cause thread synchronization issues or race conditions.

Once a module has been initialized, it returns a list of function pointers for its algo-

rithm routines to thecoll framework which are then assigned to the communicator. These

functions are later invoked by thecoll framework during the “normal usage” phase in the

module’s lifecycle whenever a top-level MPI collective function is invoked. The module

is then ready to be checkpointed or used for collective operations.

Checkpoint / Restart

coll modules can insert arbitrary functionality during relevant phases of LAM’s check-

point/restart procedures. Details of how thecoll component framework is used in check-

pointing are described in Chapter7.

Normal Usage

After acoll module has been initialized with a communicator, that module’s collective

routines will be invoked whenever an MPI collective function is invoked on that commu-

nicator. Each top-level MPI function is essentially a thin wrapper function that mainly

performs error checking on the passed parameters before invoking the corresponding

coll module’s collective routine. Communicator-specific pre-computed data (previously

cached on the communicator during initialization) may be retrieved and used to optimize

the performance of the module’s collective routine.

As mentioned in the Initialization section above, the selected module returns a list of

function pointers that are assigned to the communicator. For each top-level MPI collec-
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tive function, two module function pointers are provided: one for when the collective is

invoked on an intracommunicator, and a second for when the collective is invoked on an

intercommunicator.

For example, when theMPI Bcast() function is invoked onMPI COMM WORLD,

it checks all of the parameters that are passed into it. It then invokes the the module’s

broadcast function pointer (the decision whether to use the intercommunicator broadcast

or intracommunicator broadcast was made when the communicator was created) on the

coll module that was selected for that communicator when it was created.

Finalization

The final phase in acoll module’s lifecycle on a communicator occurs when the com-

municator is destroyed. The module’s finalization method is responsible for cleaning up

all resources associated with the communicator that is being destroyed. This typically

entails freeing any pre-computation data from the communicator’s cache.

6.2 Implemented Modules

Two coll modules are included in LAM/MPI version 7:lam basic andsmp. These

modules serve both as reference algorithms as well as examples of two different imple-

mentation models.

6.2.1 Thelam basic Module

The lam basic module contains a full set of intracommunicator collectives; inter-

communicator algorithms have not yet been implemented. Although relatively naive, the

lam basic routines can be used on any communicator (regardless of underlying topol-

ogy), switching betweenO(n) andO(log(n)) algorithms depending on the number of

processes in the communicator. The core algorithms used are reliable and mature; they

have existed in LAM/MPI production code for several years.
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As a mature implementation of collectives in LAM/MPI, its behavioral characteristics

were well understood. This made it a natural choice for both influencing the design of the

coll component interface, but also as a firstcoll module implementation. The successful

port of the legacy LAM/MPI collective algorithms to the new framework served as a

validation of the overall design.

All of the lam basic algorithms use MPI point-to-point functions for moving data

between MPI processes. For example,MPI BCAST has both a linear and a logarithmic

implementation. In the linear implementation, the root process loops overMPI SEND

while all other processes block on anMPI RECV. The logarithmic implementation uses

a traditional binomial tree; parent processes send data withMPI SEND while child pro-

cesses block inMPI RECV.

The lam basic module is used as a fallback for modules that do not implement a full

set of collective algorithms. For example, if a module does not implement its ownMPI -

SCATTER, thecoll framework will automatically invoke thelam basic MPI SCATTER

instead.

6.2.2 Thesmp Module

Thesmp module was also instrumental in shaping the design of thecoll framework.

Its algorithms are based on the research from the MagPIe project [77, 78, 79], MagPIe

focused on uniprocessors communicating across a WAN; thesmp module is oriented

to SMPs communicating on a LAN. The end effect is the same: two levels of network

latency that can be exploited at run-time. Segmenting the communicator into groups of

local process peers and electing representatives from each group to communicate with

other groups provides a natural segregation of local and global communications.

Similar to thelam basic module, the MagPIe reference implementation software lay-

ers its communication over MPI point-to-point functions. However, the MagPIe software
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implements much of its own infrastructure: calculating and maintaining groups, using al-

gebraic group operations for membership and maintenance, and determining process rank

IDs relative to different groups.

This functionality is also available in the MPI through group and communicator man-

agement API functions. Using the standard MPI functions to create local process groups

(sub-communicators) and translate rank identifications between groups dramatically sim-

plified the implementation of the MagPIe algorithms in thesmp module. Using native

MPI functionality for the management of MagPIe pre-computation data evolved into the

idea of having onecoll module be able to create sub-communicators – each which have

their owncoll module – to create hierarchically-layered collective modules.

A direct implication of this model is that thecoll framework must be able to handle

recursive communicator creation. During the construction of a communicator, the ini-

tialization of acoll module may cause the creation of another communicator. This may,

in turn, trigger the creation of yet another communicator (and so on). This also applies

to the finalization phase: when the top-level communicator is finalized, it will likely call

MPI COMM FREE on any sub-communicators created during initialization.

For example, in the MagPIe broadcast algorithm (adapted for a SMPs-on-a-LAN envi-

ronment) the root broadcasts the data to the set of representatives from the other process

groups. Each representative (including the root) then broadcasts to the members of its

local group. This is shown graphically in Figure6.3.

During the initialization phase of thesmp module, the three sub-communicators

shown in Figure6.3 are created: two containing local-only processes, and one “bridge”

communicator between processes 0 and 3. This allows the implementation of the MagPIe

broadcast algorithm to be reduced to the pseudocode shown in Figure6.4.

Note that there are two calls toMPI BCAST: these broadcasts are effected using

whichever module was selected when the sub-communicators were created. Depending
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Figure 6.3. MagPIe algorithm for broadcast from process 0. Process 0 sends to its peer on
the remote node (process 3). Each then do a local broadcast to the remaining processes
on their nodes (processes 1 and 2, and processes 4 and 5, respectively).

� �
if (i am a representative){

MPI Bcast(buffer, ..., bridgeroot, bridgecomm);
}
MPI Bcast(buffer, ..., localroot, localcomm);� �
Figure 6.4. Pseudocode showing theMPI BCAST implementation using a hierarchi-
cal implementation approach.bridge root , bridge comm, local root , and
local commare all calculated and initialized during the per-communicator initializa-
tion and are cached on the communicator.
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on the number of processes and topology involved, the broadcasts may be optimized

according to however the selectedcoll module is implemented. For example, iflam -

basic is selected, a logarithmic algorithm will be used if the number of processes is large

enough.

6.3 Results

Thecoll framework is intended to provide an easy to use, high-performance platform

for third parties to implement and experiment with collective algorithms in LAM/MPI. As

such, it is critical that the framework itself not contribute additional overhead, potentially

negating performance gains from optimized collective algorithms.

Two main types of tests were run on the implementedcoll modules – correctness and

performance.

6.3.1 Correctness

Eachcoll module was checked for functional correctness. Correctly functioningcoll

modules perform MPI collective operations in accordance with their specifications in the

MPI standard. With the exception ofMPI BARRIER, all collectives entails movement

and possible combination of user data between MPI processes.MPI BARRIER only

performs a synchronization – no user data is required to be transmitted.

Each collective operation was subject to a battery of tests designed to check its basic

functionality as well as uncommon cases with unusual input parameters. In all data-

movement collectives, the output buffer is used as the basis for determining whether the

test case passed or failed. Specific operations are invoked on input data that are expected

to generate specific output. If the output does not match the expected result, the test is

ruled to have failed. The tests used were derived from the IBM MPI test suite. Over

time, tests have been modified and new tests have been added. All tests have been run in
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LAM/MPI as well as other MPI implementations to verify that they are correct.

Each test was run in a variety of conditions on both modules in order to trigger as many

code paths within the module as possible. The conditions are generated from mixing

elements of three domains:number of processes, schedule of processes per node, and

number of nodes. Thenumber of processesdomain is comprised of the following cases:

• One: Only one process is run. This may trigger a special case in a collective routine
where no loops are performed, and a simply memory copy is used. Or it may be a
no-op (e.g.,MPI BARRIER).

• Power of 2: 2N processes are run, for some valueN > 0. Several algorithms can
be easily optimized for powers of two; running with2N processes checks to see if
special case algorithms are functioning properly.

• Non power of 2: (2N + X) processes are run, for some values ofN andX where
the result is not a power of two. While it is frequently easy to optimize for2N

processes, it can be harder to ensure that algorithms work for the general case where
the number of processes is not a power of two. This test ensures that special cases
for handling “straggler” processes are handled properly.

Theschedule of processes per nodedomain is comprised of the following cases:

• One process per node: Exactly one processes per node is launched. This will
trigger the selection of thelam basic coll module.

• P processes per node: Exactly P processes are launched on each node, where
P > 1. This will trigger the selection of thesmp coll module.

• Pi processes per node: Each node receives a potentially different number of pro-
cesses, wherePi 6= Pj for some values ofi andj, andPk 6= 1 for some value ofk.
This should also force the selection of thesmp coll module, and potentially trigger
special case code ifPn = 1.

Thenumber of nodesdomain is comprised of the following cases:

• 1 node: All test processes are launched on a single node. This tests single-node
message passing, particularly relevant if shared memory is used for optimized mes-
sage passing.

• 2M nodes: The test processes are spread across2M nodes, for someM > 0. Some
algorithms use special optimizations for2M nodes or processes; this domain case
is intended to trigger those code paths.

• (2M + X) nodes: The test processes are spread across(2M + X) nodes, for some
values ofM andX where the result is not a power of 2. Some algorithms use
special optimizations for2M nodes or processes; this domain case is intended to
trigger alternate code paths and ensure that the corner cases are handled properly.
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TABLE 6.1

Summary of MPI Collective results on 1 node

Number of processes
Schedule 1 2N 2N + X

1
√

NA NA

P NA
√ √

Pi NA NA NA

TABLE 6.2

Summary of MPI Collective results for2M nodes

Number of processes
Schedule 1 2N 2N + X

1 NA
√ √

P NA
√ √

Pi NA
√ √

The three dimensions taken together form a3 × 3 × 3 testing cube; each cell in the

cube represents a unique combination of number of processes, schedule of processes, and

number of nodes. Tables6.1, 6.2, and6.3 each show a cross-section of the cube – one

for each “slice” of the third dimension (number of nodes). In each of the Tables, “
√

”

indicates a condition that was tested; “NA” indicates a condition that does not make sense

and was not tested.

Each “
√

” entry in the tables represents a condition that was tested in thelam basic

andsmp modules, as appropriate (thesmp module will only allow itself to be used if the

117



TABLE 6.3

Summary of results for(2M + X) nodes

Number of processes
Schedule 1 2N 2N + X

1 NA
√ √

P NA
√ √

Pi NA
√ √

communicator spans more than one node and there are multiple processes on at least one

node).

Coverage analysis was performed using the GNU Coverage tool (“gcov ”) on Linux.

The gcov tool was invoked for every test described above and recorded every line in

the LAM source code that was accessed. Table6.4 shows the percentages of code that

were accessed. Just as with therpi modules, the percentages are deceptively low. A post-

mortem analysis of exactly which lines were accessed showed that the majority of lines

not accessed were the result of error condition testing. For example, none of the tests pass

bad input to MPI functions (e.g., incorrect datatypes, invalid buffers, etc.), and none of

the Unix system and library calls failed unexpectedly during the tests. Hence, these code

paths (which mainly consisted of passing an error up the call stack) were not exercised,

and this accounted for the seemingly-low coverage percentages.

6.3.2 Performance

The coll performance comparisons described below were run with Pallas Bench-

marks [100] on the AVIDD-B cluster described in Section4.3.4. The entire cluster,

including the networks used, was otherwise dormant while the experiments were con-
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TABLE 6.4

Test code coverage ofcoll modules

Module Coverage

lam basic 75%
gm 87%

ducted. Data-moving collective operations were on 4 MB messages over gigabit Ethernet

and shared memory. Since both implemented modules (lam basic andsmp) use point-

to-point MPI functions for communication, results provided in this section are expressed

in terms of the three LAM 7rpi modules that have corresponding RPI implementations

in LAM 6: sysv, tcp, andusysv.

The lam basic Module

Recall that thelam basic module is based on the same point-to-point algorithms as

were in the previous, monolithic architecture of LAM/MPI in version 6. Therefore, mea-

suring the performance of the same algorithms in two different architectures allows the

comparison of overhead between the two infrastructures.

Results from a token set of collectives are presented in this section:MPI ALLRE-

DUCE, MPI ALLTOALL, MPI BARRIER. Sincelam basic’s implementation ofMPI -

ALLREDUCE is anMPI REDUCE followed by anMPI BCAST, results of these oper-

ations are effectively given as well.

Figures6.5, 6.6, and6.7show the performance ofMPI ALLREDUCE with thesysv,

tcp, andusysv rpi modules, respectively. The reduction performed was a summation

across 4 MB of single-precision floating point values. Messages were transferred across

all processes in a binomial tree pattern, but no effort was made to optimize the tree (e.g.,
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Figure 6.5. Wall-clock execution time forMPI ALLREDUCE on the AVIDD-B cluster
with a 4 MB message on varying numbers of processes using thesysv rpi module and
the SYSV RPI implementation.

maximizing on-node communication and minimizing off-node communication). The Fig-

ures show identical performance between LAM 6 and LAM 7 – no additional overhead

was added by thecoll abstractions.

Figures6.8, 6.9, and6.10show the performance ofMPI ALLTOALL under the same

conditions. Each process initiates sends to and receives from all other processes; there

is little chance to optimize the collective pattern. This algorithm stresses the point-to-

point communications layer. Just as withMPI ALLREDUCE, no additional overhead is

evident with the LAM 7 component architecture.

Finally, Figures6.11, 6.12, and6.13 show the performance ofMPI BARRIER; a

zero-byte message scatter and gather across a binomial tree. Similar to the other two

tested functions,MPI BARRIER shows no additional overhead in the component archi-

tecture implementation.
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Figure 6.6. Wall-clock execution time forMPI ALLREDUCE on the AVIDD-B cluster
with a 4 MB message on varying numbers of processes using thetcp rpi module and the
TCP RPI implementation.
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Figure 6.7. Wall-clock execution time forMPI ALLREDUCE on the AVIDD-B cluster
with a 4 MB message on varying numbers of processes using theusysv rpi module and
the USYSV RPI implementation.
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Figure 6.8. Wall-clock execution time forMPI ALLTOALL on the AVIDD-B cluster with
a 4 MB message on varying numbers of processes using thesysv rpi module and the
SYSV RPI implementation.
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Figure 6.9. Wall-clock execution time forMPI ALLTOALL on the AVIDD-B cluster with
a 4 MB message on varying numbers of processes using thetcp rpi module and the TCP
RPI implementation.
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Figure 6.10. Wall-clock execution time forMPI ALLTOALL on the AVIDD-B cluster
with a 4 MB message on varying numbers of processes using theusysv rpi module and
the USYSV RPI implementation.
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Figure 6.11. Wall-clock execution time forMPI BARRIER on the AVIDD-B cluster on
varying numbers of processes using thesysv rpi module and the SYSV RPI implemen-
tation.
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Figure 6.12. Wall-clock execution time forMPI BARRIER on the AVIDD-B cluster on
varying numbers of processes using thetcp rpi module and the TCP RPI implementation.
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Figure 6.13. Wall-clock execution time forMPI BARRIER on the AVIDD-B cluster on
varying numbers of processes using theusysv rpi module and the USYSV RPI imple-
mentation.
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Thesmp Module

LAM 6 had no equivalent to the Magpie-like algorithms in thesmp module. Results

presented in this section show comparisons of the LAM 7smp module vs. thelam basic

module. Figures6.14, 6.15, and6.16show anMPI ALLREDUCE summation across 4

MB of single-precision floating point values using thesysv, tcp, andusysv rpi modules.

Each graph compares the wall-clock execution time of the same operation using thelam -

basic andsmp coll modules. Recalling that the AVIDD-B nodes are 2-way SMPs, the

results show that the Magpie-based algorithms are able to exploit this fact and achieve

substantial performance improvements.

TheMPI ALLREDUCE results in Figures6.14, 6.15, and6.16show good speedup

at 192 processes: 27.4%, 21.7%, and 25.7%, respectively. As noted above, theMPI -

ALLREDUCE function is implemented as anMPI REDUCE followed by anMPI -

BCAST. Both the reduction and broadcasting algorithms were optimized to reduce off-

node communication. Note, however, that the MPI standard says that all built-in collec-

tive operations are commutative, but makes no guarantees about associativity. The only

guidance that it provides is that an MPI implementation should strive to present the same

reduction result across successive runs when used with the same input data and number of

processes. Since optimizing the reduction algorithm exploits associativity, it is disabled

by default (a run-time SSI parameter can be used to enable it). The graphs in Figures6.14,

6.15, and6.16show the behavior with associativity enabled.

Similarly, Figures6.17, 6.18, and6.19, and Figures6.20, 6.21, and6.22show the per-

formance ofMPI BARRIER andMPI BCAST, respectively, under the same conditions.

In all cases, thesmp module outperforms thelam basic module.

The MPI BARRIER Figures show modest speedups at 192 processes: 9.9%, 8.8%,

and 6.5%, respectively. These speedups are smaller than theMPI ALLREDUCE speedups

because the total number of bytes sent in a barrier is relatively small, reducing the opti-

125



 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0  20  40  60  80  100  120  140  160  180  200

T
im

e 
(m

ic
ro

se
co

nd
s)

Number of MPI processes

LAM 7 sysv rpi / lam_basic coll
LAM 7 sysv rpi / smp coll

Figure 6.14. Wall-clock execution time forMPI ALLREDUCE on the AVIDD-B cluster
with a 4 MB message on varying numbers of processes using thesysv rpi. This graph
shows a comparison of thelam basic andsmp coll modules.
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Figure 6.15. Wall-clock execution time forMPI ALLREDUCE on the AVIDD-B cluster
with a 4 MB message on varying numbers of processes using thetcp rpi. This graph
shows a comparison of thelam basic andsmp coll modules.
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Figure 6.16. Wall-clock execution time forMPI ALLREDUCE on the AVIDD-B cluster
with a 4 MB message on varying numbers of processes using theusysv rpi. This graph
shows a comparison of thelam basic andsmp coll modules.

mization possibilities. TheMPI BCAST Figures are show tremendous performance im-

provements at 128 processes – 45.8%, 43.5%, and 45.4% for thesysv, tcp, andusysv

rpi modules, respectively. Since large amounts of data is involved in the broadcast, mini-

mizing off-node communication has a large impact on the overall performance.
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Figure 6.17. Wall-clock execution time forMPI BARRIER on the AVIDD-B cluster with
a 4 MB message on varying numbers of processes using thesysv rpi. This graph shows
a comparison of thelam basic andsmp coll modules.
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Figure 6.18. Wall-clock execution time forMPI BARRIER on the AVIDD-B cluster with
a 4 MB message on varying numbers of processes using thetcp rpi. This graph shows a
comparison of thelam basic andsmp coll modules.
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Figure 6.19. Wall-clock execution time forMPI BARRIER on the AVIDD-B cluster with
a 4 MB message on varying numbers of processes using theusysv rpi. This graph shows
a comparison of thelam basic andsmp coll modules.
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Figure 6.20. Wall-clock execution time forMPI BCAST on the AVIDD-B cluster with a
4 MB message on varying numbers of processes using thesysv rpi. This graph shows a
comparison of thelam basic andsmp coll modules.
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Figure 6.21. Wall-clock execution time forMPI BCAST on the AVIDD-B cluster with
a 4 MB message on varying numbers of processes using thetcp rpi. This graph shows a
comparison of thelam basic andsmp coll modules.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0  20  40  60  80  100  120  140

T
im

e 
(m

ic
ro

se
co

nd
s)

Number of MPI processes

LAM 7 usysv rpi / lam_basic coll
LAM 7 usysv rpi / smp coll

Figure 6.22. Wall-clock execution time forMPI BCAST on the AVIDD-B cluster with a
4 MB message on varying numbers of processes using theusysv rpi. This graph shows a
comparison of thelam basic andsmp coll modules.
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CHAPTER 7

PARALLEL CHECKPOINT / RESTART

In recent years, the supercomputing community has seen a significant increase in the

CPU count of large-scale computational resources. Seven of the top ten machines in the

November 2002 Top 500 list [142] utilize at least 2000 processors. With machines such

as ASCI White, Q, and Red Storm, the processor count for the largest systems is now on

the order of 10,000 processors – and this increasing trend will only continue. While the

growth in CPU count has provided great increases in computing power, it also presents

significant reliability challenges to applications. In particular, since the individual nodes

of these large-scale systems are comprised of commodity hardware, the reliability of the

individual nodes is targeted for the commodity market. As the node count increases, the

reliability of the parallel system decreases (roughly proportional to the node count). In-

deed, anecdotal evidence suggests that failures in the computing environment are making

it more difficult to complete long-running jobs and that reliability is becoming a limiting

factor on scalability.

However, the MPI standard does not specify any particular kind of fault tolerant be-

havior. In addition, the most widely used MPI implementations have not been designed

to be fault-tolerant. To address these issues, a framework has been designed to meet the

following criteria:

• Generality. The framework must be able to support a wide variety of checkpoint/-
restart mechanisms.

131



• Transparency. The framework implementation of coordinated checkpointing and
rollback recovery must not require modifications to application source code.

• Performance.The framework must not introduce undue overhead to run-time per-
formance.

• Portability. Although back-end checkpoint packages may be specific to particular
run-time environments, the framework itself must be highly portable.

This chapter describes thecrlam andcrmpi component frameworks in LAM/MPI,

and how they address the requirements described above [116, 147].

Acknowledgements:Thecrlam andcrmpi component interfaces were designed un-

der my direction by Sriram Sankaran, who also implemented (also under my direction)

the first versions of theblcr modules. Theself modules were designed by me and imple-

mented under my direction by Prashanth Charapalli. The implementation of the compo-

nent architecture and the follow-upblcr work after its initial implementation were both

performed by me.

7.1 Checkpoint-Based Rollback Recovery

In the context of message-passing parallel applications, aglobal stateis a collection of

the individual states of all participating processes and of the states of the communication

channels. Aconsistent global stateis one that may occur during a failure-free, correct

execution of a distributed computation. Within a consistent global state, if a given process

has a local state that indicates a particular message has been received, then the state of the

corresponding sender must indicate that the message has been sent [7, 23, 93]. Figure7.1

shows two examples of global states, one of which is consistent, and the other of which

is inconsistent. Aconsistent global checkpointis a set oflocal checkpoints, one for each

process, forming a consistent global state. Each local checkpoint is therefore the state

necessary to restart a process and deliver any outstanding messages to it. Any consistent

global checkpoint can be used to restart the parallel process upon failure.
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Figure 7.1. A message-passing system consisting of 3 processes. The blocks on each
line represent when the checkpoint was taken; the line drawn between them establishes
the global state. (a) shows an example of a consistent global state where messagem1 is
recorded as having been sent by processP0 but not yet received by processP1, and (b)
shows an example of an inconsistent global state in which messagem2 is recorded as
having been received byP2 but not yet sent byP1 [35].

Checkpoint/restart techniques for parallel jobs can be broadly classified into three

categories: uncoordinated, coordinated, and communication-induced (these approaches

are analyzed in detail in [35]).

7.1.1 Uncoordinated Checkpointing

In the uncoordinated approach, the processes determine their local checkpoints inde-

pendently. During restart, the set of saved checkpoints is searched for a consistent state

from which execution can resume. The main advantage of this autonomy is that each

process can take a checkpoint when it is most convenient (without regard to its peers).

For efficiency, a process may take checkpoints when the amount of state information to

be saved is small [146].

However, this approach has notable disadvantages. First, there is the possibility of the

domino effect[109] which causes the system to rollback to the beginning of computation,

resulting in the loss of potentially large amounts of useful work. Second, a process may

take checkpoints that will never be part of a global consistent state. Third, uncoordinated

checkpointing requires each process to maintain multiple checkpoints, thereby incurring
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a large storage overhead.

7.1.2 Coordinated Checkpointing

With the coordinated approach, the determination of local checkpoints by individual

processes is orchestrated in such a way that the resulting global checkpoint is guaranteed

to be consistent [23, 34, 81, 133, 141]. This typically involves flushing communication

channels before taking the checkpoint, guaranteeing that outstanding messages have been

received and inconsistent states (such as that shown in Figure7.1(b)) cannot happen.

Coordinated checkpointing simplifies recovery from failure and is not susceptible to

the domino effect since every process always restarts from its most recent checkpoint.

Also, coordinated checkpointing helps reduce storage overhead since only one perma-

nent checkpoint needs to be maintained on stable storage (e.g., storage that is available

even in the presence of failures). The main disadvantage of coordinated checkpointing,

however, is the potentially large latency involved in saving the checkpoints, since a global

checkpoint needs to be determined before the checkpoints can be written to stable storage.

7.1.3 Communication-Induced Checkpointing

The communication-induced checkpointing approach forces each process to take check-

points based on protocol-related information piggybacked on the application messages

that it receives from other processes [114]. Checkpoints are taken such that system-wide

consistent state always exists on stable storage, thereby avoiding the domino effect [17].

Although processes are allowed to take some of their checkpoints independently, in order

to determine a consistent global state, processes may be forced to take additional check-

points. The checkpoints that a process takes independently are calledlocal checkpoints,

while those that a process is forced to take are calledforced checkpoints. The receiver

of each application message uses the piggybacked information to determine if it has to

take a forced checkpoint. The forced checkpoint must be taken before the application
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may process the contents of the message, possibly incurring artificially high latency and

overhead. In contrast with coordinated checkpointing, no special coordination messages

are exchanged in this approach.

7.1.4 Other Uses of Checkpoint/Restart

The ability to checkpoint and restore applications has a number of uses in a parallel

environment besides fault tolerance.

Gang scheduling – checkpointing and restarting all the processes that are part of a

single parallel application – allows for more flexible scheduling. For example, jobs with

large resource requirements can be intermittently scheduled at off-peak times using the

checkpoint/restart capability. Without intermittent scheduling, such large jobs may use

all available resources for long periods of time, effectively locking out other jobs for the

duration. Hence, the ability to stop and resume large jobs allows scheduling of other

available jobs in such a way that the overall system throughput is maximized. Higher

total system utilization can then be realized by allowing the available processes to be

scheduled in such a way that there is optimal use of computing nodes at all times.

Process migration is another feature that is made possible by the ability to save a

process image. If a process needs to be moved from one node to another (perhaps because

imminent failure of a node is predicted) it is possible to transfer the state of the processes

running on that node to another node by writing the process image directly to a remote

node. The process can then resume execution on this new node without having to kill the

entire application and start it over again.

Process migration has also proved extremely valuable for systems whose network

topology constrains the placement of processes in order to achieve optimal performance.

The Cray T3E’s interconnect, for example, uses a three-dimensional torus that requires

processes that are part of the same parallel application to be placed in contiguous loca-
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tions on the torus. This results in fragmentation as jobs of different sizes enter and exit

the system. With process migration, jobs can be packed together to eliminate fragmenta-

tion, resulting in significantly higher utilization [149]. Networks with such constraining

topologies have become less common recently, however IBM’s Blue Gene/L project plans

to constrain communication among processors [140], and more cluster projects may use

them in the future.

On a cluster with a large number of computers, there is a high probability of failure

of a long-running application due to the failure of one or more nodes. In the absence of a

failure-recovery method, these jobs will need to be restarted from scratch, wasting hours

of computation and also bringing down the total system utilization. However, periodically

checkpointing the states of such jobs allows resumption of the execution of these jobs

from their most recently saved states.

7.2 Design

This section presents an overview of the design of the checkpoint/restart system in

LAM/MPI. This implementation does not alter the semantics of any of the MPI functions

and fully supports all of MPI-1 (MPI-2, in particular, dynamic functions, are not yet

supported). The checkpoint/restart system has been designed such that there is a clear

separation between the checkpoint/restart functionality and MPI-specific functionality in

LAM.

7.2.1 Overview

Checkpoint/restart services are implemented in two different component types:crlam

andcrmpi. As their names imply, each type is specific to a major architecture layer in

LAM/MPI. Throughout this chapter, the name “cr” is used when referring to both types

collectively; the individual names “crlam” and “crmpi” are used to discuss a specific
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component type. In general,crlam functionality is used bympirun andcrmpi function-

ality is used by MPI processes.

Thecr module types in LAM/MPI perform the following distinct functions:

• Receive the initial checkpoint request inmpirun .

• Propagate the checkpoint request out to each MPI process.

• Coordinate all SSI modules in each MPI process to be ready for a checkpoint. This
typically entails draining and potentially closing MPI communication channels to
create a consistent global state.

• Invoke the back-end checkpoint functionality in each MPI process.

• Coordinate all SSI modules in each MPI process to recover from a checkpoint. This
typically entails re-opening MPI communication channels and resuming message
passing activities.

Hence, similar to how LAM does not include native message passing on specific types

of networks (it includesinterfacesto companion libraries that perform the native message

passing, such as TCP and Myrinet),cr modules, themselves, do not perform checkpoints.

Instead,cr modules interface to back-end checkpointing systems that are capable of sav-

ing and restoring the relevant state from a serial process.cr modules, therefore, are spe-

cific to particular checkpointing systems.

For an MPI application to be checkpointable, it must meet two criteria: 1) a pair

of cr modules must be selected and 2) all other selected MPI modules must support

checkpoint/restart functionality. MPI applications not meeting these criteria are not er-

roneous; they are simply not checkpointable. The selectedcr modules will coordinate all

other selected modules to prepare them for checkpointing before invoking the back-end

checkpointing system. Similarly, upon restart, thecr modules will again coordinate all

other selected modules to allow them to recover from the restart.

The cr framework designs make two other important assumptions. First, although

they play an important role during a checkpoint, the LAM daemons are not a logical part

of an MPI application (nor do they contain any state specific to MPI-1 applications), and
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Figure 7.2. Three phases of checkpoint services in LAM/MPI parallel applications.

are themselves not checkpointed. Second, thecr design requires the use of a threads

package on the target platform.

LAM/MPI uses a coordinated approach to checkpointing MPI jobs: sincempirun

is the startup coordination point for MPI processes, it was the natural choice to serve

as the entry point for a checkpoint request to be sent to a parallel job. The mechanism

for initiating and delivering the checkpoint request is defined by each module (two such

mechanisms are discussed in Section7.3).

LAM uses a three-phased approach for checkpoint/restart services (also shown in Fig-

ure7.2):

• Prepare for checkpoint. This phase extends from when a checkpoint request ar-
rives in a process to when the back-end checkpoint system is invoked. It is usually
described as the “checkpoint” phase.

• Continue after checkpoint. Usually referred to as “continue,” this phase starts
when the back-end checkpoint system returns from a checkpoint (in the same pro-
cess that was checkpointed) until the process has resumed normal execution.

