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Abstract—Because of sensor malfunction and poor 
atmospheric conditions, there is usually a great deal of 
missing information in optical remote sensing data, 
which reduces the usage rate and hinders the follow-up 
interpretation. In the past decades, missing information 
reconstruction of remote sensing data has become an ac-
tive research field, and a large number of algorithms have 

been developed. However, 
to the best of our knowl-
edge, there has not, to date, 
been a study that has been 
aimed at expatiating and 
summarizing the current 
situation. This is therefore 
our motivation in this re-
view. This paper provides 
an introduction to the prin-
ciples and theories of miss-

ing information reconstruction of remote sensing data. 
We classify the established and emerging algorithms into 
four main categories, followed by a comprehensive com-
parison of them from both experimental and theoretical 
perspectives. This paper also predicts the promising fu-
ture research directions.

I. INTRODUCTION

Remote sensing instruments can capture information 
about the atmosphere, ocean, and the Earth’s surface. 

They are one of the most frequently used and most pow-
erful approaches to understanding and investigating our 
planet. However, because of defective sensors and poor 
atmospheric conditions (e.g., thick clouds), the acquired 
remote sensing data are often so incomplete (we also say 
that they have missing information) that the data usability 
is greatly reduced.

For example, 15 of the 20 detectors in the Aqua Moder-
ate Resolution Imaging Spectroradiometer (MODIS) band 
6 are ineffective [1]; the scan line corrector (SLC) of the 
Landsat enhanced thematic mapper plus (ETM+) sensor 
has permanently failed [2]; and the ozone monitoring in-
strument (OMI) onboard the Aura satellite is subject to a 

row anomaly problem. On average, at any one time, ap-
proximately 35% of the global land surface is obscured by 
clouds [3], and in an individual country, the rate of cloud 
cover can be much higher, e.g., in Canada, from 50% to 
80% of the Earth’s surface is covered by clouds in mid-
morning [4]. Since cloud cover is frequently inevitable in 
the observation process, passive remote sensing data con-
tain lots of missing information. Clouds in remote sens-
ing data are useful information for liquid water research; 
however, in this paper, they are considered as useless in-
formation that obstructs the observation. It is noteworthy 
that only passive remote sensing imageries are affected by 
atmospheric conditions; thus, when it comes to the atmo-
sphere (or clouds) in the following descriptions, the data 
are from passive sensor platforms.

Dead pixels resulting from sensor failure or random er-
ror are also a common phenomenon. Missing information 
limits the regular and further applications of remote sens-
ing data, e.g. classification [5], unmixing, target detection, 
etc. As a result, reconstructing the missing information of 
remote sensing data is of great significance for many practi-
cal applications (e.g., improving the subsequent interpreta-
tion accuracy and enhancing the data availability).

In order to intuitively perceive the information loss of 
remote sensing data, we show some concrete examples in 
Fig. 1. In short, Fig. 1(a)–(c) are the consequences of sen-
sor failure, and Fig. 1(d)–(f) are the consequences of cloud 
obscuration. The figures include digital number (DN) value 
images and quantitative products of remote sensing, i.e., re-
flectance, land surface temperature (LST), the normalized 
difference vegetation index (NDVI), and ozone.

In our opinion, according to the different sources of 
the complementary information when reconstructing the 
missing information, the present algorithms can be primar-
ily classified into four categories: 1) spatial-based methods, 
without any other auxiliary information source; 2) spectral-
based methods, which extract the complementary informa-
tion from other spectra; 3) temporal-based methods, which 
extract the complementary information from other data 
acquired at the same position and at different time periods 
(hereafter, we say they are multitemporal); and 4) hybrid 

(e) (f)(a) (b) (c) (d)

Figure 1. Several examples of remote sensing data with missing information. In addition to the white clouds, the dark regions also represent 
missing information. (a) Reflectance of Aqua MODIS band 6 with sensor failure. (b) DN value of Landsat ETM+ with the SLC-off problem. (c) 
Ozone of Aura OMI with the row anomaly problem. (d) DN value of IKONOS-2 with cloud obscuration. (e) LST of MODIS with cloud obscura-
tion. (f) NDVI of MODIS with cloud obscuration. Note that the dynamic range [-1, 1] is stretched linearly to [0, 255] for the visual effect.
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methods, which extract the complementary information 
by a combination of the three previous approaches.

We believe that this paper will not only contribute to a 
summarization of the current situation of reconstruction 
algorithms for the missing information of remote sensing 
data, but will also point out the promising research and de-
velopment directions in the future. The ultimate objective 
will be beneficial to the subsequent applications of remote 
sensing data.

The rest of this review is organized as follows. In Section 
II, we make a brief description of what is entailed in the 
missing information reconstruction of remote sensing data. 
Sections III–VI survey the algorithms used to reconstruct 
the missing information of remote sensing data, based on 
the four kinds of methods, respectively, and also provide 
the experimental comparisons. Finally, the conclusion and 
prospects are presented in Section VIII.

II. PROBLEM DESCRIPTION
Remote sensing data with missing information may be 
two-dimensional (2D) (e.g., panchromatic images and 
some quantitative data), three-dimensional (3D) (e.g., 
multi/hyper-spectral images), or four-dimensional (4D) 
(e.g., multitemporal 3D data). In other words, the data 
have various forms. On the other hand, reconstructing 
the missing information of remote sensing data is an ill-
posed inverse problem. For the convenience and unifor-
mity of the subsequent descriptions, it will be necessary 
to make a universal introduction to the problem. In this 
section, the issue of the reconstruction of remote sensing 
data is generally described, and the notations and sym-
bols are explained. In this paper, vectors and matrices are 
denoted by bold and non-italic characters, and the scalar 
variables are denoted by italic and non-bold characters.

In fact, to reconstruct the missing information of remote 
sensing data is an issue that estimates the missing values 
according to the existing/remaining and valid values. For 
brevity, we first take the case of the simplest 2D remote 
sensing data as an example. As shown in Fig. 2, given 2D 
data I Rm n! #  : ),(I R R2 2

"!X  where X represents the 
spatial domain, it is composed of m n#  points ,px" ,  and x  
is the coordinates of point ,px  which is defined as ,x .x y=^ h  
Correspondingly, I x^ h represents the value of point .px  We 
assume that the domain X is composed of missing region 
S and existing region ,E  i.e., S E,X =  and .S E+ Q=  In 
practice, we let J  be the observed version of the ideal ,I  
which is subject to missing information, and M  denotes 
the operator (mask) of the missing information, which is 
a diagonal matrix with diagonal elements consisting of 0 
and 1, with 0 representing the missing data. In the study 
of reconstructing missing information, the goal is to recon-
struct the value at the position x  (in the missing region S), 
based on a reasonable estimation from the existing region 

.E  A satisfactory result will not only be visually natural, but 
also in accordance with the physical meaning (mainly for 
remote sensing quantitative data).

As far as remote sensing data are concerned, they more 
usually have a 3D form, as shown in Fig. 3. In terms of the 
data structure, 2D remote sensing data are just a special 
case of 3D data, and the previously declared notations are 
still valid. An item of 3D remote sensing data is denoted 
by I Rm n k! # #  : ) .(I R R2 3

"!X   Thus, the coordinates of 
point px  will be defined as 

, ,x .x y z=^ h   Addit ionally, 
:I R Ri 2 2

"!X   represents 
the i-th component of I  
(the i-th layer in Fig. 3, from 
top to bottom). When some 
components of the multi-
component 3D remote sens-
ing data are corrupted with 
missing information, and the others are intact, the intact 
components can provide useful information for the recon-
struction of the corrupted components. This example is 
further discussed in Section IV.

In the field of remote sensing, items of data that are ac-
quired in the same geographical region and from different 
periods (multitemporal) are usually used for reconstruct-
ing missing data. Mathematically, It t

T
1=" ,  is a sequence of 

multitemporal remote sensing data from T  different times. 
Without loss of any generality, It  is supposed to be 3D (mul-
ticomponent) (when ,k 1=  It  is 2D). The previous nota-
tions are also usable; for example, It

i  denotes the i-th com-
ponent of the t -th remote sensing data. When a sequence of 

2D Remote Sensing Data
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Figure 2. Missing information of 2D remote sensing data.
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Figure 3. 3D remote sensing data.
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multicomponent remote sensing data is used in the recon-
struction process (with maybe just a few components be-
ing used), the related data/components will reconstitute the 
new 3D data with a given rule (discussed in Section VI-B).

In our framework, the diverse algorithms for recon-
structing the missing information of remote sensing data 
are divided into four main classes, based on the supple-
mentary information sources: 1) spatial-based methods; 2) 
spectral-based methods; 3) temporal-based methods; and 
4) hybrid methods. Note that we usually say that data with 
missing information are corrupted or incomplete.

III. SPATIAL-BASED METHODS
The spatial-based methods are the most traditional and 
most basic approach of the four kinds of methods. This 
category of methods fill in the missing data regions us-
ing the remaining parts of the data. This approach is 
based on the assumption that the missing data and the 
remaining data share the same statistical or geometrical 
structures [6]. In other words, the spatial-based methods 
utilize the correlations of the local or nonlocal informa-
tion in the corrupted data itself. Most of these methods 
have been intensively studied in the field of digital im-
age processing [7–11], and can also be applied to remote 
sensing image processing. The representative methods 

include interpolation meth-
ods  [12],  [13],  propagated 
diffusion  methods  [7–9], 
[14], variation-based meth-
ods [10], [11], [15–18], and 
exemplar-based  methods 
[19–21]. It should be noted 
that because of the lack 
of other reference data to 
judge the recovery fidelity, 

the goal of spatial-based reconstruction is that the recov-
ered region shows a smooth transition at the junctions, 
and is as physically plausible as possible, without uncon-
nected edges, blurring, or inconsistent texture [6].

