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Abstract Many graph datasets are labelled with discrete and numeric attributes. Most fre-
quent substructure discovery algorithms ignore numeric attributes; in this paper we show
how they can be used to improve search performance and discrimination. Our thesis is
that the most descriptive substructures are those which are normative both in terms of
their structure and in terms of their numeric values. We explore the relationship between
graph structure and the distribution of attribute values and propose an outlier-detection step,
which is used as a constraint during substructure discovery. By pruning anomalous ver-
tices and edges, more weight is given to the most descriptive substructures. Our method is
applicable to multi-dimensional numeric attributes; we outline how it can be extended for
high-dimensional data. We support our findings with experiments on transaction graphs and
single large graphs from the domains of physical building security and digital forensics,
measuring the effect on runtime, memory requirements and coverage of discovered patterns,
relative to the unconstrained approach.
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1 Introduction

Graph representations are useful in many domains where data has a natural structure which
cannot be easily represented as a set of attributes. Graphs are commonly used to represent
complex structures such as social, communication or computer networks and biological or
ecological processes (Newman 2010).

A common task in graph mining is to discover frequently-occurring substructures for
concept learning, classification, clustering or anomaly detection. Frequent substructures
are defined as those which pass some minimum support threshold (Inokuchi et al. 2000;
Kuramochi and Karypis 2001; Yan and Han 2002) or in information-theoretic terms, as
the patterns which can be used to maximally compress the input graph (Cook and Holder
2000). Most substructure discovery approaches assume discrete graph labels. However,
many graph datasets also contain numeric labels or weights, representing counts, frequen-
cies, or attributes such as size, distance or time. In this paper, we show how these numeric
attributes can be used as a constraint on substructure discovery.

To count the support of each pattern, discovery algorithms must compare substructures
for identity, or Graph Isomorphism (GI). GI is computationally complex to decide for the
general case (Fortin 1996), but common special cases can be solved in polynomial time,
using techniques such as sorting candidate substructures by their canonical labels (Inokuchi
et al. 2000; Kuramochi and Karypis 2001), organising discovered substructures into span-
ning trees (Borgelt 2006; Yan and Han 2002) or constraining the size of substructures to
be compared (Cook and Holder 2000). Even so, GI tests remain the most expensive part of
substructure discovery. Empirical studies show that most processing time is spent on oper-
ations which rely on GI tests: support computation or calculating embedding lists (Worlein
et al. 2005). Thus it is always desirable to minimise the number of GI tests required. We
address this problem with a guided pruning step prior to substructure discovery. Removing
a small number of anomalous edges or vertices has the effect of significantly reducing the
number of GI tests required.

Our work is based on the following observations:

—  The number of GI tests performed during substructure discovery is based not only on
the size of the input graph, but is also highly dependent on its structure and attributes,
such as edge density and the number and distribution of label values.

— Inreal-world graphs, graph structure and label values are highly correlated, allowing us
to exploit label information to determine the “best” substructures.

—  We propose that the best substructures are those which are not only frequent, but also
have the most normative numeric attributes.

Therefore, pruning away a few anomalous edges can dramatically reduce the complexity of
the input graph while retaining the most descriptive patterns. Our main contributions are:

— We present our constraint-based mining approach, in this paper implemented as a
pre-processing step to remove edges with anomalous numeric attributes before the
substructure discovery step. The patterns which are discovered are those which have
enough instances with normal numeric attributes to meet minimum support. We propose
that these are the most descriptive substructures.

— For frequent subgraph mining in transaction graphs, our experiments compare the
coverage of discovered substructures using our constraint-based method against the
unconstrained approach. While our method is approximate and therefore makes no
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guarantees about completeness of the result set, we show that the top substructures are
retained, and measure pattern loss against performance gain.

— For greedy search in single large graphs, we show that the relative count and
compression ratio of each pattern are approximately preserved, but with improved
discrimination between patterns in the result set.

— The experiments show that our approach significantly reduces runtime and memory
usage for substructure discovery on real-world graphs. By pruning unlikely candidates
early, we focus computational resources on the most descriptive patterns. Thus many
searches which are intractable using the standard algorithms become tractable using
our constraint-based approach.

While we have implemented our constraint-based mining approach as a pre-processing step,
in Section 7 we discuss how it could be directly integrated into frequent graph mining, by
including the constraint into the minimum support calculation.