• Restart after checkpoint. Similar to the “continue” phase, this phase starts when
the back-end checkpoint system returns from a checkpoint. The difference is that
the “restart” phase occurs in a newly-restarted process; it is not the same process
that was initially checkpointed.
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Time mpirun MPI processes

ti Receives checkpoint request

ti+1 Propagates checkpoint request
to all MPI processes

ti+2 Back-end checkpoint system
is invoked

Receives checkpoint request

ti+3 Invoke “prepare to check-
point” interface functions on
all selected modules

ti+4 Back-end checkpoint system
is invoked

Figure 7.3. Sequence of events in the checkpoint phase.

7.2.2 Prepare For Checkpoint

Sincempirun is the startup coordination point for MPI processes, it was the natural

choice to serve as the entry point for a checkpoint request to be sent to a LAM/MPI job.

The sequence of events triggered in the checkpoint phase is listed in Figure7.3.

The cr design assumes that a module-specific mechanism will be used to initiate a

checkpoint request inmpirun . mpirun will then propagate the checkpoint request to

all MPI processes that it started, also through a module-specific mechanism. One common

method is to use the LAM services to invoke a process on every node that will initiate a

checkpoint request for each MPI process in the parallel application.

Checkpoint requests arrive and must be handled asynchronously. This implies that the

crlam propagation mechanism is running in its own thread insidempirun ; using a Unix

signal alone to initiate a checkpoint request, for example, is not sufficient because prop-

agating the request needs to perform actions that are not safe in a signal handler context.

Similarly, a threaded approach is also required incrmpi modules. Checkpoint requests

are required to be handled independent of the state of the application. Specifically, the
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request must be able to proceed regardless of whether the application is in the MPI li-

brary (even if it is blocking) or not. As a direct consequence, checkpoint-capable MPI

applications will automatically have their MPI thread levels raised toMPI THREAD -

SERIALIZED, regardless of whether the user application uses multiple threads or not.

The use ofMPI THREAD SERIALIZED forces LAM to employ a global mutex allow-

ing only one thread in the MPI library at a time; the mutex is locked when a thread enters

any MPI function and is unlocked when the thread leaves.

This lock also prevents thecrmpi module from entering the MPI library when a ap-

plication thread already has the mutex locked. If the application thread is not performing

a blocking action, it will finish in a finite time and exit the library, thereby allowing the

checkpoint thread to acquire the lock perform its work. However, if the application thread

is blocking (e.g., reading from a socket that has no data available), it must be interrupted

and told to yield to the checkpoint thread.

The only locations in LAM/MPI that will block are within MPI SSI modules. Both

therpi andcoll modules have an “interrupt” function that the selectedcrmpi module will

invoke to attempt to gain control of the MPI library. This interrupt function is specific to

each module; its purpose is to interrupt blocking operations and yield to the checkpoint

thread.

The interrupt functions be invoked repeatedly until thecrmpi module is able to lock

the MPI library. Thecrmpi module holds the lock until after both the checkpoint and

continue (or restart) phases have completed. This prevents the user application from

invoking MPI functions while the checkpoint or restart is occurring, eliminating many

types of potential race conditions. Figures7.4and7.5show two scenarios how this lock

is used.

Once thecrmpi module has acquired the MPI library lock, it will coordinate all other

modules to prepare for checkpoint. Specifically, all availablerpi andcoll modules will
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Time Checkpoint thread Application thread

ti Receive checkpoint request ...executing outside MPI li-
brary...

ti+1 Acquire MPI library mutex

ti+2 Invoke “prepare to check-
point” interface functions on
all selected modules

Call MPI function, block on
acquiring mutex

ti+3 Back-end checkpoint system
is invoked

Continue

ti+4 Return from checkpoint

ti+5 Invoke “continue after check-
point” interface functions on
all selected modules

ti+6 Release MPI library mutex

ti+7 Acquire MPI library mutex,
proceed with MPI function
call

Figure 7.4. Sequence of events when the application thread is executing outside the MPI
library when a checkpoint request arrives. Although the checkpoint/continue phases are
shown here, the same sequence occurs in the restart phase (albeit in a different process).

have their “prepare for checkpoint” API functions invoked. These modules are respon-

sible for doing whatever is necessary to prepare for a checkpoint. Thecrtcp rpi, for

example, coordinates with its peers to drain all of its TCP sockets. This ensures that there

are no messages “in flight” on the network; all relevant state is now contained within each

process.

Not all modules need to do anything special to prepare for checkpoint. Thelam -

basic andsmp coll modules, for example, are implemented on top of MPI point-to-point

message passing. All checkpoint preparations and recovery, therefore, are performed by

therpi module.
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Time Checkpoint thread Application thread

ti Call MPI function, acquire
mutex

ti+1 Receive checkpoint requestExecute blocking system
call in MPI library

ti+2 Attempt to acquire MPI li-
brary mutex; fail

ti+3 Invoke selected module in-
terrupt functions

ti+4 Receive interruption; re-
lease MPI library mutex;
yield

ti+5 Acquire MPI library mutex Block on acquiring mutex

ti+6 Invoke “prepare to check-
point” interface functions
on all selected modules

ti+7 Back-end checkpoint sys-
tem is invoked

Continue

ti+8 Invoke “continue after
checkpoint” interface
functions on all selected
modules

ti+9 Release MPI library mutex

ti+10 Acquire MPI library mu-
tex, proceed with MPI
function call

Figure 7.5. Sequence of events when the application thread is blocking in the MPI library
when a checkpoint request arrives. Although the checkpoint/continue phases are shown
here, the same sequence occurs in the restart phase (albeit in a different process).
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Timestep mpirun MPI processes

ti Return from checkpoint Return from checkpoint

ti+1 Resume execution Invoke “continue after check-
point” interface functions on
all selected modules

ti+2 Resume execution

Figure 7.6. Sequence of events in the continue phase.

7.2.3 Checkpoint

Once the coordination with other modules is complete, thecr modules invoke the

back-end checkpointing system to actually perform the checkpoint. This creates a set of

process images, one for each MPI process and one formpirun , that can be used to restart

the process. This set of images is guaranteed to be globally consistent because the coordi-

nation in the “prepare to checkpoint” phase ensured that all sent messages were received

– there is no data left on the network. Hence, the state in the union of all processes is

consistent in itself, and can be saved and restored in a consistent manner.

7.2.4 Continue After Checkpoint

After a globally consistent checkpoint is taken, the MPI processes are allowed to

continue execution. Selected modules have their “continue” interface functions invoked

to perform any necessary post-checkpoint actions. Afterwards, the checkpoint thread

unlocks the MPI library and allows normal execution to resume. Figure7.6 shows the

sequence of events during the continue phase.

7.2.5 Restart After Checkpoint

Similar to the continue phase, when an MPI process is restarted, selected modules

have their “restart” interface functions invoked to perform any necessary post-checkpoint
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Timestep mpirun MPI processes

ti mpirun is re-executed

ti+1 Restart MPI processes

ti+2 Resume execution Return from checkpoint

ti+3 Invoke “restart after check-
point” interface functions on
all selected modules

ti+4 Resume execution

Figure 7.7. Sequence of events in the restart phase.

actions. Typical actions in the restart functions include re-allocating resources, discov-

ering the new location of migrated processes, and re-creating communication channels.

After the restart functions have completed, the checkpoint thread unlocks the MPI library

and allows normal execution to resume. Figure7.7shows the sequence of events during

the continue phase.

7.2.6 Module Selection Mechanism

The scope ofcr module selection in the life of an MPI application (i.e., fromMPI -

INIT to MPI FINALIZE). The algorithm used for selection is essentially the same as what

is described in Section3.2.7; all availablecrmpi modules are examined duringMPI INIT

and asked if they want to run. If the module wants to run, it provides a priority. The

priorities of all modules who want to run are sorted and the module with the highest

priority is selected.

Once the MPI processes achieve consensus on whichcrmpi module to run, they send

the name of the selected module tompirun . mpirun then selects the corresponding

crlam module.
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7.2.7 Interaction With Other Modules

rpi and coll modules must be checkpoint-aware in order for an MPI process to be

capable of checkpoints. Both of these component types have four interface functions

specifically to support checkpoint/restart functionality:

• Interrupt. Interrupt the module if it is in a blocking function and yield to the check-
point thread. For non-blocking modules (e.g., thegm rpi module never blocks), this
may be a no-op.

• Checkpoint. Corresponding to the checkpoint phase, this function performs ac-
tions prior to a checkpoint.

• Continue. Corresponding to the continue phase, this function performs actions
after a checkpoint in the same process that was checkpointed.

• Restart. Corresponding to the restart phase, this function performs actions after a
checkpoint in a newly-started process.

The actions of each function are module specific. For example, collective modules that

are layered on point-to-point MPI functionality need not perform any additional actions;

all handling is performed by therpi module. Thelam basic andsmp coll modules in the

LAM 7 distribution both conform to this model.

Two rpi modules have been adapted to support these four functions:crtcp andgm.

The crtcp module uses TCP sockets for MPI communications. During the checkpoint

phase, it drains all sockets to generate a global consistent state (i.e., all messages are in

processes – the network is empty). The network is drained by using LAM’s out-of-band

communication mechanism to exchange sent/received byte counters between each pair

of MPI processes. Using this information, each process knows exactly how much data

is “in flight” on the network and can safely receive all of it. This process is shown in

Figure7.8. Note that due tocrtcp’s architecture, normal MPI progression is able to be

used; no secondary buffers or message rollback mechanisms need to be utilized [35]. The

continue phase is a no-op, but the restart phase re-establishes TCP sockets between all

MPI processes. Normal MPI progression then resumes.
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Figure 7.8. Draining TCP sockets before checkpoint: (a) Processes A and B exchange the
sent/received byte counter information using LAM’s out-of-band communication system.
(b) Processes A and B receive data from the in-band channel until their counters match
what was received in (a).

Similar to thetcp module, thegm module drains the network during the checkpoint

phase. However, thegm module must close all connections during the checkpoint phase

because the GM library reflects state in an operating system kernel module which cannot

be checkpointed. Closing the GM connections – and therefore zeroing out the associated

process’s state in the GM kernel module – is the only option. Hence, during both continue

and restart phases, GM channels must be re-opened.

7.3 Implemented Modules

Two cr module pairs are included in LAM/MPI version 7:blcr andself. These mod-

ules serve both as reference algorithms as well as examples of two different implementa-

tion models.

7.3.1 Theblcr Module

The Berkeley Lab’s Linux Checkpoint/Restart project (BLCR) [33] is a robust, kernel-

level checkpoint/restart implementation. It can be used either as a stand-alone system

for checkpointing applications on a single node, or by a scheduling system or parallel

communication library for checkpointing and restarting parallel jobs running on multiple
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nodes. BLCR is implemented as a Linux kernel module (for recent 2.4 versions of the

kernel, such as 2.4.18) and a user-level library. A kernel module implementation has the

benefit that it allows BLCR to be easily deployed by new users without requiring them to

patch, recompile, and reboot their kernel. While the current implementation of BLCR

only supports checkpointing of single processes (including multi-threaded processes),

checkpointing of process groups, sessions, and a full range of Unix tools is planned.

BLCR provides a simple user-level interface to libraries/applications that need to in-

teract with checkpoint/restart. It provides a mechanism to register user-level callback

functions that are triggered whenever a checkpoint occurs, and that continue when the

process restarts (or a periodic checkpoint for backup purposes completes). Two kinds

of callbacks can be registered: signal-based callbacks that execute in signal-handler con-

text, and thread-based callbacks that execute in a separate thread. These callbacks allow

the application to shutdown its network activity (and perform analogous actions on some

other uncheckpointable resource) before a checkpoint is taken, and restore them later.

Callbacks are designed to be written as shown in Figure7.9.

Implementation

blcr crlam andcrmpi modules have been implemented in LAM 7 that use the BLCR

system as a back-end checkpointer. At the start of execution, both of theblcr modules

register thread-based and signal-based callback functions with BLCR. A checkpoint re-

quest is initiated by using thecr checkpoint command with the PID ofmpirun .

This triggers the signal and thread callbacks inmpirun that were registered during ini-

tialization. The thread-based handler propagates the checkpoint request by using LAM

services to launch acr checkpoint for every MPI process in the application (see

Figure7.10). After some additional bookkeeping, thecrlam module invokes the BLCR

cr checkpoint() function to checkpointmpirun .
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� �
void callback(void ∗dataptr) {

struct my data∗pdata = (struct my data∗) dataptr;
int did restart;

/∗ ... checkpoint−time shutdown logic ...∗/

/∗ Tell system to take the checkpoint∗/

did restart = crcheckpoint();

if (did restart){
/∗ ... actions to restart from a checkpoint ...∗/

} else{
/∗ ... actions to continue after a checkpoint ...∗/

}
}� �
Figure 7.9. Template for BLCR callback functions. The state of the entire process (in-
cluding the callback’s execution) is saved during thecr checkpoint() call. The
return value fromcr checkpoint() indicates whether the process continued after the
checkpoint or was started in a new process.

The cr checkpoint commands launched bympirun invokes the thread-based

and signal-based callbacks invoked in each of the MPI processes. The locking scheme

described in Section7.2.2is used; thecrmpi module eventually gains control of the MPI

library. It invokes all available MPI modules’ “prepare for checkpoint” functions and then

invokes the BLCR functioncr checkpoint() to checkpoint the MPI process.

As shown in Figure7.9, the return value of thecr checkpoint() function distin-

guishes between the continue and restart phases. Based on this value, theblcr module

invokes the proper set of MPI module functions (“continue after checkpoint” or “restart

after checkpoint”), unlocks the MPI library, and resumes execution.
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Figure 7.10. Theblcr module inmpirun propagates the checkpoint request by using
LAM run-time environment services to launch acr checkpoint for every MPI pro-
cess.

Usage

Theblcr modules efficiently perform system-level checkpointing and save the state of

the parallel application. A process image file is created for each MPI process; this may

require significant amounts of disk space. Users and system administrators need to plan

accordingly.

Per the requirements of thecr component framework discussed in the beginning of

this chapter, theblcr module requires no source code changes in the MPI application.

This allows even legacy MPI applications to be checkpointed.

7.3.2 Theself Module

Since parallel/MPI-aware system-level checkpointers have not existed until recently,

many parallel developers have addedapplication-level checkpointinginto their codes. For

example, the application will output a set of “restart” files at regular intervals containing

essential variables, state, and any other data necessary to save the state of the computation.

If the application fails (e.g., if a node dies in the middle of the run), the application can be
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restarted by reading in the last set of restart files. The data read in from the files is used

to re-seed the application’s state.

Although application-created restart files can be orders of magnitude smaller than

their system-created counterparts, it places a tremendous burden on the application de-

veloper. Code must be written to marshal essential state, create and manage restart files,

read the restart files back in, and re-seed the essential state from the input. Depending on

the nature of application, this can be a highly complex task that affects large portions of

the code base. This seems to violate one of thecr framework’s design goals.

However, since many applications have already been developed using this method-

ology, providing asynchronous access to this functionality is actually completely in the

spirit of thecr framework. Specifically, the checkpointing codealreadyexists in many

user applications – thecr framework just offers an alternate method to access it. The

self module is therefore a bridge between application-level checkpointing and formalized

checkpoint/restart systems.

7.4 Results

Two main sets of tests were run on the implementedcr modules – correctness and

performance.

7.4.1 Correctness

A test suite was written to verify the correctness of thecr system through theblcr mod-

ule. A series of parallel MPI test programs were written to check different aspects of the

checkpoint/restart implementation. Several tests conducted specific message passing pat-

terns (e.g., all-to-all, ring, pairwise passing, etc.) while others followed the general algo-

rithm listed below. Each test case was designed to test a specific case of checkpoint/restart

functionality (e.g., checkpoint while blocking on message passing, checkpoint while mes-
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sages are in flight, checkpoint while in collectives, checkpoint while in a specific MPI API

function, etc.). All tests checked for correctness of received messages to ensure that any

messages interrupted by checkpoints were actually received correctly.

• InvokeMPI INIT

• Even-numbered ranks inMPI COMM WORLD sleep for a finite number of sec-
onds

• Invoke the function under test

• Checked the received data for correctness

• InvokeMPI FINALIZE

Table7.1 lists the collective MPI functions that were tested; Table7.2 lists the point-

to-point MPI functions that were tested. Each test was first run without checkpointing

to verify that the test itself was correct. Message passing patterns and data checking

routines were tested for validity and correctness. Each test was then checkpointed while

it was running and allowed to complete. The checkpoint files were then used to restart

the application, which was then allowed to run to completion. The tests were run with

different numbers of processes in an attempt to generate obscure race conditions and

unlikely combinations. Passing the test suite indicated the following:

• Checkpoint requests can be successfully received inmpirun and propagated to the
MPI processes.

• Processes can be checkpointed and restarted in the MPI framework.

• MPI communication channels can be drained, closed, and re-opened in a new pro-
cess.

• MPI applications can be interrupted and preempted for checkpoint.

• MPI FINALIZE can successfully shut down an MPI process regardless of whether
it was the original application or a restarted process.
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TABLE 7.1

Collective MPI functions tested with checkpoint / restart functionality

MPI ALLTOALL MPI BARRIER MPI BCAST
MPI GATHER MPI GATHERV MPI SCATTER
MPI REDUCE

TABLE 7.2

Point-to-point MPI functions tested with checkpoint / restart functionality

MPI IRECV MPI IRSEND MPI ISEND
MPI ISSEND MPI RECV MPI RSEND
MPI SEND MPI SENDRECV MPI SSEND
MPI WAIT
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TABLE 7.3

Description of the Indiana University Computer Science Thor cluster

Number of nodes 8

Processor type Xeon
Processor count 2
Processor speed 2.8 GHz
Cache size 512 KB
RAM 2 GB

Operating system Red Hat 8.0 (plus updates)
Linux kernel version 2.4.21-smp

Compiler GNU, v3.2-7
Compiler flags -O3 -pthread

Interconnects used Gigabit Ethernet, Myrinet
(GM library v2.0.10)

Other relevant softwareNone
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7.4.2 Performance

Performance tests were conducted on the Thor Computer Science development cluster

at Indiana University, described in Table7.3.

The performance of a checkpointing parallel job can be decomposed into two main

parts: the cost of the back-end checkpointing system (BLCR, in this case) and the over-

head added by LAM/MPI.

The cost of the back-end checkpointer operating in parallel is directly related to how

long it takes to checkpoint a serial process. Intuitively, the time necessary for a check-

point is dependent on the size of the process because it will be written to stable storage.

Figure7.11 shows the wall clock time to checkpoint a single serial process of varying

sizes to a local disk with BLCR. The Figure shows the results of running the checkpoints

on each node of the Thor cluster. Each node had been freshly booted; the entire cluster

was otherwise dormant. Each time presented in the graph is best checkpoint time out of

10 checkpoints for a given size on a specific node. The Figure shows a clear correlation

between process size and how long it takes BLCR to checkpoint it.

However, for sizes above 512 MB, the checkpoint times start to vary. This is due

to disk I/O activity and virtual memory overhead; the only difference between the nodes

used in this experiment were how much local disk space was available. Figure7.11shows

that thor5 had among the worst checkpoint times as process sizes increased;thor5

had the least amount of space available (although it had an order of magnitude more disk

space available than was required).

Measuring the overhead added by LAM is difficult, not only because of the perfor-

mance variance in the back-end checkpointing system, but also because it comes from

multiple sources. The first source of overhead is enabling the ability to generate check-

points. This entails additional bookkeeping within LAM (described in Section7.2.7) that

is normally unused, and is typically comprised of maintaining peerwise counters that en-
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Figure 7.11. Wall clock execution time for checkpointing serial processes of varying sizes
using BLCR.

able draining the network at checkpoint time. This functionality has been added to the

crtcp rpi module. For this reason, the checkpoint/restart-capablecrtcp module is distinct

from thetcp module – it was thought that there might be a noticeable loss in performance

for applications that did not use checkpointing.

Thecrtcp module has two modes: checkpointing disabled (where it should perform

almost exactly like thetcp module) and checkpointing enabled (where it performs the

additional bookkeeping). Both modes ofcrtcp were measured against thetcp module.

Table7.4shows the NAS parallel benchmarks [6, 4, 5] run on 8 nodes on the Thor cluster

using thetcp andcrtcp rpi modules. The Table shows performance of three classes of the

NAS parallel benchmarks across eight nodes of the Thor cluster using thetcp andcrtcp

modules (with checkpointing enabled and disabled, although no checkpoints were taken).

Times shown are wall-clock execution in seconds. The “Difference” column is thecrtcp

(enabled) column minus thetcp column, expressed both as time and percentage of the
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Figure 7.12. NetPIPE throughput on AVIDD-B cluster of thetcp module compared to the
crtcp module, both with and without checkpointing support enabled.

tcp time. The difference is negligible.

Additionally, the NetPIPE analyzer [118] was used to compare the bandwidth through-

put of thetcp andcrtcp modules (in both modes). Figure7.12shows their performance;

they are essentially identical (note the default short message size was used, resulting in a

“dip” in performance at 64 KB; see Section5.3.2for an explanation);

This raises an interesting side issue: since the performance is essentially identical,

why not implement the additional bookkeeping in thetcp module itself? Indeed, thecrtcp

module started as a direct copy of thetcp module. The reason for this is that by developing

a separate module, the stability of the existingtcp module was never compromised and

could still be used for production parallel jobs. Thecrtcp module became a research

tool and did not need to conform to the rigorous stability standards required of thetcp

module until it had been fully developed, understood, and finalized. Having a parallel

development structure – especially one that is easily “swappable” at run-time provides an
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TABLE 7.4

Checkpoint / restart overhead measurements in LAM/MPI on the Thor cluster

crtcp crtcp
Class Size tcp (disabled) (enabled) Difference

cg benchmark

A 64× 64× 64 1.96 2.32 2.19 0.23 11.7%
B 102× 102× 102 84.58 82.64 82.23 -2.35 -2.8%
C 162× 162× 162 202.50 201.16 201.83 -.67 0.0%

ep benchmark

A 64× 64× 64 12.02 12.03 11.99 -0.03 -0.2%
B 102× 102× 102 47.93 47.96 47.94 0.01 0.0%
C 162× 162× 162 191.74 191.78 191.77 0.03 0.0%

is benchmark

A 64× 64× 64 0.99 1.00 1.00 0.01 1.0%
B 102× 102× 102 4.00 3.99 3.98 -0.02 -0.5%
C 162× 162× 162 16.16 16.13 16.11 -0.05 -0.3%

lu benchmark

A 64× 64× 64 41.22 41.56 41.95 0.73 1.7%
B 102× 102× 102 167.10 168.88 168.55 1.45 0.9%
C 162× 162× 162 671.96 669.18 671.38 -0.58 0.0%

mg benchmark

A 64× 64× 64 1.78 1.82 1.82 0.04 2.2%
B 102× 102× 102 8.40 8.36 8.47 0.07 0.8%
C 162× 162× 162 52.89 53.28 53.22 0.33 0.6%
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extremely useful research capability while simultaneously providing a controlled, known

correct baseline to compare with.

The main sources of overhead added by LAM are the propagation of the checkpoint

request and the drain of the network. The sum of these overheads should be at least one

order of magnitude smaller than performing the checkpoint and writing the process im-

age to disk. Unfortunately, accurately measuring these costs is nearly impossible in an

asynchronous cluster environment. As such, additional instrumenting code was inserted

into LAM to artificially create a synchronization point inmpirun that can be measured.

Specifically, the highest ranking process inMPI COMM WORLD sends a synchroniza-

tion message back tompirun when it finishes draining its MPI communications net-

work. Since the highest ranking process inMPI COMM WORLD is always the last one

to finish draining its network, this is guaranteed to be end of all LAM-induced overhead.

Hence,mpirun measures the timespan from when it initiates the first checkpoint request

propagation until it receives a synchronization message back from the last MPI process.

Figure7.13shows this graphically.

The time interval measured inmpirun is therefore a crude approximation of the

actual overhead. However, it provides an order of magnitude suitable for comparison to

the cost of the back-end checkpoint. Figure7.14shows thempirun measurements of

LAM overhead for parallel applications consisting of two different process sizes – 1 MB

and 256 MB. The line for each parallel application increases roughly linearly with the

number of processes becausempirun must propagate the checkpoint request to more

processes and then all processes must participate in draining the MPI communications

network. Note that the number of processes is what drives the overhead time, not the size

of each application. With one process, the upper bound on LAM-specific overhead is 114

milliseconds, increasing to 187 milliseconds at eight processors – adding approximately

9 milliseconds per process. As shown in Figure7.11, checkpointing a 400 MB serial
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Figure 7.13. Depiction of the message passing during a checkpoint, including the artificial
“sync message” inserted solely for measuring the magnitude of LAM overhead. The
upper bound of LAM overhead is therefore the time interval between (a) and (b).

process takes approximately 4 seconds. Taking a conservative estimate (using thethor7

line from Figure7.11), this time increases approximately 0.7 seconds with every hundred

megabytes (until the checkpoint times become erratic).

Putting all the sources of overhead together, the LU NAS parallel benchmark was run

with theblcr module’s checkpointing enabled, taking checkpoints at varying frequencies

ranging from never (i.e., running with checkpointing enabled but not taking a checkpoint)

to every 40 seconds. All checkpoint images were stored to local disk.

Table7.5shows the results. The number in parentheses in each entry is the total num-

ber of checkpoints taken during the run. Clearly, the number of checkpoints increases the

overall wall-clock execution time. However, the majority of the additional time is taken

by the BLCR checkpointer. For example, the LU class C checkpoints each generated im-

age files over 200MB. Even in the worst case shown in Table7.5 (LU, class C, with 19

checkpoints), execution time increased approximately 7.8% as compared to running with

no checkpoints [83].
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Figure 7.14. Wall clock time of LAM overhead to checkpoint a parallel job with differ-
ing numbers of processes. Two outputs are shown; one with individual process sizes of
approximately 1 MB, the other with 256 MB processes.

TABLE 7.5

Wall-clock execution time of the LU NAS parallel benchmark with checkpoints being

taken at different frequencies

Class No checkpoints 10 seconds 20 seconds 30 seconds 40 seconds

A 42.70 (0) 44.28 (3) 43.74 (2) 43.28 (1) 43.07 (1)
B 173.84 (0) 181.89 (10) 178.28 (6) 176.96 (4) 175.87 (3)
C 671.38 (0) 724.23 (19) 725.84 (15) 712.50 (12) 716.39 (14)
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CHAPTER 8

CONCLUSIONS

Research, development, and maintenance of an MPI implementation is a complex

task. Even well-abstracted, logically constructed implementations effectively impose a

significant learning curve on new developers and make third party development difficult

at best. Utilizing a component-based architecture in an MPI implementation forces for-

mal abstractions and library boundaries between different aspects of MPI functionality.

These abstractions are realized into multiple independent and logically discreet compo-

nent architectures, each of which represents one small section of the overall MPI imple-

mentation. Modules that implement the component interface therefore only represent a

small amount of code compared to the rest of the MPI implementation.

For example, Table2.3 (page20) shows that the total lines of code in LAM/MPI

(excluding documentation) is 275,139. Table1.2(page10) shows that the line counts for

each of theboot, coll, cr, andrpi component architectures and all implemented modules

are 8,709, 11,711, 5,158, and 51,798, respectively. These represent 3%, 4%, 2%, and

19% of the overall MPI implementation. Recalling that the line counts represent the

component architectureandall the modules that implement its interface, these numbers

show that the code required for a single module is small compared to the overall MPI

implementation.

Clearly, the amount of code required to implement a module (and therefore to imple-

ment a new piece of MPI functionality) has a direct impact on both the learning curve and
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the time required by those wishing to implement small sections of MPI functionality (e.g.,

researchers developing new collective algorithms). Providing small component architec-

tures for discreet MPI functionality allows rapid development and deployment for both

software and hardware researchers and vendors. For example, third parties can perform

meaningful experiments in message passing systems with real-world applications on a

robust development and research platform instead of extensively modifying a monolithic

implementation, or worse, fully implementing their own MPI.

Component concepts also benefit system administrators, end users, and ISVs. System

administrators can install only modules that are relevant to their particular systems. Users

can compose collections of available modules at run-time to create an MPI implementa-

tion that is uniquely suited for their application and the run-time environment in which

it is operating. ISVs can dramatically simplify their logistics by only distributing one

executable that will work in any LAM/MPI environment. Hardware vendors and ISVs

can also create and distribute modules that are tailored for their products (e.g., network

interconnects, collective algorithms) that plug-in to an existing LAM/MPI installation.

This dissertation presented a system component architecture for the LAM implemen-

tation of MPI and showed how it exhibits the benefits described above with no loss in

performance. The four component architectures designed and implemented in this work

are formalizations of a portion of an MPI implementation. Each represents years of prior

work, theoretical analysis and design, practical software engineering, and real-world re-

quirements. Utilizing these component architectures as an MPI implementation tool –

and, more importantly, utilizing and continuing the ideas they represent – represents a

fundamental step forward in MPI implementation methodology, functionality delivered

to all users (including system administrators and ISVs), and research capabilities pro-

vided to third party developers.

The following sections summarize the SSI meta framework and each of the individual
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component frameworks.

8.1 The SSI Meta Framework

The SSI is the meta framework that ties together the four component frameworks

in LAM/MPI. It provides common functionality to all frameworks, allows interaction

between them, and helps manage the components in each framework. Two important

services that it offers are loading and unloading of components and the module parameter

registry.

Static components are found by looking through a list of component handles that was

assembled when LAM was configured and compiled. Shared library components are

discovered by searching directories at run-time and eagerly loaded into target processes.

The capability to load arbitrary modules at run-time allows anyone to distribute compo-

nents; there is no need to modify LAM/MPI itself or have a custom implementation of

LAM/MPI (a fork from the main LAM code base). More importantly, a compiled and

linked MPI application is wholly independent of what modules it may find at run-time;

ISVs and system administrators can distributea single executable for any LAM/MPI en-

vironment. Users can therefore have a single compiled version of their application that

will automatically discover and utilize new modules at run-time. Additionally, unrelated

modules can be composed together, creating a combinatorial effect for delivered function-

ality. For example, alternate collective algorithms can be substituted into production MPI

codes – with no changes or recompilation of the production MPI codes – for correctness

and performance testing.

Module parameter passing empowers the developer to easily provide “tweakable knobs”

to the end user. While the implementation of the module registry is not overly compli-

cated, what it represents – the ability to easily expose algorithmic and behavioral charac-

teristics – fundamentally changes how a developer will write MPI functionality. Constants
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type. This figure depicts a component type withN modules, and showsmpirun passing
in run-time parameters to moduleB.

and hard-coded decisions are no longer necessary; providing the user with choices allows

arbitrary performance tuning in ways that only the application developer will be able to

exploit.

Figure8.1shows this relationship graphically (repeated from Chapter2).

8.2 Theboot Component Framework

The boot component framework expands LAM’s support of run-time environments

beyond the traditionalrsh /ssh -based clusters. Arbitrary run-time environments can

now be supported, exploiting native robust job control semantics, detailed accounting

statistics, and I/O forwarding.

