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Abstract

Theory predicts that with a very short and very intense X-ray pulse, the image of a single diffraction pattern may be recorded

from a large macromolecule, a virus, or a nanocluster of proteins without the need for a crystal. A three-dimensional data set can be

assembled from such images when many copies of the molecule are exposed to the beam one by one in random orientations. We

outline a method for structure reconstruction from such a data set in which no independent information is available about the

orientation of the images. The basic requirement for reconstruction and/or signal averaging is the ability to tell whether two noisy

diffraction patterns represent the same view of the sample or two different views. With this knowledge, averaging techniques can be

used to enhance the signal and extend the resolution in a redundant data set. Based on statistical properties of the diffraction pattern,

we present an analytical solution to the classification problem. The solution connects the number of incident X-ray photons with the

particle size and the achievable resolution. The results are surprising in that they show that classification can be done with less than

one photon per pixel in the limiting resolution shell, assuming Poisson-type photon noise in the image. The results can also be used

to provide criteria for improvements in other image classification procedures, e.g., those used in electron tomography or diffraction.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Single molecule diffraction; Single particle diffraction; Image classification; Averaging; Orientation; 3D reconstruction
1. Introduction

Emerging radiation sources offer exciting new possi-

bilities in biomolecular imaging. X-ray free-electron la-

sers will provide femtosecond X-ray pulses with a peak

brilliance more than 10 orders of magnitude higher than

that currently available from synchrotrons. Such light

sources may permit non-crystalline biological samples to

be imaged with X-rays, and could thus remove a current

bottle-neck in structure determination (Neutze et al.,
2000). Unfortunately, the intense radiation pulse emit-

ted by the laser will destroy any biological sample in a

single shot, precluding the collection of multiple dif-

fraction patterns from a single particle or molecule. We

therefore assume that the sample is reproducible, and

that single-shot diffraction images can be collected from

individual sample particles exposed to the beam one-

by-one in unknown orientations. The mathematical
treatment of this problem is not unique to planned
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experiments with X-ray free-electron lasers, but can be

extended to diffraction studies with electrons, neutrons,
and other types of scattering probes. As a consequence,

this paper has a broder scope than simply anticipating

experiments with X-ray lasers.

The diffraction pattern of an object is proportional to

the squared modulus of the molecular transform (the

three-dimensional Fourier transform of the electron

density). The coordinates of the diffraction space, usu-

ally called reciprocal space, are those of the scattering
vector (or momentum transfer vector) between the in-

cident and scattered X-rays. In order to reconstruct the

electron density, reciprocal space must be sampled with

sufficient density and the diffracted intensities must be

known with an acceptable accuracy. In view of this,

there are two reasons why a large number of diffraction

patterns need to be collected. As a single diffraction

image samples only a spherical slice through the origin
of reciprocal space (see Fig. 1), so the sample must be

imaged in multiple orientations for the space to be ad-

equately covered. In addition, the signal-to-noise ratio

of raw diffraction images will probably be insufficient for
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a high-resolution reconstruction, and it will be necessary
to obtain a redundant data set so that the signal can be

enhanced by averaging.

When the orientation of the samples is unknown, the

images must be classified according to the view of

the sample that they present before signal averaging

is possible. Methods to sort and average images have

been developed for single-particle electron microscopy

(Mueller et al., 2000; Saxton and Frank, 1977; van Heel,
1987; van Heel et al., 1996; van Heel et al., 1997), and

have produced substantially increased resolution even

for irregular objects like the ribosome (Mueller et al.,

2000). With particles displaying high symmetry, the

resolution can be extended further by exploiting the

symmetry of the structure (Bottcher et al., 1997; Stowell

et al., 1998).

There are important differences between the task of
classifying tomographic images of electron microscopy
Fig. 1. Intersection of images in diffraction space. The top figure shows

a diffraction image of lysozyme. The image is a projection of a

spherical section of the molecular transform onto a plane. The bottom

figure shows three diffraction images that intersect in diffraction space.
(micrographs) and diffraction patterns of single mole-
cules. Some of these stem from differences between pla-

nar (tomography) and spherical sectioning (diffraction),

while others reflect differences in the way the images are

formed, which also affects their statistical properties.

