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1. Introduction

While the bootstrap can provide spectacularly reliable inference in many cases, there
are others for which results are much less reliable. Intuition can often suggest reasons
for this state of affairs, and the asymptotic theory of bootstrap refinements does so as
well; see Hall (1992) and Horowitz (1997) among many other relevant references.

It has often been remarked that heavy-tailed distributions give rise to difficulties for
the bootstrap; see Davidson (2012) and the discussion of that paper in Schluter (2012).
Autocorrelation of unknown form also presents a severe challenge to the bootstrap.
So far, no bootstrap has been proposed that, in the presence of autocorrelation of
unknown form, can deliver performance comparable to what can be obtained in its ab-
sence. Perhaps in consequence, a considerable number of bootstrap methods have been
proposed, some a good deal better than others. By far the most popular of these are
the various versions of the block bootstrap, which was originally proposed by Kiinsch
(1989). However, it has been seen that the block bootstrap often works poorly, while,
in some circumstances, other schemes may work better. These include (versions of) the
sieve bootstrap, frequency-domain bootstraps, and the recently-proposed dependent
wild bootstrap.

Simulation experiments can of course be used to study the performance of different
bootstrap procedures in different circumstances. In this paper, simulation-based di-
agnostic methods are proposed, intended to determine when a given procedure works
well or not, and, if not, provide an analysis of why. Asymptotic theory, including
the theory of bootstrap refinements characterised by a rate at which the bootstrap
discrepancy tends to zero, is not very useful for this purpose. One obvious reason is
that the bootstrap is a finite-sample procedure, not an asymptotic one. To be useful,
therefore, a diagnostic technique should be based on finite-sample arguments only.

Despite the rapidly growing power of computing machinery, it would be more useful
for practitioners if a diagnostic technique was no more CPU-intensive, or at least
very little more intensive, than simply undertaking a bootstrap test or constructing
a bootstrap confidence set. The techniques outlined here satisfy that requirement,
although simulations are performed that are more CPU-intensive, for the purpose of
evaluating the reliability of the diagnostic methods themselves.

The paper is organised as follows. In Section 2, definitions and notation appropriate
for theoretical study of the bootstrap are given. The wild bootstrap is presented in
Section 3, and its use in the context of a regression model with disturbances that
follow an AR(1) process studied. It turns out that the wild bootstrap is capable of
giving essentially perfect inference even with very small samples, and so, in Section 4,
once the diagnostic methods are explained, they are applied to this setup and the
results illustrated graphically. Section 5 looks at an interesting failure, namely the
maximum-entropy bootstrap proposed in Vinod (2006). There is nothing wrong, and
much right, with the maximum-entropy idea, but its application to time series with
autocorrelation of unknown form fails to yield reliable inference. The reason for this
disappointing fact is clearly revealed by the diagnostic analysis.
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There is a close link between the principle underlying the diagnostics and that under-
lying the fast double bootstrap of Davidson and MacKinnon (2007). This is brought
out in Section 6, where it is seen that, at a cost of some increase in CPU time, the
fast double bootstrap itself can be diagnosed. In Section 7, a very simple and special
case of a version of the sieve bootstrap is considered. Its performance and that of
its fast double counterpart are diagnosed, as well as a procedure combining the sieve
bootstrap and the wild bootstrap. Finally, some concluding remarks are presented in
Section 8.

2. Definitions and Notation

A model is a collection of data-generating processes (DGPs). If M denotes a model,
it may also represent a hypothesis, namely that the true DGP, p say, belongs to M.
Alternatively, we say that M is correctly specified.

We almost always want to define a parameter-defining mapping 6, which maps the
model M into a parameter space ©, which is usually a subset of R¥ for some finite
positive integer k. For any DGP p € M, the k-vector 8(u), or 8, is the parameter
vector that corresponds to pu. Sometimes the mapping 6 is one-one, as, for instance,
with models estimated by maximum likelihood. More often, # is many-one, so that
a given parameter vector does not uniquely specify a DGP. Supposing that 6 exists
implies that no identification problems remain to be solved.

In principle, a DGP specifies the probabilistic behaviour of all deterministic functions
of the random data it generates — estimators, standard errors, test statistics, etc. If
y denotes a data set, or sample, generated by a DGP p, then a statistic 7(y) is a
realisation of a random variable 7 of which the distribution is determined by u. A
statistic 7 is a pivot, or is pivotal, relative to a model M if its distribution under any
DGP p € M is the same for all € M.

We can denote by M the set of DGPs that represent a null hypothesis we wish to
test. The test statistic used is denoted by 7. Unless 7 is a pivot with respect to My,
it has a different distribution under the different DGPs in My, and it certainly has a
different distribution under DGPs in the model, M say, that represents the alternative
hypothesis. I assume as usual that My C M.