The design of theboot component framework was created by analyzing how paral-

lel jobs are started from two different systems:rsh /ssh and PBS. An algorithm was

abstracted into a common interface that applied not only to those two run-time environ-

ments, but also to BProc and Globus environments. Thus, the design was validated by the
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successful creation of three components supporting environments where LAM/MPI had

never been used before.

Testing results in the PBS environment show that all of the above claims are true: the

use of the native PBS TM interface provides better job control (both in launching and

killing jobs) and accurate, detailed accounting data.

8.3 Therpi Component Framework

Transforming the existing compile-time RPI interface to therpi component frame-

work is perhaps one of the most user-visible aspects of the component framework. The

end result is that users can change which underlying network their application uses with-

out needing to recompile or re-link their application. Such functionality is tremendously

useful for ISVs who now only need to distribute one binary for all LAM/MPI environ-

ments.

Performance results comparing the TCP point-to-point component framework to the

previous generation of LAM/MPI (a monolithic implementation) show no discernible per-

formance difference. Comparisons of thegm Myrinet module against native GM library

message passing showed only modest performance differences.

8.4 Thecoll Component Framework

The coll component framework was one of the major motivations behind the entire

SSI system: significantly lowering the learning curve to implement new MPI collective

algorithms in the framework of a production-quality MPI implementation.

Performance measurements comparing the LAM “basic” collective algorithms in the

coll framework to the same algorithms in the previous, monolithic implementation of

LAM/MPI were presented. Not only were the performance results effectively identical,

the introduction of the hierarchical implementation model in Section6.1.3creates inter-
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esting future research possibilities for multi-tiered latency environments (e.g., the Grid).

8.5 Thecr Component Framework

Although checkpoint/restart is a well-studied topic and much has been written about

both serial and parallel implementations, thecr component framework is the first robust,

production-quality implementation in an open-source MPI implementation. Although

more work remains to be done, having the ability to provide involuntary asynchronous

checkpoints is tremendously important to the high-performance computing world. Gang

scheduling is now within reach of the commodity market, as is rollback recovery for

fail-stop kinds of errors (e.g., a node death in the middle of a run).

8.6 Delivered Software and Documentation

All versions of LAM are subjected to rigorous development, maintenance, and testing

procedures before release. The open source community – including vendors who either

use or must support LAM/MPI in their commercial projects – helps with this process by

actively contributing ideas, bug fixes, and peer reviewing the LAM code base.

Many of the concepts discussed in this dissertation are already available in LAM/MPI

v7.0. A full set of documentation (approximately 11,470 lines of LATEX code, or 133

printed pages) of documentation was included in the 7.0 release, suitable for developers

to write their own modules. The remaining work will be available in LAM/MPI v7.1,

expected to be released in May 2004 (for example, dynamic SSI modules are not available

in v7.0).

8.7 Future Work

Follow-on work to this research can proceed in a variety of directions. First, the

module frameworks themselves can be used to explore their respective domains. Point-to-
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point and collective message passing, for example, still have many unanswered questions.

The design of the MPI specification was specifically intended to allow multi-threaded

MPI applications. But the currentrpi design is not capable of handling multiple threads,

at least not without significant modifications to its design. Significant questions remain

about how to implement a multi-threaded-capable MPI implementation where threads

can make message passing progress independently [39]. Multi-threaded programming

has been common in the TCP sockets-based communication community for years. For

example, all modern, high-performance web servers either run in multi-threaded or multi-

process mode, where different agents on the same server handle incoming requests. This

programming model has proved to be extremely useful for client-server applications; the

abstractions afforded by simply dispatching a thread to handle a blocking action can dra-

matically simplify coding logic. Since MPI applications are essentially collections of

independent agents – analogous to client-server models – it follows that they could cer-

tainly benefit from the same threaded abstractions and implementation models. Although

some vendor MPI implementations allow multi-threaded MPI implementation, it has not

been widely researched or accepted in the academic and experimental communities. The

question of how to efficiently provide simultaneous message passing progress over mul-

tiplexed communication channels still needs much research.

The prevalent use of commodity clusters has raised the importance non-standard net-

work topologies (potentially created for specialized problems). Infiniband, for example,

has a highly complex programming model. Many questions remain about how to incor-

porate Infiniband into high-performance computing environments – both in the point-to-

point and collective arenas. For example, emerging research has shown the potential for

using the Infiniband interface to natively perform some MPI collective operations. Any

performance speedup in collective operations directly benefit user application wall-clock

execution time; even if onlyMPI BCAST is optimized on Infiniband, any application
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that heavily usesMPI BCAST will see immediate performance increases. Other pro-

prietary networks have similar potential for optimization, both in the point-to-point and

collective domains: Myrinet, Quadrics, and even UDP. Continued research in these areas

needs to determine ways of mapping the functionality provided by the interconnect to

MPI semantics.

Fault tolerance is also becoming increasingly important. High failure rates can render

large computational resources effectively useless unless models can be determined that

allow some form of continued operation in the presence of faults. Checkpoint/restart is

one such method, but is not necessarily a scalable solution. For example, checkpoint-

ing large-memory jobs running on thousands of nodes, particularly if none of the nodes

have local disk storage, can cause enormous networking bottlenecks, and potentially take

longer than the mean time between failure. In such a scenario, it is possible (and likely)

that a failure will occurduringa checkpoint, raising another set of issues and problems.

Other fault tolerant models have started to be explored, but much more work is re-

quired, such as comprehensive studies of what real-world applicationsneedfor fault tol-

erance, analysis of exactly what kinds of faults should be detected and how they should

be detected, and the exact role of that the middleware will have in the process. Indeed,

the MPI standard itself leaves much to be defined in terms of fault tolerance. Preliminary

research indicates that aside from system-level checkpointing, an MPI implementation

cannot perform all aspects of fault tolerance – the application must be involved. If this

is true, programming models must be developed to allow applications to be developed

that can utilize middleware fault detection and handling capabilities. Hence, definitions

for appropriate MPI behavior need to be created, both for MPI-1 and for more difficult

questions such as what exactly fault tolerance means in the context of MPI-2 dynamic

processes.

Another topic becoming prevalent is the subject of MPI over wide-area networks
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(WANs). Indeed, the Magpie-based collective algorithms implemented in this work were

originally developed for WAN scenarios. Interoperable MPI (IMPI) and MPICH-g2 were

also designed for WAN and Grid-based execution; MPICH-g2 has topology-aware col-

lectives that extend the Magpie concepts across multiple layers of latency (not just two).

Computational grids spread across multiple organizations in different physical locations

present significant challenges not only for MPI implementations, but for definitions and

expectations of reasonable levels of performance. Globus and other Grid-related projects

are exploring execution, security, and resource sharing aspects of such collaborations.

Application-level definitions are still lacking, however; the appropriate balance between

making an application fully topology-aware and having the middleware transparently hide

all such details has not yet been found.

Finally, it has been remarked that message passing is the assembly language of par-

allel processing. If this is true, it implies that there are “better” abstractions that can be

layered on top of message passing, analogous to how modern, high-level languages are

implemented on top of assembly language. Indeed, most non-computer scientists only

care about generating results. Message passing (and MPI) has enabled them to expand

from serial to parallel computations, potentially speeding up execution and making larger

problem sizes possible. Message passing is a generalized solution, applying to large

classes of computational problems. If message passing really is analogous to assembly

language, then suitable generalized parallel abstractions need to be researched that su-

persede traditional send/receive and put/get models. Such research will need to balance

many factors, including user application requirements, efficiency, and scalability.
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APPENDIX A

SSI FRAMEWORK INTERFACE

The SSI component system architecture is described in Chapter3. This Appendix

describes the technical details and requirements for modules used in any of LAM/MPI’s

component frameworks [126].

Like any software package, modules need to be configured, compiled, and installed.

This can be done either independently (i.e., outside of the LAM/MPI source tree and

build/install process) or as part of the LAM source tree’s configuration, compilation, and

installation structure. SectionA.1 introduces some notation that is used throughout this

Appendix. SectionsA.2 throughA.5 deal with the directory layout, configuration, build-

ing, and installation of modules that are located in the LAM source tree, respectively.

Modules that are not located in the LAM source tree need not abide by the guidelines

outlined in these sections. Finally, sectionA.6 describes the coding conventions that are

required in LAM/MPI components.

A.1 Notation

The following terms are used throughout this Appendix:

• <type> : This string refers to a specific component framework in LAM/MPI; its
values are strictly defined by LAM. Valid values are:boot , rpi , coll , crlam ,
andcrmpi .

• <module> : Each module has a string name to distinguish it from other modules
in the same component framework. This string is meant to be replaced by the name
of a module.
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A.1.1 The Prefix Rule

It is necessary to prevent symbol name clashes between modules, the LAM and MPI

libraries, and user programs. Name clashes can occur on the filesystem, in shell variables,

in libraries object filenames, and in library public symbol names. Conflict avoidance is

necessary regardless of whether the module is loaded statically or dynamically; some

platforms have processes with global symbol namespaces.

Modules must therefore effectively create unique namespaces for their variables, func-

tions, and other public named objects. In C, for example, this is effected by adding a

prefix onto every public symbol. While guaranteeing to prevent name clashes with any-

thing else, this has the side effect of making variable and function names rather lengthy.

Name/symbol prefixes are typically of the form “lam ssi <type> <module> ” or

“ lam-ssi-<type>-<module> ” (depending on the context), but the letters may be

all upper case or all lower case (again, depending on context).

This convention is referred to as “the prefix rule” throughout the rest of this document.

A.1.2 Function Parameters

When describing function prototypes, parameters are marked in one of three ways:

• IN: The parameter is read – but not modified – by the function.

• OUT: The parameter, or the element pointed to by the parameter, may be modified
by the function.

• IN/OUT: The parameter, or the element pointed to by the parameter is read and
may be modified by the function.

A.1.3 Historical Names

Note that there are several type, variable, and function names cited in these appendices

that do neither begin with a “lam ” prefix nor adhere to the prefix rule. These names

exist solely for historical reasons; they have existed in LAM/MPI for years and therefore
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are used widely throughout the code base. All new names, at a minimum, begin with a

“ lam ” prefix.

A.1.4 Common LAM Types, Variables, and Functions

The following types are used throughout the rest of the Appendices:

• OPT: TheOPTtype is for holding command line parameter and parsing results. Its
use and function is described in theall opt(3) man page.

• LIST : TheLIST type is a generic linked list. Its use and function is described in
theall list(3) man page.

A.2 Directory Layout and Contents

This section assumes that a module is being configured, built, and installed from

within the LAM source tree.

Each module is essentially a self-contained directory tree. There are two notable

exceptions, however:

1. LAM header files for centralized data structures and SSI constructs are contained
in the LAM source tree.

2. The module may choose to use helper macros or other reference code from the
LAM source tree.

In general, there is no mandated directory structure in a module’s implementation.

This allows module authors to use whatever abstractions, file layouts, and directory struc-

tures that are appropriate for their code. However, when the module is part of the LAM

source tree and is expected to be configured, built, and installed as part of the LAM con-

figuration and build process, certain filename conventions must be followed.

As previously mentioned in SectionA.1, each module has a string name to distinguish

it from other modules in the same component framework. This name is used in many

places: the filesystem, shell scripts,Makefile s, and C code. For example, the module

needs to have its top-level directory appear in a specific place in the LAM directory tree:
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share/ssi/<type>/<module> . The LAM providedtcp rpi module is rooted at

share/ssi/rpi/tcp . Since the name of the module is used in many places, it must

adhere to the following requirements:

• It must conform to filesystem requirements for directory names. Some filesystems
are not case-sensitive, so all-lowercase names are recommended.

• It must conform to C variable name standards (cannot include whitespace, cannot
include punctuation, etc.).

• The names “include ” and “base ” are reserved for use by the component frame-
works and should never be used as module names.

A.3 Configuring the Module

This section assumes that a module is being configured, built, and installed from

within the LAM source tree. Note, however, that a module can be setup while in a LAM

source tree (to take advantage of helper scripts, configuration templates, etc.) and then

distributed, configured, and compiled outside of the LAM source tree.

Since modules should be designed to run on as many systems as possible, they are

configured before they are built or installed. There are two steps of configuration:

1. Generatingconfigure scripts and related files (e.g.,Makefile.am or Make-
file.in files).

2. Runningconfigure scripts.

These steps are detailed below.

A.3.1 Generatingconfigure Scripts

The LAM source tree and modules included in the LAM/MPI software package all use

the GNU Autoconf, Automake, and Libtool tools to generateconfigure scripts. These

tools require a non-trivial sequence of steps that must be followed to generate these files.

As such, the process is automated. The scriptautogen.sh is used to invoke several

preprocessing steps, create templates, and finally run the GNU tools.autogen.sh can
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perform several different actions; its execution is largely dependent on what configuration

files are present in the directory where it is executing (see below). Although it is the

preferred method of invoking the GNU tools, theautogen.sh script is notnecessary;

it is simply a convenience script to run all the right commands in the proper order.

autogen.sh can be invoked in a single directory (either the top-level LAM source

directory or a module’s top-level directory) or in a tree-traversal mode where it will run

in both the LAM top-level directory and all valid module directories that it finds of the

form share/ssi/<type>/<module> .

In each directory,autogen.sh will behave differently depending on what it finds:

• If a file named.lam no gnu exists in a module’s top-level directory,autogen-
.sh will not invoke the standard GNU tools to generateconfigure scripts. This
may be desirable for third party modules do not need to have any files generated.

• If a file named.lam ignore exists in a module’s top-level directory,autogen-
.sh will skip the entire directory tree. The directory will effectively be ignored for
the entire LAM configure, build, and install process.

• If an executable script namedautogen.sh exists in the module’s top-level di-
rectory (with no corresponding.lam no gnu or .lam ignore files), this script
will be executed in lieu of running the GNU Auto tools.

• If a file namedconfigure.params exists in a module’s top-level directory,
a templateconfigure.ac file is generated based on the parameters found in
configure.params . See below for more details on theconfigure.params
file.

• If a file namedconfigure.in or configure.ac exists in a module’s top-
level directory (even as a result of a templateconfigure.ac being generated
from theconfigure.params file), the full suite of GNU tools will be invoked
(Autoconf, Libtool, Automake) to generate aconfigure script and any other
associated output files.

Theconfigure.params File

Theconfigure.params file is all that many module authors need to provide for

their module. The presence of this file indicates thatautogen.sh should generate a

templateconfigure script as described above. This template is usually sufficient for
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the majority of setup required by modules, and typically only requires two parameters to

be specified.

The behavior of this template can be controlled by parameter settings in theconfig-

.params file:

• PARAMINIT FILE : Mandatory (this parameter must be present).

Default value: none.

Purpose: This parameter specifies a filename that is passed to the AutoconfAC -
INIT macro. This file serves as a simplistic sanity check for Autoconf; it checks to
see if it can find the file in order to ensure that it is operating in the correct directory.
Any file in the module’s tree is suitable.

• PARAMCONFIGAUXDIR: Optional.

Default value: if a subdirectory namedconfig exists, the value “config ” is
used. Otherwise, “. ” is used.

Purpose: Determines where the supplemental GNU tool scripts will be placed
(e.g.,config.guess ).

• PARAMWANTC: Optional.

Default value: 1.

Purpose: Indicate whether any files in the module need to be built with the C
compiler or not.

• PARAMWANTCXX: Optional.

Default value: 0.

Purpose: Indicate whether any files in the module need to be built with the C++
compiler or not.

• PARAMVERSIONFILE : Optional.

Default value: if either the fileVERSIONor the file$config dir/VERSION
exist, use it as the version file template. Otherwise, empty.

Purpose: The templateconfigure will analyze the version file to find the mod-
ule’s version number. The format of the version file is described below.

• PARAMVARPREFIX: Optional.

Default value:LAMSSI <type> <module>

Purpose: Changes the default prefix used for all output preprocessor macros from
the templateconfigure script. It is rarely necessary to change this value.

• PARAMAMNAME: Optional.

Default value:<type> <module>

Purpose: Changes the first argument passed to the AutomakeAM INIT AUTO-
MAKEmacro. It is rarely necessary to change this value.
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� �
# This module only needs to provide the two mandatory parameters; the
# default values for all other parameters are sufficient. Hence,
# the other parameters are not even listed here.

# Provide a file for a sanity check to ensure that we’re in the right directory
PARAM INIT FILE=src/ssirpi tcp.c

# List the Makefiles that need to be generated
PARAM CONFIG FILES=‘‘Makefile config/Makefile src/Makefile’’� �
Figure A.1. Theconfigure.params file for thetcp rpi module.

• PARAMCONFIGHEADERFILE : Optional.

Default value:src/lam-ssi-<type>-<module>-config.h

Purpose: Change the name of the header file that is output at the end ofcon-
figure .

• PARAMCONFIGFILES : Mandatory (this parameter must be present).

Default value: None.

Purpose: Define a list of files (other than the header file) thatconfigure will
generate (i.e., the arguments toAC CONFIGFILES ). It is typically a list ofMake-
file s to generate.

Many modules will only need to provide the two mandatory parameters:PARAM-

INIT FILE and PARAMCONFIGFILES . Figure A.1 shows theconfigure.pa-

rams file for thetcp rpi module included in the LAM/MPI software package.

The Templateconfigure Script

The templateconfigure script generated byautogen.sh performs the following

actions:

• Determine the module’s version number by examining the module’s version file.
A sample version file is shown in FigureA.2. The following C/C++ preprocessor
macros will be defined, based on the values from this file:

– ${var prefix } VERSION1: All the relevant version values put together in
a single output string. Components equaling zero will be left out. If the alpha

1The value of $var prefix is obtained from the PARAMVARPREFIX in the
configure.params file.
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� �
major=7
minor=1
release=2
alpha=0
beta=0
cvs=1� �
Figure A.2. Sample version file for a module. This file will resolve to the full version
string “7.1.2cvs1”.

version is non-zero, it will be prefixed with “a”. If the beta version is non-
zero, it will be prefixed with “b”. Finally, if the cvs version is non-zero, it will
be prefixed with “cvs ”.

– ${var prefix } MAJORVERSION: Integer value containing the major ver-
sion number.

– ${var prefix } MINORVERSION: Integer value containing the minor ver-
sion number.

– ${var prefix } RELEASEVERSION: Integer value containing the release
version number.

– ${var prefix } ALPHAVERSION: Integer value containing the alpha ver-
sion number.

– ${var prefix } BETA VERSION: Integer value containing the beta ver-
sion number.

– ${var prefix } CVSVERSION: Integer value containing the CVS version
number.

• Set the installation directory prefix.

• Set “make clean ” to remove common backup files.

• Check command line parameters and see if the module was selected to be the de-
fault for its type. Defines${var prefix } DEFAULTto be 0 or 1.

• Check command line parameters to see if the module was selected to be built
as static or dynamic. Sets the Automake conditionalLAMBUILD LOADABLE-
MODULEwith the result.

• Optionally check for the C compiler, based on the value of thePARAMWANTC
parameter value.

• Optionally check for the C++ compiler, based on the value of thePARAMWANT-
CXXparameter value.
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• Optionally run module-provided shell code if aconfigure.stub file is found
(see below for details on theconfigure.stub file).

• Setup C/C++ preprocessor flags to find the LAM header files.

• Setup Libtool.

• Output a “config.h ”-style header file with the results of the configure tests.

• Output all other configuration files (e.g.,Makefile s).

Theconfigure.stub File

If a module has a file namedconfigure.stub in its top-level directory,auto-

gen.sh may add two calls to two macros into the templateconfigure script:

• If configure.stub defines a macro namedSSI CONFIGURESTUB, auto-
gen.sh will insert a call to it in the generatedconfigure script. This macro
allows the module author to insert arbitrary Bourne shell code in theconfigure
script. Such code is typically used to look for module-specific resources.

For example, thegm (Myrinet) rpi module looks for the appropriate header files
and libraries to determine if it can be built or not. If<gm.h> cannot be found,
there is no point in trying to build thegm module, and thegm module’sSSI -
CONFIGURESTUBmacro will abort. Note that this macro is not invoked if
“ --enable-dist ” is specified on the command line.

• If configure.stub defines a macro namedSSI CONFIGURESTUBDIST ,
autogen.sh will insert a call to it in the generatedconfigure script. Note
that it will only be invoked when “--enable-dist ” is used on theconfigure
command line. This option is used when building a distribution package, and the
configure mustsucceed (even if, for example,<gm.h> cannot be found). See
SectionA.3.2 for more details.

A.3.2 Runningconfigure Scripts

If a module does not have an executable namedconfigure , it will not be configured

or built by LAM’s configure and build system. Alternatively, if there is a file named

.lam ignore in the module’s top-level directory, LAM will ignore that module, even

if a correspondingconfigure script exists.

Each module’sconfigure executable will automatically be invoked by LAM’s top-

level configure script. All the same command line flags and environment variables
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that were used to invoke the top-levelconfigure script will be passed down to the

module’sconfigure script.

Module-Specificconfigure Parameters

It is possible to have module-specific--with and/or --enable command line

switches that enable configure-time parameters (perhaps using the Autoconf-provided

AC ARGWITH or AC ARGENABLEmacros). In order for these switches to be trans-

parently passed through otherconfigure scripts, a standard prefix naming convention

must be used to prevent command line parameter collisions. All module parameters must

therefore be prefixed with “ssi-<type>-<module>- ” (this is consistent with the

prefix rule described in SectionA.1.1).

Similarly, it is possible to have module-specific environment variables that are used

to pass values to the module’sconfigure script. These variables should also adhere

to the prefix rule described above; environment variables should be of the form “SSI -

<type> <module> ”.

Return Status Fromconfigure

The exit status of a module’sconfigure script determines whether the module will

be compiled or ignored by LAM. A zero exit status means that theconfigure script

was successful and can be built on this platform. A non-zero exit status means that the

configure script failed and/or the module cannot be built for some reason.

LAM will only build a module if itsconfigure script returns a zero value.

Returning Flags Fromconfigure

When linking a module statically into the LAM or MPI libraries, some modules need

to return additional flags to the lop-level LAM infrastructure to enable LAM and MPI

applications to link properly. This occurs in three distinct cases:
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1. Linking LAM applications when building LAM/MPI.

2. Linking MPI applications when building LAM/MPI.

3. Linking user MPI applications.

Each of these three cases are linked differently, and therefore need to addressed

individually. For example, anrpi module that uses an underlying communications li-

brary namedlibfoo.a affects all MPI applications. Hence, “-L/path/to/libfoo

-lfoo ” must be added to the link command for all LAM/MPI applications that link to

the MPI library by propagating these flags to the appropriate locations in the LAM/MPI

build process. Additionally, the same flags must be added to all user MPI applications.

The “wrapper” MPI compilers (mpicc , mpic++ , andmpif77 ) therefore need to be no-

tified of these flags so that they can add them to the command line when users link MPI

applications.

A module can return compiler and linker flags by creating a file namedssi <type> -

<module> config.sh in its top-level directory. This file contains Bourne shell vari-

able assignments for the variables listed in TablesA.1, A.2, andA.3. The Bourne shell

variables are of the form<scope> EXTRA<flags> , where<scope> can be any of

the following values:

• LIBLAM: Compiler flags required for all other compilation units that will end up in
the LAM library, or linker flags required when linking to the LAM library to create
executables within the LAM/MPI software package.

• LIBMPI : Compiler flags required for all other compilation units that will end up in
the MPI library, or linker flags required when linking to the MPI library to create
executables within the LAM/MPI software package.

• WRAPPER: Compiler flags required for user compilation units, or linker flags re-
quired when linking user MPI executables.

<flags> can be any of the following values:

• CFLAGS: Any flags that need to be passed to the C compiler in the given scope.
This may be compiler warning flags, debugging flags, optimization flags, etc. Note
that this specifically doesnot include “-I ” and “-D ” arguments. Such arguments
are specific to the module and need not be propagated to the rest of the LAM/MPI
source tree or user MPI applications.
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• CXXFLAGS: Just likeCFLAGS, but will be passed to the C++ compiler.2

• FFLAGS: Just likeCFLAGS, but will be passed to the Fortran compiler.

• LDFLAGS: Typically “-L ” flags that need to be passed to the linker to link to a
library containing this module.

• LIBS : Typically “-l ” flags that need to be passed to the linker to link to a library
containing this module.

Note that GNU Libtool automatically takes care of propagating any requiredLD-

FLAGSandLIBS arguments when building the rest of LAM/MPI. Specifically, if Libtool

is used to build a module, the module’sconfigure script should simply set appropriate

LDFLAGSand LIBS values that can be used to link a final executable. Libtool will

then automatically propagate these flags to any executable in the LAM/MPI source tree

that needs them. Hence, settingLIB* EXTRALDFLAGSandLIB* EXTRALIBS in

the generatedconfig.sh file is frequently not necessary; theWRAPPERSEXTRA*

variables are typically the only values that need to be returned fromconfigure .

It is nevernecessary for a module to pass “-I ” and “-D ” flags back to the upper-level

LAM building/configuration environment. This is why TablesA.1, A.2, andA.3 do not

have variables forCPPFLAGS. Module-specific header files, by definition, will only be

needed to compile the module. They will not be needed by the rest of LAM or user MPI

programs.

When theconfigure ScriptMustSucceed

When building a distribution package of LAM/MPI, it is desirable to includeall mod-

ules, regardless of whether they can configure successfully or not. In this case, modules

that normally only allow themselves to be configured successfully when certain con-

ditions are met (e.g., a module that only builds when specific third party libraries and

2Note that some top-level executables in LAM are written in C++, so if a module setsCFLAGS, it should
also setCXXFLAGS.

181



TABLE A.1

Available return variables from component moduleconfigure scripts for building and

linking to the LAM library (in addition to what is already propagated by Libtool)

Name Description

LIBLAM EXTRACFLAGS Extra flags to be passed to the C compiler

LIBLAM EXTRACXXFLAGS Extra flags to be passed to the C++ compiler

LIBLAM EXTRAFFLAGS Extra flags to be passed to the Fortran com-
piler (not currently used anywhere)

LIBLAM EXTRALDFLAGS Extra “-L ” arguments to be passed to the
linker

LIBLAM EXTRALIBS Extra “-l ” arguments to be passed to the
linker

TABLE A.2

Table of available return variables from component moduleconfigure scripts for

building and linking to the MPI library (in addition to what is already propagated by

Libtool)

Name Description

LIBMPI EXTRACFLAGS Extra flags to be passed to the C compiler

LIBMPI EXTRACXXFLAGS Extra flags to be passed to the C++ compiler

LIBMPI EXTRAFFLAGS Extra flags to be passed to the Fortran com-
piler (not currently used anywhere)

LIBMPI EXTRALDFLAGS Extra “-L ” arguments to be passed to the
linker

LIBMPI EXTRALIBS Extra “-l ” arguments to be passed to the
linker
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TABLE A.3

Table of available return variables from component moduleconfigure scripts for

building and linking user MPI applications

Name Description

WRAPPEREXTRACFLAGS Extra flags to be passed through the wrapper
compilers to the C compiler

WRAPPEREXTRACXXFLAGS Extra flags to be passed through the wrapper
compilers to the C++ compiler

WRAPPEREXTRAFFLAGS Extra flags to be passed through the wrapper
compilers to the Fortran compiler

WRAPPEREXTRALDFLAGS Extra “-L ” arguments to be passed through
the wrapper compilers to the linker

WRAPPEREXTRALIBS Extra “-l ” arguments to be passed through
the wrapper compilers to the linker
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header files are present) should bypass these checks and allow themselves to be config-

ured [pseudo-]successfully. Specifically, the module’sconfigure scripts must return

an exit status of zero and produceMakefile s that, at a bare minimum, have working

“dist ” targets.

LAM requires this behavior when the--enable-dist switch is used. Specifically:

if LAM (and all of the modules in its source tree) is configured with this switch, all

modules must produce a top-levelMakefile with a working “dist ” target. Note that

no other targets are required to be functional. Hence, all conditional tests can be skipped

such that validMakefile s can be generated, even if the module cannot actually be built.

Modules that use the templatedconfigure script can define aSSI CONFIGURE-

DIST STUBmacro in theconfigure.stub file that will be automatically invoked

when the--enable-dist option is used.

Modules that are not built conditionally can ignore this entire section since they al-

ways produce fully functionalMakefile s that include a validdist target.

A.4 Building the Module

This section assumes that a module is being configured, built, and installed from

within the LAM source tree, and that the module has previously successfully ran its

configure executable. Modules that failed the configuration phase will not be built

or installed.

The top-level LAM building process assumes the presence of the following make

targets in the module’s directory:

• all : build the module. The internals of this target can function however it wants,
but at the end of this target, a GNU Libtool library namedliblam ssi <type> -
<module>.la must exist in the top-level module library.

• install : install the module. See SectionA.5 for more details on what happens
during installation.

• uninstall : uninstall the module. As with theinstall target, this may be a
no-op for static libraries.
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• clean : remove all files generated by theall target.

• dist : make a distribution package, per the GNU guidelines.

• distclean : do everything that theclean target does, and additionally remove
all other generated files such that the directory tree is the same state that it was in
when it was expanded from its distribution package.

• tags : use theetags program to generate lists of tags.

A.5 Installing the Module

This section assumes that a module is being configured, built, and installed from

within the LAM source tree, and that the module has previously both successfully ran

its configure executable and been built. Two general kinds of files need to be installed

after building a module: the library (or libraries) containing the module code and any

additional data / support files.

Library installation requirements depend on whether the module was built statically

or dynamically. Statically-built modules need not be installed because the resulting li-

brary will be folded into the LAM or MPI library (depending on the module’s type).

Dynamically-build modules must install the module’s shared library into the correct di-

rectory where the SSI can find them at run-time:$prefix/lib/lam .

If using the templatedconfigure file, the decision whether to build the mod-

ule statically or dynamically is controlled by the Automake conditionalLAMBUILD -

LOADABLEMODULE. A sampleMakefile.am snipit for thetcp rpi module is shown

in FigureA.3.

A module may also install additional data and support files. These must be installed

under the$sysconf directory (typically$prefix/etc ).