The paper is organised as follows: Section 2 is a brief survey of substructure discovery
in graphs, constraint-based graph mining and numeric outlier detection. In Section 3, we
discuss how the distribution of labels and attributes affects the complexity of the input graph
and its effect on substructure discovery. We outline our method in Section 4, in which we
use numeric outlier detection to prune the input graph. Section 5 describes the E-mail and
Access Control datasets used in the experiments. Experimental results and discussion are in
Section 6 and our conclusions are in Section 7.

2 Related work
2.1 Frequent substructure discovery

Early approaches to frequent substructure discovery were based on applying Apriori-style
itemset mining to graph databases. AGM (Inokuchi et al. 2000) and FSG (Kuramochi and
Karypis 2001) generate candidate substructures by growing them one vertex or one edge
at a time, respectively. The support of each candidate is equal to the number of graph
transactions which contain it; frequent substructures are those which exceed a specified
minimum support threshold. Support is an anti-monotone property: the support of a graph
cannot exceed that of its subgraphs. The main weakness of AGM and FSG is that candi-
date generation is expensive, as canonical labels must be calculated for a large number of
redundant candidates.

gSpan (Yan and Han 2002) avoids generating redundant canonical labels by deter-
mining the minimum representation of vertex orderings as discovered by a DFS, then
organising the canonical labels into a hierarchical spanning tree. Frequent substructures are
discovered by traversing this tree and checking for those which exceed minimum support.
CloseGraph (Yan and Han 2003) and SPIN (Huan et al. 2004) are refinements to gSpan
which reduce redundancy by mining only closed or maximal frequent subgraphs, i.e. those
which are not part of any larger frequent subgraph.

GASTON (Nijssen and Kok 2004) operates on the same principles as gSpan—DFS-
based canonical ordering and testing for minimum support—but streamlines the search by
searching first for sequences, then trees, then graphs. GASTON is shown to be more effi-
cient than gSpan (Worlein et al. 2005) as it avoids generating duplicate subgraphs, speeding
up the support computation.
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The frequent subgraph mining algorithms above cannot be applied to single large graphs,
because support is calculated from the number of graph transactions which contain the
pattern (rather than the number of instances of the pattern).

Subdue (Nijssen and Kok 2000) represents a different class of substructure discovery
algorithm, based on information theory. Instead of counting support, Subdue looks for the
substructures which can be used to best compress the input graph based on the Minimum
Description Length (MDL) principle. While the frequent subgraph mining approaches
exhaustively search all substructures meeting the minimum support criterion, Subdue
employs a greedy beam search strategy (a limited-length queue of the best few patterns
found so far). This makes it possible to search large graphs; however, Description Length
(DL) is not an anti-monotone property. Once the DL of an expanding substructure begins to
increase, further expansion of the substructure typically does not yield a smaller DL (Cook
and Holder 1994), but this is not guaranteed. Thus MDL-based greedy search can miss
some interesting patterns, especially if the beam width is too narrow.

Frequent subgraph mining and compression-based approaches are compared in Eberle
and Holder (2011). Subdue and GASTON were able to discover the same patterns. For graph
databases, GASTON was found to outperform Subdue; but Subdue was able to handle large
and complex graphs which were not possible for GASTON to search.

None of these graph mining approaches make use of numeric attributes or weights,
except in a very limited way (treating numeric values as categorical, or discretization based
on binning or thresholding). In this paper we use numeric attribute values as a constraint on
the search for frequent substructures.

2.2 Constraint-based graph mining

Graph mining approaches use constraints to prune away uninteresting patterns and focus
on the most meaningful subgraphs. The most obvious example of a constraint from the
preceding section is minimum support, but other constraints have been proposed.

Moser et al. (2009) defines a “cohesive pattern constraint” on a connected subgraph,
where the vertex attributes are the same within some subspace and some density constraint
is met. The cohesive pattern constraint is defined for graphs with discrete attributes; in this
paper, we define a constraint on graphs with numeric attributes.

Eichinger et al. (2008) analyses edge weights in a post-processing step. First, graph trans-
actions are mined using CloseGraph. Then entropy-based feature selection is applied to the
result set, yielding an ordered list of edges. This approach improves the discriminitiveness
of the results, but does not have any effect on search performance.