Perhaps the most prominent difference is that the dif-

fraction pattern has a known center, whereas in the mi-

crograph, the molecular image has to be located and

centered. Equally significant are the differences in back-
ground: in the micrograph the molecular image and the

background are separate (although the background

contributes to the noise in the image), but in a diffraction

pattern there is no obvious way to distinguish the

background from the diffraction pattern. Also important

is that the micrograph has to be corrected for imperfec-

tions of the microscope (the contrast transfer function),

whereas diffraction images are perfect in that sense and
need no correction. We note that diffraction patterns can

also be obtained in electron microscopes, with similar

advantages and disadvantages as discussed here.

1.1. Classification and averaging of diffraction images

Averaging techniques are based on the assumption

that the data set is redundant. The images can thus be
sorted into classes that correspond to a distinct view

(orientation) of the sample. Images within each class are

then averaged; if the classification is correct, the signal

adds constructively but the noise does not. We note

that, according to the sampling theorem (Jerri, 1977), a

finite set of views of the sample is sufficient for full

reconstruction; thus, it is sufficient if the data set is

redundant with respect to a number of views satisfying
this condition. Errors in classification as well as heter-

ogeneity in the samples degrade the signal to noise ratio

and the intrinsic resolution of the class averages. It is
Value of the scalar product
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important, therefore, that the number of classes be
adapted to the signal-to-noise ratio of the raw images.

Methods to accurately classify diffraction images

with extremely low signal-to-noise ratio, as well as

methods to identify wrongly classified images, need to

be developed.

Once a complete set of averaged images is obtained,

they can be used as reference images to check and

correct the original classification of each noisy diffrac-
tion image in an iterative process. Images that are

significantly different from any of the class averages

can be removed at this stage. Also, the procedure must
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Fig. 3. The number of pixels n needed for classification as a function of

the average number of photons scattered into a pixel. Curves are

drawn for a ¼ 3 (corresponding to a 99% certainty of the classifica-

tion), a ¼ 2 (95% certainty) and a ¼ 1 (68%). This is independent of

the size of the molecule.
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Fig. 4. Certainty of classification as a function of the average number

of photons per pixel. The results depend on the ratio between the ra-

dius of the particle a and the resolution d.
at some point include a search for images that present
the same view of the sample, but which are rotated

with respect to one another around the axis of the

beam.

1.2. Construction of a three-dimensional data set

After classification and averaging, the mutual

three-dimensional orientation of the class averaged
images must be determined in order to assemble a
Fig. 5. Certainty of classification as a function of radius and resolution.

Contours corresponding to 40, 70, 95, and 99% certainty of classifi-

cation (a � 0.5, 1, 2, and 3) are indicated, as well as a colorbar with

values in percent. For the calculations we assumed that 3� 1012

photons were focused into a 100 nm spot. The density of the particle

was taken as 1/15 atoms/�AA3, corresponding to an electron density of

0.4 electrons/�AA3.
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three-dimensional data set. This may be possible
through the method of common lines (see e.g. Frank,

1996; van Heel et al., 2000), a technique widely used in

electron microscopy, where the micrographs represent

planar sections through the center of the molecular

transform. Diffraction images are different and repre-

sent spherical sections. Each pair of images will inter-

sect in an arc that also passes through the origin of the

molecular transform (Fig. 1). If the signal (after aver-
aging) is strong enough for the line of intersection to be

found in two averaged images, it will then be possible

to establish the relative orientation of these images. We

note that due to the curvature of the sections, the

common arc will provide a three-dimensional fix rather

than a hinge-axis. Moreover, the centric symmetry of

the modulus of the molecular transform ensures that we

obtain 2� 2 independent repeats of the common lines
in the two images. This feature provides redundancy for

determining sample orientation, and is unique to

diffraction images.