A. Interpolation Methods
In the spatial-based reconstruction methods, interpolation 
algorithms are the fundamental ones. Most spatial interpo-
lation methods can be represented as weighted averages of 
sampled values. They all share the same general estimation 
formula, as follows:

	 I x I xwi
i

N

i0
1

=
=

t^ ^h h/ � (1)

where I x0
t^ h is the estimated value of an attribute at the 

point of interest ,px0  I xi^ h is the observed value at the sam-
pled point ,pxi  wi  is the weight assigned to the sampled 
point ,pxi  and N  represents the number of sampled points 
used for the interpolation [22]. The most commonly used 
interpolation algorithms include nearest neighbor inter-
polation, bilinear interpolation, and cubic convolution 

interpolation. Geostatistical interpolation methods [13], 
[23] are also very useful in remote sensing data process-
ing. Geostatistics includes several methods that use kriging 
algorithms for estimating intermediate values. Kriging is a 
kind of best linear unbiased prediction. The kriging weights 
are estimated by minimizing the variance :E
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where Ce $^ h is the covariance between observations, 
Ee $^ h represents the expectation, wj  is the interpola-
tion weight, and xi  )(x j  is the position of point pxi  ( ).px j  
A typical example of the use of an interpolation method 
for missing information reconstruction was described by 
Zhang et al. [12], who filled ETM+ image gaps using an 
ordinary kriging technique. This case study showed that 
the geostatistical methods can be a useful tool for inter-
polating missing pixels.

In general, the interpolation methods are efficient and 
easy to operate. However, the spatial information is not 
fully utilized in most interpolation methods. Therefore, 
these methods only work well in cases with relatively sim-
ple ground features.

B. Propagated Diffusion Methods
The propagated diffusion methods aim to recover the miss-
ing areas in such a way as to propagate the local informa-
tion from the exterior to the interior of the missing areas, 
which is analogous to the physical phenomenon of heat 
propagation in physical structures. This effect can be for-
malized with partial differential equations (PDEs); there-
fore, the diffusion inpainting is performed using PDEs [24]. 
The simplest linear diffusion equation at time t0  is:

	 I It02
2

D= � (3)

where I represents the image data, and ID  denotes the im-
age Laplacian. The diffusion processing at point px  at time 
t 10+  has the discrete form:

	 I x I x I x
t t t10 0 0

D= +
+ ^ ^ ^h h h� (4)

This PDE evolution is isotropic diffusion, which propa-
gates the image variations in all directions, as a low-pass 
linear filtering. For this reason, this diffusion method in-
troduces a lot of blurring to the recovered region.

Many anisotropic PDE models, which limit the diffu-
sion around specific directions such as edges, have been 
proposed for image inpainting. The diffusion inpainting 
method was first proposed by Bertalmio et al. [7] in 2000. 
This approach uses an anisotropic PDE model that propa-
gates the image Laplacians from the surrounding neighbor-
hood into the interior of the missing area. The directions of 

The spatial-based 

methods only rely on the 

spatial correlation of 

the corrupted data itself.
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the propagation are the directions of the isophotes, which 
are lines of constant intensity within an image, and they are 
estimated by the perpendicular direction to the image gra-
dient at each point. The diffusion at point px  at time t 10+  
is governed by the equation:

	 I x I x I x I x
t t t t10 0 0 0

d dD= + =
+ ^ ^ ` ^ ^h h hj h� (5)

where d  is the gradient operator, and d=  represents the 
perpendicular direction of d  (i.e., the direction of the 
isophote). In this method, the image information is 
propagated inside the missing zone in a way that aims to 
preserve the isophote directions, as shown in Fig. 4(a).

The propagation directions are generally the key to the 
process of diffusion. In order to precisely determine the 
propagation directions, the method proposed in [14] em-
ploys an advanced tool called a “bandelet”, which accurate-
ly calculates the geometrical flow of the image structures, 
as shown in Fig. 4(b), and then the values are propagated 
into the missing areas following the directions of the geo-
metrical flow. The propagation at point pxi 1+  is implement-
ed by the equation:

	 ,I x I x x x I xEi i d i i i1 1= ++ + l^ ^ ^ ^h h h h� (6)

with

	 ( ) ( ) ( )I x x xcos sinx yi i= +l ll � (7)

where ,x xEd i i1+^ h is the Euclidean distance between pixels 
pxi 1+  and .pxi  I xi 1+^ h corresponds to the value of the near-
est pixel that belongs to the missing areas, in the direc-
tion of the geometrical flow determined by the bandelet. 
I xl^ h is the directional derivative of I with respect to the 
geometrical direction i  that is calculated by the bandelet 
transformation.

For the diffusion methods, many variants exist using 
different PDE models, including linear, nonlinear, isotro-
pic [25], and anisotropic models [26], to favor the propaga-
tion in particular directions. These methods tend to pro-
long structures to the interior of the missing areas. Thus, 
they are suitable for recovering strong structures or filling 
small regions. However, they are not suitable for recon-
structing large areas and textures, in which they 
lead to blurring.

C. Variation-Based Methods
Reconstructing the missing information of re-
mote sensing data can also be seen as solving an 
ill-posed inverse problem. It is standard to use 
a regularization technique to make an inverse 
problem well posed. Image regularization can be 
formulated as a variational problem, where the 
image amounts to a function of the bounded vari-
ation (BV), and the solution is the minimization 
of a global energy function:

	 I MI J Iargmin U
I

q
q m= - + ^ h# -T � (8)

where I is the clear target image data, J  is the observed cor-
rupted data, and M  is a mask signifying the missing data. 
The term MI J q

q-  is the data fidelity term, which express-
es the fidelity between the observed corrupted data and the 
target data, and the term IU^ h is the regularization term, 
which gives a prior model of the target data. m is the regu-
larization parameter, which controls the tradeoff between 
the data fidelity and the regularization term. It is worth 
noting that the regularization term ensures the uniqueness 
of the recovery solution; therefore, how to select an appro-
priate regularization is very significant. Some frequently 
used regularizations are introduced in the following.

1) 2,  Norm Regularization: 2,  norm regularizations, such 
as Laplacian regularization [27], Tikhonov regularization 
[28], and Gauss-Markov regularization [29], are the most 
common regularization models for image processing, be-
cause they are simple and can be solved quickly and easily. 
One of the representative 2,  norm regularizations is Lapla-
cian regularization, which is defined as follows:

	 ( )I I xU
x 2

2D=^ h / � (9)

The goal of Laplacian regularization is to minimize the 
energy of the high-frequency component of the images; 
therefore, this model is able to suppress the high-frequency 
information and impose smoothness constraints on the 
images. For this reason, the Laplacian regularization in-
painting model is suitable for the recovery of flat regions 
or for use in low-resolution images. However, it performs 
poorly in edge and detail information reconstruction, for 
which it results in blurring.

2) variation (TV) regularization, which has been wide-
ly applied for image inpainting, such as in [1]. On the ba-
sis of (8), the TV regularization can be expressed as the 
following equation:

	 I I xU
x
d=^ ^h h/ � (10)

TV regularization is an effective inpainting technique 
that is capable of recovering sharp edges. However, it 

(a) (b)

Figure 4. Propagation direction and geometrical flow. (a) Propagation along 
isophote directions (from [7]). (b) Geometrical flow of the image structures.
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suffers from the problem of connectivity, which results in 
the recovery results being unconnected when the width of 
the missing gap is larger than that of the object. Several ex-
tended TV models have been further proposed to improve 
the edge connectivity, e.g., the curvature-driven diffusion 
(CDD) models [9], high-order TV [30], and spectral-spatial 
adaptive TV [31].

3) 1 2, ,-  Norm Regularization: An image usually contains 
both flat regions and detailed regions. Thus, some studies 
have tried to combine the 1,  and 2,  norms for the regu-
larization. The typical model is the Huber-Markov regu-
larization, which treats images in sections with different 
norms. In [15], the authors proposed a variational model 
with a Huber-Markov regularization for the destriping and 
inpainting of remote sensing images. The Huber-Markov 
regularization is expressed as follows:

	 I IVU x
C

c
c

=
!

^ ^h h/ � (11)

where c  is a clique within the set of all the image cliques C, 
IV xc ^ h represents the potential function corresponding to 

the clique ,c  and is defined as:

	 ( )I I xV dxc c
i

i 1

4

t=
=

^ ^ ^ hhh/ � (12)

where I xdc
i ^ ^ hh is a spatial activity measure for pixel px  with 

coordinate ,x  which is formed by first- or second-order dif-
ferences in the adjacent cliques of four directions (i  repre-
sents the direction). $t^ h is a smooth measurement func-
tion. In Huber-Markov regularization, the function $t^ h is 
defined as:

	
,

,
i

i i
i i2 >

2

2
#

t
x

x x x
=

-
^ h ( � (13)

where x is a threshold parameter separating the quadratic 
and linear regions, as shown in Fig. 5. The smooth and de-
tailed regions in an image can therefore be given different a 
priori constraints. For this reason, the Huber-Markov mod-
el can effectively suppress noise and recover the detailed 
information of images.