It is conventional to suppose that 7 is defined as a random variable on some suitable
probability space, on which we define a different probability measure for each different
DGP. Rather than using this approach, we define a probability space (2, F, P), with
just one probability measure, P. Then we treat the test statistic 7 as a stochastic
process with as index set the set M. We have

T : MxQ—R.

Leaving aside questions of just what real-world randomness — if it exists — might be,
we can take the probability space €2 to be that of a random number generator. A
realisation of the test statistic is written as 7(u,w), for some p € M and w € Q.
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For notational convenience, we suppose that the range of 7 is the [0, 1] interval rather
than the whole real line, and that the statistic takes the form of an approximate
P value, which leads to rejection when the statistic is too small. Let Ry : [0, 1] x My —
[0, 1] be the cumulative distribution function (CDF) of 7 under any DGP u € Mj:

Ro(z,pt) = P{w € Q| 7(p,w) < z}. (1)

Suppose that we have a statistic computed from a data set that may or may not have
been generated by a DGP py € M. Denote this statistic by t. Then the ideal P value
that would give exact inference is Ro(t, o). If ¢ is indeed generated by ug, Ro(t, o)
is distributed as U(0,1) if the distribution of 7 is absolutely continuous with respect
to Lebesgue measure — as we assume throughout — but not, in general, if t comes from
some other DGP. The quantity Ry(t, uo) is available by simulation only if 7 is a pivot
with respect to M, since then we need not know the precise DGP pg. When it is
available, it permits exact inference.

The principle of the bootstrap is that, when we want to use some function or functional
of an unknown DGP g, we use the same function or functional of an estimate of pyg.
Analogously to the stochastic process 7, we define the DGP-valued process

ﬁ : MXQ—)M().

The estimate of g, which we call the bootstrap DGP, is S(u,w), where w is the same
realisation as in t = 7(pu,w). We write b = S(u,w). Then the bootstrap statistic that
follows the U(0,1) distribution approzimately is Ro(t,b), where t and b are observed,
or rather can be computed from the observed data. In terms of the two stochastic
processes 7 and 3, the bootstrap P value is another stochastic process:

pl(#aw) = RO(T(M7W)76(M7W))' (2)

Normally, the bootstrap principle must be implemented by a simulation experiment,
and so, analogously to (1), we may define

. 1 &

RO(':E?N) = E ZI(T(N>W;) < m)7

Jj=1

where the w} are independent realisations of the random numbers needed to compute

the statistic. As the number of bootstrap repetitions B — oo, Ro(a:, 0 tends almost
surely to Ro(x, p). Accordingly, the bootstrap P value is estimated by Ry(t,b).

Since by absolute continuity Ry is a continuous function, it follows that p; also has
an absolutely continuous distribution. We denote the continuous CDF of p; (i, w) by
Ri(-,p). This CDF can also be estimated by simulation, but that is very compu-
tationally intensive. The double bootstrap uses this approach, using the bootstrap
principle by replacing the unknown true DGP u by the bootstrap DGP b. An ideal
double bootstrap P value that would give exact inference is R (pl(,u, w), u), which is
distributed as U(0,1). The double bootstrap P value is, analogously, R, (RO (t,0), b).
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3. The Wild Bootstrap

Models that incorporate heteroskedasticity can be bootstrapped effectively by use of
the wild bootstrap. Early references to this procedure include Wu (1986), Liu (1988),
and Mammen (1993). For the linear regression

y=XB+u, (3)
the wild bootstrap DGP can be written as
Y = XB+u",

where, as usual, stars denote simulated quantities, and 3 is a vector of restricted
estimates that satisfy the possibly nonlinear null hypothesis under test. The bootstrap
disturbances are defined by u; = |u4|s;, where 4, is the residual for observation ¢
obtained by estimating the restricted model, and the s; are IID drawings from a
distribution such that E(s}) = 0, Var(sy) = 1.

Davidson and Flachaire (2008) recommend the Rademacher distribution, defined as

follows:
« 1 with probability 1/2 ()
A . with probability 1/2,

for the wild bootstrap. When the Rademacher distribution is used, the covariance
structure of the squared bootstrap disturbances is the same as that of the squared
residuals from the original sample. This is because the squared bootstrap disturbances
are always just the squared residuals, so that any relationship among the squared resid-
uals, like that given by any GARCH model, is preserved unchanged by the Rademacher
wild bootstrap.

In order to study the consequences of this fact for a simple GARCH model, a simulation
experiment was conducted for the model

Yt = a+ pyr—1 + ue, (5)
where u; are GARCH(1,1) disturbances, defined by the recurrence relation

of = a+ (0475 1)0] 4

Ut = OE¢, (6)

with the e; standard normal white noise, and the recurrence initialised by o} =
a/(1 —~ —§), which is the unconditional stationary expectation of the process. The
parameters of the DGP used in the experiment were a = 1.5, yg =0, a =1, v = 0.4,
and 0 = 0.45, with sample sizes n = 10, 30,50, and p = 0.3,0.5,0.7 and 0.9. In order
to test the hypothesis that p = pg, the test statistic used was




where p is the OLS estimate from (5), run over observations 2 to n. The standard
error ¢, was obtained by use of the HC, variant of the Eicker-White HCCME; see
White (1980) and Eicker (1963).