1.3. Reconstruction of the electron density

The molecular transform is related to the electron

density simply and directly by a three-dimensional
Fourier transform. Unfortunately, the formation of

diffraction images is associated with a loss of informa-

tion: the molecular transform is a complex, continuous

function, whereas the diffraction data are real, discrete,

and irregularly spaced in reciprocal space. This leads to

a reconstruction problem where the data contain less

information then the solution. Such a problem is ill-

posed, and as a consequence a very broad set of solu-
tions may fit the data within experimental error. To cure

the ill-posedness, we need to include additional infor-

mation about the sample that constrains the solutions to

those that are physically acceptable, and thus allows us

to discriminate between spurious solutions and those

that are realistic. Classical crystallography has a similar

problem.

It was surmised by Sayre (Sayre, 1980) that if the
amplitudes of the molecular transform could be over-

sampled, there would be enough information to replace

the lost phases and reconstruct the electron density. The

idea has its basis in sampling theory, which states that a

band-limited function, such as the molecular transform

of a finite-size molecule, can be fully represented by a set

of discrete equidistant samples (Jerri, 1977). By sam-

pling the amplitudes more finely than the sampling
theorem requires, it may be possible to compensate for

the missing phases.

In a recent publication (Sz}ooke, 1999), Sz}ooke has

shown that the electron density can, indeed, be recon-

structed from a simulated, oversampled continuous

diffraction pattern, obtained from a crystal that is made

of two similar molecules. He used an approach based
on principles used in holography (encoded in the
EDEN package, Sz}ooke 1997) and some a priori infor-

mation. Miao, Hodgson and Sayre used the iterative

Gerchberg–Saxton–Fienup algorithm (Gerchberg and

Saxton, 1972) to successfully reconstruct electron den-

sities from both simulated (Miao et al., 2001) and real

(Miao et al., 2002) diffraction images from non-crys-

talline samples. A third demonstration, by Oszl�aanyi and
Faigel (unpublished) used a maximum likelihood opti-
mizer for this purpose. These approaches represent

major developments in phasing, and could be applied to

obtain three-dimensional structures from oversampled

diffraction images like those of single particles and

molecules.

In classical crystallography, the set of Bragg reflec-

tions constitute a uniform three-dimensional grid/lat-

tice in reciprocal space. (Actually, both Sz}ooke (1999)
and Miao et al. (2001, 2002) used diffraction intensities

measured on a three-dimensional regular grid.) Dif-

fraction data sets derived from samples without

translational symmetry, on the other hand, yield a

highly non-uniform sampling of the molecular trans-

form with a decreasing sampling density at higher

resolutions. This is also true for tomograms. One could

limit the analysis to those samples that lie on a regular
grid, but this would be a very inefficient use of data

and seems incompatible with the idea of a highly over-

sampled diffraction pattern. Interpolating onto a reg-

ular grid does not improve the situation; it moves the

problem of ill-posedness from real space to reciprocal

space, but does not change its nature. Reconstruction

algorithms will have to deal intelligently with the above

problems.
Fortunately, there are extensive mathematical treat-

ments of matrix inversion (Golub and Loan, 1996),

image processing (Bertero and Boccaci, 1998), and of

reconstruction in computed tomography (Natterer,

1986; Natterer and W€uubbeling, 2001). One can state

with some confidence that those inverse problems have

similar difficulties, but are ‘‘easier.’’ Therefore, recon-

struction algorithms for single particle diffraction will
be a subset of those that work well for matrix inversion

or tomography. We have recently extended EDEN, the

holographic method for reconstructing the electron

density in crystals, to deal with diffraction patterns

from single particles (Hau-Riege et al., in preparation),

and expect to be able to find the optimum electron

density under conditions of incomplete, noisy mea-

surements on an irregular set of points in reciprocal
space.
2. Classification of diffraction images

The first step in the reconstruction process is to

classify the diffraction images according to the view of
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the sample that they present. The images within each
class can then be averaged to produce the set of high-

quality views of the sample that is required for an

atomic-resolution reconstruction of the structure. It is

the precision and noise-tolerance of the classification

procedure, rather than that of the reconstruction

method, that sets the lower limit on the quality of the

raw diffraction images. In the following sections, we

estimate the minimum number of photons that must be
scattered into a diffraction image in order for a set of

images to be accurately classified.

The essence of the classification problem is whether

two images present similar views of the sample or not.