4) Nonlocal Regularization: The regularization methods 
mentioned above all belong to local methods that recover 
a pixel using the local neighboring information; therefore, 
they are not suitable for texture reconstruction. In recent 
years, the nonlocal TV regularization, which takes the 
nonlocal similarity within an image into consideration, 
has been developed for image processing, as shown in Fig. 
6, and recovers a pixel using the entire image information. 
Cheng et al. [1] extended the nonlocal TV regularization to 
multichannel nonlocal TV regularization, and applied it to 
multispectral image reconstruction. On the basis of (8), the 
multichannel nonlocal TV regularization is as follows:

	 I I xU
x w

i

i

k
2

1

d=
=

^ ^h h// � (14)

where the nonlocal gradient [32] :I xw " #d X X X^ h  is de-
fined as the vector of all the partial derivatives ,I xw $d ^ h at 

,x  such that:

	 , : , ,I x y I y I x x y ywwd 6 ! X= -^ ^ ^ ^ ^ ^h h h hh h � (15)

where the function ,x yw^ h is used to compute the weight 
between two points x  and y:

	 ,x y
I x I y

expw
h

G 0
2

2) $ $
= -

+ - +^ ^ ^ ^ ^h h h h h( 2� (16)

where G is the Gaussian kernel, h is a filtering parameter, and 
I x $+^ h is a patch centered at point .px  The nonlocal TV model 
is based on the idea of the nonlocal means method, and is 
very efficient in reducing noise while preserving the textures. 
The drawback is that this method is time-consuming in the 
process of searching for similar patches in the whole image.

Taking the image recovery as the minimization of 
a global energy function, the class of variation-based 

-x x

t(i)

i

,1

, 2

Figure 5. Function it^ h in Huber-Markov regularization.

w(p, q)

w(p, r)

w(p, s)

Figure 6. Similar patches existing within an image.
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methods can generally achieve pleasing inpainting re-
sults, especially for the recovery of geometric structures 
such as edge information. However, after a few iterations, 
the variation-based methods tend to result in blurring, to 
some extent, when the missing region is large and full of 
complex textures.

D. Exemplar-Based Methods
The exemplar-based inpainting methods [19] are based 
on texture synthesis for digital images, with the aim of re-
covering large missing regions of texture information. The 
missing pixels are replaced by copying a known pixel, the 
neighborhood of which is the most similar to the currently 
available neighborhood of the input pixel to be filled. This 
class of inpainting methods fill the missing areas one pixel 
or one patch at a time in a greedy way, while maintaining 
coherence with nearby pixels. The simple pixel-based tex-
ture synthesis technique in [20] is performed as follows. Let 
px  be a pixel located at the border of the missing region of 
an image, and pxW  is a patch centered at pixel ,px  as shown 
in Fig. 7. This patch includes a known part p

E
xW  and an un-

known part .p
S
xW

The idea is to search for the patch pyW  (centered at )py  
that is the most similar to the known part of the input 
patch .pxW  That is to say, the central pixel py  has a neigh-
borhood that is the most similar to the known neighbor-
hood of pixel .px  The pixel py  is then copied to recover .px  
The missing region is therefore reconstructed pixel-by-pixel 
by copying the known information. A problem is that this 
pixel-by-pixel filling algorithm suffers from a high compu-
tational cost. Patch-by-patch approaches which recover an 
entire patch in one step by copying an entire patch from 
the known region have since been proposed to reduce the 
computational time.

Both the pixel-based and the patch-based methods are 
performed in a greedy way, and the pixel or patch pro-
cessing order has a strong impact on the quality of the in-
painting results. Therefore, they do not ensure global im-
age coherence. Some research work has been undertaken 
recently [21], [33] to progress the exemplar-based inpaint-
ing through global optimization to achieve global image 
coherence. In these methods, the spatial coherence is en-

sured via a global optimization of the Markov random field 
(MRF) energy function over the entire image. The patch or 
pixel locations are optimized in MRF by the use of belief 
propagation [21] or graph cuts [33].

In general, the exemplar-based inpainting methods 
are more suitable for filling large textured regions. These 
methods can achieve fine reconstruction results with a 
high spatial consistency and convincing visual quality. 
However, the fidelity and accuracy of the recovery results 
are usually not satisfactory.

E. Comparison of the Spatial-Based Methods
Fig. 8 shows the dead line reconstruction results with differ-
ent kinds of spatial-based approaches. The original image 
in Fig. 8(a) is a Landsat TM image, and Fig. 8(b) is a simulat-
ed image corrupted by dead lines. From Fig. 8, it can be seen 
that the recovery result of the interpolation method [Fig. 
8(c)] shows serious artifacts, especially in the edge of the 
ground features, such as the region marked with a yellow el-
lipse. This result indicates that when the image data contain 

py

px

Figure 7. Similar neighborhoods in exemplar-based methods.

(e) (f)(a) (b) (c) (d)

Figure 8. Experimental results for the recovery of dead lines. (a) Original image. (b) Simulated image corrupted by dead lines. Recovered 
images using the following: (c) Kriging interpolation in [23]; (d) BSCB diffusion method in [7]; (e) TV regularization method in [11]; and  
(f) Criminisi’s exemplar-based method in [19].
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complex terrain features or a large amount of structural in-
formation, a simple interpolation method is unsatisfactory. 
The result of the diffusion method [Fig. 8(d)] appears bet-
ter than the interpolation method, but it introduces blur-
ring for the recovery, as shown in the yellow ellipse region. 
The result of the variation-based method [Fig. 8(e)] appears 
more visually plausible than the results of the other three 
methods. The recovered dead lines are spatially continuous, 
and the sharp edges are recovered well. However, for the 
TV inpainting, the problem of connectivity arises, such as 

in the regions labeled with 
yellow circles in Fig. 8(e), 
where the white line object 
in the red circle region is un-
connected since the missing 
gap is wider than the line, 
while it is connected in the 
green circle region since the 
missing gap in that region 
is narrower than the line. In 
the result of the exemplar-
based method [Fig. 8(f)], lots 

of spurious detailed information appears in the dead line 
regions. Moreover, we can see that it is weak in curve con-
nection, such as in the region marked with a yellow ellipse. 
This experiment shows that the variation-based inpainting 
methods are in general a good choice for the recovery of 
small gaps in remote sensing images.

The quantitative assessment of the four results in TA-
BLE I also indicates the superior performance of the vari-
ation-based inpainting methods. In TABLE I, the peak sig-
nal-to-noise ratio (PSNR) and structural similarity (SSIM) 
[34] values of Fig. 8 are provided to give an overall quan-
titative evaluation. Here, it can be seen that the interpola-

tion method (kriging interpolation) 
gets the worst reconstruction result, 
and the variation-based method (TV 
regularization) obtains the best re-
construction result.

Fig. 9 shows large-region recon-
struction results with four kinds of 
spatial-based approaches. Fig. 9(a) 

is the original cloudy image. From the recovery results  
[Fig. 9(b)–(e)], it can be clearly seen that the exemplar-
based method obtains a better reconstruction result than 
the other methods. Since the ground features are complex 
and the cloudy region is large, the interpolation, diffusion, 
and variation-based methods are not able to deal with this 
situation well, bringing serious blurring. However, the 
exemplar-based method is capable of obtaining a spatially 
continuous result, with more convincing visual quality. Fur-
thermore, in the result of the exemplar-based method, the 
cloudy region is recovered with some ground features which 
are consistent with the neighbor information. Regardless of 
the accuracy, the exemplar-based method achieves a good 
result, with fine spatial continuity and more convincing  
visual quality.

IV. SPECTRAL-BASED METHODS
Because of the absence of sufficient prior information, the 
spatial-based methods usually fail to reconstruct large-area 
missing information. In this case, in order to obtain a sat-
isfactory effect, extracting the complementary information 
from the spectral domain is helpful. In multispectral and 
hyperspectral images, there is much redundant spectral 
information, due to the characteristics of the sensors. This 
redundant information can be used to reconstruct the miss-
ing data in a specific band. However, the premise is that the 
corrupted multispectral data have both incomplete (miss-
ing information) and complete spectral bands, and there 
must be some residual information in the corrupted band; 
otherwise, the spectral correlation cannot be easily made 
use of. The basic idea of this class of methods is to make 
use of the other complete spectral bands (one or more) to 
reconstruct the incomplete band by modeling the latent 
relationship between the incomplete and complete bands. 

Indicators
Corrupted 
image

Kriging inter-
polation in 
[23]

BSCB  
diffusion 
in [7]

TV  
regularization 
in [11]

Exemplar-based 
method in [19]

PSNR/dB 19.667 38.372 41.375 41.961 38.851

SSIM 0.73029 0.96105 0.97810 0.98253 0.96744

Table 1. PSNR AND SSIM VALUES OF THE RECOVERED IMAGES IN FIG. 8.

(e)(a) (b) (c) (d)

Figure 9. Experimental results for the recovery of a cloudy image. (a) Original cloudy image. Recovered images using the following: (b) 
the kriging interpolation method in [23]; (c) the BSCB diffusion method in [7]; (d) the TV regularization method in [11]; and (e) Criminisi’s 
exemplar-based method in [19].