The bootstrap DGP is determined by first running the constrained regression
Yt — PolYi—1 =a+u, t=2,...,n,

in order to obtain the estimate a, and the constrained residuals u;, t = 2,...n. A
bootstrap sample is defined by

yi=v1 and y; =a+poy;_q +sil, t=2,...,n,

where the s; are IID realisations from the Rademacher distribution. The bootstrap
statistics are

=l 2 j_1,....B
Tp

with p* and 6 defined as the bootstrap counterparts of p and &, respectively. The
bootstrap P value is the proportion of the 77 that are more extreme than 7. The
performance of the bootstrap test, as revealed by experiments with N = 100,000
replications with B = 199 bootstrap samples for each, is excellent. This will be seen
in the context of the diagnostic procedures presented in the next section, in preference
to presenting results here in tabular form.

Davidson and Flachaire (2008) show that there is a special setup where the wild
bootstrap can deliver perfect inference. If one wishes to test the hypothesis that the
entire vector B in the linear regression (3) is zero when the disturbances w may be
heteroskedastic, the obvious test statistic is

r=y' X(X'0RX) Xy, (7)

where the dependent variable y is the vector of restricted residuals under the null
hypothesis, and £2 is one of the inconsistent estimates of the covariance matrix of the
disturbances used in the HCCME. When the Rademacher distribution (4) is used, the
wild bootstrap P value is uniformly distributed under the null up to discreteness due
to a finite sample size.

In what follows, simulation results are presented for a variety of different bootstrap
procedures that are found in the literature, with a setup similar to the above. The
model is a linear regression with disturbances that are possibly serially correlated as
well as heteroskedastic, with null hypothesis that all the regression parameters are zero,
and a test statistic with the form of (7), but with a HAC covariance matrix estimator
instead of the HCCME. It serves as a useful test bed, as it allows us to compare the
performance of these bootstrap tests with the perfect inference obtainable with only
heteroskedasticity and the wild bootstrap.
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4. Diagnostic Procedures

A standard way of evaluating bootstrap performance by simulation is to graph the
P value and P value discrepancy plots for a test based on the bootstrap P value. The
former is just a plot of the CDF of this P value; the latter a plot of the CDF minus its
argument. Perfect inference appears as a P value plot that coincides with the diagonal
of the unit square, or a P value discrepancy plot that coincides with the horizontal
axis, because there is perfect inference when the P value is uniformly distributed on
the [0,1] interval.

If the bootstrap discrepancy, that is, the ordinate of the P value discrepancy plot, is
acceptably small, there is no need to look further. But, if not, it is useful to see why,
and it is for this purpose that we may use the procedures of this section. A simulation
experiment that provides the information for a P value plot also provides the infor-
mation needed for these. Suppose that there are N replications in the experiment,
with B bootstrap repetitions for each replication. The data for each replication are
generated using a DGP denoted by u, which satisfies the null hypothesis that 3 = 0,
and with a chosen specification of the joint distribution of the random elements needed
to generate a bootstrap sample. Let 75, j = 1,..., N, be the IID realisations of the
test statistic (7), and let 77, j = 1,..., N, be a single bootstrap statistic taken from
the B bootstrap statistics computed for replication j, the first perhaps, or the last, or
one chosen at random.

The next step is to graph kernel-density estimates of the distribution of the statis-
tic 7 and that of the bootstrap statistic 7*. If these are not similar, then clearly the
bootstrap DGP fails to mimic the true DGP at all well. Bootstrap failure is then a
consequence of this fact. Another diagnostic is based on running an OLS regression of
the 77 on a constant and the 7;. Suppose that this regression reveals that, for the data
generated on one replication, 7 is strongly positively correlated with 7%, and suppose
without loss of generality that 7 itself is in nominal P value form, so that the rejection
region is on the left. The bootstrap P value for replication j is

B

1 k
P= EZI(TJ.Z. <75, (8)
i=1
where the 77;, ¢ = 1,..., B, are the bootstrap statistics computed for replication j,

and I(-) is the indicator function. The positive correlation then implies that, if 7; is
small, then the 77; tend to be small as well. It follows from (8) that the P value is
greater than it would be in the absence of the correlation, and that the bootstrap tests
under-rejects. Similarly, on the right-hand side of the distribution of the P value, there
is more probability mass than there would be with no or smaller correlation. A similar
argument shows that, mutatis mutandis, a negative correlation leads to over-rejection.