A.6 Module Source Code

Although it is permissible to use any language to implement a module, the top-level

interface calls must be able to be resolved with C linkage. Using C++ in the internals
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# Examine the Automake conditional and decide whether we are building
# the module statically or dynamically

if LAM BUILD LOADABLE MODULE
modulenoinst =
moduleinstall = ssirpi tcp.la
else
modulenoinst = liblamssi rpi tcp.la
moduleinstall =
endif

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# If building dynamically,$(moduleinstall) will be non−empty, and
# we’ll use this set of Automake macros to build the module.

lamssiexecdir = $(libdir)/lam
lamssiexecLTLIBRARIES = $(moduleinstall)
ssi rpi tcp la SOURCES =
# Note that the TCP module source code is in src/libtcp.la. Note also
# that since this is a standalone entity, we must also link to libmpi
# and liblam to resolve all the symbols used in this module.
ssi rpi tcp la LIBADD = src/libtcp.la\

$(top lam builddir)/share/libmpi/libmpi.la\
$(top lam builddir)/share/liblam/liblam.la

ssi rpi tcp la LDFLAGS =−module−avoid−version

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# If building statically,$(modulenoinst) will be non−empty, and
# we’ll use this set of Automake macros to build the module. Note
# that LTLIBRARIES∗must∗ be marked ”noinst” or Automake will not fold
# this library into the upper level MPI library.

noinstLTLIBRARIES = $(modulenoinst)
liblam ssi rpi tcp la SOURCES =
liblam ssi rpi tcp la LIBADD = src/libtcp.la
liblam ssi rpi tcp la LDFLAGS =−module−avoid−version� �
Figure A.3. Sample top-levelMakefile.am for building thetcp rpi module. Logic
based on theLAMBUILD LOADABLEMODULEdecides whether to build the module
statically or dynamically.
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� �
AM CPPFLAGS =−DLAM BUILDING=1 \

−I$(top lam builddir)/share/include\
−I$(top lam srcdir)/share/include� �

Figure A.4. SampleAMCPPFLAGSrequired to find the LAM header files. Note that
the build directory is explicitly included in order to support VPATH builds properly, even
though it will be redundant in non-VPATH builds.

of the module is discouraged as building C++ libraries may not be portable. Although

recent versions of GNU Libtool now support building C++ libraries with a wide variety

of compilers, compatibility problems have arisen in some systems where multiple C++

compilers lay out structures and classes in memory differently, creating problems sharing

data structures across object files generated by different compilers.

A.6.1 Header Files

The top-level SSI include file is (relative to the LAM source tree root)share/-

include/lam-ssi.h . This file declares some top-level SSI functions and the C type

lam ssi t (a structure defined in SectionA.6.2, below).

If the module is built using Automake, the appropriate preprocessor flags can be in-

cluded by adding an appropriate-I flag to Automake’sAMCPPFLAGSmacro. Addi-

tionally, the preprocessor symbolLAMBUILDING mustbe defined and set to the value

of 1 if the module is being built statically as part of the LAM or MPI libraries. FigureA.4

shows an example.

Each component framework has its own top-level include file (located in the same

directory aslam-ssi.h ) namedlam-ssi-<type>.h . Each SSI type’s header file

will define the datatypelam ssi <type> t which will be used in all modules of that

type.
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A.6.2 The Base Module Datatype:lam ssi t

Every module must export a public symbol namedlam ssi <type> <module> -

module of typelam ssi <type> t . While each component framework is responsible

for defining exactly what that type is, each contain an instance of typelam ssi t as its

first element. Thelam ssi t type is used to store basic information about a module,

and is defined in FigureA.5.

The members oflam ssi t are:

• The first group of three version fields (ssi * version ) refers to the version of
SSI that the module conforms to. In this case, they should be hard-coded to 1, 0,
and 0, respectively. This is for version control purposes, and is explained in greater
detail below.

• The ssi kind name field identifies the component framework that this module
belongs to. Its values are strictly defined by LAM, and are the same as the values
allowed for<type> .

• The second group of three version fields (ssi type * version ) refers to the
API version of the component framework. This is also for version control purposes,
and is explained below.

• The ssi module name field identifies the name of this module. It must agree
with the name used in the prefix rule throughout the rest of the module.

• The third group of three version fields (ssi module * version ) refers to the
version of the module itself. The contents of these fields are left up to the module.

• The open and close function pointers point to functions as described in SectionsA.6.3
andA.6.4, respectively.NULL values may be supplied for these pointers if the mod-
ule does not have open and/or close functions. Note, however, that aNULL value
for the open function implies that the module is always available (i.e., it is as if the
open functiondid exist, and returned a success status when invoked).

The base SSI API is currently at version 1.0.0. Although future versions of SSI may

alter thelam ssi t type, the first threeint values in the struct will always be the SSI

API version number. For example, if the layout oflam ssi t changes in some future

SSI API version, the LAM SSI framework will be able to apply the right type to a given

module’slam ssi t by examining the first threeint values. This enables backward

compatibility to be preserved for modules that do not keep up with the newest versions of

the SSI API.
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typedef struct lam ssi 1 0 0 {

/∗ Integer version numbers indicating which SSI API version
this module conforms to.∗/

int ssi major version;
int ssi minor version;
int ssi releaseversion;

/∗ Information about the type and the version of the type’s API that it conforms
to (‘‘kind’’ is a historical nomenclature)∗/

char ssi kind name[LAM MPI SSI BASE MAX KIND NAME LEN];
int ssi kind major version;
int ssi kind minor version;
int ssi kind releaseversion;

/∗ Information about the module itself∗/

char ssi modulename[LAM MPI SSI BASE MAX MODULE NAME LEN];
int ssi modulemajor version;
int ssi moduleminor version;
int ssi modulereleaseversion;

/∗ Functions for opening and closing the module∗/

lam ssi openmodulefn t ssi openmodule;
lam ssi closemodulefn t ssi closemodule;

} lam ssi 1 0 0 t;

/∗ Set the default type to use version 1.1.0 of the SSI struct∗/

typedef lam ssi 1 0 0 t lam ssi t;� �
Figure A.5. Definition of thelam ssi t type.
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A.6.3 Module Open Function

A module may have anopenfunction. If it exists, it is invoked exactly once during the

life of a process after the module is found (if the module was statically linked) or loaded

into the process (if the module was dynamically linked). The open function is used to

register module parameters, allocate any one-time, module-specific resources, and make

the first determination whether it is possible for the module to run or not. This function

is particularly relevant for component frameworks that have multiple scopes in a single

process. Modules in such frameworks may need to differentiate between once-per-process

and once-per-scope initialization.

Since a pointer to the module’s open function is contained in thelam ssi t in-

stance, it is common to all component frameworks. The function pointer type is defined

as follows:� �
typedef int (∗lam ssi openmodulefn t)(OPT∗args);� �

A typical module open function may be prototyped as follows:� �
int lam ssi <type> <module> openmodule(OPT∗args);� �

Although anOPThandle representing the command line that invoked the current ex-

ecutable is passed as an argument, it is expected that most user-specified values and se-

lection criteria will be passed through the module parameters system (described in Sec-

tion A.6.6). As such, the open function is responsible for registering all parameters (and

associated default values) that will be used by the module. It is also worth noting that

laminfo open opens and closes all modules (it does not invoke any other module func-

tions). Hence, fromlaminfo ’s perspective, the open function is the only opportunity

for a module to register parameters.

The open function may also check the current run-time environment and determine if

it is able to run. This may entail allocating resources and/or checking environmental or
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other external factors. If the module determines that it is able to be run, it should return a

successful status (and therefore be considered available). If not, it should return a failure

status and both the SSI and the component framework will close and ignore the module

for the remainder of the process.

If an open function is not provided by the module, it is implied that the open function

returned a successful status. The module is therefore considered available.

A.6.4 Module Close Function

A module may have aclosefunction. If it exists, it is invoked exactly once during the

life of the process and is always the last function that is invoked on the module. The main

purpose of the close function is to free any resources allocated by the module.

Since a pointer to the module’s close function is contained in thelam ssi t in-

stance, it is common to all component frameworks. The function pointer type is defined

as follows:� �
typedef int (∗lam ssi closemodulefn t)(void);� �

A typical module close function is prototyped as follows:� �
int lam ssi <type> <module> closemodule(void);� �

The close function will be invoked for every module that either had its open function

invoked or had aNULL open module function pointer. The timing of when the close

function is invoked varies depending on the component framework. For example, the

boot component framework has only one scope per process; unselected modules will be

closed during process initialization. But thecoll component framework potentially has

many scopes in a single process; availablecoll modules will not be closed untilMPI -

FINALIZE.
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� �
typedef struct lam ssi rpi 1 1 0 {

lam ssi 1 0 0 t lsr metainfo;

/∗ ...various other members specific to the rpi component framework...∗/
} lam ssi rpi 1 1 0 t;

typedef lam ssi rpi 1 1 0 t lam ssi rpi t;� �
Figure A.6. Definition of thelam ssi rpi t type.

A.6.5 Example Usage: Thetcp rpi Module

This section provides a module example based on thetcp rpi module included in the

LAM/MPI software package. Therpi component framework defines a type namedlam -

ssi rpi 1 1 0 t that contains module interface function pointers. Its first element will

always be some version oflam ssi t , as shown in FigureA.6.

Note that the same version technique is used with therpi component type as with

the base SSI API – therpi API show here is version 1.1.0. Future versions may change

the layout oflam ssi rpi t , but since the first member of it is guaranteed to be some

version oflam ssi t , both the SSI API version andrpi API version numbers can be

guaranteed to be successfully extracted.

To continue the example, thetcp rpi module exports a global symbol namedlam -

ssi rpi tcp module as shown in FigureA.7.

A.6.6 Module Parameters

As described in Section3.2.5, parameters can be passed to modules at run-time by

the command line or through the environment. The SSI provides all the necessary regis-

tration, bookkeeping, marshaling, and propagation of module parameters to remote pro-

cesses. A module typically registers module parameters during its open call. The first

two functions in FigureA.8 are used by modules to register parameters. Both functions
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� �
const lam ssi rpi 1 1 0 t lam ssi rpi tcp module ={

/∗ First, the lamssi 1 0 0 t struct containing meta information
about the module itself∗/

{
/∗ SSI API version∗/

1, 0, 0,

/∗ Module type name and version∗/

‘‘rpi’’,
1, 1, 0,

/∗ Module name and version−− obtained and defined by
the tcp rpi configure script∗/

‘‘tcp’’,
LAM SSI RPI TCP MAJOR VERSION,
LAM SSI RPI TCP MINOR VERSION,
LAM SSI RPI TCP RELEASEVERSION,

/∗ Module open and close function pointers∗/

lam ssi rpi tcp open,
NULL

},

/∗ ...various other members specific to the rpi component framework...∗/
};� �
Figure A.7. Definition of thelam ssi rpi t type for thetcp rpi module. Note the
NULL used for the close function; thetcp module does not have a close function.
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� �
/∗ Module parameter registration functions∗/

int lam ssi baseparamregisterint(char ∗type name,char ∗modulename,
char ∗paramname,char ∗ssi paramname,int default value);

int lam ssi baseparamregisterstring(char ∗type name,char ∗modulename,
char ∗paramname,char ∗ssi paramname,char ∗default value);

/∗ Module parameter lookup functions∗/

int lam ssi baseparamlookup int(int index);
char ∗lam ssi baseparamlookup string(int index);� �
Figure A.8. Functions for registering and looking up module parameters.

are similar; one registers an integer parameter, the other registers a string parameter.

The parameters that both functions expect are:

• type name: String name of the component framework for this module.

• module name: String name of this module.

• param name: String name of this parameter.

• ssi param name: If NULL, the default name of the parameter will be used:
“ssi <type> <module> <param> ”. If this parameter is notNULL, it will be
used as the parameter name instead of the default.NULL is the recommended value
for this parameter.

• default value : The default value for this parameter.

The return value from the registration functions is an integer handle for the registered

parameter. This handle can be used to lookup parameter values through thelam ssi -

base param lookup int() andlam ssi base param lookup string() func-

tions (also shown in FigureA.8).

194



APPENDIX B

PARALLEL JOB STARTUP COMPONENT INTERFACE

Theboot component framework is described in Chapter4. This Appendix describes

the technical details and requirements forboot modules [123]. SectionB.1 discusses

header files, types, global variables, and utility functions that are provided to allboot

modules. SectionB.2 details the module interface modules and functions.

B.1 Services Provided by theboot Component Framework

Several services are provided by theboot component framework that are available to

all boot modules.

B.1.1 Header Files

The following header files must be included (in order) in all module source files that

want to use any of the commonboot component framework services described in this

Appendix:� �
#include<lam−ssi.h>

#include<lam−ssi−boot.h>� �
Both of these files are included in the same location in the LAM source tree:share/-

include . SectionA.6.1 describes how to provide appropriate preprocessor flags to in-

clude these files properly.
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� �
struct lamnode{

int4 lnd nodeid;
int4 lnd type;
int4 lnd ncpus;
int lnd bootport;
char ∗lnd hname;
char ∗lnd uname;
struct sockaddrin lnd addr;
LIST ∗lnd keyval;
struct lnd ssi boot nodeinfo∗lnd ssi;

};� �
Figure B.1.struct lamnode definition.

B.1.2 Internal Type:struct lamnode

This type is used to describe nodes in the LAM universe. It is prototyped in<lam-

net.h> (see FigureB.1).

The individual elements are:

• lnd nodeid : A unique integer identifying a node, from 0 to (N − 1), whereN is
the total number of nodes in the universe.

• lnd type : A set of bit flags indicating attributes about that node. The most im-
portant flags toboot modules are:

– NT BOOT: Indicates that a node is supposed to be booted.

– NT ME: Indicates that this node is the local node.

– NT ORIGIN: Indicates that this node is the origin node.

– NT WASTE: Indicates that this node should not be used for default scheduling
by mpirun and lamexec . For example, nodes marked with this attribute
will not be used for “mpirun C a.out ”.

• lnd ncpus : Number of CPUs on that node.

• lnd bootport : TCP port number used in the startup rendesvouz protocols.

• lnd hname: String name for the node, usually parsed from the boot schema file.

• lnd uname: String username to be used to login on the remote node, orNULL if
unnecessary.

• lnd addr : Binary representation of the TCP address of the node.
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� �
# Sample boot schema file with several ‘‘key=value’’ examples
inky.cluster.example.com cpu=2
pinky.cluster.example.com cpu=4
blinky.cluster.example.com cpu=4
clyde.cluster.example.com cpu=2 user=jsmith� �
Figure B.2. Example boot schema file.

• lnd keyval : List of key-value pairs parsed from theboot schema file. These
key-value pairs provide an extensible method to obtain module-specific informa-
tion from the boot schema file. Thebhostparse() utility function is typically
used to parse boot schema files (see SectionB.1.7), and will fill the lnd keyval
list with every “key=value” pair found in the boot schema. FigureB.2 shows an
example boot schema file.

Eachstruct lamnode instance will have itslnd keyval filled with a list
of the “key=value” pairs from the boot schema listed above. Thestruct lamnode
instance forclyde will have two entries which each of the others will have one.
All keys and values are represented as strings.

Although all “key=value” pairs will be parsed bybhostparse() and placed
in the lnd keyval list, commonly used keys include:

– hostname= <host >: Specifies the target node’s name or IP address. The
first token on each line in the boot schema file is implicitly the hostname.

– cpu= <NUM>: Specifies the number of CPUs that LAM may use on the target
node.

– user= <username >: Specifies the login name which can be used to re-
motely login to the node (if different than the username of process owner).

– prefix= <path >: Specifies the path where LAM binaries are installed on
the target node.

– schedule=(yes|no) : Specifies whether this node needs to be scheduled
for running jobs or not.

• lnd ssi : “Extra” information that eachboot module can define. Each module
must provide its own definition for the typelnd ssi boot nodeinfo .

B.1.3 Internal Type:struct psc

Thisenum is returned in aLIST by thehbootparse() function (see SectionB.1.8).

It contains a list ofargv -style arrays of processes to start on a target node. See Fig-

ureB.3.
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� �
struct psc{

char ∗∗pscargv;
int4 pscargc;
int4 pscdelay;
int4 pscflags;

};� �
Figure B.3.struct psc definition.

� �
typedef enum{

LAM SSI BOOT PROCLAMD,
LAM SSI BOOT PROCRECON,
LAM SSI BOOT PROCWIPE,
LAM SSI BOOT PROCMAX

} lam ssi boot proc t;� �
Figure B.4.lam ssi boot proc t enumerated type definition.

The members are:

• psc argv : NULL-terminated array of command line tokens to start on the target
node.

• psc argc : Length ofpsc argv .

• psc delay : Delay this many seconds after starting.

• psc flags : Currently unused; reserved for future expansion.

B.1.4 Internal Type:lam ssi boot proc t

This type is used as an argument toboot API functions, indicating which LAM run-

time environment process to start. FigureB.4 shows the allowable values.

B.1.5 Global Variable:int lam ssi boot base server port

This int is defined and set by the TCP startup rendesvouz protocol functions, and is

described in SectionB.1.18.
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B.1.6 Global Variable:int lam ssi boot optd

Thelam ssi boot opt variable is of typeOPT*. It contains the parsed arguments

from the command line.

Most boot modules will not need this variable. One of the API functions (described

in SectionB.2.4) receives theOPT* variable as a parameter. If later API functions require

information from it, the module can save a local copy that can be shared throughout the

module. The main purpose of this variable is for utility routines provided by theboot

component framework that can be used as API functions, but are not part of individual

modules.

B.1.7 Utility Function:bhostparse()� �
#include<boot.h>

int bhostparse(char ∗filename,struct lamnode∗∗nodes,int ∗nnodes);� �
Arguments:

• IN: filename is the name of the file to parse.

• OUT: lamnodes is a pointer to an array that will be filled.

• OUT: nnodes is a pointer to anint that will be filled with the size of the
lamnodes array.

Parses a boot schema and returns an array ofstruct lamnode instances.file-

name is the filename of the file to parse.nnodes will be allocated and filled by this

function (it is the caller’s responsibility to free thenodes array later);nnodes is set to

the length ofnnodes .

bhostparse() will parse all key-value pairs and place them in thelnd keyval

member on the corresponding entries in thenodes array. bhostparse() also set-

s/clearsNT WASTE depending upon whether the key-value pairschedule=yes/no

has been defined. See sectionB.1.2for information onNT WASTE.

This function is typically invoked in theallocate nodes API call (see SectionB.2.5).
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B.1.8 Utility Function:hbootparse()� �
#include<boot.h>

int hbootparse(int debug, OPT∗ad,char ∗inet topo,char ∗rtr topo, LIST∗∗proc list);� �
Arguments:

• IN: debug is a flag indicating whether to display debugging information or not.

• IN: ad is a handler referring to the parsed command line.

• IN: inet topo is a string used to set the$inet topo variable in the LAM run-
time environment configuration

• IN: rtr topo is a string used to set the$rtr topo variable in the LAM run-time
environment configuration

• OUT: proc list is aLIST of processes to start

Find the LAM run-time environment configuration file in the command line param-

eters and parse it, doing variable substitution (ifinet topo or rtr topo are non-

NULL), and return aLIST of argv arrays containing LAM run-time environment pro-

cesses to start on remote nodes. The default LAM run-time environment configuration

file specifies only a singlelamd (with some associated command line parameters). Other

configurations are also possible (such as starting multiple processes on the target node).

The returnedLIST contains a list ofstruct psc instances. This list can be pro-

cessed by theboot module to actually start the specified process(es) on the target node(s).

If the boot module uses one of the built-in booting algorithms, this function is typ-

ically invoked by thestart rte proc internal API function (see SectionB.2.11) in

conjunction with thelam ssi boot inet topo() function when starting thelamd

run-time environment process. FigureB.5 shows an example routine (with many details

omitted).

B.1.9 Utility Function:lam deallocate nodes()
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� �
int lam ssi boot <module> start rte proc(struct lamnode∗node,

lam ssi boot proc t which){
if (which == LAM SSI BOOT PROCLAMD) {

struct psc∗p;
char ∗inet buf;
LIST ∗bootlist;

/∗ Parse the run−time environment configuration file∗/

inet buf = lam ssi boot build inet topo(node, originlamnode, originid)
hbootparse(lamssi boot did, lam ssi boot optd, inetbuf, NULL, &bootlist);

/∗ Traverse the parsed run−time environment configuration file data
structures∗/

for (p = al top(bootlist); p != NULL; p = alnext(bootlist, p)){

/∗ Must not modify the contents of the list items; make duplicates to work
with (see the sfhargv(3) man page for more details)∗/

av cmd = sfhargv dup(p−>pscargv);
ac cmd = p−>pscargc;

/∗ ... launch an avcmd command line on node ...∗/

/∗ Free the duplicate argv array∗/

sfh argv free(avcmd);
}
free(inetbuf);
al free(bootlist);

}
/∗ ... handle other ‘‘which’’ values ...∗/

}� �
Figure B.5. Abbreviated samplestart rte proc() function.
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� �
#include<boot.h>

int lam deallocatenodes(struct lamnode∗∗nodes,int ∗nnodes);� �
Arguments:

• IN/OUT: nodes is the array to be freed.

• IN/OUT: nnodes is the size of thenodes array.

Utility function to deallocate an array ofstruct lamnode s. It is not sufficient

to simply free() thenodes array; this function is provided because each item in the

array may contain additional memory that must be specifically freed (e.g., the key=value

pairs). Upon return from this function,*nodes will be set toNULL, and*nnodes will

be set to 0.

This function is typically invoked from thedeallocate nodes() API function

(see SectionB.2.9).

B.1.10 Utility Function:lam ssi boot base find boot schema()� �
char ∗lam ssi boot basefind boot schema(OPT∗args);� �

Arguments:

• IN: args is a handle representing the parsed command line.

Analyzes the command line to find the boot schema filename, then check to see if that

file exists.

The parameterargs is not modified by this function. The return value will be a

string representing the filename of the found boot schema, orNULL if nothing was found

(indicating an error). If nothing is found, an appropriate error message will be printed.

If an absolute pathname is found, it is used. If a relative pathname is found, it is

checked against the present directory, the$TROLLIUSHOME/etc directory, the$LAM-

HOME/etc directory, and finally the LAM$sysconf directory (selected at configura-
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tion time). The$TROLLIUSHOMEand$LAMHOMEenvironment variables are historical

names.

This function is typically invoked in theparse options() API call (see Sec-

tion B.2.4).

B.1.11 Utility Function:lam ssi boot base find hostname()� �
char ∗lam ssi boot basefind hostname(OPT∗args);� �

Arguments:

• IN: args is a handle representing the parsed command line.

This function is used when thelamgrow command was used to invoke theboot

module. This is because thelamgrow command does not receive a boot schema; instead,

a single hostname is passed on the command line for growing the current LAM universe.

This function analyzesargc andargv to find a string hostname or IP address and verify

that it exists.

The parameterargs is not modified by this function. The return value will be a string

representing the found hostname/address orNULL if nothing was found (indicating an

error). If nothing is found, an appropriate error message will be printed.

This function is typically invoked in theparse options() API call (see Sec-

tion B.2.4).

B.1.12 Utility Function:lam ssi boot base lamgrow()� �
char ∗lam ssi boot baselamgrow(char ∗hostname,struct lamnode∗∗nodes,

int ∗nnodes,int ∗origin);� �
Arguments:

• IN: hostname is the name of the host to add.

• OUT: nodes is the output array of nodes in the current universe plus the new node.
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• OUT: nnodes is a pointer to an integer indicating the size of thenodes array.

• OUT: origin is a pointer to an integer indicating the index in thenodes array
that is the origin nodes.

This function is used when thelamgrow command was used to invoke theboot

component framework. This is because thelamgrow command does not receive a boot

schema file; instead, a single hostname is passed on the command line for growing the

current LAM universe. This function analyzes the current LAM universe and generates

an array ofstruct lamnode instances based on its contents, to include an instance

for the new node to be booted. Only the entry for the new node will have theNT BOOT

flag set.

hostname is the string host name or IP address of the node to be booted.nodes

is allocated and filled by this function (it is the caller’s responsibility to free thenodes

array later);nnodes is set to the length ofnodes . The origin argument is filled with the

origin node’s ID. Note that it is not necessarily the same node as the node that is invoking

lamgrow .

Depending on howlamgrow was invoked, it is possible that the array ofstruct

lamnode instances may contain entries for “invalid” nodes (see thelamgrow(1) man

page for more details). Such entries will have a node ID ofNOTNODEID, and all their

other data will be invalid. Although these nodes must be skipped by the booting algo-

rithms (all the provided algorithms properly skip them), space must be allocated for them

in all internal arrays and tables.

This function is typically invoked in theallocate nodes() API call (see Sec-

tion B.2.5).

B.1.13 Utility Function:lam ssi boot base ioexecvp()� �
int lam ssi boot baseioexecvp(char ∗∗cmdv,int showout,char ∗outbuff,

int outbuffsize);
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� �
Arguments:

• IN: cmdv is aNULL-terminatedargv -style array of the command to launch.

• IN: showout is a flag indicating whether to display the output on the parent’s
standard output or not.

• IN: outbuf is eitherNULL or a pointer to a buffer where the standard output from
the child will be stored.

• IN: If outbuf is non-NULL, outbuffsize is the length of theoutbuff buffer.

This function is used to execute a command. It is typically used to execute a command

that starts LAM daemons or starts a proxy process which then starts LAM daemons.

cmdv contains the command to be executed. The function can direct the new pro-

cess’s standard output to a buffer and/or the parent process’s standard output. Theshow-

out parameter is used to control this. If the child process’s standard output is to be

directed to an output buffer, thenoutbuff should point to the buffer for the data and

outbuffsize should contain maximum size of this buffer.

This function is typically indirectly invoked in thestart application API call

(see SectionB.2.10).

B.1.14 Utility Function:lam ssi boot base send lamd info args()� �
int lam ssi boot basesendlamd info args(OPT∗aod,unsigned charagenthaddr[4],

int agentport, int nodeid, int dli port, int num cpus);� �
This function is part of the built-in TCP-based startup rendesvouz protocol set (de-

scribed in SectionB.1.18); it is a generalized version of thelam ssi boot base -

send lamd info() function. Thelam ssi boot base send lamd info() func-

tion will send the LAM daemon information based on parameters that it finds on the com-

mand line (i.e.,lamboot passes the identity of each LAM daemon on the command line
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parameters that it launched the daemon with). This function allows a module to use what-

ever values it wants rather than what is found on the command line. This is necessary for

environments where the identity or location of the of LAM daemons may not be available

to lamboot .

Two environments that do not yet haveboot modules yet are the Simple Linux Util-

ity for Resource Management (SLURM) [70] and the Quadrics Resource Management

System (RMS). In each of those environments,lamboot simply tells the run-time envi-

ronment “launch N LAM daemons.” The run-time environment does not allocate nodes

to the job untillamboot makes the request, so there is no way to know what nodes they

will be booting on ahead of time. Hence, the identification procedure is left up to the

LAM daemon instead oflamboot .

This function was added in anticipation of supporting those environments, as well as

improving support in BProc environments.

B.1.15 Utility Function:lam ssi boot build inet topo()� �
char ∗lam ssi boot build inet topo(struct lamnode∗destnode,

struct lamnode originnode,int origin);� �
Arguments:

• IN: dest node is the destination node

• IN: origin node is the origin node

• IN: origin is the node ID of the origin

Create a string for the$inet topo that is suitable for use in thehbootparse()

function (see example code in FigureB.5).

B.1.16 Utility Function:lam ssi boot do commonargs()� �
int lam ssi boot do commonargs(OPT∗aod,int ∗argc,char ∗∗∗argv);� �
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Arguments:

• IN: aod is a handle to the parsed command line.

• IN/OUT: argc is the length of theargv array.

• IN/OUT: argv is the command line token array.

Utility function to handle some mundane argument handling (e.g., adding “-v” and/or

“-d” to argv if they are found inaod , as per the description of howlamboot and

friends function in their respective man pages). It is typically invoked with theargv

of a process to start on a remote node, allowing “-v” and “-d” to propagate to remote

processes.

B.1.17 Built-in Algorithms

Theboot component framework provides generalized algorithms to launch processes

across a set of nodes. These algorithms are generally invoked from withinboot module

API calls. The algorithms, in turn, will make callbacks into the module to perform the ac-

tual work (e.g., launch a process). The algorithms perform all the necessary bookkeeping

and timing to execute the entire set of tasks as well as exchange all startup rendesvouz

protocol information (if necessary). Note, however, that these functions will all skip

nodes that are either not marked with theNT BOOTflag or have a node ID that is equal to

NOTNODEID.

Note that the use of these functions is not mandatory. They are simply provided as

drop-in algorithms so that modules do not need to write their own algorithms.

Section4.1.7generally describes the available algorithms. Their names are long be-

cause of the SSI prefix rule. Each of the functions below have the same signature:� �
int algorithm(struct lamnode∗nodes,int nnodes,int want startupprotocol,

lam ssi boot proc t which, int ∗num started);� �
The arguments are as follows:
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• IN: nodes is an array of nodes to boot across.

• IN: nnodes is the length of thenodes array.

• IN: want startup protocol is a flag indicating whether the function should
invoke the module’s startup rendesvouz protocol functions at the appropriate times
during the boot process. It should only be set to 1 when booting LAM daemons; 0
all other times.

• IN: which is an enum indicating what kind of process to launch (see SectionB.1.4).

• OUT: num started will be filled in by the algorithm indicating how many nodes
were actually booted.

The provided algorithm functions are:

• lam ssi boot base alg linear() : Simple linear process-launching algo-
rithm.

• lam ssi boot base alg linear windowed() : Linear algorithm with a slid-
ing window for the startup rendesvouz protocols. This is especially well-suited for
boot environments where remote process invocation latency can be hidden by not
waiting for a remote action to finish before progressing onto the next action. This
algorithm guarantees that there will never be more thanN outstanding agents wait-
ing to exchange startup rendesvouz protocol information.

This algorithm is especially relevant if the built-in TCP startup rendesvouz proto-
cols are used (described in SectionB.1.18), because at least some operating system
TCP stacks only allow a limited number of clients to be pending on a listening
socket. Hence, using the windowed algorithm will guarantee that that operating
system limit is never exceeded.

The default window value is 5, and can be changed by setting theboot base -
linear win size module parameter.

B.1.18 TCP-Based Startup Rendesvouz Protocols

Most (if not all) boot modules will be able to use the generalized TCP startup ren-

desvouz protocol functions since TCP is likely able to be used for such meta-information

exchanges regardless of the underlying communication network. If TCP connectivity is

not available, theboot module will need to provide startup rendesvouz protocols itself.

These functions eliminate the need for mostboot modules to provide their own func-

tions for several of theboot API calls. Since these functions can be used for the corre-

sponding API functions, only their names are listed below – their signatures and behavior

are described in SectionB.2:
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• lam ssi boot base open srv connection()

• lam ssi boot base send lamd info()

• lam ssi boot base receive lamd info()

• lam ssi boot base close srv connection()

• lam ssi boot base send universe info()

• lam ssi boot base receive universe info()

Note that these functions are subject to operating system limits such as how many

pending clients can be held on a listening socket. Some operating systems have a surpris-

ingly low backlog limit. Modules that utilize booting algorithms that could have multiple

clients simultaneously calling the server back should be aware of this limitation, and ei-

ther use multiple servers or some kind of windowed protocol (e.g., the linear windowed

algorithm described in SectionB.1.17).