Large-area missing 

information cannot  

be effectively 

reconstructed by the 

spatial-based methods.
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We believe that the spectral correlation makes a better dif-
ference on the condition that the missing information is 
different in the spectral bands. For example, the missing lo-
cations are different, or one band has missing information 
and the other bands are complete. Such missing informa-
tion problems are often caused by the sensor, where some 
channels are well recorded while others are not. However, 
the damaged band may be relevant to a particular intact 
band. The missing data can then be recovered by the fine 
band and the corresponding band relationship.

To our knowledge, only a few recovery algorithms 
have been developed based on complementary spectral 
information. The typical case is the Aqua MODIS band 
6 black stripe imagery. As 15 of the 20 detectors are ei-
ther noisy or non-functional, there are periodic along-
scan stripes of missing data covering the entire image, as 
shown in Fig. 10. Due to the particularity of this problem, 
most of the spectral-based methods have been developed 
for this issue. Wang et al. [1] were the first to advocate that 
the Aqua MODIS band 6 could be recovered by the stable 
analytical relationship between Terra MODIS bands 6 
and 7. Their research was based on the observation that 
MODIS bands 6 and 7 are highly correlated in snow-cov-
ered areas. For recovering the Aqua MODIS band 6, the 
calibrated and geo-located Terra MODIS Level 1B radi-
ances were employed. Polynomial regression was used to 
quantify the relationship between Terra MODIS bands 6 
and 7. Reflectances at the top of the atmosphere (TOA) in 
Terra MODIS bands 6 and 7 were correlated with a corre-
lation coefficient of 0.9821. Linear, quadratic, cubic, and 
fourth-degree polynomials were fitted to the data of Terra 
bands 6 and 7. Wang et al. [1] suggested using the follow-
ing polynomials:

	
. .
. .

I I x I x
I x

x 1 6032 1 9458
1 7948 0 012396

6 7 3 7 2

7
= - +

+

^ ^
^
^ ^ ^h
h
hh hh

�
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or

	 . . .I x I x I x0 70472 1 5369 0 0254096 7 2 7=- + +^ ^ ^ ^h hh h � (18)

where I x6^ h and I x7^ h are the reflectances of px  at the TOA 
in Terra MODIS bands 6 and 7, respectively. Similar results 
can be obtained using these two polynomials. Wang et al. 
[1] emphasized that the relationship between these two 
bands depends on many factors, such as the scene type, the 
spectral characteristics, and the scan geometry. The scene 
type in particular plays an important role. As (17) and (18) 
were developed based on snow cover, their performances 
are best for snow-covered scenes, and they show relatively 
large errors for scenes without snow cover [1]. For brevity, 
this method is called LF hereafter.

Rakwatin et al. [35] proposed to recover the miss-
ing data of Aqua MODIS band 6 by combining a histo-
gram matching algorithm with local least squares fitting 
(HMLLSF). Histogram matching corrects the detector-to-
detector striping of the functional detectors. Local least 

squares fitting recovers the missing data of the non-func-
tional detectors, based on a cubic polynomial derived 
from the relationship between Aqua MODIS bands 6 and 
7. The algorithm was tested on both Terra and Aqua MO-
DIS images, and it can be used at both 1000-m and 500-
m resolutions. Using simulated striped images of Terra 
MODIS data, the results of recovering the synthetic non-
functional detectors of band 6 demonstrated that this 
method can recover the missing data with little distor-
tion. Although this algorithm has greatly improved MO-
DIS band 6 recovery, it does 
not consider the effect of 
different scene types.

Shen et al. [36] further 
found that the band rela-
tionship depends on the 
scene type. On this basis, 
they developed a within-
class local fitting (WCLF) 
algorithm to recover the 
missing band 6 reflectanc-
es. An unsupervised classification is first performed to 
separate the various scene types, based on a band selec-
tion method. With the classification map, WCLF is per-
formed to recover every single missing pixel in each type. 
Moreover, a refinement procedure is included in the local 
fitting process to eliminate the effect of outliers. Since the 
scene classification information is considered, the meth-
od can obtain a satisfactory result with complex surfaces. 
However, the result is heavily reliant on the classification 
map, especially for the pixels at the junction of different 
scene types.

The methods described previously reconstruct the miss-
ing information of band 6 only according to the spectral 
relationship of band 6 and band 7. However, for a product 
which has seven bands in total, the spectral relationship 
between the different bands is not fully utilized to recon-
struct the missing information. Therefore, Gladkova et al. 
[37] proposed to build the relationships of band 6 and the 
other six bands for reconstruction (for 500-m resolution 
L1B data). On this basis, to take into consideration the local 
features, Li et al. [38] came up with the idea that band 6 and 
the other bands satisfy a stable relation function in a cluster 
of local patches. It is noteworthy that in different clusters of 

Aqua MODIS Band 6 20 Detectors
(5 + 14 + 1)

Good(5)

Noisy(1)

Dead(14)

Figure 10. Sensor failure of Aqua MODIS band 6.

Modeling the spectral 

relationship is the 

premise of the  

spectral-based methods.
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patches, the functions are different. The relationships can 
be roughly expressed as:

	 ( ), ( ), ( ), ( ), ( ), ( )I I x I x I x I x I x I x x( ) ( ),fx p6
1

1 2 3 4 5 7 !X=

� (19)

where pX  denotes the local region of ,I  and f1  represents 
the relation function of band 6 and the other bands. The 
authors first utilized the good detectors in band 6 and the 
other bands to acquire the function .f f1 1  was then used to 
reconstruct the missing information of the malfunctioned 
detectors in band 6. Since more spectral bands are made 
use of when the spectral relationships are being modeled, 
the methods of Gladkova et al. [37] and Li et al. [38] ob-
tain better recovery results than the previous methods. The 
method proposed by Li et al. is called robust M-estimator 
multiregression (RMEMR).

We undertook a real data experiment on an Aqua 
MODIS image acquired on January 16, 2009, over North 
Korea. The original and recovery result images of the pro-
posed algorithm are shown in Fig. 11. The test images in 

the experiment were of 400 by 400 pixels and a 500-m res-
olution. Fig. 11(a) shows the original band 6 image, with 
black stripes covering most of the image. Fig. 11(b)–(e) are 
the output images recovered by LF [1], HMLLSF [2], WCLF 
[3], and RMEMR [4], respectively. In Fig. 11(b), there are 
obvious stripes and artifacts. These results show that when 
the image contains complex terrain, it is difficult to fit the 
relationship between the two bands using only one band 
relationship curve. In Fig. 11(c)–(e), most of the recovered 
pixels match well. The three results are relatively close, but 
Fig. 11(c) is a little too smooth in the details.

Fig. 12 shows the Fourier transforms of the original 
and recovered data of the different algorithms. The hori-
zontal axis represents the normalized frequency, and the 
vertical axis represents the average power spectrum of 
all the columns. In Fig. 12(b), the stripes are still clearly 
reflected in the frequency domain. Fig. 12(c)–(e) reveal 
similar smooth results.

Since the real data experiment did not show a difference 
between LF, HMLLSF, WCLF, and RMEMR, simulated ex-
periments were also conducted to objectively evaluate the 

(e)(a) (b) (c) (d)

Figure 11. Recovery results of Aqua MODIS band 6 using different methods. (a) The Original. Recovered images using the following:  
(b) the LF method in [1]; (c) the HMLLSF method in [35]; (d) the WCLF method in [36]; and (e) the RMEMR method in [38].
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Figure 12. (a)–(e) Spectrograms of Fig. 11(a)–(e).
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results of the spectral-based methods, in which 
the reflectance product of the same designed Terra 
MODIS (with Aqua MODIS) is artificially lost ac-
cording to the same locations of Aqua MODIS. 
The experimental data are shown in Fig. 13. The 
visual effects of the results reconstructed by the 
four methods are very similar; thus, we just show 
the result of RMEMR in Fig. 13. The mean absolute 
error (MAE) and PSNR between the original and 
reconstructed results using the four methods, re-
spectively, are shown in TABLE II. As can be seen, 
the four methods significantly improve the MAE 
and PSNR. In terms of the indicators, the order 
from the worst to the best is: LF, HMLLSF, WCLF, 
and RMEMR. Although the indicators of HMLLSF, WCLF, 
and RMEMR are different, for the reflectance product, they 
are so small that they can be considered as the same.

V. TEMPORAL-BASED METHODS
When the weather is cloudy, all the spectral bands of 
passive remote sensing data will be contaminated to 
different degrees. On the other hand, sensor malfunction 
can result in information loss in the same region of all the 
spectral bands. Accordingly, the spectral-based methods 
are no longer appropriate. As a result of the mobility of 
clouds and the scanning deviation of sensors, data over 
the same geographical region and acquired at different 
periods can provide supplementary information. For the 
temporal-based methods, the time interval is a double-
edged sword. If the time interval is too short, the clouds in 
the two consecutive data sets will be mostly overlapping, 
and the temporal correlation may be ineffective. However, 
if the time interval is too long, the land cover can vary 
so greatly that the correlation is destroyed. Temporal 
differences are usually divided into three classes [2]: 1) 
differences caused by observation conditions; 2) differences 
caused by regular changes of geographical features (e.g., 
phenological changes); and 3) differences caused by the 
abrupt transformation of geographical objects (e.g., new 
buildings and man-made landscapes). Generally speaking, 
the temporal-based methods are appropriate for the first 
two kinds of temporal differences. It is noteworthy that 
the temporal-based methods have been investigated by 
the most scholars. The major temporal-based approaches 
include the temporal replacement methods [2–4], [39–47], 
the temporal filter methods [48–57], and the temporal 
learning model based methods [58], [59]. At the end of this 
part, we point out several special factors that should be 
considered when reconstructing the missing information 
of quantitative remote sensing data.