The presence or otherwise of a significant correlation is related to the extent of boot-
strap refinements. An argument borrowed from Davidson and MacKinnon (2006) can
help shed light on this point. The argument assumes that the distribution of 7 is
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absolutely continuous for any DGP that satisfies the null hypothesis. Under DGP p,
the CDF of 7, which is supposed to be in approximate P value form, is denoted by
Ro(-, p), and the inverse quantile function by Qo(-, ). A bootstrap test based on
rejects at nominal level « if 7 < Qo(a, u*), where p* denotes the bootstrap DGP, or,
equivalently, if Ro(7, u*) < «.

Let the random variable p be defined as p = Ry(7, ). Since Ry(+, u) is the CDF of 7
under p, p is distributed as U(0, 1). Further, for a given «, define the random variable ¢
as ¢ = Ry (Qo(a, w), ,u) —a, so that g is just the difference in the rejection probabilities
under p according to whether the bootstrap critical value or the true critical value for u
is used. These variables allow another representation of the rejection event: p < o+ gq.

Let F(q|p) denote the CDF of ¢ conditional on p. The rejection probability (RP) of
the bootstrap test at nominal significance level o under p is then

1
Prop<a+q)=E,(I(¢g>p—a)|p) =E,(1-F(p—alp)) =1—/O F(p—«|p)dp.

On integrating by parts and changing variables, we find that the RP of the bootstrap
test is

l—«

/Ode(p—a|p):/_a(x+a)dF(x]a+.r):a+/ rdF(z|a+z). (9)

—a —a
The integral in the rightmost expression above is the bootstrap discrepancy.

If we use an asymptotic construction such that p* converges to p as n — oo, then
q tends to zero asymptotically, the conditional CDF corresponds to a degenerate dis-
tribution at zero, and the bootstrap discrepancy vanishes. The usual criterion for the
(asymptotic) validity of the bootstrap is that this happens for all a € [0, 1].

The bootstrap discrepancy in (9) can be interpreted as the expectation of ¢ conditional
on the bootstrap P value being equal to «, that is, being at the margin between
rejection and non-rejection at level a. The random variable p is random through
the statistic 7, while ¢ is random only through the bootstrap DGP p*. If p and q
were independent, then the 7; and the 7 of the simulation experiment would also be
independent, and so uncorrelated. Independence is unlikely to hold exactly in finite
samples, but it often holds asymptotically, and so presumably approximately, in finite
samples.

When p and ¢ are approximately independent, the conditional expectation of ¢ is
close to the unconditional expectation, which is not in general zero. Conventional
bootstrap refinements arise when the unconditional expectation tends to zero suffi-
ciently fast as the sample size grows. The conditional expectation can be expected
to tend to zero more slowly than the unconditional expectation, except when there
is near-independence, in which case there is a further refinement; see Davidson and
MacKinnon (1999). The comparison of the densities of 7 and 7% reveals a non-zero
unconditional expectation of ¢ in the form of a shift of the densities, while a significant
correlation reveals a failure of the condition for the second refinement.



The Model with GARCH(1,1) disturbances

As a first example of the diagnostic tests, results are given here for the test of p = pg
in the model specified by (5) and (6), with p = 0.3 and n = 10. First, the P value and
P value discrepancy plots. They appear below. Since the test has only one degree of
freedom, it was possible to look separately at a one-tailed test that rejects to the right
and the two-tailed test. The curves in red are for a two-tailed test; those in green for
a one-tailed test that rejects to the right. It can be seen that use of a two-tailed test
confers no significant advantage.
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It is reasonable to claim that the discrepancy is acceptably small, even though it does
not seem to be exactly zero. For a = 0.05, its simulated value is 0.010 for the one-tailed
test, and -0.005 for the two-tailed test.

Next the results of the diagnostic procedure. Below are plotted the kernel density
estimates of the distributions of the statistic and the bootstrap statistic for both cases.




For the one-tailed test, the regression of the bootstrap statistic 7% on a constant and 7
gives (standard errors in parentheses)

7% =—0.640+ 0.0003T, centred R?> =7 x 1078
(0.005)  (0.003)

so that the constant is highly significant, but the coefficient of 7 is completely insignif-
icant. For the two-tailed test, the result is

7 = 1.023 4 0.044T, centred R? = 0.002
(0.005)  (0.003)

Here, both estimated coefficients are significant, although the overall fit of the re-
gression is very slight. The negative constant for the one-tailed test means that the
distribution of the bootstrap statistic is to the left of that of 7, leading to over-rejection
since the test rejects to the right. Similarly the positive constant for the two-tailed
test explains the under-rejection for interesting values of a.