In Jiang et al. (2010), gSpan is extended by including edge weights into the support
calculation and pruning low-weighted substructures from the search. Two of the proposed
weighting schemes preserve the anti-monotone property, by thresholding the weight mea-
sure in addition to thresholding for minimum support. A third weighting scheme uses
a heuristic and does not rely on anti-monotonicity. There are some similarities with our
approach, but this method assumes that higher weights are more significant. This is usually
the case where the weight indicates the count of an edge occurrence, but not necessarily
when the weight is an arbitrary continuous value. Our approach is more general, as it can
make use of multi-dimensional numeric attributes and pruning is based on the concept of
outlierness rather than low weights.

Wang et al. (2005) propose a method to integrate constraints into frequent subgraph
mining. They use anti-monotone constraints to prune the search space and monotone con-
straints to speed up the evaluation of further constraints. One of the proposed constraints is
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average weight, which is used to prune vertices and edges with outlier values from the input
database as a pre-processing step.

Constraints on weighted graphs are considered within a general framework in Eichinger
et al. (2010). The authors note that while weight-based constraints are not guaranteed to
be anti-monotone, in practice there is frequently a correlation between graph structure and
weights. Attribute-based constraints are used to prune substructures by running a measure
function on the edge (or vertex) weights and comparing the output to a threshold. If the
definition of the measure function is extended to take multi-dimensional numeric attributes
as its input, then the outlier detection step that we propose in Section 4 could be considered
a measure function within this theoretical framework.

2.3 Numeric outlier detection

One of the most popular definitions of an outlier is “an observation (or subset of obser-
vations) which appears to be inconsistent with the remainder of that set of data.” Barnett
and Lewis (1994) Common approaches to outlier detection include statistical, cluster-based,
distance-based or density-based methods (Barnett and Lewis 1994; Chandola et al. 2009;
Davis et al. 2011). Statistical thresholding or distance-based approaches detect outliers with
respect to the global data distribution. Where data is comprised of multiple clusters of
non-uniform density, it is more meaningful to detect local outliers (Breunig et al. 2000).
An unsupervised local outlier approach is appropriate when analysing graph attributes, as
each attribute may follow a different distribution and we do not know these distributions in
advance (Davis et al. 2011).

The most established algorithm for unsupervised outlier detection in data of varying
density is Local Outlier Factors (LOF) (Breunig et al. 2000). LOF computes the outlier-
ness of each point with respect to its local neighbourhood rather than the global data. A
number of variants of LOF have been proposed. LOCI (Papadimitriou et al. 2003) defines
separate neighbourhoods for counting and sampling, though LOF has been shown to out-
perform LOCI in terms of accuracy and runtime (Janssens et al. 2009). COF (Tang et al.
2002) detects outlierness where patterns are straight lines, using a density measure based
on ‘“chaining distance” rather than Euclidean distance. INFLO (Jin et al. 2006) addresses
the case where dense and sparse neighbourhoods are close to each other, by taking “reverse
nearest neighbours” into account. The reverse nearest neighbours of a point p are the points
which contain p as one of their k-nearest neighbours. Schubert et al. (2012) presents a
unified theoretical framework for comparing density-based outlier detection methods. By
generalising the notion of locality, LOF is compared to specialised domain-specific algo-
rithms. LOF is shown to be a good general method which can be applied to many different
types of data; in most cases, specialised approaches are unjustified.

The most expensive part of LOF calculation is finding the k-Nearest Neighbours
(k-NN) of each point. A naive search has complexity O(n?), but this can be reduced to
O(nlogn) using indexing (Breunig et al. 2000). If we are only interested in the top-n out-
liers, efficiency can be improved by avoiding the LOF calculation for objects deep within a
cluster (Jin et al. 2001).

While LOF is shown to perform very well on datasets of low to moderate dimensional-
ity, there is a drop in performance on very high dimensional datasets. Zimek et al. (2012)
is a detailed survey on recent work on outlier detection in high-dimensional space. The
“curse of dimensionality” is broken down into concrete phenomena: the distance con-
centration effect (as dimensionality increases, the relative contrast between near and far
neighbours tends to degrade); the presence of irrelevant attributes (subspace approaches

@ Springer



312 J Intell Inf Syst (2014) 42:307-332

tackle this directly; other approaches do so indirectly or not at all); and efficiency issues.
One interesting result is that it is not the concentration effect per se which impedes outlier
detection in high dimensions: the presence of irrelevant attributes makes the concentration
effect a problem. Another problem is that as data dimensionality grows, L ,-norm distance
measures lose their discriminative ability, so indexing is no longer effective.