A. Temporal Replacement
Among the temporal-based methods, the classical ap-
proach is the temporal replacement methods. Fig. 14 
shows the basic idea of the temporal replacement meth-
ods. In general, the temporal replacement methods can be 

classified into two counterparts: direct replacement and 
indirect replacement. When the time interval is so short 
that the temporal difference can be ignored, the direct re-
placement method does work. In other words, the missing 
information is replaced by information from the same re-
gion (region S in Fig. 14) in another referenced image. In 
this case, some scholars refer to this approach as mosaicing 
[60], [61]. When it comes to a temporal sequence of data, 
Lin et al. [3] and Holben [46] proposed to choose the op-
timal values among them. The direct replacement method 
obtains a good effect on the condition that the referenced 
data are very similar to the corrupted data. However, in 
real situations, due to the difference in atmospheric effects, 
sun angles, and sensor look angles during acquisition, 
there are always some differences in the brightness of pix-
els at the same location from different scenes. Thus, the di-
rect replacement method cannot work on most occasions.

When the direct replacement cannot work, a number of 
researchers have resorted to indirect replacement. The rea-
son why the direct replacement does not work is that tem-
poral differences exist. It is therefore necessary to reduce 
the differences. To minimize the differences/variations, a 
correction/transformation is needed. The fundamental for-
mula is as follows:

	 , , , ,I x I x I x I xfT T T T0 2 0 0 0i0 1 2 g g=
t ^ ^ ^ ^ ^h h h h h� (20)

where I xT 00
t ^ h is the estimated value of an attribute at the 

point of interest x0  acquired at time ,T0  I xT 0i^ h is the value 
observed at time ,Ti  and ( )f2 $  is the correction function. 
After this correction, the time-series data are more similar 

(a) (b) (c)

Figure 13. Simulated reconstruction of the reflectance of Terra MODIS  
band 6. (a) The original image. (b) The corrupted image. (c) The recovery 
result of RMEMR.

Methods MAE PSNR/dB

Corrupted 0.18420 13.0618

LF [1] 0.01805 32.0371

HMLLSF [35] 0.00494 42.7871

WCLF [36] 0.00421 43.4987

RMEMR [38] 0.00212 49.1092

Table 2. QUANTITATIVE EVALUATIONS  
OF THE SPECTRAL-BASED METHODS.
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to each other, so the replacement can be continued. It is 
noteworthy that the correction is usually undertaken ac-
cording to the whole of the remaining data (region E  in 
Fig. 14) [3], [42]. For a better consideration of the local cor-
relations, neighborhood (region Sr  in Fig. 14) correction 
of the missing region has been proposed [4], [43]. In fact, 
as far as the principle is concerned, the temporal fitting 
methods [39], [40] also belong to this category. Generally 
speaking, the temporal replacement can be carried out pix-
el-by-pixel [46], patch-by-patch [3], [44], or by the whole 
of the missing region [42], [60], [61]. However, because of 
the errors of registration and the abrupt changes in land 
cover, the temporal replacement may result in an aliasing 
phenomenon.

The temporal replacement methods are usually used in 
cloud removal and random gap filling. In [60], cloudy IKO-
NOS images were recovered by temporal replacement and 
gray-level balancing. Tseng et al. [63] replaced the cloud 
and cloud shadow zones of a SPOT image by the cloud-
free zones on other images, and adjusted the pixel values 
using color statistics. To solve the ETM+ SLC-off problem, 
the USGS Earth Resources Observation and Science Center 
(EROS) suggested that the un-scanned gaps could be com-
pensated for by previous SLC-on images of the same area 
[62]. A simple histogram matching method was adopted. As 
the gap-covered locations vary in the different scenes, this 
allows the possibility of restoring the missing pixels with 
multitemporal SLC-off data. An improved method using 

multiple SLC-off images was subsequently developed by 
the EROS data center (EDC), where every missing value is 
obtained by employing a local linear histogram matching 
(LLHM) in a moving window. This method is very simple 
and easy to implement, and can perform well in most re-
gions if the input scenes are of high quality. Nevertheless, 
it tends to be more sensitive with regard to data selection, 
and has difficulty with heterogeneous landscapes where the 
features are smaller than the local moving window size [64]. 
Chen et al. [65] developed a method known as the neigh-
borhood similar pixel interpolator (NSPI), where the miss-
ing information is reconstructed by combining replacement 
and interpolation, and it was found that NSPI can restore 
the value of un-scanned pixels accurately, even in hetero-
geneous regions. Zeng et al. [2] proposed a multitemporal 
weighted linear regression (WLR) method to adjust the re-
placement information adaptively, and the method can pre-
dict the missing values very accurately in varied scenes.

Our first experimental region is located in Wuhan, Chi-
na, around 30.59°N and 114.02°E, and is covered by Path 
123 and Row 39 in World Reference System 2 (WRS-2). 
Fig. 15(a) and (b) show the two test ETM+ images (true col-
or composite R=band 3, G=band 2, B=band 1) acquired on 
March 19, 2002, and December 29, 2001, respectively. The 
input primary image covered by simulated gaps is shown 
in Fig. 15(c). Fig. 15(d)–(f) are the output images recovered 
by direct replacement, LLHM, and WLR, respectively. In 
general, the image recovered by the WLR method appears 
much closer to the actual image [Fig. 15(a)] than the results 
of the other two methods. In Fig. 15(d), the replaced pixels 
are clearly different from those in the original image. In 
Fig. 15(e), for LLHM, obvious artifacts can be found near 
the edge of the river. This result shows that when the image 
contains complex terrain, a simple linear algorithm using 
all the common pixels is unsatisfactory. In Fig. 15(f), for 
WLR, all the edges are well recovered, even at the border 
of small objects.

To better illustrate the effect of the different meth-
ods, an experiment using a cloud-contaminated image 
was also implemented. Fig. 16(c)–(e) are the output im-
ages recovered by direct replacement, LLHM, and WLR, 
respectively. The results are similar to the results of the 
simulated experiment. The replacement method obtains 

(e) (f)(a) (b) (c) (d)

Figure 15. Landsat SLC-on ETM+ images for the simulated experiment: (a)–(b) images acquired on March 19, 2002, and December 29, 
2001, respectively; (c) SLC-off image simulated from (a). (d), (e), and (f) are the results recovered by direct replacement of (b), LLHM [62], 
and WLR [2], respectively.
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Figure 14. Temporal replacement.
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a very poor result, the LLHM-recovered pixels are not sat-
isfactory in the edge regions, while the WLR method gives 
the best visual effect.

B. Temporal Filter
The temporal filter methods are commonly used in elimi-
nating the noise in one-dimensional signals, which can be 
seen as a single point of a time series in remote sensing 
data, according to certain criteria. These methods are based 
on the fact that time-series data are strictly chronological 
and display regular fluctuations. The temporal filter meth-
ods can be grouped into three types according to the way 
they handle the data. Fig. 17 shows a brief schematic.

1) Sliding Window Filter Methods: These methods are de-
signed to filter in sliding windows, according to certain 
criteria, and are primarily used for reconstructing NDVI 
time-series data [48], [51–54]. The two most common and 
classical methods are the best index slope extraction (BISE) 
method [52] and the adaptive Savitzky-Golay (SG) filter 
[66], which have been successfully used in many studies. 
The BISE method and the SG filter are both based on the 
predictability of the vegetation change.

The BISE method is designed as a forward searching 
strategy within a sliding period. The next point should be 
compared with the first point, and the next point is accept-
able when the value is larger. The threshold for an accept-
able percentage increase should be determined empirically 
when the next point value is smaller [48]. The disadvantage 
of this method is that it is subjective to determine a reason-
able length of sliding period and the threshold [55].

The SG filter is a simplified local least squares fitting 
convolution for smoothing and computing derivatives of a 
set of consecutive values [48]. The SG filter can be described 
as follows:
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where I xt i+ ^ h is the original value of point px  acquired at 
time ,t i+  I xt ^ hS  is the reconstructed value, bi  is the weight 
of I x ,t i+ ^ h  and l2 1+^ h is the length of the convolution 
window, which not only determines the smoothness of the 
results, but also greatly influences the ability to rapidly fit 
changing time-series data.

2) Function-Based Curve Fitting Methods: These methods 
include the asymmetric Gaussian (AG) model [56] and the 
double logistic (DL) technique [57], and they are common-
ly used for the outer envelope of NDVI time-series data, 
based on least squares fitting. They are the most commonly 
used ways of fitting time-series data [67], [68] and have 
been integrated into the TIMESAT software by Jönsson and 
Eklundh [49] for analyzing time-series satellite data.

A general fitting model, as shown in (22), can describe 
both the symmetric Gaussian function fitting method and 
the DL function fitting method.

	 ; ;c af t c c g t3 1 2= +^ ^h h� (22)

where ,c c c1 2=6 @ are the linear parameters, ;ag t^ h is the 
basis function and a  is its parameter, and t  has the same 
meaning as in Section II.