5. An Interesting Failure: the Maximum-Entropy Bootstrap

The principle of maximum entropy was propounded by Jaynes (1957) as an interpreta-
tion of statistical mechanics that treats the problems of thermodynamics as problems
of statistical inference on the basis of extremely limited information. One application
of the principle was proposed by Theil and Laitinen (1980), for the estimation, from a
random IID sample, of the density of the underlying distribution, under the assump-
tion that the distribution is continuous and is almost everywhere differentiable. For a
brief discussion of the method, see the more accessible Fiebig Denzil and Theil (1982).
For a sample of size n, with order statistics z(;), i = 1,...,n, the estimated distribu-
tion has, except in the tails, a continuous piecewise linear CDF that assigns probability
mass 1/n to each interval I; = [(z—1) + 23y /2, (TG) + 241)) /2], for i =2,...,n— 1.
The distribution is exponential in the tails, defined as the intervals I; from —oo to
(r(1y +2(2))/2, and I, from (z(,,—1) + Zp))/2 to +oo. Each of the infinite intervals
receives a probability mass of 1/n, and the lower interval is constructed to have an
expectation of 0.75z (1) + 0.25x(2), the upper an expectation of 0.25x(,,_1) + 0.75z ;).

This way of estimating a distribution was picked by Vinod (2006), who bases a tech-
nique for bootstrapping time series on it. He modifies the procedure described above
so as to allow for the possibility of a bounded rather than an infinite support, but I
cannot follow the details of his discussion. Aside from this, his method proceeds as
follows:

1. Define an n x 2 sorting matrix S; and place the index set Ty = {1,2,...,n} in
the first column and the observed time series z; in the second column.

2. Sort the matrix S| with respect to the numbers in its second column while
carrying along the numbers in the first column. This yields the order statistics
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T(;) in the second column and a vector I;ey of sorted Tj in the first column. From
the z(;) construct the intervals I; defined above.

3. Denote by F the CDF of the maximum-entropy distribution defined above. Gen-
erate n random numbers p;, i = 1,...,n distributed uniformly on [0, 1]. Obtain
a resample z; as the p; quantiles of F', i =1,...,n.

5. Define another n x 2 sorting matrix So. Sort the z in increasing order and place
the result in column 1 of S5. Place the vector Iyev in column 2.

6. Sort the So matrix with respect to the second column to restore the order
{1,2,...,n} there. Redefine the z; as the elements of the jointly sorted col-
umn 1 of Ss.

The idea is clearly to preserve as much of the correlation structure of the original series
as possible. It is a pity that Vinod went on directly to apply his method to real data,
as it turns out that altogether too many of the specific properties of the original series
are retained in each bootstrap sample, so that there is not enough variability in the
bootstrap DGP.

I have documented this method in full because, although it does not work, it shows
up a number of interesting things. First, resampling from the continuous distribu-
tion F can very well be employed instead of resampling from the discrete empirical
distribution. Rescaling, and other operations that specify higher moments, can easily
be incorporated into the maximum entropy algorithm. Although in most cases one
may expect there to be little difference relative to conventional resampling, there are
situations in which it may be necessary to impose the continuity of the bootstrap
distribution.

The other reason for my dwelling on this method is that the diagnostic procedures
show clearly what is wrong with it. Consider the following model, which I will use as
a test case for this and other bootstrapping methods.

y=XB+u, u=pu_1+v. (10)

The regressor matrix X includes a constant and three other variables, constructed so
that they are serially correlated with autocorrelation coefficient p;. The disturbances
follow an AR(1) process. The null hypothesis is that the full coefficient vector 3 = 0;
just as in the case of the exact result with the wild bootstrap with heteroskedasticity
only. The test statistic is the asymptotic chi-squared statistic, with four degrees of
freedom:

=y X(X'RX) Xy, (11)

where £2 is the well-known Newey-West HAC covariance matrix estimator based on
the Bartlett kernel; see Newey and West (1987).

Below are the P value discrepancy and P value plots for n = 50, p = 0.9, p1 = 0.8,
and a lag-truncation parameter p = 20 for 2. There are 9,999 replications with
399 bootstrap repetitions each.
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It is quite clear that something is badly wrong! There is severe under-rejection for
small o, and equally severe over-rejection for large a. There are at least two possible
reasons for this. The first is that, if the distribution of the bootstrap statistic is on
average more dispersed than that of the statistic itself, then the mass in the bootstrap
distribution to the right of 7 is too great for large values of 7, so that the P value is
too small, leading to over-rejection, and it is too small when 7 is small, so that the
the P value is too great, leading to under-rejection. A second possible explanation
is that, for each replication, the bootstrap statistics are strongly positively correlated
with 7. In that event, when 7 is large, the bootstrap distribution is shifted right, and
conversely.