The information that must be exchanged is:

• From the LAM daemon tolamboot , send the following:

– UDP port number that the LAM daemon will use for normal operations

– Any other information required to call the LAM daemon back to pass the
universe information

• From lamboot to the LAM daemon, loop sending the following information to
each LAM daemon in the LAM universe:

– Integer node identifier of that LAM daemon (from0 toN−1), orNOTNODEID
if it is not a valid node

– Either the byte-packed IP address of the LAM daemon or the string hostname
of the LAM daemon

– Integer UDP port number that the LAM daemon is listening on

– Integer (bit flags) for the node that the LAM daemon is running on (see Sec-
tion B.1.2)

– Integer number of CPUs that the LAM daemon thinks that the node has
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� �
typedef struct lam ssi boot 1 0 0 {

lam ssi 1 0 0 t lsb metainfo;

/∗ Initialize / finalize functions∗/

lam ssi boot init fn t lsb init;
lam ssi boot finalize fn t lsb finalize;

} lam ssi boot 1 0 0 t;� �
Figure B.6. Theboot type for exporting the initialization and finalization API function
pointers.

B.2 boot Component Framework Module API

This is version 1.0.0 of theboot component framework module API. Eachboot mod-

ule must export alam ssi boot 1 0 0 namedlam ssi boot <name> module .

This type is defined in FigureB.6. Thisstruct contains a small number of items, one

of which is a function pointer that may return a pointer to thestruct shown in Fig-

ureB.7.

The majority of the elements in FiguresB.6 andB.7 are function pointer types; each

is discussed in detail below.

Function prototypes are also marked as one of three classes:

• Launch Function: This function is part of the set of functions that start processes
on nodes. This function will be invoked by the LAM infrastructure.

• Algorithm Callback Function: This function is invoked as a callback from the
LAM-provided boot algorithm function frameworks. Although these functions
serve as useful abstractions, they are only required if the LAM-provided boot algo-
rithms are used.

• Rendesvouz Function: This function is part of the set of functions that exchange
startup rendezvous information.

boot module writers looking for insight into how the API is used should also look at

the source code forlamboot , recon , andwipe .
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� �
typedef struct lam ssi boot actions1 0 0 {

/∗ Boot API function pointers∗/

lam ssi boot parseoptionsfn t lsbaparseoptions;
lam ssi boot allocatenodesfn t lsbaallocatenodes;
lam ssi boot verify nodesfn t lsbaverify nodes;
lam ssi boot prepareboot fn t lsbaprepareboot;
lam ssi boot start rte procsfn t lsbastart rte procs;
lam ssi boot deallocatenodesfn t lsbadeallocatenodes;

/∗ Algorithm callback functions (optional)∗/

lam ssi boot start applicationfn t lsbastart application;
lam ssi boot start rte proc fn t lsbastart rte proc;

/∗ Startup protocol: sending individual lamd info∗/

lam ssi boot opensrv connectionfn t lsbaopensrv connection;
lam ssi boot sendlamd info fn t lsbasendlamd info;
lam ssi boot receivelamd info fn t lsba receivelamd info;
lam ssi boot closesrv connectionfn t lsbaclosesrv connection;

/∗ Startup protocol: broadcasting universe info∗/

lam ssi boot senduniverseinfo fn t lsbasenduniverseinfo;
lam ssi boot receiveuniverseinfo t lsba receiveuniverseinfo;

} lam ssi boot actions1 0 0 t;� �
Figure B.7. Theboot type for exporting the main action API function pointers.
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B.2.1 Data Item:lsb meta info

lsb meta info is the SSI-mandated element contains meta-information about the

module. See SectionA.6.2 for more information about this element.

B.2.2 Launch Function:lsb init

• Type: lam ssi boot init fn t

� �
typedef constlam ssi boot actionst ∗(∗lam ssi boot init fn t)

(lam ssi boot location t where,int ∗priority);� �
• Arguments:

– IN: where is anenum indicating where this module is being initialized. The
value will be one of the following:

∗ LAM SSI BOOT LOCATION ROOT: The module is being invoked on
the root of the boot. This typically means a user-level command such as
lamboot , recon , wipe , or lamgrow .

∗ LAM SSI BOOT LOCATION INTERIOR: This module is being invok-
ed in an interior node of the boot. This may mean that a hierarchical boot
algorithm is being used, and that this process is a “helper” launching ap-
plication. It directly implies that this node has both a parent and one or
more children.

Note that none of the LAM-provided algorithms currently support this
value; it is in anticipation of supporting tree-based algorithms.

∗ LAM SSI BOOT LOCATION LEAF: All other cases. This includes the
LAM daemon itself (see below).

– OUT: priority is the priority of this module, and is used to choose which
module will be selected from the set of available modules at run time.

• Return value: EitherNULL or a pointer to thestruct shown in FigureB.7.

• Description: If the module wants to be considered for selection, it must return a
pointer to thestruct shown in FigureB.7 that is filled with relevant data and
assign an associated priority topriority . See Section3.2.7for more details on
the priority system and how modules are selected at run time.

If the module does not want to be considered during the negotiation for this com-
municator, it should returnNULL (the value inpriority is then ignored).

Note that the LAM daemon itself must also initialize theboot component frame-
work and come to the same selection conclusion as its peers. Although the LAM
daemon will not use any ofboot API functions to launch remote processes, it
will use the startup rendezvous functions to exchange location information with
lamboot .
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B.2.3 Launch Function:lsb finalize

• Type: lam ssi boot finalize fn t

� �
typedef int (∗lam ssi boot finalize fn t)(void);� �

• Arguments: None.

• Return value: Zero on success, nonzero otherwise.

• Description: Finalize the use of this module. It is the last function to be called in
the scope of this module’s selection before the module close function. It should
release any resources allocated during the life of this scope.

B.2.4 Launch Function:lsba parse options

• Type: lam ssi boot parse options fn t

� �
typedef int (∗lam ssi boot parseoptionsfn t)(OPT∗args,int bhostschemaargs);� �

• Arguments:

– IN: args contains the command line arguments.

– IN: bhost schema args is 1 if theargc /argv pair contains a boot schem-
a filename (e.g., fromlamboot , recon , andwipe ), and 0 if the pair con-
tains a string hostname/IP address (e.g., fromlamgrow ).

• Return value: Zero on success, nonzero otherwise.

• Description: The module can examine the command line parameters.

This API function typically makes use of the two utility functionslam ssi -
boot base find boot schema() andlam ssi boot base find host-
name() (described in SectionsB.1.10andB.1.11, respectively).

B.2.5 Launch Function:lsba allocate nodes

• Type: lam ssi boot allocate nodes fn t

� �
typedef int (∗lam ssi boot allocatenodesfn t)

(struct lamnode∗∗nodes,int ∗nnodes,int ∗origin);� �
• Arguments:
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– OUT: nodes is a pointer to astruct lamnode that this function is ex-
pected to fill with an array ofstruct lamnode s.

– OUT: nnodes is a pointer to anint that this function is expected to fill with
the length ofnodes array.

– OUT: origin is a pointer to anint that this function is expected to fill with
an index into thenodes array representing the element for this node.

• Return value: Zero on success, nonzero otherwise.

• Description: Create and fill in alamnode structure for each node to be booted.
There are few requirements on the completeness of the structure, but all unused
fields should be zeroed out before returning. Additionally, thelnd type field for
the origin member should have theNT ORIGIN andNT MEflags set. Additionally,
the total number of nodes must be correct.

Note that this function’s actions may be determined by the value of thebhost -
schema args flag to theparse options() API call.

Thedeallocate nodes() API call should later be used to free the memory
associated with the nodes list.

This API function typically makes use of the two utility functionsbhostparse()
andlam ssi boot base lamgrow() (described in SectionsB.1.7andB.1.12,
respectively).

B.2.6 Launch Function:lsba verify nodes

• Type: lam ssi boot verify nodes fn t

� �
typedef int (∗lam ssi boot verify nodesfn t)(struct lamnode∗nodes,int nnodes);� �

• Arguments:

– IN: nodes is the array ofstruct lamnode s returned by theallocate -
nodes() API call.

– IN: nnodes length of thenodes array.

• Return value: Zero on success, nonzero otherwise.

• Description: Last sanity check on the node list. If possible, check the node list for
conditions such as (but not limited to):

– Existence of node (e.g., try to resolve IP names)

– Permission to execute on node

– Ensure that the local node is in the list

– If the number of nodes is greater than one, ensure that the local address is not
127.0.0.1 if using standard IP-passing scheme
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After this call, lamnodes should be filled in with enough information for the
boot component framework to contact each of the target notes. As such, it needs
to determine which entry in the array is the origin (this may have been determined
by the allocate nodes() API call, but in some cases, it is not possible to
determine it until here inverify nodes() ).

B.2.7 Launch Function:lsba prepare boot

• Type: lam ssi boot prepare boot fn t

� �
typedef int (∗lam ssi boot prepareboot fn t)(void);� �

• Arguments: None.

• Return value: Zero on success, nonzero otherwise.

• Description: Perform any setup work that might be needed by thestart rte -
procs() API call, but that only needs to be done once. For example, on BProc
architectures,boot modules may generate theargv arrays for starting up the LAM
daemons.

B.2.8 Launch Function:lsba start rte procs

• Type: lam ssi boot start rte procs fn t

� �
typedef int (∗lam ssi boot start rte procsfn t)

(struct lamnode∗nodes,int nnodes, lamssi boot proc t which,

int ∗num started);� �
• Arguments:

– IN: nodes is the array of nodes to start processes on

– IN: nnodes is the length of thenodes array.

– IN: which is anenumspecifying which LAM run-time environment process
to start.

– OUT: num started is a pointer to anint indicating how many processes
were successfully started.

• Return value: Zero on success, nonzero otherwise.
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• Description: Takes anodes array and starts a LAM run-time environment process
on each node.

The function must only launch on nodes that have theNT BOOTflag set on their
type and do not have a node ID ofNOTNODEID. All other nodes must be skipped.

Note that there is both a return code from this function (indicating overall success
or failure) and a separate count of how many processes were started. This is for the
case wheresomeprocesses may start properly, but others fail. Thenum started
argument tells the caller how many processes now need to be cleaned up. The
nodes array can be examined to find out exactly which nodes were successfully
booted (NT BOOTmust be reset on thelnd type of nodes that were successfully
started).

If any of the LAM-provided boot algorithms are used, this is the function that
typically invokes them.

B.2.9 Launch Function:lsba deallocate nodes

• Type: lam ssi boot deallocate nodes fn t

� �
typedef int (∗lam ssi boot deallocatenodesfn t)

(struct lamnode∗∗nodes,int ∗nnodes);� �
• Arguments:

– IN/OUT: nodes is an array of nodes.

– IN/OUT: nnodes is the length of thenodes array.

• Return value: Zero on success, nonzero otherwise.

• Description: Clean up any memory associated with the node allocation step. Al-
though not required, modules are encouraged to resetnodes and nnodes to
NULL and 0, respectively, when the function returns. This function will be called
only after the nodes information is no longer needed. This function typically in-
vokeslam deallocate nodes() (see SectionB.1.9).

B.2.10 Algorithm Callback Function:lsba start application

• Type: lam ssi boot start application fn t

� �
typedef int (∗lam ssi boot start applicationfn t)

(char ∗∗∗argv,int ∗argc,int num procs,struct lamnode∗node);� �
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• Arguments:

– IN: argv is an array ofargv -style command line arguments; i.e., an array
of commands to start.

– IN: argc is an array of integers indicating how long each array is in theargv
array.

– IN: num procs is the length of the first dimension ofargv .

– IN: node is a pointer to a singlestruct lamnode indicating which node
to start on.

• Return value: Number of processes successfully started.

• Description: Launch the specified processes on the specified node. Return the
number of processes successfully booted. Hence, if the return value is equal to
num procs , the function completed successfully. There is no mandate that pro-
cesses be started in the order they exist inargv .

The return value is explicitly vague so that modules can get “even more paral-
lelism” if they happen to use a remote startup agent that provides a high degree of
parallelism.

It is incorrect to use this function directly from a boot algorithm to launch a LAM
run-time environment process (e.g.,lamd , recon , wipe ). Use thestart -
rte proc() API function instead. This function should only be used by a boot
algorithm to start up other instances of the boot algorithm (i.e., “helper” executa-
bles).

B.2.11 Algorithm Callback Function:lsba start rte proc

• Type: lam ssi boot start rte proc fn t

� �
typedef int (∗lam ssi boot start rte proc fn t)

(struct lamnode∗node, lamssi boot proc t which);� �
• Arguments:

– IN: node is a pointer to a singlestruct lamnode indicating where the
process should be started.

– IN: which is anenum indicating what kind of LAM run-time environment
process should be started (see SectionB.1.4).

• Return value: Zero on success, nonzero otherwise.

• Description: Start a LAM run-time environment process on the specified node. This
can use thestart application() API function (in fact, it is encouraged).

This function exists because the boot algorithm should not need to know any
of the details about starting a LAM run-time environment process. This function
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provides an upcall to give the boot algorithm an abstract mechanism to launch a
LAM run-time environment process.

B.2.12 Rendezvous Function:lsba open srv connection

• Type: lam ssi boot open srv connection fn t

� �
typedef int (∗lam ssi boot opensrv connectionfn t)

(struct lamnode∗nodes,int nnodes);� �
• Arguments:

– IN: nodes is a pointer to an array ofstruct lamnode s that are expected
to connect to this process.

– IN: nnodes is the length of thenodes array.

• Return value: Zero on success, nonzero otherwise.

• Description: Open a private, server-side communication endpoint (i.e., the channel
will only be used within the boot component framework) that the LAM daemon will
connect back to. This function will only be called once in the scope of the module,
meaning that if you use the provided linear algorithms, it will only be called once
on the origin node. It is conceivable that with other types algorithms, such as tree-
based algorithms, this function may be called multiple times on different nodes.

Note that the addresses given innodes may or may not be the actual clients
that connect. There are some valid network architectures where connections may
seem to come from addresses other than what are listed in thenodes array. It is
suggested toboot module authors that unless the special “boot promiscuous mode”
is enabled in LAM, only accept connections from the addresses listed in thenodes
array (when possible). However, when “promiscuous mode” is enabled, accept
connections from anywhere, and rely on the client to identify themselves in the
boot protocol.

B.2.13 Rendesvouz Function:lsba send lamd info

• Type: lam ssi boot send lamd info fn t

� �
typedef int (∗lam ssi boot sendlamd info fn t)(OPT∗args,int dli port);� �

• Arguments:

– IN: args contains the command line parameters.
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– IN: dli port is the UDP port number that the local LAM daemon is listen-
ing on for normal operations.

• Return value: Zero on success, nonzero otherwise.

• Description: Open a connection back to the booting agent, send relevant location
information (e.g., the LAM’s UDP port number), and then closes the connection. It
is assumed that the information necessary to connect back to the invoking agent is
either in the command line arguments or available in a module parameter.

B.2.14 Rendesvouz Function:lsba receive lamd info

• Type: lam ssi boot receive lamd info fn t

� �
typedef int (∗lam ssi boot receivelamd info fn t)

(struct lamnode∗nodes,int nnodes);� �
• Arguments:

– IN/OUT: nodes is a pointer to an array ofstruct lamnode s that were
successfully started.

– IN: nnodes is the length of thenodes array.

• Return value: Zero on success, nonzero otherwise.

• Description: Accept a connection from a LAM daemon and receive the informa-
tion it sends back. The function is provided with an array ofstruct lamnode
entries, one of which will correspond to the LAM daemon that will be contacting
it. It is up to the function to figure out which one is responding. When finished,
close the connection. A new connection is used to broadcast the information at a
later time.

In the case that only one LAM daemon can be communicating with the function,
(for example, when the boot algorithm is linear), thennnodes will one and the job
of searching is much easier.

B.2.15 Rendesvouz Function:lsba close srv connection

• Type: lam ssi boot close srv connection fn t

� �
typedef int (∗lam ssi boot closesrv connectionfn t)(void);� �

• Arguments: None.

• Return value: Zero on success, nonzero otherwise.
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• Description: Close the channel opened during theopen srv connection()
API function.

B.2.16 Rendesvouz Function:lsba send universe info

• Type: lam ssi boot send universe info fn t

� �
typedef int (∗lam ssi boot senduniverseinfo fn t)

(struct lamnode∗nodes,int nnodes,int which);� �
• Arguments:

– IN: nodes is an array of nodes that the information needs to be broadcast to.

– IN: nnodes is the length of thenodes array.

– IN: which is an index into thenodes array indicating which node to connect
and send the information to.

• Return value: Zero on success, nonzero otherwise.

• Description: Connect to LAM daemon and send the union of all the LAM location
information (i.e., send information about all the peer LAM daemons that comprise
the LAM universe).

This function opens a connection to a target LAM daemon, sends the information,
and disconnects.

B.2.17 Rendesvouz Function:lsba receive universe info

• Type: lam ssi boot receive universe info t

� �
typedef int (∗lam ssi boot receiveuniverseinfo t)

(struct lamnode∗∗universe,int ∗universesize);� �
• Arguments:

– OUT: universe is a pointer to an (as yet unallocated) array of information
that will be received.

– OUT: universe size is a pointer to anint that will be filled to be the
length of theuniverse array.

• Return value: Zero on success, nonzero otherwise.
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• Description: After the LAM daemon communicates its port information to the boot-
ing process, it waits for information about the entire run-time universe. This func-
tion is where it waits for that information. It returns the information returned about
all neighbors.

Similar to thereceive lamd info() API function, this function should ac-
cept the connection, read the information, and close the connection when finished
reading.
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APPENDIX C

MPI POINT-TO-POINT COMMUNICATION COMPONENT INTERFACE

Therpi component framework is described in Chapter5. This Appendix describes the

technical details and requirements forrpi modules [125]. SectionC.1 discusses header

files, types, global variables, and utility functions that are provided to allrpi modules.

SectionC.2details the module interface modules and functions.

C.1 Services Provided by therpi SSI

Several services are provided by therpi component framework that are available to all

rpi modules.

C.1.1 Header Files

The following header files must be included (in order) in all module source files that

want to use any of the commonrpi component services described in this document:� �
#include<lam−ssi.h>

#include<lam−ssi−rpi.h>� �
Both of these files are included in the same location in the LAM source tree:share/-

include . AppendixA.6.1 describes how to provide appropriate preprocessor flags to

include these files properly.
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� �
struct gps{

/∗ Unique identification in the LAM universe∗/

int4 gpsnode;
int4 gpspid;
int4 gpsidx;

/∗ Rank in MPICOMM WORLD; used for convenience only∗/

int4 gpsgrank;
};� �
Figure C.1.struct gps : GPS type; unique process identification in a LAM universe.
It is mainly used for MPI process identification and LAM out-of-band messaging.

C.1.2 Internal Type:struct gps

This type is used to identify the location of a process in the LAM universe. It is

typically used to fill in attributes required for the LAM out-of-band messaging system.

FigureC.1shows its definition.

The individual elements are:

• gps node : The node ID in the LAM universe where the process is running. This
will be an integer in[0, N), whereN is the number of nodes in the LAM universe.

• gps pid : The POSIX PID of the process that invokedMPI INIT.1

• gps idx : The index of the process in the local LAM daemon’s process table.

• gps grank : The “global rank” of the process. This is the integer rank of this
process in itsMPI COMM WORLD.

C.1.3 Internal Type:struct proc

This type is used to describe MPI processes. Each process in LAM/MPI maintains a

linked list of all the processes that it knows about and can communicate with (including

1Note that because of Linux kernel 2.x POSIX thread semantics, this may or may not be the PID of
the main thread. However, thisis the PID of the process (thread) that invokedMPI INIT (and therefore
kinit() ), and the PID that will be returned bylam getpid() .
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� �
struct proc{

/∗ GPS uniquely identifying this process in the LAM universe∗/

struct gps pgps;

/∗ Various attributes∗/

int p ger nsnd;
int p mode;
int p refcount;
int p num buf env;

/∗ Hook for the rpi module to hang data∗/

struct lam ssi rpi proc∗p rpi;
};� �
Figure C.2.struct proc : Process entry.

itself). See FigureC.2.

It is important to recognize that each of these elements are set from the perspective of

the process on which the instance resides. An individualproc instance indicates what

processA knows about processB. Hence, it is possible for multiple processes to have

different values for the individual elements, even if they are referring to the same target

process.

The individual elements are:

• p gps : The GPS for the process. See SectionC.1.2.

• p get nsnd : The number of messages sent to this process. Used for Guaranteed
Envelope Resources (GER) purposes, forrpi modules that support them.

• p mode: A bit-mapped flag indicating various things about the process. Valid flags
are:

– LAM PFLAG: Generic flag used for marking. Care needs to be taken to en-
sure that two portions of code are not using/modifyingLAM PFLAG marking
simultaneously.

– LAM PDEAD: Set if the process has died.
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– LAM PRPIINIT: Set if therpi module has been initialized on this process.

– LAM PCLIENT: Set if the process is in the “client”MPI COMM WORLD
(e.g., if the process was spawned or connected to afterMPI INIT) in this pro-
cess’ originalMPI COMM WORLD.

– LAM PHOMOG: Set if the process has the same endian as this process.

– LAM PRPICONNECT: Set if therpi module has connected to this process
or not.

Note the distinction between whether therpi module has initialized a process and
whether it has connected to it. A process typically only needs to be initialized once,
but may be connected multiple times throughout its life (e.g., checkpointing may
force disconnects, or anrpi module may choose to only keep processes connected
when they are actively communicating).

Therpi module must leave the lower 8 bits ofp mode alone – they are reserved
for the MPI layer.

• p refcout : The reference count for this process. Every time a communicator or
group includes this process, its reference count is incremented (and vice versa) by
the MPI layer.

• p num buf env : Number of buffered envelopes.

• p rpi : This member is of type(lam ssi rpi proc *) , which must be de-
fined by eachrpi module. It is a mechanism for therpi module to attachrpi-specific
state information to aproc . This information is typically state information for the
connection to/from the process.

For example, thetcp module stores (among others things):

– File descriptor of the socket connection to the remote process

– Pointers to requests (if any) that are currently being read from the socket

– Pointers to requests (if any) that are currently being written to the socket

C.1.4 Internal Type:struct req

For each process, the LAM/MPI library maintains a linked list of all the requests that

need to be progressed. The MPI layer keeps this progression list in order and also removes

requests upon completion.rpi authors can thread other lists through the progression list

via rpi-specific data. Several of therpi functions deal with creating requests and moving

them along to completion. See below.
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� �
typedef struct req∗MPI Request;
struct req{

/∗ For debugging∗/

char ∗rq name;

/∗ State flags and attached buffer (if any)∗/

int rq type;
int rq state;
int rq marks;
int rq flags;
char ∗rq packbuf;
int rq packsize;

/∗ Arguments to top−level MPI function∗/

int rq count;
void ∗rq buf;
MPI Datatype rqdtype;
int rq rank;
int rq tag;
MPI Comm rqcomm;� �

Figure C.3.struct req : Underlying structure forMPI Request , part 1.

A request is represented by a structure of type(struct req) . The typeMPI -

Request is actually a typedef:(struct req *) . Hence, when top-level MPI func-

tions pass anMPI Request , they are actually pointing to an underlyingstruct req .

This bears importance, particularly since it implies that the MPI layer must allocate and

free individualstruct req instances (see theLAM RQFDYNREQ mark, below).

See FiguresC.3andC.4.

Each request is typically the result of a call to some kind of MPI send or receive

function. The individual members are:

• rq name: String name of the request. This is typically only used for debugging
purposes. If notNULL, it needs to point to storage on the heap; it will be freed
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� �
/∗ Fast lookups, resolved at request creation time∗/

int rq cid;
int rq func;
int rq seq;
int rq f77handle;
MPI Status rqstatus;
struct bsndhdr∗rq bsend;
struct proc∗rq proc;
struct req∗rq next;

/∗ Mainly for IMPI; do not use∗/

void ∗rq extra;
int (∗rq hdlr)();
MPI Request rqshadow;

/∗ Hook for the rpi module to hang data∗/

struct lam ssi rpi req∗rq rpi;
};� �
Figure C.4.struct req : Underlying structure forMPI Request , part 2.
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when the request is destroyed.

• rq type : Flag indicating the type of action specified by this request. Valid values
are:

– LAM RQISEND: Normal mode send

– LAM RQIBSEND: Buffered mode send

– LAM RQISSEND: Synchronous mode send

– LAM RQIRSEND: Ready mode send

– LAM RQIRECV: Receive

– LAM RQIPROBE: Probe

– LAM RQIFAKE: “Fake” request used to indicate a non-blocking buffered
send. Therpi module should never see a request of this type – the MPI layer
should handle it internally. This flag value is only mentioned here for the sake
of completeness.

Note that whether the request is blocking is not indicated byrq type – it is
indicated byrq flags , described below.

• rq state : The state of this request. Valid values are:

– LAM RQSINIT: Init state (not active). No communication allowed.

– LAM RQSSTART: Start state (active, but not yet done). Communication
allowed, but not required.

– LAM RQSACTIVE: Active state (active, but not yet done). Communication
allowed, but only required if the destination process is not this process.

– LAM RQSDONE: Done state (not active). No communication allowed.

It is critical for rpi modules to update this member properly. For example, MPI
semantics require thatMPI REQUEST FREE may be invoked on a request before
the communication associated with it has completed. In such a case, the LAM
examines the state of therq state member to see if it is safe to actually destroy
the request or not; the request will only be destroyed if the state isLAM RQSINIT
or LAM RQSDONE. Otherwise, the request will be marked as an orphan (see
rq flags , below) and LAM will free it when it is actually finished.

• rq marks : Bit-mapped persistent flags on a request. These flags will endure
through the entire life of a request, regardless of its state (e.g., flags that only need
to be set once on persistent requests). Therpi module should not modify these
values. Valid values are:

– LAM RQFPERSIST: This request is persistent.

– LAM RQFDYNBUF: The buffer associated with this request is dynamic and
will be automatically freed when the request is destroyed.

– LAM RQFDYNREQ: The request itself is dynamic and will be freed when
the request is destroyed.
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– LAM RQFSOURCE: A source request (i.e., indicates direction of message
transfer).

– LAM RQFDEST: A destination request (i.e., indicates direction of message
transfer).

– LAM RQFBLKTYPE: Indicates that the request is a blocking request.

– LAM RQFOSORIG: Origin of a one-sided request.

– LAM RQFOSTARG: Target of a one-sided request.

– LAM RQFMAND: A mandatory request. This mark is maintained by the
MPI layer, and is really only intended for IMPI communications, and will
(hopefully) someday be removed.

• rq flags : Bit-mapped active request flags. These will be reset for each iteration
through the start state. Therpi module should only ever modify theLAM RQF-
TRUNC value; all other values should not be modified by therpimodule. Valid
values are:

– LAM RQFCANCEL: The request has been canceled.

– LAM RQFBLOCK: The request is blocking.

– LAM RQFTRUNC: The request was (or is about to be) truncated. If set, this
will cause anMPI ERR TRUNCATE error in the MPI layer.

– LAM RQFHDLDONE: The handler for this request has already been in-
voked.

– LAM RQFORPHAN: This request is an orphan and needs to be automati-
cally freed when it is done.

– LAM RQFMARK: Arbitrary marking for requests. Care should be taken to
ensure that two independent sections of code don’t attempt to use/modify the
LAM RQFMARK flag at the same time.

– LAM RQFACKDONE: The ACK for this request has completed (e.g., for
rendesvouz protocols). This flag is only for IMPI support, and should not be
used byrpi modules.

• rq packbuf : Pointer to start of contiguous buffer of message data to be sent or
area where message data is to be received. Depending on the MPI datatype of data
to be sent/received, this may or may not be the same asrq buf , which is a pointer
to the buffer given by the user. The MPI layer handles packing and unpacking of
this buffer.

• rq packsize : The size of the data to be sent/received in bytes. This is set by the
MPI layer. This is how much message data therpi module must send/receive for
the request.

• rq count : Parameter from the original MPI function call.

• rq buf : Parameter from the original MPI function call.

• rq dtype : Parameter from the original MPI function call.

229



• rq rank : Parameter from the original MPI function call.

• rq tag : Parameter from the original MPI function call.

• rq comm: Parameter from the original MPI function call.

• rq cid : The context ID to use in the message envelope. It corresponds to the
communicator memberrq comm.

• rq func : A flag indicating which top-level MPI function created this request. See
the fileshare/include/blktype.h for a list of valid values.

• rq seq : The message sequence number. If therpimodule is to work with LAM
tracing, then this number must be sent with each message (it is set by the MPI layer)
and then on the receiving side, therpi module must extract it and set this field in
the receiving request with its value.

• rq f77handle : Handle index used by Fortran.

• rq status : The status of a request. In the case of a receive request, therpi
module must fill theMPI SOURCEfield of this structure with the rank of the sender
of the received message, theMPI TAGfield with the tag of the received message,
and thest length field with the number of bytes in the received message.

• rq bsend : Pointer to the buffer header in the case of a buffered send. Used by
MPI layer only.

• rq proc : Pointer to the peer process. This is initially set by the MPI layer. In the
case of a receive onMPI ANY SOURCE, it will be NULL. Once the actual source
has been determined, therpi module may set it to point to the peer process but is
not required to do so.

• rq next : Pointer to the next request in the list. Do not modify. If therpi mod-
ule needs to maintain its own request lists, it must do so through therpi-specific
information handle (rq rpi ).

• rq extra : A general place to hang extra state off the request. Used for one-sided
and IMPI communications; therpimodule should not modify this field.

• rq hdlr : Function to invoke when a request has moved into the done state. Don’t
touch this; it is used exclusively in the MPI layer (mostly by one-sided communi-
cation).

• rq shadow : “Shadow” requests used by IMPI. Don’t touch these; they are han-
dled exclusively in the MPI layer.

• rq rpi : rpi-specific data hanging off the request. Its type is(lam ssi rpi -
req *) , and must be defined by therpi module. For example, thetcp rpi module
stores (among others things) the request envelope and a pointer into the data buffer
indicating the current read/write position.
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C.1.5 Internal Type:struct comm

Thestruct commtype is the underlying type for anMPI Comm. The majority of

members of this type are probably not useful torpi authors; detailed definitions of this

members are skipped for brevity. See FigureC.5.

The individual members are:

• c flags : Bit flags indicating various characteristics of the communicator. The
defined flags on this field are:

– LAM CINTER: If set, this communicator is an inter-communicator. If clear,
this communicator is an intra-communicator.

– LAM CLDEAD: At least one process in the local group is dead.

– LAM CRDEAD: At least one process in the remote group is dead.

– LAM CFAKE: This is a “fake” IMPI communicator.rpi modules should never
see this flag.

– LAM CHOMOG: All the processes on this communicator are endian-homo-
geneous. This flags is merely a shortcut for traversing all the procs in a given
communicator to see if they are endian-homogeneous or not.

• c contextid : Integer context ID.

• c refcount : Reference count – effectively how many communications are cur-
rently using this communicator (since it is possible toMPI COMM FREE a com-
municator before all non-blocking communication has completed).