For the symmetric Gaussian function, the basis function 
can be described as follows:
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Figure 17. The temporal filter methods.

(e)(a) (b) (c) (d)

Figure 16. Landsat ETM+ cloudy images: (a)–(b) are the original images. (c), (d), and (e) are the results recovered by direct replacement 
of (b), LLHM [62], and WLR [2], respectively.
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where a1  determines the position of the maximum or min-
imum with respect to the independent time variable ,t  and 
a2  (a4 ) and a3  ( )a5  are the width and flatness of the right 
(left) function, respectively [49], [56].

For the DL function, the basis function is selected as  
follows:
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where a6  is the point where the curve increases, a7  is the rate 
of increase at this point, and a9  is the rate of the decrease at 
the decreasing inflection point a .8  Beck et al. [57] expanded 
the details of this algorithm to fit an NDVI time series. The 
parameter a  for both of these two functions should lie with-
in specified ranges to ensure the smooth results of the mod-
el simulation. Song et al. [67] made a comparison for the two 
function-based methods and the SG filter by applying them 
to the MODIS 16-day composite 250-m NDVI products.

3) Frequency Domain Methods: The Fourier transform 
is a very effective analysis method in treating periodical 
time-series signals, which decomposes the signals into 
amplitude and phase information, based on the cosine de-
composition of the harmonics. A fast Fourier transforma-
tion (FFT) is often used for saving calculation time. Seller 

et al. [69] first applied the 
method to an AVHRR NDVI 
time series by fitting the first 
three harmonics with a least 
squares solver [56]. Similar-
ly, the harmonic analysis of 
time series (HANTS) meth-
od was proposed in [70], 
and has been successfully 

used in reconstructing cloud-free NDVI composites [50]. 
In this algorithm, only the most significant frequencies are 
used in the time profiles, and a least squares curve fitting 
procedure is applied, based on the harmonic components.

The wavelet transform (WT) can analyze signals in 
time-frequency space and it can efficiently identify and re-

duce noise while maintaining useful information in time-
series data [55]. Lu et al. [55] proposed the wavelet-based 
method to remove contaminated data from time-series 
observations. In this method, a quality flag and the blue 
band are first used to linearly interpolate the time-series 
data, and then to reconstruct the new time-series data us-
ing the highest correlation adjacent scales after decompos-
ing the time series into different scales, which is more cred-
ible and robust than the threshold-based method.

On the whole, although the methods mentioned above 
are mainly used to restore the NDVI, they can also be ap-
plied to other parameters that have similar characteristics 
to those of time-series NDVI, with some adjustments. A 
characteristic of these methods that should be pointed out 
is that the pixel values of the reconstructed results all show 
little difference from the original values. Fig. 18 shows the 
results of the cloud-contaminated MODIS reflectance prod-
ucts before and after temporal reconstruction.

C. Temporal Learning Model
Most of the temporal-based methods for reconstructing miss-
ing information attempt to build a clear function relationship 
(linear or nonlinear) between the corrupted data and other 
good data in the temporal domain. In recent years, attempts 
have been made to establish an unknown relationship by 
the approach of temporal learning, under the perspective of 
compressed sensing (CS) or sparse representation. The repre-
sentative methods were proposed by Lorenzi et al. [58] and Li 
et al. [59]. Lorenzi et al. proposed to obtain the CS solution 
through a formulation within a genetic optimization scheme, 
and Li et al. considered it as a multitemporal dictionary learn-
ing issue. Additionally, in [71], Latif et al. proposed a non-
parametric regression Kohonen’s self-organizing map (SOM) 
algorithm by learning mode to reconstruct the missing values 
in the low-resolution time series MODIS, in which the result 
is very promising. At present, the temporal learning methods 
are just in the infant stage, but have already shown certain 
advantages. These methods are introduced in Section VI-B.

D. Special Factors for Quantitative Data
Quantitative data are a special kind of remote sensing data 
that are retrieved from remote sensing spectral data. Quan-
titative data include the NDVI, LST, leaf area index (LAI), 
albedo, aerosol, and ozone, and they have been widely 
used in many study areas [68], [69], [72]. Similarly, they 
suffer from the missing data problem, as remote sensing 
spectral data do. Although several simple compositing 
techniques, such as the maximum-value composite (MVC) 
method [46] and the average (AVG) approach [73], have 
been proposed, they not only reduce the temporal resolu-
tion of the quantitative data, but they also cannot elimi-
nate the total atmospheric influences.

In fact, each of these quantitative products shows differ-
ent attenuations according to their own characteristics, so 
some special factors should be considered in the reconstruc-
tion process. For example, the NDVI values range from to 1, 
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Figure 18. Comparison of the cloud-contaminated MODIS reflec-
tance products before and after temporal reconstruction.
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where a minus value indicates a low vegetation coverage. 
Therefore, for some methods, the pixel value range is an im-
portant factor to be considered. When reconstructing NDVI 
time-series data, two other factors should be considered, in 
that the data are basically related to vegetation change, and 
the NDVI values are depressed when affected by clouds and 
poor atmospheric conditions. Thus, keeping the high values 
in the reconstruction process is feasible. The NDVI composite 
products are mainly calculated through the MVC technique, 
and several approaches have been proposed to make the data 
approach the upper NDVI envelope [48], [51], [53]. Fig. 19 
shows an example of NDVI data before and after reconstruc-
tion from different perspectives. In addition, the ecological 
classification and spatio-temporal variation are important 
factors that should be taken into consideration. For example, 
within a small region, pixels of the same ecosystem classifica-
tion should exhibit roughly the same phenological or tem-
poral behavior. However, pixels show different ecological 
behaviors under different growth conditions. Based on this 
consideration, a number of methods have been developed to 
fill the missing data for albedo and LAI products [72], [74].

As for atmospheric products (e.g., aerosol optical depth 
and ozone), the characteristic of highly random varia-
tion makes the reconstruction more complicated. Fig. 20 
shows the ozone data acquired by Aura OMI before and 
after missing information reconstruction. The impact of 
atmospheric flow cannot be ignored in multitemporal re-
construction. Furthermore, physical facts should also be 
considered [41], [75]. For example, for LST reconstruction, 
the LST under clouds is lower than the cloudless LST, as 

the solar radiation is partly hidden by the clouds. As a con-
sequence, the hidden solar radiation must be taken into 
account to obtain the real LST.

VI. HYBRID METHODS
The three kinds of methods stated previously all have their 
strengths and weaknesses, and they all depend on the 
correlations in only one kind of domain (spatial domain, 
spectral domain, or tempo-
ral domain). As a result, they 
are powerful in some cases, 
but also powerless in certain 
other cases. Corresponding-
ly, it is possible to combine 
their individual strengths to 
reconstruct the missing in-
formation. The hybrid meth-
ods attempt to make better 
use of the correlations hidden in the spatial, spectral, and 
temporal domains. Existing examples of the hybrid meth-
ods include the joint spatio-temporal methods [2], [45] and 
the joint spatio-spectral methods [43].

A. Joint Spatio-Temporal Methods
1) Successive Utilization of Spatial and Temporal Methods: Hy-
brid methods usually combine two or more of the above 
methods. The most basic idea is to successively implement 
a method based on the result of another method. In the 
method proposed in [2], a temporal-based method is first 
used, and then a spatial-based regularization method is 
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used when the multitemporal data cannot completely re-
cover all the missing pixels. In this two-step method, both 

the temporal information and the spatial information are 
used, respectively. As an example, the experimental ETM+ 

images acquired on October 23, 2011, 
and November 8, 2011, around 39.10°N 
and 76.14°W, are shown on the left of 
Fig.  21. After temporal replacement, al-
though some areas are well reconstructed, 
as the gaps cannot be completely covered 
by the auxiliary image (the lower one on 
the left of Fig. 21), there are still invalid 
pixels remaining in the recovered image. 
A Laplacian prior regularization method 
is then performed to recover the remain-
ing invalid pixels. This two-step strategy 
is effective and easy to operate. However, 
as the reconstruction is not implemented 
under a unified framework, there may be 
obvious differences between the areas re-
constructed by the different methods.

2) Spatial Completion With Temporal 
Guidance: As stated previously, since the 
successive utilization of spatial and tem-
poral information does not make the 
best use of the correlations in the two 
domains, some scholars have proposed 
a unified framework: spatial completion 
with temporal guidance [13], [45]. For ex-
ample, Cheng et al. [45] proposed a novel 
cloud removal method that merges the 
ideas of the spatial-based category and the 
temporal-based category. This method 
recovers a missing pixel by utilizing the 
similar pixels within the corrupted image 
itself, while another scene image is used 
as guidance. The approach is based on the 
fact that the relative positions of similar 
pixels within an image are generally  co-
incident  with another scene acquired at 

a  different  time,  although 
multitemporal images will 
usually show some changes 
because of the different at-
mospheric  conditions  or 
seasonal  situations.  The 
similar pixels are assumed to 
have similar change trends 
in the multitemporal imag-
es. As shown in Fig. 22, the 
locations marked with black 
squares, which are similar 
pixels in image (a), are also 
similar pixels in image (b). 
That is to say, another scene 
can guide us to find the po-
sitions of the similar pixels. 
Therefore, the solution for 
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cloud removal in [45] is as follows: a missing pixel is filled 
using an appropriate similar pixel within the remaining re-
gions of the corrupted image, and another reference image 
is used as guidance to locate the similar pixels. In order to 
ensure the global coherence of the reconstruction image, 
a pixel-offset based spatio-temporal MRF (STMRF) global 
function is built to jointly select the most suitable similar 
pixels in the remaining regions to replace the missing pix-
els. This STMRF method combines the advantages of the 
spatial-based methods, which reconstruct the data using 
the radiometric information in the corrupted image itself 
to ensure that the recovery keeps a high degree of spectral 
coherence and a convincing visual quality, and the tempo-
ral-based methods, which guarantee the fine information 
accuracy of the reconstruction results.