Projected Index Nearest Neighbours (PINN) (de Vries et al. 2010) is an extension
to LOF to solve the problem of efficiently discovering the k-NN of each point in high-
dimensional space, by indexing in a lower-dimensional projected space. PINN is based
on the observation that real-world datasets have high representational dimensionality but
low intrinsic dimensionality (Tenenbaum et al. 2000). The Random Projection used by
PINN (Achlioptas 2003) is based on the Johnson-Lindenstrauss Lemma, which proves that
a reduced dimensionality of k = 2 - loegz" will preserve the pairwise Euclidean distances
between data points within an error bound of 1 + e with high probability. A candidate
k-NN set is determined in the projected space, then used as an index into the original space
to calculate the LOFs. The PINN paper proves that LOF scores are preserved within the
known error bounds of the Random Projection.

PINN does not explicitly solve the problem of irrelevant attributes. Irrelevant attributes
can be explicitly handled by subspace feature selection (Zimek et al. 2012). Subspace Out-
lier Detection (SOD) (Kriegel et al. 2009) is a subspace LOF method which combines
the tasks of finding relevant subspaces and detecting outliers, but the problem of indexing
in high-dimensional space is not addressed. DB-CSC (Giinnemann et al. 2011) combines
graph clustering with subspace feature selection on the numeric attributes of the graphs, but
experimental datasets only have synthetic data up to 20 dimensions, so it is not clear if this
approach scales to higher dimensions. Subspace feature selection in high-dimensional data
remains an active area for research.

3 Graph attributes and structure

In its most abstract form, a graph G consists of a set of vertices V and a set of edges
E C V x V. When a graph represents a real-world network or phenomenon, the vertices
or edges are labelled, as in Fig. 1. Labelled graphs can have an arbitrary number of discrete
and numeric labels on their vertices and edges:

Definition 1 A labelled graph G is a tuple <V, E L, %, ZE> V is a set of vertices and
E isasetof edges: E C {(v,w) : v,w e V x V}. If the tuple (v, w) is ordered, the edge is
directed, otherwise it is undirected. L is a set of graph labels; %y and .ZF are label-to-value
mapping functions.

(a) Social graph (b) Molecular structure (c) Scene Analysis

Fig. 1 Examples of labelled graphs
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Definition 2 The set of graph labels L is the union of the sets of vertex labels Ly and edge
labels L. L is partitioned into discrete labels L” and numeric labels LY, L? N LN = ¢.
Thus L = LyULg = LPULY . Let AP be the set of discrete attribute values and AN ¢ R
be the set of numeric attribute values.

Definition 3 The vertex label-to-value mapping function is denoted as:
PV x(LyNLP)y - AP
V x (Ly NLY)y —> AN

For a vertex-weighted graph, the weight function % (v) is treated as a special case of its
numeric attributes: Yv € V @ #'(v) = Ly (v, “weight”). (The label-to-value mapping
function for edges %% can be denoted in a similar manner).

During substructure discovery, one important method of reducing the complexity of the GI
test is vertex partitioning (Fortin 1996; Inokuchi et al. 2000; Kuramochi and Karypis 2001;
Yan and Han 2002). Vertices can be partitioned into similar disjoint sets or equivalence
classes. We extend this notion to also define edge partitions:

Definition 4 The vertex partition set and edge partition set are defined as:
i i
where all vertices in the same partition share the same discrete attribute values:

WweV, YweV, Vie(LynNLP): L) =Lywl

Similarly, all edges in the same partition share the same discrete attribute values, with the
additional constraint that their source and target vertices are from the same partitions:

Vivuw)eE; Y{(x,y)eE: veVinxeVianweViAnyeV;

In the case of an undirected graph, (v, w) <& (w, v)

Previous work on attribute-based constraints has assumed independence between the struc-
ture of a graph and its attributes (Eichinger et al. 2010; Jiang et al. 2010), but this is not
the case in most real-world graphs. Our approach makes the opposite assumption: that the
attribute values on each vertex and edge are dependent on its adjacent vertices, but are
conditionally independent (CI) of the rest of the graph.