• c group : Local group. Will be a meaningful group for intra-communicators, and
MPI GROUP NULL for inter-communicators,

• c rgroup : Remote group. Will beMPI GROUP NULL for intra-communicators,
and a meaningful group for inter-communicators.

• c keys : MPI attribute key hash table. See [9] for more discussion of theHASH
LAM type and accessor functions.

• c cube dim : Inscribed cube dimension of the communicator. Used for binomial
trees in MPI collectives.

• c topo type : Topology type; eitherMPI GRAPH, MPI CART, or MPI UN-
DEFINED.

• c topo nprocs : Number of processes in topology communicators.

• c topo ndims : Number of dimensions in Cartesian communicators.

• c topo nedges : Number of edges in graph communicators.
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� �
typedef struct comm∗MPI Comm;
struct comm{

/∗ Identification and reference count information∗/

int c flags;
int c contextid;
int c refcount;

/∗ Groups and attributes∗/

MPI Group cgroup;
MPI Group crgroup;
HASH ∗c keys;

/∗ Topology information∗/

int c cubedim;
int c topo type;
int c topo nprocs;
int c topo ndims;
int c topo nedges;
int ∗c topo dims;
int ∗c topo coords;
int ∗c topo index;
int ∗c topo edges;

/∗ Extra MPI information∗/

int c f77handle;
MPI Win c window;
MPI Errhandler cerrhdl;
char c name[MPIMAX OBJECTNAME];

/∗ Reserved / IMPI−− do not use∗/

MPI Comm cshadow;
long c reserved[4];

};� �
Figure C.5.struct com: Underlying structure forMPI Comm.
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• c topo dims : Array of dimensions for Cartesian communicators.

• c topo coords : Array of coordinates for Cartesian communicators.

• c topo index : Array of indices for graph communicators.

• c topo edges : Array of edges for graph communicators.

• c f77handle : Fortran integer handle for this communicator.

• c window : In LAM/MPI, windows for one-sided message passing are imple-
mented on top of communicators. Abstractly, all windows “have” a communicator
that they communicate on (even though it is implemented the other way around –
communicators designated for one-sided message passing “have” a window).

• c errhdl : Error handler for this communicator.

• c name: A string name for the communicator.

• c shadow : A “shadow” communicator that is used by IMPI.

• c reserved : Reserved for future expansion.

C.1.6 Internal Type:struct group

The struct group type is the underlying type for anMPI Group . This type

is probably not useful torpi authors, but it is included here for completeness. See Fig-

ureC.6.

The individual members are:

• g nprocs : The size of the group, i.e., the size of theg procs array.

• g myrank : The index of this process in theg procs array. If the process is not
in the group, this will beMPI UNDEFINED.

• g refcount : The reference count of this variable. Reference counting is main-
tained by the MPI layer.

• g f77handle : The Fortran integer handle of this group.

• g procs : Pointer to an array of pointers to the processes in the group. The array
is in order of rank in the group. Note that these are simply references to the real,
underlying proc instances that represent the peer MPI processes – they are not
copies. Be very careful modifying what these pointers refer to.
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� �
typedef struct group∗MPI Group;
struct group{

/∗ State and identification∗/

int g nprocs;
int g myrank;
int g refcount;
int g f77handle;

/∗ Array of pointers into the process list∗/

struct proc∗∗g procs;
};� �
Figure C.6.struct group : Underlying structure forMPI Group .

� �
typedef struct status{

/∗ Public members (per MPI−1 standard)∗/

int MPI SOURCE;
int MPI TAG;
int MPI ERROR;

/∗ Private member∗/

int st length;
} MPI Status;� �
Figure C.7.struct status : Underlying structure forMPI Status .
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� �
struct lam ssi rpi envl{

int4 ce len;
int4 ce tag;
int4 ceflags;
int4 ce rank;
int4 cecid;
int4 ceseq;

};� �
Figure C.8.struct lam ssi rpi envl : General structure for envelopes.

C.1.7 Internal Type:struct status

Thestruct status type is the underlying type for anMPI Status . See Fig-

ureC.7.

Note that by definition in the MPI standard, the first three members listed above

(MPI SOURCE, MPI TAG, andMPI ERROR) are public variables.

The individual members are:

• MPI SOURCE: As described by the MPI standard.

• MPI TAG: As described by the MPI standard.

• MPI ERROR: As described by the MPI standard.

• st length : Private variable for use by the MPI andrpi layers. It is the length of
the message in bytes.

C.1.8 Internal Type:struct lam ssi rpi envl

The following type is provided as a prototype envelope that can be used byrpi mod-

ules for prefixing data messages across a communications channel. Although the use

of this specificstruct is not [yet] required, it is strongly encouraged because it will

provide compatibility with TotalView debugging, unexpected queue support, and may

become required for multi-rpi support. See FigureC.8.

The individual members are:
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• ce len : Message length (bytes).

• ce tag : Tag of the message (16 bits max).

• ce flags : Flags on this particular envelope. Valid values are:

– C2CTINY: “Tiny” message protocol (usually indicates that the envelope and
message payload are included in a single message (i.e., the message payload
may have already been received by receiving the envelope).

– C2CSHORT: “Short” message protocol (usually indicates that the envelope
and message payload were sent in separate messages, or, more specifically,
must be received in separate buffers, but the message payload directly follows
the envelope).

– C2CLONG: “Long” or “rendesvouz” message protocol (usually indicates a
three-way handshake to actually transfer the message). This is required for
arbitrarily long messages where resources may need to be allocated on the
receiver before they can be received properly.

– C2CACK: During a long message protocol handshake, the receiver sends an
envelope back to the sender with this bit set indicating that it is ready to receive
the main body of the message.

– C2C2ND: During a long message protocol handshake, the sender sends an
envelope with this bit set, indicating that the message payload is immediately
following.

– C2CSSEND: Indicates a synchronous mode send, which requires the re-
ceiver to send back an envelope withC2CACK set before the sending request
can complete.

– C2CBOX: Long message using the postbox protocol.

– C2CBUFFERED: The envelope has previously been buffered.

• ce rank : Peer rank. This may be the source or the destination, depending on the
context of the envelope.

• ce cid : Context ID of the communicator in which this message is being sent/re-
ceived.

• ce seq : Sequence number.

C.1.9 Internal Type:struct lam ssi cbuf msg

This type may be used for unexpected message buffering. Its use is strongly recom-

mended (see SectionC.1.14, page239) in order to enable external access to unexpected

message queues.

The individual members are as follows:
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� �
struct lam ssi rpi cbuf msg{

/∗ Identification of the message∗/

struct proc∗cm proc;
struct lam ssi rpi envl cmenv;

/∗ Hook for the RPI buffer to hang extra data∗/

struct lam ssi rpi cbuf∗cm extra;

/∗ Message data buffer∗/

char ∗cm buf;

/∗ Cleanup flag∗/

int cm dont delete;

/∗ Only valid of sending to self∗/

MPI Request cmreq;
};� �
Figure C.9.struct lam ssi rpi cbuf msg: Unexpected message bodies.
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• cm proc : Pointer to the source process.

• cm env : Copy of the incoming envelope.

• cm buf : Message data. This may or may not beNULL. For example, in thetcp
rpi module, this pointer only ever points to short messages because long message
data has not yet been received, since, by definition, an unexpected message receipt
means that a corresponding long receive request has not yet been posted.

• cm dont delete : Flag to indicate whether the buffer should be freed or not
when the request has completed.

• cm req : The send requestonly if the sender is this process;NULL otherwise.

The use of thisstruct is explained more fully in SectionC.1.14.

C.1.10 Global Variable:struct proc *lam myproc

A pointer to thestruct proc (described in SectionC.1.3) of this process. It is

most commonly used to get the attributes and/or GPS (see SectionC.1.2) of this process.

This variable isextern ’ed in <mpisys.h> .

C.1.11 Utility Function:lam memcpy()

lam memcpy() : While technically not anrpi-specific call,lam memcpy() is im-

portant because some platforms have poor implementations ofmemcpy() . On these

platforms, lam memcpy() (particularly with mid- to large-sized copies) may signifi-

cantly outperform the nativememcpy() . On platforms with “good” implementations of

memcpy() , lam memcpy() will actually be a#define that maps tomemcpy() in

order to use the native function without any additional function call overhead. Hence, it is

always safe to uselam memcpy() instead ofmemcpy() , and ensure portable memory

copying performance.

The prototype for this function is the same as formemcpy() .
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C.1.12 Utility Function:lam ssi rpi base alloc mem()

lam ssi rpi base alloc mem() : A wrapper aroundmalloc(3) . This func-

tion is provided forrpi modules that do not wish to provide their ownlsra alloc -

mem() functions.

This function fulfills all the requirements (such as prototype) as thelsra alloc -

mem() API call needs. See SectionC.2.14(page250).

C.1.13 Utility Function:lam ssi rpi base free mem()

lam ssi rpi base free mem() : A wrapper aroundfree(3) . This function

is provided forrpi modules that do not wish to provide their ownlsra free mem()

functions.

This function fulfills all the requirements (such as prototype) as thelsra free -

mem() API call needs. See SectionC.2.15(page251).

C.1.14 Utility Functions: Unexpected Message Buffering

It is strongly recommended thatrpi modules use thecbuf *() functions provided

by LAM for unexpected message buffering for the following reasons:

• When therpi design is evolved into multi-rpi, having a common buffering for unex-
pected messages will likely be required to handle unexpected messages in conjunc-
tion with MPI ANY SOURCE in communicators that span multiplerpi modules.

• LAM/MPI supports the Etnus TotalView parallel debugger which has the ability
to display MPI message queues. LAM exports the unexpected message queues
through the standard functions described in this section; if anrpi module uses the
LAM-provided functions, TotalView will be able to see the unexpected message
queue.

The LAM-provided functions for unexpected message buffering are:

• lam ssi rpi cbuf init(void) : This function is required to be called before
any unexpected buffering can occur. It is invoked automatically by therpi SSI
startup glue after allrpi moduleopen() functions are invoked, butbeforeanyrpi
modulelsr init() functions (see SectionC.2.4, page243) are invoked. This
function is only mentioned here for completeness.
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• lam ssi rpi cbuf end(void) : This function cleans up all the storage and
state associated with unexpected message buffering. It is invoked automatically
by therpi SSI shutdown glue after allrpi modulelsra finalize() functions
are invoked with(proc == 0) (see SectionC.2.6, page245), butbeforetherpi
moduleclose() functions are invoked.

• lam ssi rpi cbuf find(struct lam ssi rpi envl *rqenv) :
Given a pointer to an envelope, find if there are any matching messages on the
unexpected message queue. If there are no matching messages,NULL is returned.
Otherwise, a pointer to the first matchingstruct lam ssi rpi cbuf msg is
returned that contains information about the buffered message (see SectionC.1.9,
page236).

Note that because this function may be invoked by a probe, it doesnot remove
the message from the unexpected queue.

• lam ssi rpi cbuf delete(struct lam ssi rpi cbuf msg *msg) :
Delete a specific message from the unexpected message queue. The argument is
a pointer that was returned from eitherlam ssi rpi cbuf find() or lam -
ssi rpi cbuf append() .

• lam ssi rpi cbuf append(struct lam ssi rpi cbuf msg *msg) :
Append a new unexpected message to the end of the queue.*msg is copied by
value, so there’s no need formsg to point to stable storage. See SectionC.1.9
(page236) for an explanation of this type. This function returns a pointer to the
buffered message upon success, orNULL on failure.

C.2 rpi Component Framework Module API

This is version 1.1.0 of therpi component framework module API. Eachrpi mod-

ule must export alam ssi rpi 1 0 0 namedlam ssi rpi <name> module . This

type is defined in FigureC.10. A secondstruct is used to hold the majority of function

pointers and flags for the module. It is only used if the module is selected, and is shown

in FigureC.11.

The majority of the elements in FiguresC.10andC.11are function pointer types; each

is discussed in detail below. When describing the function prototypes, the parameters are

marked in one of three ways:

• IN: The parameter is read – but not modified – by the function.

• OUT: The parameter, or the element pointed to by the parameter may be modified
by the function.
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� �
typedef struct lam ssi rpi 1 1 0 {

lam ssi 1 1 0 t lsr metainfo;

/∗ rpi API function pointers∗/

lam ssi rpi query fn t lsr query;
lam ssi rpi init fn t lsr init;

} lam ssi rpi 1 1 0 t;� �
Figure C.10.struct lam ssi rpi 1 1 0: Therpi basic type for exporting the mod-
ule meta information and initial query / initialization function pointers.

• IN/OUT: The parameter, or the element pointed to by the parameter is read by, and
may be modified by the function.

rpi module writers looking for insight into how the API is used should also look at the

source code inshare/mpi/lamreqs.c . Most MPI functions that involve communi-

cation eventually call one or more of the functions in this file.

Unless specifically noted, none of the functions may block. Note that this may make

single-threaded implementations arbitrarily complicated. For example, the state machine

used in thetcp rpi module is extremely complicated for this very reason; in non-blocking

mode, reads and writes on sockets may return partial completion which will require re-

entering the same state at a later time.

C.2.1 Restrictions

It is illegal for anyrpi API function to invoke top-level MPI functions.

C.2.2 Data Item:lsr meta info

lsr meta info is the SSI-mandated element contains meta-information about the

module. See SectionA.6.2 for more information about this element.
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� �
typedef struct lam ssi rpi actions1 1 0 {

/∗ rpi API function pointers∗/

lam ssi rpi addprocsfn t lsra addprocs;
lam ssi rpi finalize fn t lsra finalize;

/∗ Request lifecycle∗/

lam ssi rpi build fn t lsra build;
lam ssi rpi start fn t lsra start;
lam ssi rpi advancefn t lsra advance;
lam ssi rpi destroyfn t lsra destroy;

/∗ Non−blocking probe; special enough to require its own function∗/

lam ssi rpi iprobe fn t lsra iprobe;

/∗ ‘‘Fast’’ sending and receiving∗/

lam ssi rpi fastrecvfn t lsra fastrecv;
lam ssi rpi fastsendfn t lsra fastsend;

/∗ MPI−2 Memory management∗/

lam ssi rpi alloc memfn t lsra alloc mem;
lam ssi rpi free memfn t lsra free mem;

/∗ Checkpoint / restart functionality∗/

lam ssi rpi restartfn t lsra interrupt;
lam ssi rpi checkpointfn t lsra checkpoint;
lam ssi rpi continuefn t lsra continue;
lam ssi rpi restartfn t lsra restart;

/∗ Flags∗/

int lsra tv queuesupport;
} lam ssi rpi actions1 1 0 t;� �
Figure C.11. struct lam ssi rpi actions 1 1 0: The rpi type for exporting
API function pointers.
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C.2.3 Function Call:lsr query

• Type: lam ssi rpi query fn t

� �
typedef int (∗lam ssi rpi query fn t)

(int ∗priority, int ∗threadmin, int ∗threadmax);� �
• Arguments:

– OUT: priority is the priority of this module, and is used to choose which
module will be selected from the set of available modules at run time.

– OUT: thread min is the minimum MPI thread level that this module sup-
ports.

– OUT: thread max is the maximum MPI thread level that this module sup-
ports.

• Return value: 1 if the module wants to be considered for selection, 0 otherwise.

• Description: This function determines whether a module wants to be considered
for selection or not. It can invoke whatever initialization functions that it needs
to determine whether it can run or not. If this module is not selected, itslsra -
finalize() function will be invoked shortly after this function.

Additionally, the module must fill inthread min andthread max to be the
minimum and maximum MPI thread levels that it supports.thread min must
be less than or equal tothread max. See [126] for more details on the priority
system and how modules are selected at run time.

If the module does not want to be considered during the negotiation for this appli-
cation, it should return 0 (the values inpriority , thread min , andthread -
max are then ignored).

C.2.4 Function Call:lsr init

• Type: lam ssi rpi init fn t

� �
typedef lam ssi rpi actionst (∗lam ssi rpi init fn t)

(struct proc∗∗procs,int nprocs,int ∗maxtag,int ∗maxcid);� �
• Arguments:

– IN: procs is an array of pointers to the initial set ofstruct proc in-
stances that thisrpi module is responsible for. Theprocs array will be freed
after the call tolsr init() completes; therpi module is responsible saving
its own copy.
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– IN: nprocs is the length of theprocs array.

– OUT: maxtag is the maximum MPI tag value that thisrpi module can han-
dle. *maxtag will be the current max tag value when this function is invoked.
Therpi module may lower this value if necessary, but maynot raise it!

– OUT: Similar tomaxtag , maxcid is the maximum number of communica-
tors that thisrpi module can handle (i.e., the maximum communicator CID).
*maxcid will be the current maximum CID value when this function is in-
voked. Therpi module may lower this value, but it maynot raise it!

• Return Value: A pointer to thestruct shown in FigureC.11. If the module
returnsNULL, an error will occur, because negotiation is over and this module has
been selected.

• Description: Performs primary initialization of therpi module (called fromMPI -
INIT) after therpi module negotiation; it will only be called in the selected module.
This function typically performs once-only initialization of the communication sub-
layer and initialize all processes with respect to the communication sub-layer. The
latter may simply involve a call tolsra addprocs() to initialize the initial set
of “new” processes (even though this is the first set of processes that therpi module
will receive).

The tcp rpi module, for example, initializes a hash table for message buffering
and then callslsra addprocs() to save theprocs array and set up the TCP
socket connections between the initial processes.

At the time of this call, the MPI process is also a LAM process, hence all LAM
functionality is available to it. In particular the LAM message passing routines
nsend(2) andnrecv(2) (see the LAM documentation and manual pages for
more details) are available and can be used to pass out-of-band information between
the MPI processes.2 The tcp rpi module uses these functions to pass server socket
port numbers to clients who must connect. See the functionconnect all() in
share/ssi/rpi/tcp/src/ssi rpi tcp.c .

Finally, therpi module may lower the current maximum MPI tag and CID values.
The final values used will be the maximum over allrpi modules that are used in an
MPI process. Hence, anrpi module maylower these values, but therpi module
may not increase them!

C.2.5 Function Call:lsra addprocs

• Type: lam ssi rpi addprocs fn t

� �
typedef int (∗lam ssi rpi addprocsfn t)(struct proc∗∗procs,int nprocs);� �

• Arguments:

2Remember that it is illegal forrpi modules to invoke MPI functions (e.g.,MPI SEND, MPI RECV).
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– procs : An array of pointers tonewstruct proc instances that thisrpi
module is responsible for. Theprocs array will be freed after the call to
lsr init() completes; therpi module is responsible saving its own copy.

– nprocs : Length of theprocs array.

• Return Value: Zero on success,LAMERROR otherwise.

• Description: In LAM/MPI, a process can become aware of new processes with
which it may communicate. For example, when it spawns MPI children. The
MPI layer adds new process entries to the process list and then callslsra -
addprocs() to performrpi module initialization with a list ofonly these new
processes. Therpi module is responsible for augmenting its own internal list with
the contents of theproc array.

The tcp rpi module, for example, adds the contents of theproc array to its
internal list and then sets up the TCP socket connections between the new processes
and the old ones.

This function is called fromMPI INTERCOM CREATE, MPI COMM SPAWN,
MPI COMM SPAWN MULTIPLE, MPI COMM ACCEPT, MPI COMM CON-
NECT, andMPI COMM JOIN.

It is important to allowlsra addprocs() to fail gracefully; do not use net-
work protocols during setup that may deadlock or “hang” in the event of a failure. If
so, commands such asmpirun and functions such asMPI COMM SPAWN may
never complete.

C.2.6 Function Call:lsra finalize

• Type: lam ssi rpi finalize fn t

� �
typedef int (∗lam ssi rpi finalize fn t)(struct proc∗proc);� �

• Arguments:

– IN/OUT: proc is the proc to shut down, orNULL if the entirerpi module is
to be shut down. This function should really only modify the flags inp mode
and nothing else in the non-rpi-specific portion ofproc .

• Return Value: Zero on success,LAMERROR otherwise.

• Description: Performs final cleanup of a givenproc instance and/or the overrpi
module (e.g., clean up all data structures, etc., created by therpi module). This
function is called fromMPI FINALIZE after all pending communication has com-
pleted. It is always called at least once, with(proc == NULL) .

Whenlsra finalize() is invoked with(p != NULL) , it is therpi mod-
ule’s responsibility to never reference that process again, even whenlsra final-
ize() is invoked with(p == NULL) .

245



If MPI-2 dynamic functions were invoked during the program’s run,lsra -
finalize() may be invoked multiple times with(proc != NULL) for the
proc instances that are not part ofMPI COMM WORLD. Note that this may

even happenbeforeMPI FINALIZE is invoked. For example, if processes are
added by an MPI-2 dynamic function (e.g.,MPI COMM SPAWN), but then later
all communicators containing the spawned processes are freed viaMPI COMM -
FREE, thenlsra finalize() will be invoked for each process that is no longer
referenced.

The last invocation oflsra finalize() is always with(proc == NULL) ,
regardless of whether MPI-2 dynamic functions were used or not.

C.2.7 Function Call:lsra build

• Type: lam ssi rpi build fn t

� �
typedef int (∗lam ssi rpi build fn t)(MPI Request req);� �

• Arguments:

– IN/OUT: req is the request to build.

• Return Value: Zero on success,LAMERROR otherwise.

• Description: When the MPI layer creates a new request, it initializes general re-
quest information and then calls this function to build therpi-specific portion of the
request. Certainrpi module state, especially that which is unchanged over multiples
invocations of a persistent operation, may be initialized here too. This function is
called from mpi req build() .

This step is separated from the “start” phase in order to optimize persistent MPI
communication – “build” only needs to occur once, while “start” may be invoked
many times.

C.2.8 Function Call:lsra start

• Type: lam ssi rpi start fn t

� �
typedef int (∗lam ssi rpi start fn t)(MPI Request reqtop, MPI Request req);� �

• Arguments:

– IN: req top is the top of the active list.

– IN/OUT: req is the request to be started.
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• Return Value: Zero on success,LAMERROR otherwise.

• Description: The MPI layer, after adding a request to the progression list, calls
mpi req start() to make it ready for subsequent progression. Among other

things, it moves the request’s state to the start state and then callslsra start()
so that therpi module can do any initialization it needs to make the request ready.

This step is separated from the “build” phase in order to optimize persistent MPI
communication – “build” only needs to occur once, while “start” may be invoked
many times.

This function may also perform some progression past the start state (this is really
the only reason thatreq top is passed in). For example, anrpi module needs to
also handle the special case of a process sending to or receiving from itself here,
and may thus actually advance a request all the way to the done state.

If any further progression is done, the request’s state must be updated to reflect
this. The possible states after the start state are:

1. The active state: where the data transfer protocol is not yet finished but we
have done some transfer and are past the point of cancellation, and

2. The done state: where the data transfer protocol is finished and the request
can be completed.

C.2.9 Function Call:lsra advance

• Type: lam ssi rpi advance fn t

� �
typedef int (∗lam ssi rpi advancefn t)(MPI Request reqtop, int fl block);� �

• Arguments:

– IN/OUT: req top is the first request that is in the active list.

– IN: fl block is 1 if lsra advance() is allowed to block, or 0 iflsra -
advance() must not block.

• Return Value: 1 if any requests’ state has changed, 0 if none have changed state, or
LAMERROR if an error occurred.

• Description: This is where most of the work gets done. Given a pointer to the top
of the progression list, advance them where possible. The flagfl block is true if
it is permitted to block until progress is made on at least one request.

The MPI layer knows and cares nothing about message transfer protocols and
message buffering. This is solely the responsibility of therpi module. Therpi
module however must update the state of the request as it progresses from init, to
start, to active, and finally to done, so that the MPI layer can do the Right Things.
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Note that a request may be moved from the start to the done state outside of
the regularrpi progression by being canceled. The progression functionlsra -
advance() must take this into account. Currently, LAM does not allow the can-
cellation of requests which are in the active state.

Therpi module must also update other information in requests where appropriate.

C.2.10 Function Call:lsra destroy

• Type: lam ssi rpi destroy fn t

� �
typedef int (∗lam ssi rpi destroyfn t)(MPI Request req);� �

• Arguments:

– IN/OUT: req is the request to destroy.

• Return Value: Zero on success,LAMERROR otherwise.

• Description: Destroys only therpi portion of request. It is called frommpi -
req destroy() . This function should free any dynamic storage created for this
request by therpi module and also perform any other necessary cleanup.

Note: it is only necessary to clean up what was created/done in other parts of the
rpi module. The rest of the request will be cleaned up by the MPI layer itself.

C.2.11 Function Call:lsra iprobe

• Type: lam ssi rpi iprobe fn t

� �
typedef int (∗lam ssi rpi iprobe fn t)(MPI Request req);� �

• Arguments:

– IN/OUT: req is the request to check for.

• Return Value: 0 if no match was found, 1 if a match was found, orLAMERROR if
an error occurred.

• Description: Implements the strange non-blocking probe beast. It is called from
MPI IPROBE and is passed a non-blocking probe request which has been built
and started. This function should check for matches for the probe in a non-blocking
fashion and then return a value of 0 if no match was found, 1 if a match was found
or LAMERROR if an error occurred.

In the case of a match, the MPI status in the request must also be updated as
required by the definition ofMPI IPROBE.
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This is such a strange function that the generalized code in thetcp rpi may be
sufficient for otherrpi modules.

C.2.12 Function Call:lsra fastrecv

• Type: lam ssi rpi fastrecv fn t

� �
typedef int (∗lam ssi rpi fastrecvfn t)

(char ∗buf, int count, MPIDatatype type,int src,int ∗tag,

MPI Comm comm, MPIStatus∗status,int ∗seqnum);� �
• Arguments:

– IN: buf is a pointer to the buffer to receive the incoming message in. It
corresponds to the buffer argument in the invoking MPI receive call.

– IN: count is the number of elements to receive. It corresponds to the count
argument in invoking the MPI receive call.

– IN: type is the MPI datatype of the element(s) to receive. It corresponds to
the datatype argument in the invoking MPI receive call.

– IN: src is the source rank to receive from. As described below, it will not be
MPI ANY SOURCE. src corresponds to the source rank argument in the
invoking MPI receive call.

– IN/OUT: tag is the tag to use. It corresponds to the tag argument in the
invoking MPI receive call. Upon return, it must be set to the tag that was actu-
ally used. Note that the tag must be set in the case ofMPI ANY TAG because
the status argument may beMPI STATUS IGNORE, and the actual tag
would otherwise be lost.

– IN: commis the communicator to receive in. It corresponds to the communi-
cator argument in the invoking MPI receive call.

– IN/OUT: status is the status that must be filled when this function returns,
or the special constantMPI STATUS IGNORE. It corresponds to the status
argument from the invoking MPI receive call.

– IN/OUT: seqnum is the sequence number of the incoming message from the
sender’s perspective. It is used for matching messages in trace files.

• Return Value:MPI SUCCESS on success, orLAMERROR on error.

• Description: Likelsra fastsend() , this function is intended to bypass the
normal rpi progression mechanism, and is only called fromMPI RECV if there
are no other active requests and the source of the message is neitherMPI ANY -
SOURCE nor the destination. If a matching message has already arrived (and
assumedly been buffered somewhere), it can just fill in the relevant values and re-
turn MPI SUCCESS. If the message has not already arrived, it can block waiting
for the message (since no other requests are active).
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C.2.13 Function Call:lsra fastsend

• Type: lam ssi rpi fastsend fn t

� �
typedef int (∗lam ssi rpi fastsendfn t)

(char ∗buf, int count, MPIDatatype type,int dest,int tag, MPI Comm comm);� �
• Arguments:

– IN: buf is a pointer to the buffer containing bytes to send. It corresponds to
the buffer argument in the invoking MPI send call.

– IN: count is the number of elements to send. It corresponds to the count
argument in invoking the MPI send call.

– IN: type is the MPI datatype of the element(s) to send. It corresponds to the
datatype argument in the invoking MPI send call.

– IN: dest is the destination rank to send to. It corresponds to the destination
rank argument in the invoking MPI send call.

– IN: tag is the tag to use.

– IN: commis the communicator to send in. It corresponds to the communicator
argument in the invoking MPI send call.

• Return Value:MPI SUCCESS on success, orLAMERROR on error.

• Description: This is a special case “short circuit” fast send. It was originally an
experiment to optimize common sends and receives, but has proved to be a stable
and efficient method of bypassing much of the request mechanism (and therefore,
avoiding overhead).

This function is a fast blocking send; it takes all the same arguments asMPI -
SEND. It is only invoked from blocking sends when there are no active requests
in the rpi module and the destination is not the same as the source. In this case,
it is safe to bypass the normalrpi progression mechanism and send the message
immediately. This function is allowed to block if necessary (since no other requests
are active). No request is created, so the send must be completed (in terms of
the MPI layer) when the function returns. It must returnMPI SUCCESS or an
appropriate error code.

C.2.14 Function Call:lsra alloc mem

• Type: lam ssi rpi alloc memfn t

� �
typedef int (∗lam ssi rpi alloc memfn t)

(MPI Aint size, MPI Info info, void ∗baseptr);� �
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• Arguments:

– IN: size is the number of bytes to be allocated.

– IN: info is any “hint” information passed in fromMPI ALLOC MEM.

– OUT: baseptr , as described in MPI-2:4.11, this is anOUTvariable, but
is (void *) for convenience. Hence, it is actually a pointer to the actual
pointer that will be filled. You can think of it as a(void **) , even though
it really isn’t.

• Return Value: Zero on success,LAMERROR otherwise.

• Description: This function is used by therpi module to allocate “special” memory
that can be used for fast message passing (such as pinned memory for a Myrinet or
VIA implementation). This function is invoked as the back-end ofMPI ALLOC -
MEM.

If the rpi module does not need “special” memory for any reason, the function
lam ssi rpi base alloc mem() can be used as the value of this pointer in-
stead (see SectionC.1.12), which is mainly a wrapper aroundmalloc(3) .

C.2.15 Function Call:lsra free mem

• Type: lam ssi rpi free memfn t

� �
typedef int (∗lam ssi rpi free memfn t)(void ∗baseptr);� �

• Arguments:

– IN: baseptr is a pointer to the memory to be freed. It should be a value that
was previously returned fromlsra alloc mem() .

• Return Value: Zero on success,LAMERROR otherwise.

• Description: This function is used by therpi module to deallocate “special” mem-
ory that was previously allocated bylsra alloc mem() . This function is in-
voked as the back-end ofMPI FREE MEM.

If the rpi module does not need “special” memory for any reason, the function
lam ssi rpi base free mem() can be used as the value of this pointer in-
stead (see SectionC.1.13), which is mainly a wrapper aroundfree(3) .

C.2.16 Function Call:lsra interrupt

• Type: lam ssi rpi interrupt fn t

� �
typedef int (∗lam ssi rpi interrupt fn t)(void);� �
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• Arguments: None

• Return Value: Zero on success,LAMERROR otherwise.