In order to determine this, we divide each image into

resolution elements, or pixels, where we simply add

the diffracted intensity. More precisely, we think of an

image as a vector g ¼ fg0; g1; . . . ; gn�1g, where n is the
number of pixels used in the representation and gk is

the total photon count of the pixel. Note that with

this definition, a pixel does not necessarily correspond

to a physical resolution element of the detector but

can be of any size or shape. We then correlate two

images g and h through their scalar product, or the

discrete cross-correlation function at zero lag (dis-

placement)

ðg; hÞ ¼
Xn�1

i¼0

gihi: ð1Þ

To determine whether a set of images can be classified

by this similarity measure, we derive the probability

distribution of the scalar product for two limiting cases:

(i) images that present different views of the sample and

(ii) images that present the same view of the sample but

differ in the distribution of noise. Classification will be
regarded as possible if the two distributions can be

distinguished.
2.1. The statistics of the diffraction image

2.1.1. The instantaneous intensity scattered by a molecule

The instantaneous intensity elastically scattered

within the differential solid angle dX, centered on the
scattering vector k, by a particle with electron density q
is proportional to the squared modulus of the molecular

transform F ¼ F½q� (Shmueli, 1996), where F stands for

the Fourier transform

Iðk; tÞdX ¼ jF ðk; tÞj2ITðk; tÞdX: ð2Þ

Here IT is the intensity per unit solid angle scattered
from a single free electron (Thomson scattering),

ITðk; tÞ ¼ r2ePðkÞIinðtÞ; ð3Þ

where r2e is the classical electron radius, P a factor that

depends on the polarization of the incident radiation,
and Iin is the intensity of the incident electric field in
photons per unit area and unit time.

2.1.2. The integrated intensity

The integrated intensity measured during time t2 � t1
within a pixel that spans solid angle XP is given by

W ðkÞ ¼
Z
XP

dX
Z t2

t1

Iðk; tÞdt: ð4Þ

In the present analysis we assume that the electron
density stays approximately unchanged for the duration

of the pulse, so that only the incident intensity varies in

time. We can therefore write the integration over time asZ t2

t1

Iðk; tÞdt ¼ jF ðk; tÞj2WTðkÞ; ð5Þ

where

WTðkÞ ¼ r2ePðkÞ
Z t2

t1

IinðtÞ ¼ r2ePðkÞWin; ð6Þ

Win being the total number of photons incident on the

sample within the time interval. We also assume that
the scattered intensity is approximately constant over

the solid angle XP , so that Eq. (4) can be written as

W ðkÞ ¼
Z
XP

jF ðk; tÞj2WTðkÞdX ¼ jF ðk; tÞj2WTðkÞXP :

ð7Þ
2.1.3. The statistics of the intensity

Biological macromolecules can be represented as a

collection of atoms distributed in space. To a first ap-

proximation, this distribution can be regarded as ran-

dom. The probability distribution of diffraction

intensities from a crystal exposed to polarized radiation
were derived by Wilson (1949) and the derivation for a

non-crystalline asymmetric particle is analogous. It

shows that the squared modulus of the molecular

transform follows negative exponential statistics

pðjF j2Þ ¼ 1

hjF j2i
e�jF j2=hjF j2i: ð8Þ

The approximation holds well at reasonably high
resolution (say higher than 3�AA). It follows from Eq. (7)

that under the assumptions we have made, the same

statistics hold for the integrated intensity W

pðW Þ ¼ 1

hW i e
�W =hW i: ð9Þ

We will take hW i to be the average of Eq. (7) taken

over all angles at a constant k, thus making it a function

of k only

hW iðkÞ ¼
R
W dXR
dX

¼ XP

4p

Z
jF ðkÞj2WTðkÞdX

¼ XPhjF j2WTiðkÞ: ð10Þ
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2.1.4. The statistics of the photon count

Due to the fundamentally stochastic nature of the

interaction between radiation and matter, the number of

photons K actually recorded by a detector will deviate

from the classical value W . These deviations, which we

will refer to as photon noise, follow a Poisson distribu-

tion (Goodman, 2000)

pðKjW Þ ¼ W K

K!
e�W : ð11Þ

Combining Eqs. (9) and (11) and integrating to cal-

culate the total probability (Papoulis, 1991) of the

photon count, we arrive at the Bose–Einstein distribu-
tion (geometrical distribution) of the photon count