The example graphs in Fig. 1 illustrate the dependence of graph structure and attributes.
In Fig. 1a, the vertices represent people, labelled with their favourite sport; edges represent
friendships. In social networks, there are at least three processes which lead to depen-
dencies (Fowler and Christakis 2008): homophily, the tendency to form relationships with
people similar to ourselves; induction, the tendency to influence others in our social group;
and confounding, where connected individuals are exposed to the same external influences
(such as an economic downturn or living in the same neighbourhood). Attributes within
social groups are correlated, and tend to become more homogenous over time. The social
network in Fig. 1a has a discrete label indicating the favourite sport of the actors. We could
also include numeric labels to indicate measures of physical activity; physical fitness (Body
Mass Index, resting heart rate); or even emotional states (a “happiness index”) (Fowler and
Christakis 2008).
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Figure 1b is a graph of a molecular structure: vertices are atoms and edges are chemical
bonds. In molecular structures, the vertex label (atom name) is conditionally dependent on
its place in the molecular structure: the degree of each vertex is dependent on the number of
free electrons of each atom. The lengths of the edges (atomic bonds) are dependent on the
atomic weights of the vertices.

Figure lc is a planar graph representing a frame in a video sequence where a red object
is moving across a green and blue background; vertices are superpixels in the video frame
and edges represent spatial relationships between adjacent superpixels. The colour of each
superpixel is conditionally dependent on the colour of adjacent vertices. The velocities of
adjacent vertices are also conditionally dependent, as the superpixels in the object will move
together and those of the background will move together.

Recent research on graph generating algorithms assumes that dependencies exist
between graph structure and attributes (Kim and Leskovec 2012). It is possible to learn
“affinity matrices” from real-world graphs (Kim and Leskovec 2011), which encode the
probability of an edge between each pair of vertices based on its attribute values.

Given that dependencies exist between graph labels and structure, what effect does this
have on substructure discovery? Consider the unlabelled partial clique in Fig. 2a. This graph
contains eight distinct substructures with two or more vertices; 27 instances in all. It will
require 20 GI tests to determine which instances are isomorphic. The graph in Fig. 2b has
the same structure, but each vertex is uniquely labelled. There are 27 distinct substructures
with a single instance of each: each substructure has a distinct vertex and edge partition set.
As substructures with different partition sets cannot be isomorphic, we can determine that
there are 27 distinct substructures without needing to do any GI tests.

A more subtle effect of vertex labelling is its effect on the number of possible expansions
of partially-overlapping substructures. Sometimes multiple instances of the same subgraph
overlap within one graph. Consider the example in Fig. 2¢, which has only one instance of
vertex A, but contains four instances of the substructure defined by £ = {(A, B)}. As the
size of the candidate substructures is expanded, the number of instances can go up or down:
there are six instances of {(A, B), (A, B)} and four instances of {(A, B), (A, B), (A, B)}.
In other words, where instances of the same substructure are allowed to overlap, the count
of instances violates the anti-monotone property. In general, overlapping instances do not
contribute independently to the support of that substructure,! but embedding lists maintain
arecord of each instance for the next phase of expansion, so it has an impact on the runtime
and memory requirements of the search.

In practice, most real-world graphs lie somewhere between the extremes of no labels and
a unique labelling for every vertex. Figure 3 shows the relationship between the number of
vertex partitions and the complexity of substructure discovery: the number of distinct sub-
structures rises linearly with the number of partitions (Fig. 3a), but the number of instances
of each substructure falls, leading to an exponential reduction in the number of GI tests
required (Fig. 3b).

In the next section, we exploit the dependencies between vertex labels to define a
constraint based on numeric attribute values. For frequency-based search algorithms, the
property of anti-monotonicity is preserved.

ISometimes overlapping substructures can contribute independently: Palacio (2005) discusses alternative
strategies for handling overlapping substructures in Subdue.
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DX

(a) Unlabelled graph (b) Labelled graph (c) Possible substructure expansions

Fig. 2 Relationship between vertex partitions and number of substructures

4 Frequent substructure discovery with numeric attribute constraints
Formally, we define a constraint as follows:

Definition 5 A constraint c is a Boolean predicate which any subgraph Gy € G must fulfil.
¢ is said to be anti-monotone if it satisfies the downward closure property:

YGi1 C Go: c(Gg) = c(Gy)

An example of an anti-monotone constraint is minimum support: the support (frequency
count) of a graph g cannot exceed the support of any of its subgraphs g’.

The anti-monotone condition holds for frequency-based approaches such as gSpan,
but not for the compression-based approach employed by Subdue. Subdue evaluates each
discovered substructure by its compression ratio, given as:

DL(G)
DL(S)+ DL(G|S)

where DL (G) is the description length of the input graph, DL(S) is the description length
of the substructure and DL(G|S) is the description length of G after compression with S.
As the compression ratio is a function of both the size and frequency of the substructure, it
is possible for a graph g to have a higher compression ratio than its subgraphs g’.