• Description: This function is part of the checkpoint/restart functionality. It is in-
voked by the selectedcr module when a checkpoint is invoked from a separate,
cr-specific thread.

The purpose of this function is to do whatever is necessary to let the main applica-
tion thread know that a checkpoint is about to occur. Somerpi module implementa-
tions may block, and therefore need to be interrupted. Other implementations may
not block, but still need to be asynchronously notified that thecr thread is waiting
for the application thread to yield.

The mechanism to interrupt the application thread is specific to therpi module.
It cannot return until the application thread has yielded to thecr thread.

If the rpi module does not support checkpoint/restart functionality, it should pro-
videNULL for this function pointer.

C.2.17 Function Call:lsra checkpoint

• Type: lam ssi rpi checkpoint fn t

� �
typedef int (∗lam ssi rpi checkpointfn t)(void);� �

• Arguments: None

• Return Value: Zero on success,LAMERROR otherwise.

• Description: This function is part of the checkpoint/restart functionality. It is in-
voked by the selectedcr module when a checkpoint is invoked.

The purpose of this function is to do whatever is necessary for therpi module to
ready itself for checkpoint. For example, it may drain the network of any “in-flight”
messages. This function may use the LAM out-of-band communication mechanism
to ensure that all “in-flight” MPI messages are received before the function returns.

Note that it may not be required to close all network connections. LAM’s check-
pointing model entails taking a checkpoint and then continuing the job. Hence, one
possible model for the checkpoint function is to quiesce the network and then re-
turn – leaving all network connections intact. Upon continue, no special actions are
required – the network connections are already in place, and normal MPI message
passing progression can continue. Upon restart, however, all the network connec-
tions will be stale, and will need to be closed or discarded, and then re-opened.

If the rpi module does not support checkpoint/restart functionality, it should pro-
videNULL for this function pointer.

252



C.2.18 Function Call:lsra continue

• Type: lam ssi rpi continue fn t

� �
typedef int (∗lam ssi rpi continuefn t)(void);� �

• Arguments: None

• Return Value: Zero on success,LAMERROR otherwise.

• Description: This function is part of the checkpoint/restart functionality. It is in-
voked by the selectedcr module when a checkpoint has finished and the parallel
application is continuing afterward.

The purpose of this function is to do whatever is necessary for therpi module to
be continue the job. Note that if therpi module provides checkpoint/restart support,
this function must be provided – even if it does nothing other than return 0.

If the rpi module does not support checkpoint/restart functionality, it should pro-
videNULL for this function pointer.

C.2.19 Function Call:lsra restart

• Type: lam ssi rpi restart fn t

� �
typedef int (∗lam ssi rpi restartfn t)(void);� �

• Arguments: None

• Return Value: Zero on success,LAMERROR otherwise.

• Description: This function is part of the checkpoint/restart functionality. It is in-
voked by the selected C/R module when a parallel process is restarted.

The purpose of this function is to do whatever is necessary to restart therpi
module and ready it for MPI communications. Since the process has just restarted,
it is likely to have stale network connections; it is typically safest to close/discard
all network connections and re-initiate them.

If the rpi module does not support checkpoint/restart functionality, it should pro-
videNULL for this function pointer.

C.2.20 Data Member:lsra tv queue support

• Type: int

253



• Description: This flag is used by LAM to determine if therpi module supports
TotalView queue debugging or not. Currently, this means that unexpected messages
use the interface described in SectionC.1.14(page239).

If the rpi module uses the SectionC.1.14interface, it should set this flag to 1.
Otherwise, it should set it to 0.
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APPENDIX D

MPI COLLECTIVE ALGORITHMS COMPONENT INTERFACE

The coll component framework is described in Chapter6. This Appendix describes

the technical details and requirements forcoll modules [124]. SectionD.1 discusses

header files, types, global variables, and utility functions that are provided to allcoll

modules. SectionD.2 details the module interface modules and functions.

D.1 Services Provided by thecoll Component Framework

Several services are provided by thecoll component framework that are available to

all coll modules.

D.1.1 Header Files

The following header files must be included (in order) in all module source files that

want to use any of the commoncoll component services described in this Appendix:� �
#include<lam−ssi.h>

#include<lam−ssi−coll.h>� �
Both of these files are included in the same location in the LAM source tree:share/-

include . AppendixA.6.1 describes how to provide appropriate preprocessor flags to

include these files properly.
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D.1.2 Communication During Initialization

coll modules are initialized near the end of the construction of an MPI communica-

tor. As such, point to point MPI communicationon that communicatoris possible. All

point-to-point communication must be fully completed (e.g., no unmatched non-blocking

communications) when the initialization is complete.

Limited use of communicator constructors and collectives are permitted during the

selection process for a new communicator. See SectionD.2.2for details.

D.1.3 BLK* Constants

LAM’s BLK* constants are used to identify which function is being used. These

constants are generally in the form of “BLKMPI<FUNCTION>,” and are located in the

header file<blktype.h> The constants can be used as tags for MPI point-to-point

functions for layeredcoll module implementations, or used to generate MPI exceptions

marked as coming from a specific collective operation.

D.1.4 Utility Function:lam mkcoll()� �
void lam mkcoll(MPI comm comm)� �

Arguments:

• IN/OUT: commis the communicator to change to collective context.

This function is used switch a communicator from point-to-point context to collective

context. It should be invoked at the beginning of all layered collective implementations

before any point-to-point communication is invoked. See SectionD.2.1 for more infor-

mation on layered point-to-point implementations.

D.1.5 Utility Function:lam mkpt()� �
void lam mkpt(MPI comm comm)� �
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Arguments:

• IN/OUT: commis the communicator to change to point-to-point context.

This function is used switch a communicator from collective context to point-to-point

context. It should be invoked at the end of all layered collective implementations that

previously invokedlam mkcoll() . See SectionD.2.1for more information on layered

point-to-point implementations.

D.1.6 Utility Function:lam err comm()� �
int lam err comm(MPIcomm,int errclass,int error,char ∗errmsg)� �

Arguments:

• IN: commis the communicator to invoke the exception handler on.

• IN: errclass is the error class.

• IN: error is the error code.

• IN: errmsg is a text error message.

This function is used to invoke MPI exceptions on a communicator. The available

MPI error classes are listed in<mpi.h> ; the integer error codes are defined by thecoll

module.errmsg is a string error message that may be printed if LAM’s default exception

handlers are invoked. FigureD.1 shows an example.

Always return the value fromlam err comm() . If the MPI exception does not

abort, its error code will be returned through the function’s return value.

D.1.7 Datatype Accessor Functions

Although coll modules generally need not access individual data members in user-

provided buffers,coll modules may need to allocate temporary buffers and copy user-

provided buffers while performing collective algorithms. LAM provides functions for

allocating and copying buffers that are sized and mapped by MPI datatypes.
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� �
int lam ssi coll <module> barrier(MPIComm comm){

/∗ ... perform the barrier ...∗/

if (an error occurred){
return lam err comm(comm, MPIERR COMM, MPI ERR OTHER,

‘‘Error in barrier!’’);
}
return MPI SUCCESS;

}� �
Figure D.1. SampleMPI BARRIER implementation.

Note that reduction operations seem like a notable exception to this policy; a reduction

must potentially combine multiple buffers into a final output buffer, and would therefore

seem to require access to the individual data members in the buffer. However, a separate

function will be utilized for this purpose. Built-in MPI operations such asMPI SUM

have their own function which will iterate over data members to perform the summation.

User-provided operations will have user-specified functions to perform the combination

operation. Specifically, the reduction function will be cached on theMPI Op passed to

the reduction function. FigureD.2 shows an example.

As such, even with reductions, thecoll module itself does not need to access the

individual data members – it only needs to provide the infrastructure to copy and move

buffers between processes. The following functions can be used to

• Allocate a buffer large enough to accommodate a specific MPI datatype.� �
int lam dtbuffer(MPI Datatype dtype,int count,char ∗∗buffer,char ∗∗origin);� �

dtype andcount specify how large to make the buffer. Two pointers are re-
turned: buffer is a pointer to the beginning of the allocated buffer (i.e., it can
later be used as an argument tofree() . origin is a pointer that can be passed
as the buffer to MPI functions (e.g.,MPI SEND, MPI RECV, etc.).buffer and
origin may be different values if the lower bound of the MPI datatype is artifi-
cially set lower than its actual value.

• Copy a buffer mapped by two MPI datatypes.
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� �
int lam ssi coll <module> reduce(..., MPIOp op, ...){

/∗ ... setup ...∗/

/∗ Invoke the reduction function, checking to see if the MPI
datatype can be passed directly, or whether we need to pass the
integer handle, as required by Fortran∗/

if (op−>op flags & LAM LANGF77){
(op−>op func)(inputbuffer, outputbuffer, &count, &datatype−>dt f77handle);

} else{
(op−>op func)(inputbuffer, outputbuffer, &count, &datatype);

}

/∗ ... cleanup and final handling ...∗/
}� �
Figure D.2. SampleMPI REDUCE implementation. Note the Fortran flag on theop
variable than indicates a different calling convention for the reduction function. In this
case, the reduction function is in Fortran and therefore the datatype needs to be passed as
its Fortran integer handle, not its C pointer handle.
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� �
int lam dtsndrcv(void ∗sbuf,int scount, MPIDatatype sdtype,void ∗rbuf,

int rcount, MPIDatatype rdtype,int tag, MPI Comm comm);� �
Typically, this function is used to copy from a user buffer to a temporary buffer

allocated bylam dtbuffer (or vice versa). Different datatypes may be used,
as long as they match. If the datatype is relatively simple, the copy is performed
directly. If the datatype is not simple,MPI SENDRECV is used.

• Pack a buffer into a contiguous buffer, or unpack a buffer from a contiguous buffer.
The functionsMPI PACK andMPI UNPACK can be used directly for this purpose.

D.2 coll Component Framework Module API

This is version 1.1.0 of thecoll component framework module API. Eachcoll mod-

ule must export astruct lam ssi coll 1 0 0 namedlam ssi coll <name> -

module . This type is defined in FigureD.3. Thisstruct contains only a small number

of function pointers used for initialization and querying the module. FiguresD.4 andD.5

show astruct that contains function pointers to the collective API algorithm functions

(it is split across two figures because of its length). A pointer to thisstruct is returned

by the module’s query function (in FigureD.3) if the module decides that it should be

used for a given communicator.

The majority of the elements in FiguresD.3, D.4, and andD.5 are function pointer

types; each is discussed in detail below. A module that returnsNULL for any of the collec-

tive API function pointers will automatically use the correspondinglam basic function

pointer.

D.2.1 Layered Point-to-Point Implementations

Collective algorithms may be layered on top of the MPI point-to-point functions (e.g.,

MPI SEND andMPI RECV). However, collective implementations must guarantee not

to interfere with any pending point-to-point communications on the same communicator.
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� �
typedef struct lam ssi coll 1 1 0 {

lam ssi 1 0 0 t lsc metainfo;

/∗ Initialization / querying functions∗/

lam ssi coll threadquery fn t lsc threadquery;
lam ssi coll query fn t lsc query;

/∗ Flags∗/

int lsc hascheckpoint;
} lam ssi coll 1 1 0 t;� �
Figure D.3. Thecoll type for exporting the basic API function pointers and flags.

LAM allows for this functionality by having a unique integer context on all communica-

tors. Positive contexts are reserved for point-to-point communications; negative contexts

are reserved for collective communications.

As such, layered collective implementations may either use thelam mkcoll() and

lam mkpt() functions to change their communicator’s context to be collective and then

back to point-to-point (respectively), or they may use communicator constructors to make

a private communicator with which to communicate. See SectionsD.1.4 andD.1.5 for

information aboutlam mkcoll() and lam mkpt() , respectively, and SectionD.2.2

for information about using sub-communicators.

It is critical that layered collectives guarantee to not leave any unmatched commu-

nications when they complete. Doing so will consume resources and potentially cause

deadlock during the communicator destructor (which may be duringMPI FINALIZE).

Finally, layered algorithms should use thePMPI functions when available. This will

guarantee to not create any side-effects from potentially user-interceptedMPI functions.

However, LAM can be configured without the MPI profiling layer.coll modules must
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� �
typedef struct lam ssi coll actions1 1 0 {

/∗ Per−communicator initialization and finalization functions∗/

lam ssi coll init 1 0 0 fn t lsca init;
lam ssi coll finalize fn t lscafinalize;

/∗ Checkpoint / restart functions∗/

lam ssi coll checkpointfn t lscacheckpoint;
lam ssi coll continuefn t lscacontinue;
lam ssi coll restartfn t lsca restart;
lam ssi coll interrupt fn t lsca interrupt;

/∗ Collective function pointers∗/

lam ssi coll allgatherfn t lscaallgatherintra;
lam ssi coll allgatherfn t lscaallgatherinter;

lam ssi coll allgathervfn t lscaallgathervintra;
lam ssi coll allgathervfn t lscaallgathervinter;

lam ssi coll allreducefn t lscaallreduceintra;
lam ssi coll allreducefn t lscaallreduceinter;

lam ssi coll alltoall fn t lscaalltoall intra;
lam ssi coll alltoall fn t lscaalltoall inter;

lam ssi coll alltoallv fn t lscaalltoallv intra;
lam ssi coll alltoallv fn t lscaalltoallv inter;

lam ssi coll alltoallw fn t lscaalltoallw intra;
lam ssi coll alltoallw fn t lscaalltoallw inter;

/∗ ...continued in next figure∗/� �
Figure D.4. Thecoll type for exporting the majority of the collective API function point-
ers (part 1 of 2).
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� �
/∗ ...continued from previous figure∗/

lam ssi coll barrier fn t lscabarrier intra;
lam ssi coll barrier fn t lscabarrier inter;

int lscabcastoptimization;
lam ssi coll bcastfn t lscabcastintra;
lam ssi coll bcastfn t lscabcastinter;

lam ssi coll exscanfn t lscaexscanintra;
lam ssi coll exscanfn t lscaexscaninter;

lam ssi coll gatherfn t lscagatherintra;
lam ssi coll gatherfn t lscagatherinter;

lam ssi coll gathervfn t lscagathervintra;
lam ssi coll gathervfn t lscagathervinter;

int lsca reduceoptimization;
lam ssi coll reducefn t lsca reduceintra;
lam ssi coll reducefn t lsca reduceinter;

lam ssi coll reducescatterfn t lsca reducescatterintra;
lam ssi coll reducescatterfn t lsca reducescatterinter;

lam ssi coll scanfn t lscascanintra;
lam ssi coll scanfn t lscascaninter;

lam ssi coll scatterfn t lscascatterintra;
lam ssi coll scatterfn t lscascatterinter;

lam ssi coll scattervfn t lscascattervintra;
lam ssi coll scattervfn t lscascattervinter;

} lam ssi coll actions1 1 0 t;� �
Figure D.5. Thecoll type for exporting the majority of the collective API function point-
ers (part 2 of 2).
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therefore utilize compile-time macros to switch betweenMPI andPMPI functions. Fig-

ureD.6 is an example of how this works.

D.2.2 Hierarchical Implementations (Sub-Communicators)

It is permissible forcoll module to create sub-communicators during thelsca -

init() API function call (see SectionD.2.10). Sub communicators may be useful to

create “multi-module” collectives such that a top-levelcoll module is used to partition a

communicator into smaller parts, each of which can invoke a dedicated collective algo-

rithm (potentially in a differentcoll module).

For example, thesmp coll module will invokeMPI COMM SPLIT on the commu-

nicator during itslsca init() API function (SectionD.2.10) to create a set of sub-

communicators. Each sub-communicator will only contain MPI processes on a single

node. In this way, thesmp coll module runs a top-level algorithm for each collective, and

the sub-communicators perform lower-level algorithms.

However, MPI COMM SPLIT invokes collectives to create new communications

(namelyMPI ALLREDUCE andMPI ALLGATHER). This creates a paradox: thecoll

module needs to invokeMPI COMM SPLIT while it is setting up, butMPI COMM -

SPLIT requires a communicator with a fully-functionalcoll module to complete success-

fully.

In order to enable this kind of behavior, modules can initially supply one set of func-

tion pointers for the MPI collective functions and later provide a second set of function

pointers. Specifically, thelam basic coll module is the “basic” implementation of the

MPI collective algorithms. It uses standard linear/logarithmic algorithms which, although

they perform well in many environments, are less than optimal in others. However, the

lam basic API functions can always be used without any prior setup. As such, in thesmp

module example above,smp initially sets up the target communicator with the function
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� �
/∗ <lam config.h> will set LAM WANTPROFILE to 1 or 0, depending on

whether LAM/MPI was built with profiling support or not.∗/
#include<lam config.h>
#if LAM WANT PROFILE
#defineLAM PROFILELIB 1
#endif

/∗ If LAM PROFILELIB is set to 1,<mpi.h> and<mpisys.h> will #define
all MPI Foo functions to be PMPIFoo.∗/

#include<mpi.h>
#include<mpisys.h>

int lam ssi coll <module> bcast(...,int root, MPI Comm comm){
/∗ Simplistic linear algorithm∗/

if (rank == root){
for (i = 0; i < size; ++i){

if (i != root) {
MPI Send(..., comm);

}
}

} else{
MPI Recv(..., comm, MPISTATUS IGNORE);

}

return MPI SUCCESS;
}� �
Figure D.6. Sample code showing conditional profiling build.
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� �
int lam ssi coll <module> init(MPI Comm comm,

const lam ssi coll actionst ∗∗new actions){
/∗ ... setup ...∗/

MPI Commsplit(comm, color, key, &subcomm);
subcomm−>c flags|= C HIDDEN;

/∗ ... rest of function ...∗/
}� �
Figure D.7. Sample code creating a hidden communicator.

pointers fromlam basic before invokingMPI COMM SPLIT. Later, after all setup has

been completed,smp replaces thelam basic function pointers with its own.

For example:

1. During the creation of a new communicator, thesmp module (which previously
returned valid thread levels from itslsc thread query() function) has its
lsc query() function invoked.

2. It determines that it is eligible to run, and assigns an appropriate priority.

3. It returns alam ssi coll actions t struct containing (essentially) allNULL
function pointers (so that thelam basic functions will be used during setup).

4. If the smp module is selected, itslsca init() function is invoked.

5. lsca init() invokesMPI COMM SPLIT to create sub communicators.MPI -
COMM SPLIT will use thelam basic function pointers that were previously pro-
vided by thelsc query() function to create the sub communicators.

6. Finally, lsca init returns a newstruct that contains pointers to all thesmp
module functions.

Also note that all sub-communicators created to implement this kind of behavior

should set theLAM HIDDEN flag on thec flags member on the communicator.1 This

will hide the communicator from parallel debuggers that can view message queues. Fig-

ureD.7 shows an example.

1[125] contains details on the members of theMPI Commdata structure.
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D.2.3 Intracommunicators and Intercommunicators

FiguresD.4 and D.5 show two function pointers for each MPI collective function

– one for intracommunicators, and one for intercommunicators. The function pointer

type is the same for both functions (i.e., the function signature is identical). As such, each

function below is only described once; it is implied that there are two pointers (of different

names) in thestruct – one for intracommunicators, and one for intercommunicators.

LAM’s MPI layer will automatically invoke the appropriate function depending on the

underlying type ofMPI Commthat was passed to the top-level MPI function.

D.2.4 Checkpoint / Restart Functionality

LAM/MPI has the ability to involuntarily checkpoint and restart parallel MPI applica-

tions. The signal to checkpoint an MPI function may arrive asynchronously. Applications

are typically unaware that checkpoints are occurring. LAM/MPI will ensure that either

no user threads are in the MPI library, or that they have been safely interrupted. When an

application resumes, the application thread(s) is(are) resumed as if nothing happened.

coll modules may or may not support checkpoint/restart functionality. If a module

supports checkpoint/restart, it must set thelsc has checkpoint flag to 1 in its ex-

ported basic struct (see FigureD.3) and supply corresponding function pointers for all

actions related to the checkpoint/restart functionality (described below). When an MPI

application is initialized, thecoll framework performs a logical AND on thelsc has -

checkpoint value from all availablecoll modules. Checkpoint/restart support will

only be available if the result of this logical AND is 1.

General scheme

LAM’s general mechanism for checkpoint / restart is described in Chapter7 and Ap-

pendixE. coll modules can insert arbitrary functions at checkpoint, continue, and restart
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times.

Just likerpi modules, when a checkpoint begins, eachcoll module must get itself

into a state such that it can be later restored with no loss of messages or information.

For example, acoll module may drain the network such that no messages are “in-flight”

on the network when the checkpoint finally occurs. However, this scheme may vary

with eachcoll module; draining the network may or may not be necessary. Similarly, at

continue and restart times, thecoll module may need to re-establish network connections

and reclaim external resources.

If a collective is implemented as a blocking operation, it may never see that a check-

point is pending. The checkpoint/restart framework will invoke the module’s “interrupt”

function to notify the module that a checkpoint is pending.

When no special action is needed.

Modules that are layered on point-to-point MPI functions probably do not need to

do anything (at least in terms of the communication network) for checkpointing, con-

tinuing, and restarting since therpi modules will take care of all networking aspects of

checkpoint/restart functionality. Modules that fall into this category should either provide

empty functions for this API calls, or use the built-in basecoll empty functions that are

designed for this purpose (the signatures of these functions are implied by their corre-

spondingcoll API functions, and are therefore not listed below):

• lam ssi coll base empty checkpoint()

• lam ssi coll base empty continue()

• lam ssi coll base empty restart()

• lam ssi coll base empty interrupt()

The no-op interrupt function is helpful for collective modules that never block. Other

mechanisms are available to notify the MPI job that a checkpoint is pending; see Chapter7

and AppendixE for more information on the checkpoint/restart framework.
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� �
int lam ssi coll <module> barrier(MPIComm comm){

/∗ ... setup ...∗/

if ((err = MPI Send(...)) != MPISUCCESS){
return err;

}

/∗ ... rest of function ...∗/

return MPI SUCCESS;
}� �
Figure D.8. Sample MPI exception in a back-end collective implementation.

D.2.5 MPI Exceptions and Return Values

If a coll API function that maps directly to an MPI collective function completes

successfully, it must returnMPI SUCCESS. Errors that occur duringcoll module API

functions should invoke the corresponding MPI exception handler.

With layeredcoll implementations, this is already mostly handled by the underlying

MPI function calls. Thecoll module simply needs to check the return value from the un-

derlying MPI function calls to ensure that they wereMPI SUCCESS before continuing.

FigureD.8 shows an example.

Non-layeredcoll implementations will need to generate their own MPI exceptions

(ensuring to return the value of the exception so that handlers such asMPI ERRORS -

RETURN can function properly). See SectionD.1.6 for details on thelam err -

comm() function.

In the presence of errors,coll module authors are strongly encouraged to clean up

state and leave the module in a restart-able state before invoking corresponding MPI ex-

ceptions. This will allow exception handlers such asMPI ERRORS RETURN to allow

MPI programs to continue, even in the presence of non-fatal errors.
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D.2.6 Data Member:lsc meta info

lsc meta info is the SSI-mandated element contains meta-information about the

module. See SectionA.6.2 for more information about this element.

D.2.7 Function Call:lsc thread query

• Type: lam ssi coll thread query fn t

� �
typedef int (∗lam ssi coll threadquery fn t)

(int ∗threadmin, int ∗threadmax);� �
• Arguments:

– OUT: thread min is the minimum MPI thread level that this module sup-
ports. Only meaningful if the function returns zero.

– OUT: thread max is the maximum MPI thread level that this module sup-
ports. Only meaningful if the function returns zero.

• Return value: Zero if the module wants to be considered for negotiation, non-zero
otherwise.

• Description: This function is invoked exactly once during the initial module selec-
tion process during MPI initialization. It is invoked before all other module API
calls.

If the module wants to be considered for negotiation, it must fill inthread -
min andthread max to be the minimum and maximum MPI thread levels that
it supports.thread min must be less than or equal tothread max. This func-
tionality is split from the main query API call (SectionD.2.8) because the thread
level of the module is determined only once per process, but the query function will
be invoked multiple times.

If the function returns non-zero, the thread levels will be ignored and the module
will be ignored for the duration of the process.

D.2.8 Function Call:lsc query

• Type: lam ssi coll query fn t

� �
typedef constlam ssi coll actionst ∗(∗lam ssi coll query fn t)

(MPI Comm comm,int ∗priority);� �
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• Arguments:

– IN: commis the communicator that is being setup.

– OUT: priority is the output priority that this module thinks that it should
be rated. This value is only meaningful if the function returns a non-NULL
value.

• Return value: EitherNULL or a pointer to thestruct shown in FiguresD.4
andD.5. The contents of thestruct will be copied – thestruct itself will not
be freed.

• Description: If the module wants to be considered for the negotiation of collec-
tives on this communicator, it should return a pointer to thestruct shown in
FiguresD.4 andD.5 and assign an associated priority topriority . Valid values
of priority are in the range[0, 100], with 0 being the lowest priority, and100
being the highest.

If the module does not want to be considered during the negotiation for this com-
municator, it should returnNULL, and the value inpriority is ignored.

D.2.9 Data Member:lsc has checkpoint

lsc has checkpoint is set to 1 if this module supports checkpoint/restart func-

tionality, and 0 otherwise. Its value is checked duringMPI INIT.

D.2.10 Function Call:lsca init

• Type: lam ssi coll init fn t

� �
typedef int (∗lam ssi coll init fn t)

(MPI Comm comm,const lam ssi coll actionst ∗∗new actions);� �
• Arguments:

– IN: commis the communicator that this module has been selected for.

– OUT: new actions is a pointer to a newstruct of function pointers for
API calls. If the module wishes to change the values that it returned from
lsc query , it may fill new actions with the pointer to a new/updated
struct that will be used for all future API calls on this communicator. If
this argument is set toNULL (or not assigned), the originalstruct returned
from lsc query will be used.

• Return value: Zero on success, nonzero otherwise.
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• Description: Thelsca init function is invoked on the selected module only.
Its purpose is to allow the selected module to set itself up for normal operation
on the given communicator. The intent is to setup as much as possible during this
function in order to facilitate the operation of all the collective calls at run time (i.e.,
overhead time is better spent during the initialization phase for each communicator
rather than the actual collective call).

Note that this function may make limited use of communicator constructors and
collectives. See SectionD.2.2for details.

D.2.11 Function Call:lsca finalize

• Type: lam ssi coll finalize fn t

� �
typedef int (∗lam ssi coll finalize t)(MPI Comm comm);� �

• Arguments:

– IN: commis the communicator which is being finalized.

• Return value: Zero on success, nonzero otherwise.

• Description: Finalize the use of this module. It is the last function to be called in the
scope of this module’s selection. It should release any resources allocated during
the life of this scope. This function is only invoked on selected modules.

Note that this function is invoked when the communicator is freed (e.g., dur-
ing MPI COMM FREE). Hence, this function must be alocal action – it cannot
involve communication with other MPI processes.

D.2.12 Function Call:lsca checkpoint

• Type: lam ssi coll checkpoint fn t

� �
typedef int (∗lam ssi coll checkpointt)(MPI Comm comm);� �

• Arguments:

– IN: commis the communicator which is being checkpointed.

• Return value:MPI SUCCESS on success, nonzero otherwise.

• Description: Set this communicator to a state where it can be checkpointed. This
typically means draining the network such that no collective messages are “in
flight”, but the exact definition may vary from module to module.
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This function will be invoked once per checkpoint for every communicator that is
active in an MPI application. Hence, it may be invoked multiple times in a module
for a single checkpoint, but each time with a different communicator argument.

coll modules that require no special action at checkpoint time should supply the
valuelam ssi coll base checkpoint .

D.2.13 Function Call:lsca continue

• Type: lam ssi coll continue fn t

� �
typedef int (∗lam ssi coll continuet)(MPI Comm comm);� �

• Arguments:

– IN: commis the communicator which is being checkpointed.

• Return value:MPI SUCCESS on success, nonzero otherwise.

• Description: After the checkpoint has successfully completed, this function will
be invoked if the application continues without interruption. It may be used to do
whatever the module needs to continue operation after a successful checkpoint.

This function will be invoked once per checkpoint for every communicator that is
active in an MPI application. Hence, it may be invoked multiple times in a module
for a single checkpoint, but each time with a different communicator argument.

coll modules that require no special action at continue time should supply the
valuelam ssi coll base continue .

D.2.14 Function Call:lsca restart

• Type: lam ssi coll restart fn t

� �
typedef int (∗lam ssi coll restartt)(MPI Comm comm);� �

• Arguments:

– IN: commis the communicator which is being checkpointed.

• Return value:MPI SUCCESS on success, nonzero otherwise.

• Description: When a parallel application is restored, this function is invoked. It
may be used to close now-invalid communication channels (if they were not closed
when the checkpoint occurred) and re-open them, or whatever else thecoll module
needs to resume operation.
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This function will be invoked once per restore for every communicator that was
active in an MPI application. Hence, it may be invoked multiple times in a module
for a single restore, but each time with a different communicator argument.

coll modules that require no special action at continue time should supply the
valuelam ssi coll base restart .

D.2.15 Function Call:lsca interrupt

• Type: lam ssi coll interrupt fn t

� �
typedef int (∗lam ssi coll interrupt fn t)(void);� �

• Arguments: None

• Return Value: Zero on success,LAMERROR otherwise.

• Description: This function is part of the checkpoint/restart functionality. It is in-
voked by the selectedcr module when a checkpoint is invoked from a separate,
cr-specific thread.

The purpose of this function is to do whatever is necessary to let the main appli-
cation thread know that a checkpoint is about to occur. Somecoll module imple-
mentations may block, and therefore need to be interrupted. Other implementations
may not block, but still need to be asynchronously notified that thecr thread is wait-
ing for the application thread to yield.

The mechanism to interrupt the application thread is specific to thecoll module.
It cannot return until the application thread has yielded to thecr thread.

If the coll module does not support checkpoint/restart functionality, it should
provideNULL for this function pointer.

D.2.16 Function Call:lsca allgather

• Type: lam ssi coll allgather fn t

� �
typedef int (∗lam ssi coll allgatherfn t)

(void ∗sbuf,int scount, MPIDatatype sdtype,void ∗rbuf, int rcount,

MPI Datatype rdtype, MPIComm comm);� �
• Arguments: Same as forMPI ALLGATHER

• Return value:MPI SUCCESS on success, or an appropriate error code otherwise.

• Description: Implement theMPI ALLGATHER collective.
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D.2.17 Function Call:lsca allgatherv

• Type: lam ssi coll allgatherv fn t

� �
typedef int (∗lam ssi coll allgathervfn t)

(void ∗sbuf,int scount, MPIDatatype sdtype,void ∗ rbuf, int ∗rcounts,

int ∗disps, MPIDatatype rdtype, MPIComm comm);� �
• Arguments: Same as forMPI ALLGATHERV

• Return value:MPI SUCCESS on success, or an appropriate error code otherwise.