Fig. 23 illustrates the superior performance of this spa-
tial completion method with temporal guidance. Fig. 23(a) 
is the original MODIS image acquired on August 2, 2010, 
and Fig. 23(b) is the reference image acquired on March 
11, 2010. Fig. 23(c) is the cloud-contaminated image simu-
lated from Fig. 23(a). To allow a comparative analysis, this 
hybrid method was compared with a spatial-based method 
and a temporal-based method, and their reconstruction 
results are shown in Fig. 23(d)–(f). From Fig. 23(d)–(f), 
it can be seen that the result of this joint spatio-temporal 
method is clearly better than the individual spatial-based 
and temporal-based methods. When the terrain is complex 
and the missing region is large, the recovery result of the 
spatial-based method [Fig. 23(d)] is inaccurate, and the cor-

relation coefficient (CC) calculated from the cloud-contam-
inated  region for this result is just 0.70263. In the result of 
the temporal-based  method [Fig. 23(e)], most of the ground 
features are recovered well, but in the river region, the spec-
tral characteristic is still different from that in the remaining 
river region, which may also be a result of the large spectral 
differences between the corrupted image and the reference 
image. The CC for this result is 0.83804. For the joint spatio-
temporal method, it shows the most plausible visual result, 
some of the detailed information is recovered well, and the 
reconstructed region is the most consistent with the original 
image. The CC for this result is the highest, with a value of 
0.86527. It is worth noting that the two input images were 
acquired in different seasons, and the spectral characteris-
tics of the ground features are significantly different. Most of 
the temporal-based methods 
cannot effectively deal with 
such a difference. However, 
the joint spatio-temporal 
method is better able to ad-
dress the issue.

B. Joint Spectral-
Temporal Methods
As is well known, the spec-
tral correlations and tempo-
ral correlations are the basic 
properties of remote sensing data. When the two correla-
tions are available, it is clearly not enough that only one 
of them is utilized. Therefore, the joint spectral-temporal 
idea is a promising approach. Currently, the joint spectral-
temporal methods [76] are few in number. Here, we intro-
duce one primary example in the framework of sparse rep-
resentation. Sparse representation has been applied to the 
reconstruction of the missing information of remote sens-
ing data, e.g., the aforementioned spectral-based methods 
[18], [77], [78] and temporal-based methods [58], [59], 
[79]. Their main differences lie in the data organization.

Firstly, it is necessary to review sparse representa-
tion. Sparse representation has drawn the attention of a 
large number of researchers in recent years. The superior-
ity of the approach is that it has been shown to be able to 
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Figure 22. Two different scenes (a) and (b).
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Figure 23. Experimental results for the recovery of a cloudy image. (a) Original MODIS image acquired on August 2, 2010. (b) Reference 
image acquired on March 11, 2010. (c) Cloud-contaminated image simulated from (a). Recovered images using the following: (d) the spatial-
based method in [19]; (e) the temporal-based method in [22]; and (f) the spatial completion method with temporal guidance in [45].
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approximately reconstruct the original signal, with a high 
probability, by the use of just a small amount of observed 
information. Sparse representation requires that the data 
itself are sparse or are sparse in a certain domain. Usu-
ally, remote sensing data do not directly meet the require-
ment. However, the data often include a large amount of 
redundant information, which means that the data can be 
transformed into a sparse domain by dictionary learning, 
meaning that the data are sparse in a learned basis set. The 
basis, also called the overcomplete dictionary, is composed 
of a series of incoherent atoms. Thus, the data can be repre-
sented by a linear combination of a few learned atoms. For 
brevity, in the framework of sparse representation, the joint 
spectral-temporal method is described below. Note that the 
joint spectral-temporal method can also be applied to just 
multispectral data or just multitemporal data.

Suppose that T  observed multitemporal remote sensing 
data are denoted by ,Jt t

T
1=" ,  and J Rt

m n k! # #  is a term of the 
multispectral data which may include the missing informa-
tion. For the convenience of description, we consider that 
J1

1  does include the missing information. In this situation, 
it is insufficient to extract the complementary information 
only from the spectral domain or only from the temporal 
domain. In order to extract more useful information, the 
spectral and temporal components should be simultane-
ously used. In other words, Ji

i
k

1 1=" ,  and Jt t
T1

2=" ,  consist of 3D 
data Y .H k T 1Rm n H

0 ! = + -# # ^ h  The spectral and temporal 
differences reside in Y .0  To reduce them, excluding J1

1  (the 
component to be reconstructed), the components of Y0  are 
normalized to the referenced component J1

1  using a linear 
or nonlinear transformation, according to their shared ex-
isting information. After normalization, the components of 
Y0  will be reordered, based on their correlations with .J1

1  
The stronger the correlation to ,J1

1  the closer the order to .J1
1  

Y0  will then become a new 3D data cube Y. With the help 
of a patch operation and a stack operation [80], the sparse 
representation of Y  becomes available. Fig. 24 shows the re-
sult of data organization and the process of patch extraction. 
A typical energy minimization of the missing information 
reconstruction issue is usually expressed as follows:

MX Y D P Xarg min
,X

ij ij
ij

ij ij
ij

2
2

0 2
2

ij

a am n- + + -
a

/ /
� (25)

where M  is a mask signifying where the information is 
missing, as in (8), X  is the ideal data (of Y ) to be recon-
structed, Pij  is an operator which extracts the ij^ h patch 
from the data cube, D is the overcomplete dictionary, ija  
are the sparse coefficients of the ij^ h patch, and m and ijn  
are the corresponding regularization parameters. This ex-
pression purports to show an approximation between the 
observed data Y  and the unknown ideal counterpart ,X  
only for the valid or existing data. The second and third 
terms of (25) are the local sparse priors of the data, which 
guarantee that every patch of the recovered data has a 
sparse representation.
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Figure 24. Remote sensing data organization and patch extraction.
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Figure 25. Reconstructions of MODIS reflectance data using 
different methods, in the framework of sparse representation. 
(a) Corrupted data with missing information. (b) Result of the 
temporal-based method. (c) Result of the spectral-based method. 
(d) Result of the joint spectral-temporal method. (e) Original data.
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In order to show the differences between the reconstruc-
tion results of the spectral-based, temporal-based, and joint 
spectral-temporal methods, in the framework of sparse 
representation, a group of simulated experiments were 
conducted with MODIS reflectance L1B 500-m resolution 
products. For the spectral-based method, the experiment 
utilized seven bands, and a partial region of one band was 
artificially removed [see Fig. 25(a)]. For the temporal-based 
method, the experiment utilized seven reflectance prod-
ucts from different times, and the missing information 
was the same as for the spectral-based method. It is note-
worthy that the numbers of extra data components were 
the same in both the spectral-based and temporal-based 
experiments. For the joint spectral-temporal method, the 
experimental data were the total of the spectral-based and 
temporal-based methods. Fig. 25 shows the visual results of 
the reconstruction. As shown in Fig. 25, as far as the overall 
effect is concerned, the three methods effectively recover 
the missing information. However, in terms of the zoomed-
in yellow-box regions, the effect can be ranked from the 
best to the worst: 1) the joint spectral-temporal method; 
2) the spectral-based method; and 3) the temporal-based 
method. The land-surface features can change in the mul-
titemporal data, which results in the worst reconstruction 
result when using the temporal-based method. The joint 
spectral-temporal method obtains the best result because 
it combines the advantages of the spectral and temporal 
domains. TABLE III shows the quantitative evaluations of 
the three methods, in which the MAE, mean relative error 
(MRE), and CC between the reconstructed result and the 
original are considered as the indicators. Again, the joint 
spectral-temporal method obtains the best result.

Fig. 26 shows the MRE variation diagram for the re-
construction results of Fig. 25, based on the three meth-
ods, with different numbers of complementary data terms 
(spectral and temporal). As the data number is varied, at 
first the spectral-based method obtains the lowest MRE, 
and then when the number is sufficient, the MRE of the 
joint spectral-temporal method becomes the lowest. This 
is because when the data are insufficient, the ability of the 
joint spectral-temporal method cannot be made best use 
of. Overall, however, the joint spectral-temporal method 
obtains the most stable result. This experiment demon-
strates that the most significant advantage of the joint 
spectral-temporal method is the stability. Although it ob-
tains a better quantitative result than the spectral-based 
method and the temporal-based method with sufficient 
data, it is not as good as the spectral-based method with 
only a small amount of data.

VII. DETERMINATION OF MISSING  
LOCATION AND ERROR EVALUATION
As far as missing information reconstruction of remote 
sensing data is concerned, the precondition is that the miss-
ing location is known. Therefore, how to detect the missing 
location is important for the missing information recon-

struction. On the other hand, the reconstruction accuracy 
is also worthy being paid attention to.