We have argued that the most descriptive substructures are those which are normative
both in terms of their structure and in terms of their numeric attributes. The corollary is that
vertices or edges containing numeric outliers are abnormal and can therefore be pruned early
in the discovery process. We determine whether numeric attributes are normal or anomalous
by means of a numeric outlier detection function:

Definition 6 We define a numeric outlier function ¢ on a dataset D as:

6:D >R VdeD:ﬁ(d):{qo 1fdls.normal w.rt. D
q otherwise

where ¢ is some constant value and g # ¢ is a value measuring the degree of outlierness.

The value of gy and the range of & depend on the specific choice of outlier detection func-
tion. & must be applicable to any general data set: we cannot assume prior knowledge of
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IVI = 1000, IEI = 8000 IVl = 1000, IEI = 8000
: ; 10° . . .

1000

900 1
850 1
800 1
750 1
700 1
650 1

No. of substructures

No. of Gl tests (log scale)
3 3

600 1

i L L L L 4 L1 L L L
50045 64 128 256 512 105664 128 256 512
32 32
No. of vertex partitions No. of vertex partitions
(a) Unique substructures (b) Graph Isomorphism tests

Fig. 3 Effect of no. of vertex partitions on complexity of substructure discovery?

how numeric attribute values are distributed. Each attribute may be generated by a separate
process, more likely multiple processes. We also expect that different generating processes
act on different parts of the graph structure.

Figure 4 shows an example of one numeric attribute from the Access Control dataset of
Section 5.1. The edges of the graph have a Time of Day attribute, which records when an
individual moved between a pair of door sensors (vertices). The processes which generate
Time of Day are dependent on the edge partition; Fig. 4a shows the distribution of Time of
Day for four sample partitions. For each partition, the mixture of processes is different: in a
lab, the people who work there tend to come in in the morning and around lunchtime; others
may visit the lab for short periods; security staff show up periodically for short intervals in
the middle of the night. The patterns of behaviours in a laboratory are very different from
those in a lift. Our method requires an unsupervised outlier detection function which can
perform reliably over a wide range of data distributions and mixtures.

To calculate outliers over a range of unknown data distributions, we use LOF. We chose
LOF for the reasons outlined in Section 2. The LOF score of a sample p is a measure of its
outlierness with respect to its local neighbourhood:

y lrdpinpis(0)
0€NMinpts (D) Irdpinps(p)

|Nminpes(p)|

where N is the number of samples in the dataset, Min Pts is the minimum number of points
to consider as the local neighbourhood and /rd is a function which computes the local
reachability density of the neighbourhood (the inverse of the average reachability distance
in the neighbourhood).

Intuitively, the LOF score is based on the distance of a sample from its local neighbour-
hood and the relative density of the neighbourhood. A sample d belonging to a dense cluster
or deep within a sparse cluster has LOF(d) < 1. Outliers have LOF values several times

LOFyinpis(p) =

2Figure 3 shows the results for R-MAT random graphs, with 0, 1, ..., 9 binary labels, i.e. 1-512 vertex
partitions. The label values were assigned independently from a uniform distribution. Our experiments on
real datasets (Section 5) verify that the complexity of substructure discovery increases with the homogeneity
of vertices and edges, and that this holds when the independence assumption is removed.
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larger. Thus LOF satisfies the property given in Definition 6: LOF(d) = 1 for normal values
of d and LOF(d) > 1 for anomalous values.

The distributions of LOF scores for the sample edge partitions are shown in Fig. 4b.
Although the data distributions are very different, the distributions of LOF scores are very
similar, with normal values < 1 and anomalous values stretching out in a long tail to the
right. LOF is therefore well-suited to unsupervised learning, as we can reliably detect out-
liers without making any assumptions about the underlying distribution of the data or the
sizes and densities of clusters.

Definition 7 For each vertex v € V;, we define d, as a multi-dimensional feature vec-
tor across all the numeric attributes of v: d, = %y (v, LN). The outlier factor €(d,) is
calculated relative to the dataset defined by its vertex partition:

0 :D; - R Yd, e D, :veV
Outlier factors for edges are defined analagously, relative to their edge partition.

Definition 8 A vertex v € V; is normal if (% (v, L)) < g, anomalous otherwise. An
edge e € E; is normal if 0(ZLg (e, LN)) < go, anomalous otherwise.