(Goodman, 2000)

pðKÞ ¼ 1

1þ hW i
hW i

1þ hW i

� �K

: ð12Þ
Table 1

Expectation value and variance of the product of the photon count in

two pixels at the same resolution

Noise-free With Poisson noise

lg hW i hW i
r2
g hW i2 hW i2 þ hW i

lgh hW i2 hW i2
r2
gh 3hW i4 3hW i4 þ 4hW i3 þ hW i2

lgg0 2hW i2 2hW i2
r2
gg0 20hW i4 20hW i4 þ 32hW i3 þ 13hW i2

The subscript gg0 indicates two images presenting the same view, gh
two images presenting different views. hW i is the average (classical)

intensity at that resolution, and it is expressed in number of photons

per pixel.
2.2. The distribution of the scalar product

We derive the distribution of the scalar product for

the special case where the image vectors are con-

structed from a single annulus of high-resolution

pixels. We will also assume that the pixels are all in-

dependent samples of the molecular transform in the
sense of the sampling theorem (Jerri, 1977). Under

these conditions, all pixels are independent and iden-

tically distributed, and the distribution is given by Eq.

(12).

Let the two image vectors g ¼ fg0; g1; . . . ; gn�1g and

h ¼ fh0; h1; . . . ; hn�1g be realizations of the random

vectors G and H . Likewise, let the corresponding

noise-free images vectors gð0Þ and hð0Þ be realizations
of the random vectors G ð0Þ and H ð0Þ. As the scalar

product is a sum of independent random variables, the

central limit theorem tells us that it will be asymp-

totically normally distributed (the distribution is es-

sentially normal for n as low as 30) (Papoulis, 1991).

As G and H are also identically distributed we can

write

ðG ;HÞ 2 AsNðnl;
ffiffiffi
n

p
rÞ; ð13Þ

where l and r denote the common mean and average of

the products GkHk. They are computed from the joint

probability density function pðgk; hkÞ of an arbitrary pair

of discrete random variables Gk and Hk

l ¼
X
i;j

ijpði; jÞ;

r2 ¼
X
i;j

ðij� lÞ2pði; jÞ;
ð14Þ

where the sums are over all integers i and j. Through
the theorem of marginal distributions (Papoulis,

1991) we can express the joint probability density

function as
pðgk;hkÞ¼
Z Z

p gk ;hk;g
ð0Þ
k ;hð0Þk

� �
dgð0Þk dhð0Þk

¼
Z Z

p gk jgð0Þk ;hkjhð0Þk

� �
p gð0Þk ;hð0Þk

� �
dgð0Þk dhð0Þk

¼
Z Z

p gk jgð0Þk

� �
p hk jhð0Þk

� �
p gð0Þk ;hð0Þk

� �
dgð0Þk dhð0Þk :

ð15Þ
In the second equality we have used Bayes� theorem

of conditional probability and in the third the fact that

the noise in the two images is independent.

The first two factors in the last integral are given by

Eq. (11), while the third can be obtained from Eq. (9). If

the noise-free images gð0Þ and hð0Þ correspond to inde-

pendent views of the sample, then their joint probability

function factorizes

p gð0Þk ; hð0Þk

� �
¼ p gð0Þk

� �
p hð0Þk

� �
: ð16Þ

If the images display the same view of the sample,

then the noise-free images are identical.

p gð0Þk ; hð0Þk

� �
¼ p gð0Þk

� �
d hð0Þk

�
� gð0Þk

�
: ð17Þ

In both cases we have expressed the integrand of Eq.

(15) in terms of known functions, and the resulting in-

tegrals can be solved analytically. By inserting the re-
sulting distributions into (14), it is possible to calculate l
and r2 for the two cases in terms of the mean classical

(photon-noise-free) photon count hW i scattered to the

pixel. The results are presented in Table 1.

2.3. Classification criterion

The mean and variance of the scalar product takes on
higher values if the images present the same view of the

sample than if they present independent views. We will

consider the two distributions to be distinct if their

overlap is smaller then a given fraction of their total area

(Fig. 2).