Below is presented the kernel density plots of the statistics 7 and 7*; for 7 in red, for

7* in green. The distributions are clearly almost identical, thus ruling out the first

possible explanation.

dgp —
bsdgp —
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The regression of 7" on 7 gave (standard errors in parentheses):

7* = 0.508 + 0.8107, centred R? = 0.662
(0.016)  (0.006)

Both coefficients are highly significant. Thus this is clear evidence of the second
possible explanation: 7* is indeed strongly positively correlated with 7. What this
shows is that the attempt to make the bootstrapped time series mimic the real series
is too successful, and so there is too little variation in the bootstrap distribution.

6. The Fast Approximation

The idea behind the diagnostic procedures discussed here is closely related to the fast
double bootstrap (FDB) of Davidson and MacKinnon (2007). It is convenient at this
point to review the FDB.

As a stochastic process, the bootstrap P value can be written as p; (i, w), asin (2). The
double bootstrap bootstraps this bootstrap P value, as follows: If Ry (-, 1) is the CDF
of p1(p,w), then the random variable Ry (p1(p,w), ) follows the U(0,1) distribution.
Since p is unknown in practice, the double bootstrap P value follows the bootstrap
principle by replacing it by the bootstrap DGP, (i, w). We define the stochastic
process

pg(,&,&)) =R (pl(:u7w)>6<u7w))' (12)

Of course it is computationally expensive to estimate the CDF R; by simulation, as
it involves two nested loops.

Davidson and MacKinnon (2007) suggested a much less expensive way of estimat-
ing Ry, based on two approximations. The first arises by treating the random variables
7(p,w) and B(p,w), for any pu € My, as independent. Of course, this independence
does not hold except in special circumstances, but it holds asymptotically in many
commonly encountered situations. By definition,

Rl(a,u) = P{w € |pl(:u7w) < Oz} = E[I(RO(T(MM%B(H,W)) < O‘)} (13)

Let Qo(+, 1) be the quantile function corresponding to the distribution Ry(-, u). Since
Ry is absolutely continuous, we have

Ro(Qo(a, ), 1) = o = Qo(Ro(cv, ), ).

Use of this relation between Ry and Qg lets us write (13) as

Ri(a, p) = E[1(7(,w) < Qo(e, Bu,w))]

If 7(p,w) and B(p,w) are treated as though they were independent, then we have

Ry 1) = E[E[I(r(1,) < Qoler (1)) | B, )] |
~ E[RO (Qo(a,ﬂ(u,w)),,u)] (14)
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Define the stochastic process
Tl : M x (Ql XQQ)—)R,
where €2 and (5 are two copies of the outcome space, by the formula

Tl(u7w17w2) = T(ﬁ(uvw1)7w2)~

Thus 7!(p, w1, ws) can be thought of as a realisation of the bootstrap statistic when
the underlying DGP is u. We denote the CDF of 7! under p by R*(-, ). Thus

RY(a, p) = Pr{(w1,ws) € D x Qo | 7(B(p, 1), w2) < o}
= E[I(7(B(p, w1),w2) < a)]
= B[B[I(r(8(s,w1),w2) < a) | F]|
= E[Ro(a, B, w1))]- (15)
Here F; denotes the sigma-algebra generated by functions of w.

The second approximation underlying the fast method can now be stated as follows:

E[RO(QO(O‘HB(,“?(’U)):,UJ)} ~ RO(Ql(Oé’u)hu)a (16)
where Q (-, ) is the quantile function inverse to the CDF R!(-, ). Since by definition
RY(Q' (e, ), 1) = v, it follows from (15) that

E[Ro(Q (a, ), B(p,w))] = a. (17)

In order to motivate the approximation (16), we follow Davidson and MacKinnon
(2007), and suppose that, for any DGP p € My and for all a € [0,1], Ro(a, ) —
is small in some appropriate sense. In other words, suppose that 7 is expressed as an
approximate P value, and is approximately pivotal with respect to My. Next, assume
that Ry is not only continuous but also continuously differentiable with respect to its
first argument « for all © € M. Thus the statistic 7 has a continuous density for
all p € My. Finally, we assume that R{(«a,p) — 1, where R{, denotes the derivative
of Ry with respect to its first argument, is small in the same sense as that in which
Ro(a, i) — a is small.

The assumption about the derivative R{, implies that Qo(c, 1) — « is small for p € M.
The definition (15) implies that R!(c, p) — « is small, and so also Q! (a, ) — . Now
(17) can be written as

E[RO (Ql(a7 M): B(:UH w)) - RO (QO(O‘7 ﬁ(,u,w), ﬁ(ﬂ?w))] = 07

and our assumption about the derivative of Ry, along with Taylor’s Theorem, lets us
rewrite this equation as

E[(l + 771)<Q1(Q7M) - QO(av B(N?C‘J))] = 07 (18)
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where the random variable n; is small. Further applications of our smallness assump-
tions give us

Ql(aa /'L) - QO(Oé?ﬁ(:uvw)) =a—a+n
where 75 is another small random variable. Thus (18) becomes

E[QO(Q’ B([L,Cd))} = Ql(a,,u) + E(771772)7 (19)

so that the expectation of Qg (oz,ﬁ(,u,w)) is equal to Q'(a, ) up to an error of the
second order of small quantities.