• Description: Implement theMPI ALLGATHERV collective.

D.2.18 Function Call:lsca allreduce

• Type: lam ssi coll allreduce fn t

� �
typedef int (∗lam ssi coll allreducefn t)

(void ∗sbuf,void ∗rbuf, int count, MPIDatatype dtype, MPIOp op,

MPI Comm comm);� �
• Arguments: Same as forMPI ALLREDUCE

• Return value:MPI SUCCESS on success, or an appropriate error code otherwise.

• Description: Implement theMPI ALLREDUCE collective.

D.2.19 Function Call:lsca alltoall

• Type: lam ssi coll alltoall fn t

� �
typedef int (∗lam ssi coll alltoall fn t)

(void ∗sbuf,int scount, MPIDatatype sdtype,void∗ rbuf, int rcount,

MPI Datatype rdtype, MPIComm comm);� �
• Arguments: Same as forMPI ALLTOALL
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• Return value:MPI SUCCESS on success, or an appropriate error code otherwise.

• Description: Implement theMPI ALLTOALL collective.

D.2.20 Function Call:lsca alltoallv

• Type: lam ssi coll alltoallv fn t

� �
typedef int (∗lam ssi coll alltoallv fn t)

(void ∗sbuf,int ∗scounts,int ∗sdisps, MPIDatatype sdtype,void ∗rbuf,

int ∗rcounts,int ∗rdisps, MPIDatatype rdtype, MPIComm comm);� �
• Arguments: Same as forMPI ALLTOALLV

• Return value:MPI SUCCESS on success, or an appropriate error code otherwise.

• Description: Implement theMPI ALLTOALLV collective.

D.2.21 Function Call:lsca alltoallw

• Type: lam ssi coll alltoallw fn t

� �
typedef int (∗lam ssi coll alltoallw fn t)

(void ∗sbuf,int ∗scounts,int ∗sdisps, MPIDatatype∗sdtypes,

void ∗rbuf, int ∗rcounts,int ∗rdisps, MPIDatatype∗rdtypes,

MPI Comm comm);� �
• Arguments: Same as forMPI ALLTOALLW

• Return value:MPI SUCCESS on success, or an appropriate error code otherwise.

• Description: Implement theMPI ALLTOALLW collective.

LAM does not currently implement this function; this pointer is here for forward
compatibility.
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D.2.22 Function Call:lsca barrier

• Type: lam ssi coll barrier fn t

� �
typedef int (∗lam ssi coll barrier fn t)(MPI Comm comm);� �

• Arguments: Same as forMPI BARRIER

• Return value:MPI SUCCESS on success, or an appropriate error code otherwise.

• Description: Implement theMPI BARRIER collective.

LAM’s MPI BARRIER will return MPI SUCCESS immediately (and not call
this API function) if there is only one member process in the communicator.

D.2.23 Data Member:int lsca bcast optimization

This flag should be 1 ifMPI BCAST is allowed to returnMPI SUCCESS immedi-

ately without invoking the underlying module broadcast function when there are zero data

bytes to broadcast. A value of 0 means that the underlying module broadcast function will

be invoked regardless of how many data bytes there are to broadcast.

D.2.24 Function Call:lsca bcast

• Type: lam ssi coll bcast fn t

� �
typedef int (∗lam ssi coll bcastfn t)

(void ∗buff, int count, MPIDatatype datatype,int root, MPI Comm comm);� �
• Arguments: Same as forMPI BCAST

• Return value:MPI SUCCESS on success, or an appropriate error code otherwise.

• Description: Implement theMPI BCAST collective.

LAM’s MPI BCAST will return MPI SUCCESS immediately (and not call this
API function) if there is only one member process in the communicator, or if there
are zero bytes to broadcast.
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D.2.25 Function Call:lsca exscan

• Type: lam ssi coll exscan fn t

� �
typedef int (∗lam ssi coll exscanfn t)

(void ∗sbuf,void ∗rbuf, int count, MPIDatatype dtype, MPIOp op,

MPI Comm comm);� �
• Arguments: Same as forMPI EXSCAN

• Return value:MPI SUCCESS on success, or an appropriate error code otherwise.

• Description: Implement theMPI EXSCAN collective.

LAM does not currently implement this function; this pointer is here for forward
compatibility.

D.2.26 Function Call:lsca gather

• Type: lam ssi coll gather fn t

� �
typedef int (∗lam ssi coll gatherfn t)

(void ∗sbuf,int scount, MPIDatatype sdtype,void ∗rbuf, int rcount,

MPI Datatype rdtype,int root, MPI Comm comm);� �
• Arguments: Same as forMPI GATHER

• Return value:MPI SUCCESS on success, or an appropriate error code otherwise.

• Description: Implement theMPI GATHER collective.

D.2.27 Function Call:lsca gatherv

• Type: lam ssi coll gatherv fn t

� �
typedef int (∗lam ssi coll gathervfn t)

(void ∗sbuf,int scount, MPIDatatype sdtype,void ∗rbuf, int ∗rcounts,

int ∗disps, MPIDatatype rdtype,int root, MPI Comm comm);� �
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• Arguments: Same as forMPI GATHERV

• Return value:MPI SUCCESS on success, or an appropriate error code otherwise.

• Description: Implement theMPI GATHERV collective.

D.2.28 Data Member:int lsca reduce optimization

This flag should be 1 ifMPI REDUCE is allowed to returnMPI SUCCESS imme-

diately without invoking the underlying module reduce function when there are zero data

bytes to reduce. A value of 0 means that the underlying module reduce function will be

invoked regardless of how many data bytes there are to reduce.

D.2.29 Function Call:lsca reduce

• Type: lam ssi coll reduce fn t

� �
typedef int (∗lam ssi coll reducefn t)

(void ∗sbuf,void∗ rbuf, int count, MPIDatatype dtype, MPIOp op,

int root, MPI Comm comm);� �
• Arguments: Same as forMPI REDUCE

• Return value:MPI SUCCESS on success, or an appropriate error code otherwise.

• Description: Implement theMPI REDUCE collective.

LAM’s MPI REDUCE will return MPI SUCCESS immediately (and not call
this API function) if there are zero elements to reduce andlsca reduce opti-
mization is set to 1.

D.2.30 Function Call:lsca reduce scatter

• Type: lam ssi coll reduce scatter fn t

� �
typedef int (∗lam ssi coll reducescatterfn t)

(void ∗sbuf,void ∗rbuf, int ∗rcounts, MPIDatatype dtype, MPIOp op,

MPI Comm comm);� �
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• Arguments: Same as forMPI REDUCE SCATTER

• Return value:MPI SUCCESS on success, or an appropriate error code otherwise.

• Description: Implement theMPI REDUCE SCATTER collective.

D.2.31 Function Call:lsca scan

• Type: lam ssi coll can fn t

� �
typedef int (∗lam ssi coll scanfn t)

(void ∗sbuf,void ∗rbuf, int count, MPIDatatype dtype, MPIOp op,

MPI Comm comm);� �
• Arguments: Same as forMPI SCAN

• Return value:MPI SUCCESS on success, or an appropriate error code otherwise.

• Description: Implement theMPI SCAN collective.

D.2.32 Function Call:lsca scatter

• Type: lam ssi coll scatter fn t

� �
typedef int (∗lam ssi coll scatterfn t)

(void ∗sbuf,int scount, MPIDatatype sdtype,void ∗rbuf, int rcount,

MPI Datatype rdtype,int root, MPI Comm comm);� �
• Arguments: Same as forMPI SCATTER

• Return value:MPI SUCCESS on success, or an appropriate error code otherwise.

• Description: Implement theMPI SCATTER collective.

D.2.33 Function Call:lsca scatterv

• Type: lam ssi coll scatterv fn t
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� �
typedef int (∗lam ssi coll scattervfn t)

(void ∗sbuf,int ∗scounts,int ∗disps, MPIDatatype sdtype,void∗ rbuf,

int rcount, MPIDatatype rdtype,int root, MPI Comm comm);� �
• Arguments: Same as forMPI SCATTERV

• Return value:MPI SUCCESS on success, or an appropriate error code otherwise.

• Description: Implement theMPI SCATTERV collective.
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APPENDIX E

PARALLEL CHECKPOINT / RESTART COMPONENT INTERFACE

Thecr component framework is described in Chapter7. This Appendix describes the

technical details and requirements forcr modules [115]. SectionE.1 discusses header

files, types, global variables, and utility functions that are provided to allcr modules.

SectionsE.2 andE.3 detail the module interface modules and functions forcrlam and

crmpi, respectively.

E.1 Services Provided by thecr Component Framework

Several services are provided by thecr component framework that are available to all

cr modules.

E.1.1 Header Files

The following header files must be included (in order) in all module source files that

want to use any of the commoncr component services described in this document:� �
#include<lam−ssi.h>

#include<lam−ssi−cr.h>� �
Both of these files are included in the same location in the LAM source tree:share/-

include . AppendixA.6.1 describes how to provide appropriate preprocessor flags to

include these files properly.
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� �
typedef enum{

LAM SSI CRMPI BASE HANDLER STATE IDLE,
LAM SSI CRMPI BASE HANDLER STATE WAITING,
LAM SSI CRMPI BASE HANDLER STATE RUNNING,

LAM SSI CRMPI BASE STATE MAX
} lam ssi crmpi basehandlerstatet;� �
Figure E.1. Thelam ssi crmpi base handler state t type and its possible val-
ues.

E.1.2 Module Selection Mechanism

The scopecr modules persists through the life of an MPI application. It is selected

duringMPI INIT and remains selected untilMPI FINALIZE. The MPI processes in the

application collectively decide on whichcrmpi module to select and then pass its name to

mpirun . mpirun then selects the correspondingcrlam module (which may be none).

Hence,mpirun and all of the MPI processes that it launched all share a commoncr

module selection.

E.1.3 Internal Type:lam ssi crmpi base handler state t

This type is an enumerated value used to describe the state of thecrmpi handler thread

in an MPI process. See FigureE.1.

The three possible values are:

• HANDLER STATE IDLE: The handler thread is inactive (and likely either non-
existent or blocking, depending on thecrmpi module’s implementation).

• HANDLER STATE WAITING: The handler thread is waiting for the main appli-
cation thread to either leave the MPI library, or yield control.

• HANDLER STATE RUNNING: The handler thread is actively working on a check-
point, continue, or restart operation.
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E.1.4 Global Variable:lam ssi crmpi base handler state

This variable is available incrmpi only. It is of type lam ssi crmpi base -

handler state t , described in SectionE.1.3. This variable must be maintained by

thecrmpi handler thread to track its current status in order notify other SSI modules that

they are being interrupted.� �
volatile lam ssi crmpi basehandlerstatet lam ssi crmpi basehandlerstate;� �

It may be necessary for the application thread(s) to perform some action based on the

execution state of the thread-based checkpoint/restart handler. This variable is marked

volatile so that it will not be cached by the application thread(s) if thecrmpi handler

thread changes its value.

E.1.5 crlam Utility Function: lam ssi crlam base checkpoint()� �
int lam ssi crlam basecheckpoint(struct gps∗world, int nprocs);� �

This function must be invoked from the thread-based checkpoint/restart handler when

mpirun receives a checkpoint request. After preparingmpirun 1 to be checkpointed,

it will invoke the selectedcrlam module’slscrla checkpoint() API function (see

SectionE.2.3). Theworld array must contain astruct gps element for each MPI

process that needs to receive the checkpoint request.nprocs is the length of theworld

array.

It returns zero on success,LAMERROR otherwise.

E.1.6 crlam Utility Function: lam ssi crlam base continue()� �
int lam ssi crlam basecontinue(void);� �

1This function will likely also be used inlamexec if checkpointing of non-MPI programs is ever
supported.
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This function must be invoked from the thread-based checkpoint/restart handler when

mpirun continues after a successful checkpoint. After preparingmpirun to continue

after the checkpoint, it will invoke the selectedcrlam module’slscrla continue()

API function (see SectionE.2.4).

It returns zero on success,LAMERROR otherwise.

E.1.7 crlam Utility Function: lam ssi crlam base restart()� �
int lam ssi crlam baserestart(char ∗executable,char ∗appschema);� �

This function must be invoked from the signal-based checkpoint/restart handler when

mpirun restarts. After preparingmpirun to be checkpointed, it will invoke the selected

crlam module’slscrla restart() API function (see SectionE.2.4). executable

should be a string path tompirun to re-launch, andapp schema should be the string

path to the application schema that can be used to re-launch the MPI application.

It returns zero on success,LAMERROR otherwise.

E.1.8 crlam Utility Function: lam ssi crlam base create restart argv()� �
int lam ssi crlam basecreaterestartargv(char ∗∗argv, OPT∗ad);� �

Based on argumentsargv andad , this function creates an internal list of arguments

that will be given tompirun when it is restarted. This function is typically invoked

by thecrlam’s lscra init() API function with theargv andad parameters that it

receives as arguments (see SectionE.2.8).

The internal set of arguments that is created is not returned to the caller; it is used by

lam ssi crlam base do exec() .

It returns zero on success,LAMERROR otherwise.

E.1.9 crlam Utility Function: lam ssi crlam base do exec()
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� �
int lam ssi crlam basedo exec(char ∗executable,char ∗appschema);� �

The use of this function is optional; if it is not used,cr modules need to provide

equivalent functionality.

This function can be either invoked by thecrlam module’slscr restart() API

function call (see SectionE.2.9), or is used as thelscr restart() API function itself.

The utility function lam crlam base create restart argv() must have been

invoked before this function is called.

This utility function launches a newmpirun process viaexecve(2) with the com-

mand line arguments that were previously setup, and an application schema that can re-

launch the MPI job. Since this functionexecve() ’s a new process, it never returns.

It returns zero on success,LAMERROR otherwise.

E.1.10 crmpi Utility Function: lam ssi crmpi base checkpoint()� �
int lam ssi crmpi basecheckpoint(void);� �

This function should be invoked from the MPI thread-based checkpoint/restart handler

when a checkpoint request arrives.crmpi base checkpoint() is used to prepare

the other SSI modules in use by the MPI process to be checkpointed.

This function invokes the appropriate action function exported by each SSI module

that needs pre-checkpoint handling. Currently, this means:

• The functionlsra checkpoint() rpi API function will be invoked on all active
rpi SSI modules.

• The functionlsca checkpoint() coll API function will be invoked on each
existing MPI communicator.

crmpi base checkpoint() will return 0 if all the invoked functions return 0, or

LAMERROR if any of them returnedLAMERROR.
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E.1.11 crmpi Utility Function: lam ssi crmpi base continue()� �
int lam ssi crmpi basecontinue(void);� �

This function should be invoked from the MPI thread-based checkpoint/restart han-

dler after a checkpoint completes successfully.crmpi base continue() is used to

trigger post-checkpoint actions in other SSI modules in use by the MPI process after a

checkpoint.

This function invokes the appropriate action function exported by each SSI module

that needs pre-checkpoint handling. Currently, this means:

• The lsra continue() rpi API function will be invoked on all activerpi SSI
modules.

• The lsca continue() coll API function will be invoked on each existing MPI
communicator.

crmpi base continue() will return 0 if all the invoked functions return 0, or

LAMERROR if any of them returnedLAMERROR.

E.1.12 crmpi Utility Function: lam ssi crmpi base restart()� �
int lam ssi crmpi baserestart(void);� �

This function should be invoked from the thread-based checkpoint/restart handler

when an MPI process is restarted.crmpi base restart() is used to trigger pre-

restart actions in other SSI modules in use by the MPI process when it is restarted.

This function invokes the appropriate action function exported by each SSI module

that needs pre-restart handling. Currently, this means:

• The lsra restart() rpi API function will be invoked on all activerpi SSI
modules.

• The lsca restart() coll API function will be invoked on each existing MPI
communicator.
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� �
typedef struct lam ssi crlam 1 1 0 {

lam ssi 1 0 0 t lscrl metainfo;

/∗ crlam API function pointers∗/

lam ssi crlam query fn t lscrl query;
} lam ssi crlam 1 1 0 t;� �
Figure E.2.lam ssi crlam 1 1 0 t : Thecrlam basic type for exporting the module
meta information and initial query function pointer.

crmpi base restart() will return 0 if all the invoked functions return 0, or

LAMERROR if any of them returnedLAMERROR.

E.2 crlam Component Framework Module API

This is version 1.1.0 of thecrlam component framework module API. Eachcrlam

module must export alam ssi crlam 1 0 0 t namedlam ssi crlam <name> -

module . This type is defined in FigureE.2. A secondstruct is used to hold the

majority of function pointers and flags for the module. It is only used if the module is

selected, and is shown in FigureE.3.

The majority of the elements in FiguresE.2, andE.3are function pointer types; each

is discussed in detail below.

E.2.1 Data Member:lscrl meta info

lscrl meta info is the SSI-mandated element and contains meta-information

about the module. See SectionA.6.2 for more information about this element.

E.2.2 Function Call:lscrl query

• Type: lam ssi crlam query fn t
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� �
typedef struct lam ssi crlam actions1 1 0 {

/∗ crlam action API functions pointers∗/

lam ssi crlam checkpointfn t lscrla checkpoint;
lam ssi crlam continuefn t lscrla continue;
lam ssi crlam disablecheckpointfn t lscrla disablecheckpoint;
lam ssi crlam enablecheckpointfn t lscrla enablecheckpoint;
lam ssi crlam finalize fn t lscrla finalize;
lam ssi crlam init fn t lscrla init;
lam ssi crlam restartfn t lscrla restart;

/∗ To be invoked by lamcheckpoint and lamrestart, respectively∗/

lam ssi crlam lamcheckpointfn t lscrla lamcheckpoint;
lam ssi crlam lamrestartfn t lscrla lamrestart;

} lam ssi crlam actions1 1 0 t;� �
Figure E.3. lam ssi crlam actions 1 1 0 t : The crlam type for exporting API
function pointers.
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� �
typedef lam ssi crlam actionst ∗(∗lam ssi crlam query fn t)(int ∗priority);� �

• Arguments:

– OUT: priority is the priority of this module, and is used to choose which
module will be selected from the set of available modules at run time.

• Return value: EitherNULL or a pointer to thestruct shown in FigureE.3.

• Description: If the module wants to be considered for selection, it should return a
pointer to thestruct shown in FigureE.3 that is filled with relevant data, and
assign an associated priority topriority .

If the module does not want to be considered during the negotiation for this ap-
plication, it should returnNULL (the value inpriority is then ignored).

E.2.3 Function Call:lscrla checkpoint

• Type: lam ssi crlam checkpoint fn t

� �
typedef int (∗lam ssi crlam checkpointfn t)(void)� �

• Arguments: None.

• Return value: Zero on success,LAMERROR otherwise.

• Description: This function is invoked by thelam ssi crlam base check-
point() utility function (which was, in turn, invoked by the thread-based handler
whenmpirun received the checkpoint request). The stated purpose of this function
is to preparempirun and the MPI processes it launched for checkpoint. This
typically means propagating the checkpoint request out to all MPI processes started
by mpirun and creating an application schema suitable for using to restart the MPI
application.

Note thatmpirun itself will likely be blocking in the LAM function callrpwait()
(“remote process wait”) while waiting for child processes to complete. The LAM
infrastructure is currently not thread-safe, and therefore cannot handle any LAM
daemon calls from the same process during this API call. If this function needs to
use LAM infrastructure API calls (such asnsend() /nrecv() , rploadgov() ,
etc.), the recommended solution is tofork() from mpirun , register the new
process as a LAM process, and invoke the necessary LAM API calls in the new
process.

Although the actions performed by this function could be contained within the
mpirun thread handler function itself, separating it out into a distinct function
provided a clean abstraction for this specific functionality. It also provides for future
compatibility when/if LAM ever provides the thread-based handler itself (instead
of having that provided by thecrlam module).
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E.2.4 Function Call:lscrla continue

• Type: lam ssi crlam continue fn t

� �
typedef int (∗lam ssi crlam continuefn t)(void)� �

• Arguments: None.

• Return value: Zero on success,LAMERROR otherwise.

• Description: This function is invoked by thelam ssi crlam base contin-
ue() utility function (which was, in turn, invoked by the thread-based handler
after a successful checkpoint). The stated purpose of this function is to continue
mpirun and the MPI processes it launched after a successful checkpoint. This
may involve some recovery actions, or it may be an no-op.

The same restrictions apply to this function with regards to LAM API calls as
with the lscrla checkpoint() API call.

Although the actions performed by this function could be contained within the
mpirun thread handler function itself, separating it out into a distinct function
provided a clean abstraction for this specific functionality. It also provides for future
compatibility when/if LAM ever provides the thread-based handler itself (instead
of having that provided by thecrlam module).

E.2.5 Function Call:lscrla disable checkpoint

• Type: lam ssi crlam disable checkpoint fn t

� �
typedef void (∗lam ssi crlam disablecheckpointfn t)(void)� �

• Arguments: None.

• Return value: None.

• Description: This function is called bympirun to indicate when it is not permissi-
ble to allow checkpoints. Hence, if a checkpoint request arrives aftermpirun has
invoked this function, it must be stalled until a correspondinglscrla enable -
checkpoint() API call is invoked.

Note thatmpirun is implicitly in a “disable” state after returning fromlscrla -
init() ; checkpoint requests should always be deferred until at least the first in-
vocation oflscrla enable checkpoint() .
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E.2.6 Function Call:lscrla enable checkpoint

• Type: lam ssi crlam enable checkpoint fn t

� �
typedef void (∗lam ssi crlam enablecheckpointfn t)(void)� �

• Arguments: None.

• Return value: None.

• Description: This function is called bympirun to indicate when it is permissible
to allow checkpoints. Hence, if a checkpoint request arrives aftermpirun has
invoked this function, bothmpirun and the MPI job can be checkpointed.

Note thatmpirun is implicitly in a “disable” state after returning fromlscrla -
init() ; checkpoint requests should always be deferred until at least the first in-
vocation of this function.

E.2.7 Function Call:lscrla finalize

• Type: lam ssi crlam finalize fn t

� �
typedef int (∗lam ssi crlam finalize fn t)(void);� �

• Arguments: None.

• Return value: Zero on success,LAMERROR otherwise.

• Description: Performs the final cleanup of the checkpoint/restart handlers and pos-
sibly also invoke routines to detach from the underlying checkpointer.

E.2.8 Function Call:lscrla init

• Type: lam ssi crlam init fn t

� �
typedef int (∗lam ssi crlam init fn t)

(char ∗path,char ∗∗argv, OPT∗ad,struct gps∗mpiworld, int world n);� �
• Arguments:

– IN: path is the name of the executable to launch at restart time (e.g., “mpi-
run ”).
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– IN: argv is the list of arguments that were specified at thempirun command-
line, and is used to build a list of arguments to be passed to the newmpirun
at restart.

– IN: ad is used for option-parsing of theargv in order to build a restart-time
argv that will be passed tompirun .

– IN: mpiworld is used to pass the GPS information about all the processes in
the MPI job. This information is required to propagate the checkpoint requests
from mpirun to all the MPI processes.

– IN: world n is used to pass the count of processes that are part of the MPI
job. This information is required to propagate the checkpoint requests from
mpirun to all the MPI processes.

• Return value: Zero on success,LAMERROR otherwise.

• Description: Performs the primary initialization of thecrlam sub-layer. This func-
tion typically registers the signal-based and thread-based callbacks to perform the
actual checkpoint/restart functionality. Any initialization that is specific to the un-
derlying checkpointing system is also performed here.

A minimum requirement for initiating a checkpoint of a LAM/MPI job is the
delivery of a signal tompirun . If the underlying checkpointer does not provide
a mechanism to create/manage the thread-based checkpoint/restart handler, then a
thread has to be explicitly created in this initialization function, and it will have
to be blocked from executing (say, by waiting onread from a pipe). This thread
could then be woken up to start executing when a checkpoint request comes in (say,
by writing to the pipe on which the threaded callback is blocked on aread() ,
from signal handler-context).

E.2.9 Function Call:lscrla restart

• Type: lam ssi crlam restart fn t

� �
typedef int (∗lam ssi crlam restartfn t)(void)� �

• Arguments: None.

• Return value: Zero on success,LAMERROR otherwise.

• Description: This function is invoked by thelam ssi crlam base restart-
() utility function (which was, in turn, invoked by the signal-based handler upon
restart). The stated purpose of this function is to restartmpirun with a new appli-
cation schema so that it can restart the MPI application.

Note that this function runs in signal handler context, and is therefore subject
to many restrictions (e.g., it cannot even callmalloc() . Module authors are
reminded to be extremely cautious about what this function does.
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Although the actions performed by this function could be contained within the
mpirun signal handler function itself, separating it out into a distinct function
provided a clean abstraction for this specific functionality. It also provides for future
compatibility when/if LAM ever provides the signal-based handler itself (instead of
having that provided by thecrlam module).

E.2.10 Function Call:lscrla lamcheckpoint

• Type: lam ssi crlam lamcheckpoint fn t

� �
typedef int (∗lam ssi crlam lamcheckpointfn t)(pid t mpirun pid)� �

• Arguments:

– IN: mpirun pid PID of mpirun .

• Return value: Zero on success,LAMERROR otherwise.

• Description: This function is invoked by thelamcheckpoint command with
the PID ofmpirun . It should initiate a checkpoint request and send it tompirun ,
starting the checkpoint process.

The purpose of this function is to hide the mechanism used to checkpoint request
mechanism.

E.2.11 Function Call:lscrla lamrestart

• Type: lam ssi crlam lamrestart fn t

� �
typedef int (∗lam ssi crlam lamrestartfn t)(char ∗mpirun)� �

• Arguments:

– IN: mpirun Location ofmpirun executable.

• Return value: Zero on success,LAMERROR otherwise.

• Description: This function is invoked by the thelamrestart command. It
should initiate a restart of a previously-checkpointed MPI process. It is expected
that any necessary information (e.g., restart filename) will be passed through mod-
ule parameters. The path ofmpirun is passed as an argument so that the module
knows where the “right”mpirun command can be found (i.e., one that matches
the installation of LAM/MPI).

The purpose of this function is to hide the mechanism used to restart processes.
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� �
typedef struct lam ssi crmpi 1 0 0 {

lam ssi 1 0 0 t lscrm metainfo;

/∗ cr mpi API function pointers∗/

lam ssi crmpi query fn t lscrm query;
lam ssi crmpi init fn t lscrm init;

} lam ssi crmpi 1 0 0 t;� �
Figure E.4.struct lam ssi crmpi 1 0 0: Thecrmpi basic type for exporting the
module meta information and function pointers.

� �
typedef struct lam ssi crmpi actions1 0 0 {

/∗ cr mpi action API functions pointers∗/

lam ssi crmpi finalize fn t lscrmafinalize;
lam ssi crmpi appsuspendfn t lscrmaappsuspend;

} lam ssi crmpi actions1 0 0 t;� �
Figure E.5.struct lam ssi crmpi actions 1 0 0: Thecrmpi type for export-
ing API function pointers.

E.3 crmpi Component Framework Module API

This is version 1.0.0 of thecrmpi component framework module API. Eachcrmpi

module must export astruct lam ssi crmpi 1 0 0 namedlam ssi crmpi -

<name> module . This type is defined in FigureE.4. A secondstruct is used to hold

the majority of function pointers and flags for the module. It is only used if the module is

selected, and is shown in FigureE.5.
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E.3.1 Data Member:lscrm meta info

lscrm meta info is the SSI-mandated element and contains meta-information

about the module. See SectionA.6.2 for more information about this element.

The data in this element should be the same as the data contained in the corresponding

crlam meta element (lscrl meta info , SectionE.2.1).

E.3.2 Function Call:lscrm query

• Type: lam ssi crmpi query fn t

� �
typedef int (∗lam ssi crmpi query fn t)

(int ∗priority, int ∗threadmin, int ∗threadmax);� �
• Arguments:

– OUT: priority is the priority of this module, and is used to choose which
module will be selected from the set of available modules at run time.

– OUT: thread min is the minimum MPI thread level that this module sup-
ports. Only meaningful if the function returns zero and a non-negative priority.

– OUT: thread max is the maximum MPI thread level that this module sup-
ports. Only meaningful if the function returns zero and a non-negative priority.

• Return value: Zero on success,LAMERROR otherwise.

EitherNULL or a pointer to thestruct shown in FigureE.5.

• Description: If the module wants to be considered for selection, it must return zero,
assign an associated priority topriority , and fill thread min andthread -
max with the minimum2 and maximum MPI thread levels that it can operate in.

If the module does not want to be considered during the negotiation for this ap-
plication, it should returnLAMERROR (the values inpriority , thread min ,
andthread max are then ignored).

E.3.3 Function Call:lscrma init

• Type: lam ssi crmpi init fn t

� �
typedef lam ssi crmpi actionst ∗(∗lam ssi crmpi init fn t)(void);� �

2This value must be at leastMPI THREAD SERIALIZED.
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• Arguments: None.

• Return value: A pointer to thestruct shown in FigureE.5, or NULL on error.

• Description: Performs the primary initialization of thecrmpi module and returns
a pointer to alam ssi crmpi actions t filled with function pointers for the
actions of this module.

This function typically registers signal-based and thread-based callbacks to per-
form the actual checkpoint/restart functionality (or launches a thread that sleeps
until the appropriate time). Any initialization that is specific to the underlying
checkpointing system is also performed here. Typically, one or more mutual ex-
clusion devices might need to be initialized in this function that will be used to
synchronize the execution of the main application thread and the checkpoint/restart
handler thread within the MPI library.

A minimum requirement for initiating a checkpoint of a LAM/MPI job is the
delivery of a signal to each process in the MPI application. If the underlying check-
pointer does not provide a mechanism to create/manage the thread-based check-
point/restart handler, then a thread has to be explicitly created in this initialization
function, and it will have to be blocked from executing (for example, by blocking
on read() from a pipe). This thread could then be woken up to start executing
when a checkpoint request arrives (for example, by writing to the pipe on which
the threaded callback is blocked on aread() sincewrite() is safe in signal
handler context).

E.3.4 Function Call:lscrma finalize

• Type: lam ssi crmpi finalize fn t

� �
typedef int (∗lam ssi crmpi finalize fn t)(void);� �

• Arguments: None.

• Return value: Zero on success, non-zero otherwise.

• Description: Performs the final cleanup of the checkpoint/restart handlers, and pos-
sibly also invoke routines to detach from the underlying checkpointing system.

E.3.5 Function Call:lscrma app suspend

• Type: lam ssi crmpi app suspend fn t

typedef void (*lam_ssi_crmpi_app_suspend_fn_t)(void);

• Arguments: None.

• Return value: None.
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• Description: This function is provided to allow the main application thread to yield
to the checkpoint/restart thread when it is interrupted in the middle of a blocking
MPI call by the threaded handler. This is typically done by using a set of one or
more mutual exclusion devices. Once the threaded handler returns from a check-
point, it will yield control back to the application thread and allow thelscrma -
app suspend() call to return.
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