Let the mean of the scalar product be denoted nlgg0
for images presenting the same view and nlgh for inde-
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pendent images, where n is the number of pixels used in
the representation. The difference between the means of

the two distributions is then

nd ¼ n lgg0

�
� lgh

�
: ð18Þ

Analogously, the sum of the standard deviations is

ffiffiffi
n

p
S ¼

ffiffiffi
n

p
rgg0

�
þ rgh

�
: ð19Þ

The two distributions will be regarded as distinct if
the difference between their means is a factor a=2 larger

than the sum of their standard deviations

nd >
a
2

ffiffiffi
n

p
S ð20Þ

or equivalently, if

n >
a
2

S
d

� �� �2
: ð21Þ

The parameter a determines the area of overlap be-

tween the distributions and thus the probability of a

correct classification. It is analogous to the standard

deviation of a normal distribution, i.e., a ¼ 2 corre-
sponds to a probability of correct classification of

approximately 95%. Eq. (21) connects the number of

independent pixels (n) to the significance of the classifi-

cation (through a) and to the average number of

photons scattered into a pixel (through S, d and

Table 1). In Fig. 3, this relationship is plotted for a few

values of a.

2.4. Interpretation in terms of particle size and achievable

resolution

2.4.1. The number of independent pixels

In this analysis we have assumed that each pixel

measures data that is independent of the data in the

adjoining pixel. The number of such pixels that can be

extracted from a diffraction pattern depends on the

band limit of the molecular transform, or equivalently,

on the support of the electron density. For a particle

that can be inscribed in a cube with side a, points that

are separated by a distance of 1=2a in each dimension
are guaranteed to be independent by the sampling the-

orem. An estimate of the number of independent sam-

ple points within an annulus of radius k in the image is

then

nða; dÞ ¼ 2pk
1=2a

¼ 4pak ¼ 4p
a
d
: ð22Þ

Note that d ¼ 1=k is what we call the resolution of

the annulus (we use this term because d is related to the

resolution of the reconstructed electron density). This

estimate is low, mainly because the cube is a crude es-
timate of the molecular shape. However, we see that the

number of independent pixels along the circle depends

on the quotient a=d.
By considering the limiting case when the inequality
(21) becomes an equality, solving for a and using Eq.

(22) for n,

a ¼ 2
ffiffiffi
n

p d
S
¼ 4

ffiffiffiffiffiffiffi
p
a
d

r
d
S
; ð23Þ

we obtain a relation for the probability of correct clas-

sification that depends on the average photon count per

pixel and the quotient a=d. In Fig. 4 we have plotted the
probability as function of average photon count for two

different values of a=d, using Eq. (23) and Table 1 with

Poisson noise.

2.4.2. The average photon count per independent pixel

The next step is to express the average photon count

per pixel as a function of resolution and particle size.

The average photon count per pixel is given by Eq. (10)
and restated here

hW iðkÞ ¼ XPhjF j2WTiðkÞ:
To estimate the solid angle XP spanned by the

pixel, we note again that the boundary of the particle

constitutes the band limit of the molecular transform.
The distance between independent sample points of

the molecular transform (in a cartesian sampling

scheme) is then 1=2a, and the area of an independent

unit of the transform will be taken to be ð1=2aÞ2.
Based on the Ewald construction (Ewald, 1921), we

can say that an independent pixel collects all those

photons whose wave vectors fall within an area of

ð1=2aÞ2. Since the length of the wave vector is defined
as 1=k, the solid angle XP spanned by an independent

pixel is

XP ¼ k
2a

� �2

: ð24Þ

To calculate hjF j2WTiðkÞ we will assume that the

incident radiation is unpolarized, so that

hWTiðkÞ ¼ r2eWinhPiðkÞ; ð25Þ

hPiðkÞ ¼ 1

8
ð8þ k4k4 � 4k2k2Þ; ð26Þ

which allows us to write

hjF j2WTiðkÞ ¼ hjF j2iðkÞhWTiðkÞ: ð27Þ

Note that there is a discrepancy here with the calcu-

lation of the statistics, in which we assumed that the

incident radiation is polarized.
The angular average of the squared modulus of the

molecular transform remains to be calculated. To do

this we assume that the particle consists of NC carbon

equivalent atoms. Under the isolated-atom approxima-

tion (Shmueli, 1996) we can write

hjF j2iðkÞ ¼ NCf 2
CðkÞ; ð28Þ
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where fC is the Fourier transform of the atomic electron
density (the atomic scattering factor for carbon).