To use O as a constraint on substructure discovery, structural elements are classified as
normal or anomalous by Definition 8. Anomalous vertices and edges are pruned from

Time of Day (hour) Local Outlier Factor (LOF)
3000 10000 F
2000 ]
5000 |
1000 1
0 0
0 3 6 9 12 15 18 21 24 0 0.5 1 1.5 2 25 3
2000 T T T T T 10000
o 1000¢ 5000
Il
n 0 0
()
o 0 3 6 9 12 15 18 21 24 0 05 1 15 2 25 3
el
(0
© 1000 10000
o
pd
500 ‘m 5000
oLAAA A 0
0 3 6 9 12 15 18 21 24 0 0.5 1 15 2 25 3
400 1000
200 500 '
0 0
0 3 6 9 12 15 18 21 24 0 0.5 1 15 2 25 3
(a) Empirical data (b) LOFs

Fig. 4 Distribution of data and Local Outlier Factors (LOFs)
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the graph during pre-processing, before generating all frequent 1- and 2-vertex subgraphs.
After the pruning step, substructure discovery proceeds as normal. (Details are in the
Appendix.)

As we only consider elements with “normal” numeric values to be part of normative
substructures, this constraint dramatically reduces the number of GI tests required, without
significantly affecting which substructures are discovered. We validate this experimentally
in Section 6.

4.1 High-dimensional numeric attributes

LOF works well for datasets with low to moderate dimensionality. At higher dimensions,
we face additional challenges to handling complexity. The most expensive part of LOF is
discovering the k-NN of each point. At low dimensionality, the complexity of the k-NN
search is O(mnlogn) (for n data points with dimensionality m, using Indexed LOF). As
data dimensionality grows and L ,-norm distance measures lose their discriminative abil-
ity, indexing is no longer effective. The alternative—a sequential search for each point’s
neighbourhood—has complexity O(n%m). We address this problem by using PINN, where
the candidate k-NN set is determined in the projected space, with complexity O(nm logn).
Using RP + PINN + LOF makes LOF tractable for large, high-dimensional data. We
evaluate this scheme for graphs with high-dimensional numeric attributes in Section 6.3.

5 Datasets

There are applications of frequent substructure mining in almost every domain: the graphs
in Fig. 1 are from social network analysis, predictive toxicology and video scene analysis.
We evaluate our method on datasets from two application areas:

Physical building security Many secure buildings—such as airports, hospitals and power
stations—are equipped with Access Control Systems (ACS) based on door sensors and
electronic locks. Authorised users gain access by presenting credentials, typically an
ID card. The system authenticates users and records all movements in a database. Fre-
quent substructure mining can be used to identify “normal” and “suspicious” movement
patterns. We apply our frequent substructure mining approach to the ACS transaction
database of a large University campus (Section 5.1).

Digital forensics  During the 2011 News International phone hacking scandal, police in
Scotland Yard obtained evidence for their arrests from a database of 300 million e-mails.?
Mining a “who communicates with whom” e-mail network can focus attention on the
most important or most unusual communications. Ten years previously, e-mail evidence
played an important role in the indictments following the Enron scandal. One of the
problems facing investigators was the deliberate deletion of e-mails (McLean and Elkind
2003). Inference based on frequent patterns can be used to identify anomalous “holes” in
the network where e-mails may have been deleted. We apply our graph mining approach
to the Enron e-mail database organised as a social network (Section 5.2) and as a bipartite
network of senders and messages (Section 5.3).

3http://www.bbc.co.uk/news/uk- 15679784
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Fig. 5 Graph of access control transactions on a university campus

5.1 Access control system

The graph in Fig. 5a is from the building Access Control System (ACS) for a university cam-
pus. Vertices represent door sensors and directed edges represent movements between pairs
of sensors. The density of transactions is higher in areas with greater security requirements,
viz. laboratories for laser, radiation and medical research.

As we are interested in mining the typical paths through the network, we organised the
data as a graph transaction database, where each subgraph represents the movement of an
individual within a 12-hour time period (Fig. 5b). If a user fails to swipe a sensor (e.g.
someone holds open a door for them), there will be a missing vertex in the graph. We

Table 1 Characteristics of the access control system graph database (Fig. 5)

Graph type Graph Transaction Database
No. of graph transactions 70,595
Edge type Directed, with self-cycles
Vertices Edges
Discrete: Numeric:
Labels Door Sensor ID Absolute Time, Elapsed Time
Total number of elements 554,661 5,952,974
Maximum per transaction 340 57,630
Average per transaction 7.8 84.3
Number of partitions 468 339
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Fig. 6 Graph representations of Enron e-mail corpus

compensated for missing vertices by including forward edges, turning each chain graph into
a directed clique (Fig. 5c). Mining cliques is substantially more complex than mining chain
graphs.