The difference between the left- and right-hand sides of (16) is
E[Ro(Qo(v, B, w)), 1) = Ro(Q'(av, 1), )]
= E[(l + 773) (QO(a7 B(u? w)) - Q1<Oé, M))] )
where 73 is small. By (19) the last expression above is a sum of products of two small
quantities, thus justifying the approximation (16).
On putting the two approximations, (14) and (16), together, we obtain
Ry(a, 1) = Ro(Q(av, 1), 1) = R{(a, o).

The fast double bootstrap substitutes R{ for Ry in the double bootstrap P value (12).
The FDB P value is therefore

pg(,u,w) = R{ (pl (:U'?w)v B<Maw)) = RO (Ql(pl(u>w)7 5(/%00)); /3(/%00))- (20)

Estimating it by simulation involves only one loop.

A way to see to what extent the FDB may help improve reliability is to compare the
(estimated) distribution of the bootstrap P value and the fast approximation to that
distribution. The graphs below perform this comparison for the wild bootstrap applied
to the model of Section 4. On the right are plotted the distribution estimated directly
(in green) and the fast approximation (in red). On the left the same thing, but in
deviations from the uniform distribution.
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Such differences as are visible are clearly within the simulation noise of the experiment.

— 14 —



7. The Sieve Bootstrap

The sieve bootstrap most commonly used with time series when there is serial cor-
relation of unknown form is based on the fact that any linear invertible time-series
process can be approximated by an AR(co) process. The idea is to estimate a station-
ary AR(p) process and use this estimated process, perhaps together with resampled
residuals from the estimation of the AR(p) process, to generate bootstrap samples. For
example, suppose we are concerned with the static linear regression model (3), but the
covariance matrix 2 is no longer assumed to be diagonal. Instead, it is assumed that
2 can be well approximated by the covariance matrix of a stationary AR(p) process,
which implies that the diagonal elements are all the same.

In this case, the first step is to estimate the regression model, possibly after imposing
restrictions on it, so as to generate a parameter vector B and a vector of residuals u
with typical element 4;. The next step is to estimate the AR(p) model

p
ﬂt = Z piﬁt_i + &¢ (21)

i=1
fort =p+1,...,n. In theory, the order p of this model should increase at a certain

rate as the sample size increases. In practice, p is most likely to be determined either
by using an information criterion like the AIC or by sequential testing. Care should
probably be taken to ensure that the estimated model is stationary. This may require
the use of full maximum likelihood to estimate (21), rather than least squares.

Estimation of (21) yields residuals and an estimate 62 of the variance of the g, as well
as the estimates p;. We may use these to set up a variety of possible bootstrap DGPs,
all of which take the form

vr :XtB‘l‘U:-

There are two choices to be made, namely, the choice of parameter estimates ,@ and
the generating process for the bootstrap disturbances u;y. One choice for ,3 is just
the OLS estimates from running (3). But these estimates, although consistent, are
not efficient if §2 is not a scalar matrix. We might therefore prefer to use feasible
GLS estimates. An estimate §2 of the covariance matrix can be obtained by solving
the Yule-Walker equations, using the p; in order to obtain estimates of the auto-
covariances of the AR(p) process. Then a Cholesky decomposition of 2~ provides
the feasible GLS transformation to be applied to the dependent variable y and the
explanatory variables X in order to compute feasible GLS estimates of 3, restricted
as required by the null hypothesis under test.

For observations after the first p, the bootstrap disturbances are generated as follows:

P
u;‘:Zﬁiuf_ﬂ—sf, t=p+1,...,n, (22)
i=1
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where the €} can either be drawn from the N(0,62) distribution for a parametric
bootstrap or resampled from the residuals £; from the estimation of (21), preferably
rescaled by the factor /n/(n — p). Before we can use (22), of course, we must generate
the first p bootstrap disturbances, the uy, for t =1,...,p.

One way to do so is just to set u; = ; for the first p observations of each bootstrap
sample. We initialize (22) with fixed starting values given by the real data. Unless we
are sure that the AR(p) process is really stationary, rather than just being characterized
by values of the p; that correspond to a stationary covariance matrix, this is the only
appropriate procedure.

If we are happy to impose full stationarity on the bootstrap DGP, then we may draw
the first p values of the uy from the p-variate stationary distribution. This is easy to
do if we have solved the Yule-Walker equations for the first p autocovariances, provided
that we assume normality. If normality is an uncomfortably strong assumption, then
we can initialize (22) in any way we please and then generate a reasonably large number
(say 200) of bootstrap disturbances recursively, using resampled rescaled values of the
¢ for the ;. We then throw away all but the last p of these disturbances and use those
to initialize (22). In this way, we approximate a stationary process with the correct
estimated stationary covariance matrix, but with no assumption of normality.