A. Determination of Missing Location
In terms of reconstruction of missing information, the first 
step is to detect the missing information itself. For the sen-
sor failure case, the detection is very simple or the missing 
location is recorded in the data header file. However, clouds 
in remotely sensed images 
are distinct, which can be de-
tected based on its spectral, 
thermal and spatial features. 
The cloud amounts calcu-
lated by the cloud screening 
algorithms are often provided 
accompanied with the remote 
sensing images and products. 
Taking Landsat ETM+ data for example, the automatic cloud 
cover assessment (ACCA) method was designed to estimate 
the percentage of the cloud amount in a scene [81]. For MO-
DIS data, as a cloud product, MOD35 not only estimates the 
cloud amount, but also provides cloud masks by using 48 
bits to mark the locations and probabilities of cloudy pix-
els [82]. Several object, decision tree, neural network and 

Methods MAE/10-3 MRE/% CC

Corrupted 66.9471 52.2133 0.6579

Spectral 3.5181 2.7268 0.9898

Temporal 3.5851 2.8329 0.9898

Spectral-temporal 2.9971 2.3490 0.9931

Table 3. COMPARISONS BETWEEN THE RECONSTRUCTIONS 
OF THE SPARSE REPRESENTATION METHODS IN FIG. 25.
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multi-temporal based methods were also explored to im-
prove the cloud detection accuracy [83–86]. Additionally, 
radiometric  and  geometric feature based clouds detection 
methods are also promising when the observation platform 
is equipped with panchromatic and multispectral observa-
tion ability (e.g., Quickbird and Pleiades) [87]. Current stud-
ies show that the cloud detection precision can be over 90% 

in most situations. In general, 
determination of missing lo-
cation has a great impact on 
the reconstruction accuracy. 
Specially, omitting is a fatal 
failure for reconstruction 
because the corresponding 
locations cannot be recon-
structed. Thus, in the process 
of determination of missing 

location, it is allowed that the good location is detected as 
missing location, but omitting the missing location cannot 
be allowed absolutely. Additionally, in order to achieve a bet-
ter reconstruction, the usual way of doing is to appropriately 
dilate the determination result of missing location.

B. Error Evaluation
It is an important work to evaluate the accuracy of the re-
construction results. By now, there have been a number of 
error evaluation methods on the reconstruction results, 
and we will give a brief review as follows.

1) Qualitative Evaluation: For a single remote sensing data 
term, researchers often resort to the visual effect, including 
brightness, structural continuity, etc. This scheme is effec-
tive to some degree, however, accompanied with subjectiv-
ity. If the data is multi/hyperspectral, the spectral profile 
[88] is also considered as an available method to assess the 
spectral fidelity. The closer the shape of the reconstructed 
spectral profile to the referenced one, the better the result. 
For a series of remote sensing data, similar to the spectral 
profile of multi/hyperspectral data, the temporal profile 
[89] can be used for the temporal consistence and varia-
tion of multitemporal data. For a long time series of remote 
sensing data, this evaluation method is suitable.

2) Quantitative Evaluation: On one hand, the quantitative 
evaluation is used for simulated validation. An original im-

age is first degraded by removing some pixels, and then is 
used as the reference for the reconstructed result. Usually, 
the evaluation indicators include SSIM, mean squared er-
ror (MSE) [59], MRE, MAE, CC, PSNR, spectral angle (SA, 
for multi/hyperspectral data) [90], universal image quality 
index (UIQI) [2], [91], and many others. Based on these in-
dicators, we can get a relatively objective evaluation. On the 
other hand, cross-validation is available when the alterna-
tive data exist, for example, the ground site data and higher 
precision (than the reconstructed data) sensed data from 
other satellite platforms.

3) Task-Oriented Evaluation: Different tasks need dif-
ferent reconstruction accuracies. Therefore, the task-ori-
ented error evaluation methods have been proposed in 
recent years. In other words, researchers can measure the 
reconstruction error from the perspective of the influence 
on the subsequent task, such as classification [4], [47], 
[58], [89], vegetation change monitoring [71] and so on. 
The authors in [43] firstly generated the error map to con-
vey the reconstruction reliability to the end-users, which 
is a creative work.

VIII. CONCLUSION AND PROSPECTS
As a result of the inside and outside factors of the remote 
sensing platforms, it is a common phenomenon that the ac-
quired data are subject to missing information. This prob-
lem seriously affects the practical applications of remote 
sensing data. Thus, precise reconstruction of the missing 
information is of great significance for the data analysis 
and interpretation. In the past decades, a large number of 
algorithms have been proposed to reconstruct the missing 
information of remote sensing data. According to the source 
of the complementary information, the methods have been 
classified into four categories in this review: 1) spatial-based; 
2) spectral-based; 3) temporal-based; and 4) hybrid. In this 
review, we have surveyed the strengths and weaknesses of 
these methods, both theoretically and experimentally.

However, for this complicated and ill-posed inverse 
problem, the current research still has room for improve-
ment. Based on the development status, to the best of our 
knowledge, we believe that the promising directions in-
clude: 1) how to better utilize the correlations in the spa-
tial, spectral, and temporal domains (spatio-spectro-tem-

poral integration); 2) the use of more data 
sources with complementary information 
(multisource fusion); and 3) the develop-
ment of high-efficiency and high-accuracy 
algorithms; 4) the development of task-ori-
ented algorithms; 5) the generalization of 
missing information reconstruction.

A. Spatio-Spectro-Temporal 
Integration
As stated previously, the spatial-based meth-
ods make use of the correlations in the spatial 
domain (local and nonlocal correlations), 
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and are ineffective in reconstructing large-area missing 
information. The spectral-based methods are competent 
approaches for reconstructing large-area missing informa-
tion, based on the spectral correlations, but they cannot be 
used with thick cloud cover. The temporal-based methods 
are almost custom-made techniques for cloud cover, but 
they are sensitive to land-cover changes, especially abrupt 
changes. Therefore, it makes sense to simultaneously take 
advantage of the strengths of all three methods. To date, 
there have been some methods proposed that integrate two 
of the three methods, e.g., the joint spatio-spectral methods 
[43] and the joint spatio-temporal methods [92]. Generally 
speaking, we think that spatio-spectro-temporal integra-
tion, as shown in Fig. 27, will become the trend in missing 
information reconstruction. However, the key point is to 
determine the degree of contribution of the spatial, spec-
tral, and temporal domains.

B. Multisource Fusion
For all the spatial-based methods, the spectral-based 
methods, the temporal-based methods, and the hybrid 
methods, they cannot get rid of the restrictions of the sin-
gle source (e.g., the same spatial resolution, the same sen-
sor). If the complementary information from the spectral 
or temporal domain is of a poor quality, the reconstruction 
effect will be restricted. However, multisource data can 
bring extraneous useful information from another data 
source, which does not exist in the sole data source. Con-
cretely, the multisource data from different sensors may be 
in different resolutions and types (see Fig. 28). Roy et al. 
[93] touched on this idea to reconstruct the missing infor-
mation of remote sensing data, and their results showed 
certain advantages. As we know, the remote sensing data 
from passive sensors suffer from cloud contamination 
while the remote sensing data from active sensors get rid of 
the restrictions of weather conditions. The fusion of these 
two kinds of data is also worth investigating. Thus, in our 
opinion, multisource data fusion for missing information 
reconstruction is another promising direction.

C. High-Efficiency and  
High-Accuracy Algorithms
Although researchers have proposed all kinds of methods 
to reconstruct the missing information of remote sensing 
data, the majority of the high-precision methods are time-
consuming. In order to improve the economic benefits, the 
efficiency should be improved in the future. Furthermore, 
it should also be required that the algorithm runs fast, 
on the premise that the accuracy is high enough. In other 
words, it is a tradeoff problem between the accuracy and 
efficiency. The ideal situation is that the method has both 
high accuracy and high efficiency. In the world of big data 
today, if this tradeoff is able to be settled well, the applica-
tion potential of remote sensing data will be significantly 
improved, which is the ultimate goal of missing informa-
tion reconstruction.

D. Task-Oriented Algorithms 
Missing information reconstruction is usually the prepro-
cessing step which ensures the accuracy and reliability of 
the data interpretation. However, different tasks (e.g., clas-
sification, change object detection and military quantita-
tive applications) have different requirements. For exam-
ple, in high-precision public maps, the sensitive military 
objects are often required to be removed. In this case, low-
accuracy and even false reconstruction is allowed, as the 
result in Fig. 9(e). However, 
in some quantitative appli-
cations, the maintaining of 
physical attributes may be 
more important than the 
satisfaction of visual inspec-
tion. For example, phenol-
ogy applications usually re-
quire that the higher NDVI 
values should be retained 
in the temporal profile. The 
task-oriented algorithms have already been discussed in 
some previous works (e.g., [71], [94]). In order to benefit 
the practical task of remote sensing data, the task-oriented 
reconstruction algorithms of missing information should 
be further designed.

E. Generalization of Missing  
Information Reconstruction
In this paper, the missing data means that the objective 
information is completely obscured or not observed. 
However, there is another kind of missing information 
for remote sensing data, which can be called partially 
missing, such as shadow [95], [96], thin cloud [97], and 
haze [98–100], etc. The partially missing information 
also greatly affects the application of remote sensing data. 
Although it is not discussed in this paper, it is a notewor-
thy aspect for the generalization of missing information 
reconstruction.
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