Up till now, all we have assumed about the molecules

shape is that it can be inscribed in a cube with side 2a.
To relate the number of atoms NC to the size, we will

assume that the particle is spherical with radius a and

density qC. The number of carbon atoms is then related

to the volume by

NC ¼ qC

4pa3

3
: ð29Þ

We arrive at the following expression for the average

number of photons scattered into an independent pixel,

hW iða; kÞ ¼ p
3
k2qCr

2
e

h i
af 2

CðkÞhPiðkÞWin: ð30Þ

Eq. (30) in conjunction with Table 1 gives us ex-

pressions for S and d in Eq. (21). For our quantitative

conclusions, we assume an incident X-ray pulse which is

focused into a spot with diameter 100 nm. The density of

the carbon cloud is 1/15 atoms/�AA3 and the scattering
factor is calculated trough the analytical approximation

given in Wilson (1995). In Fig. 5 we plot the probability

of correct classification as a function of particle radius

and resolution when the number of incident photons Win

is 3� 1012. In Fig. 6 we plot the maximum resolution at

which classification is possible, as a function of particle

radius and for several different intensities of the X-ray

pulse.
The decrease in accuracy of classification at low

resolution—despite a higher average photon count—

reflects the fact that fewer independent data points are

available within a low resolution annulus than within a

high resolution annulus. The double-valued curves in

Figs. 5 and 6, while puzzling at first sight, reflect this

feature.
3. Conclusions

We have presented a simple but realistic statistical

model for the classification of diffraction images. Our

quantitative conclusions are presented in Eqs. (21), (22),

and (30) and Figs. 5 and 6, which connect the number of

incident X-ray photons, the particle size and the
achievable resolution. We have shown that less then one

photon per independent pixel can be enough for classi-

fication, even in the presence of a Poisson-type photon

noise. As expected, the larger the particle and the larger

the incident X-ray fluence, the higher the resolution and

the higher the significance level of the classification.

The classification scheme that we have analyzed can

be expanded and improved upon in various ways. It
does not take low-resolution data into account, and

those will obviously be included in any practical solu-

tion. Low-resolution pixels have higher intensities, so

they have better statistics and could help ‘‘homing in’’
early on in the classification. Nevertheless, their angular
resolution is lower, and the quality of the averaged im-

ages will ultimately be determined by our ability to align

the high-resolution data. Moreover, the classification

criterion is based on the statistical properties of a generic

diffraction image; a more sensitive decision could be

made by adapting the criterion to each specific pair of

images, at a computational cost. The accuracy of the

classification should also be improved by iteration; i.e.,
if, after a number of classes are established by a first

round of classification, their class averages are used as

classifiers. We should then compare each noisy image

with every one of the class averages, and decide whether

the image has been classified properly or belongs to a

different class. Such procedures are used successfully in

electron microscopy (van Heel et al., 2000) .

In this initial analysis, we did not consider molecular
motion and the heterogeneity of individual molecules.

The spatial variance of the diffraction pattern is the

signal that we use for classification. Molecular motion

will cause this variance to decrease, so that the diffrac-

tion intensities within each resolution shell approach the

average value given by the sum of the scattering factors.

Differences between individual sample molecules will

have the same effect on the averaged images. Radiation
damage will further increase the molecular motion

during the pulse, substantially if the pulse is long. We

intend to approach these effects, and the limits that they

impose on classification, in forthcoming work. We also

intend to discuss the improvements possible through the

iterated classification outlined above.

This paper deals with general problems in classifying

diffraction patterns from reproducible particles/mole-
cules/structures exposed to a wave front in random and

unknown orientations. The importance of our treatment

is that it establishes clear statistical (mathematical) cri-

teria for the achievable resolution of diffraction images.

Such criteria can establish standards of achievement of

classification algorithms as well as guidance for research

into new methods of signal processing.
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