We again consider our test-bed case, with model (10) and test statistic (11). As the
disturbances are AR(1), we set p = 1 in the AR(p) model estimated with the OLS
residuals. It would have been possible, and, arguably, better to let P be chosen in a
data-driven way. Otherwise, the setup is identical to that used with the maximum-
entropy bootstrap. The graphs following show the P value and P value discrepancy
plots, on the left, and the kernel density plots on the right.

agp —
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Overall, the bootstrap test performs well, although there is significant distortion in
the middle of the distribution of the P value. In the left-hand tail, on the other hand,
there is very little. The distributions of 7 and 7* are very similar.
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The regression of 7% on 7 gave (OLS standard errors in parentheses):

T = 2.55 4+ 0.06T, centred R? = 0.004
(0.025) (0.009)

The next graphs show the comparison between the P value plot as estimated directly
by simulation (in green) and as estimated using the fast method (in red) on the right,
and that for the P value discrepancy plot, on the left.

It is clear that the fast method gives results very close indeed to those obtained by
direct simulation, and this suggests that the FDB could improve performance substan-
tially. This is also supported by the insignificant correlation between 7 and 7*, and
the fact that there is no visible shift in the density plot for 7 and that for 7*, although
the significant positive constant in the regression shows that 7* tends to be greater
than 7, which accounts for the under-rejection in the middle of the distribution.

The sieve bootstrap as described so far takes no account of heteroskedasticity. It is
interesting, therefore, to see whether it performs well when combined with the wild
bootstrap. For that purpose, equation (22) is replaced by

p
* Ak * A
Uy = E Pitly_; + S¢ €,

i=1

where £&; is the residual from (21), and the s} are IID drawings from the Rademacher
distribution. Below are shown results of the diagnostic procedure for a simulation
experiment in which the disturbances are scaled by one of the regressors.
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Heteroskedasticity, it appears, can be handled by the wild bootstrap in this context
as well. However, the regression of 7* on 7 gave:

™ = 2.00 + 0.241, centred R? = 0.058
(0.025) (0.010)

This time, there is significant correlation, although the distributions of 7 and 7* are
at least as similar as in the homoskedastic case.

Performance of the FDB

Since the diagnostic test for the test-bed model suggested that use of the FDB might
improve the reliability of the bootstrap, the simulation experiment was extended to
compute FDB P values. For each replication, a realisation of the statistic 7 of (11)
was obtained, and a realisation of the bootstrap DGP p*. Then B first-level bootstrap
statistics, 77, 7 = 1,..., B, were generated using the realisation of p*, along with a
second-level bootstrap DGP 7, using which the second-level statistic 7" was gener-
ated. The FDB bootstrap value was then computed as an estimate of the theoretical
formula (20): the function Ry estimated as the empirical distribution of the 77, and
the quantile function Q! as an empirical quantile of the T

Below on the left is a comparison of the P value discrepancy plots for the single
bootstrap (in red) and the FDB (in green). There is a slight improvement, but it is
not very impressive. On the right are the kernel density plots for 7 (red), 7* (green),
and 7** (blue). All three are very similar, but the densities of 7* and 7** are closer
than is either of them to the density of 7. This fact is probably the explanation of
why the FDB does not do a better job.
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The three statistics are at most very weakly correlated, as seen in the regression results:

T = 255 + 0.257, centred R? = 0.004
(0.025)  (0.009)

T = 2.51 + 0.0757%, centred R? = 0.006
(0.026)  (0.010)

T = 2.58 4+ 0.0517, centred R? = 0.003
(0.024)  (0.009)

The significant constants, though, are indicators of shifts in the distributions that are
not visible in the kernel density plots, and contribute to the under-rejection by both
single and fast double bootstrap P values.

8. Concluding Remarks

The diagnostic techniques proposed in this paper do not rely in any way on asymp-
totic analysis. Although they require a simulation experiment for their implementa-
tion, this experiment is hardly more costly than undertaking bootstrap inference in
the first place. Results of the experiment can be presented graphically, and can often
be interpreted very easily. A simple OLS regression constitutes the other part of the
diagnosis. It measures to what extent the quantity being bootstrapped is correlated
with its bootstrap counterpart. Significant correlation not only takes away the possi-
bility of an asymptotic refinement, but also degrades bootstrap performance, as shown
by a finite-sample analysis.

Since bootstrapping time series is an endeavour fraught with peril, the examples for
which the diagnostic techniques are applied in this paper all involve time series. In
some cases, the bootstrap method is parametric; in others it is intended to be robust
to autocorrelation of unknown form. Such robustness can be difficult to obtain, and
the reasons for this in the particular cases studied here are revealed by the diagnostic
analysis.
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