The characteristics of the ACS graph transaction database are given in Table 1. We
labelled the graph edges with two numeric attributes: Absolute Time, the time of day (sec-
onds since midnight) when the user presented their ID card to the door sensor at the end of
the path segment; and Elapsed Time, the difference in seconds between the absolute time
at the current sensor and the absolute time at the previous sensor. This dataset is used to
evaluate LOF + gSpan (Section 6.1).

5.2 Enron social graph

During the investigation following the collapse of Enron (McLean and Elkind 2003), the
US Federal Energy Regulatory Commission ordered that the e-mails of over 150 senior
employees be made public. See Klimt and Yang (2004) for an overview of the Enron e-mail
corpus. For our experiments, we used all e-mail messages where the sender and at least one
of the recipients was one of the 159 identifiable individuals in the dataset.*

Our first Enron graph is a social graph showing who commnicated with whom (Fig. 6a).
Vertices are people; weighted edges represent the volume of communication. The detailed
characteristics of this graph are given in Table 2. As this is a single large graph, we use it to
evaluate LOF + Subdue (Section 6.2).

4Graphs are created from the August 21, 2009 version of the Enron corpus, https://www.cs.cmu.edu/~enron/.
Identification of individuals and job roles are from “Ex-employee Status Report”, http://www.isi.edu/~adibi/
Enron/Enron.htm. This spreadsheet contains 161 names, but two of them appear to be duplicates.
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Table 2 Characteristics of the Enron Social Graph (Fig. 6a)

Graph type Single large graph; weighted egonet
Structure Unipartite
Edge type Directed, with self-cycles
Vertices Edges
Labels Discrete: Employee type Numeric: Weight
Number of elements 159 2767
Number of partitions 9 58

5.3 Enron bipartite graph

Our third graph is a more detailed view of the Enron data, including a vertex for each
message as well as for senders and recipients. This is more interesting for data mining. We
labelled each message vertex with two numeric attributes: the Size of the message in bytes
and the Time it was sent (seconds since midnight). Figure 6b shows an excerpt of a few
messages and Table 3 gives the characteristics of the graph. This graph is used to evaluate
LOF + Subdue (Section 6.2).

5.4 High-dimensional numeric attributes

Common high-dimensional data objects include text or images. To evaluate the performance
of our approach on graphs with very high-dimensional numeric attributes, we used the bipar-
tite graph structure from Section 5.3, but replaced the low-dimensional numeric attributes of
Table 3 with a high-dimensional numeric representation of the message. Each message ver-
tex was labelled with a “bag of words”, a feature vector representing the occurances in the
message of the most common 1,000 words in the corpus. The experiments were conducted
using RP + PINN + LOF + Subdue, and were repeated for longer feature vectors with up to
4,000 dimensions. The results are in Section 6.3.

Table 3 Characteristics of the Enron bipartite graph (Fig. 6b)

Graph type Single large graph
Structure Bipartite
Edge type Directed
Vertices (Actors) Vertices (Messages) Edges
Discrete: Numeric: Discrete:
Labels Name Size, Time Sent FROM/
(Bag of Words) TO/CC/BCC
Number of elements 159 31,396 96,286
Number of partitions 159 1 636
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Fig. 7 Runtime and memory performance of constrained and unconstrained substructure discovery in the
Access Control System graph database

6 Experiments and results

Our experiments evaluate the runtime performance, memory performance and result set
coverage of our constrained mining approach compared to unconstrained mining, using
two well-established substructure discovery algorithms. For graph transaction databases, we
evaluate using gSpan. For single graphs, we evaluate using Subdue.

Implementation notes Our implementation of Subdue was written in C++, using the graph
isomorphism test from the Boost Graph Library (BGL).> We used the gSpan implementa-
tion from the gboost toolkit® as it can handle graphs with directed edges and self-cycles.
We implementated LOF in C++, and validated against the “official” implementation in the
ELKI toolkit.” The RP + PINN + LOF implementation was from ELKI. Graphs were stored
in GEXF format,® which allows an arbitrary number of discrete and numeric labels to be
attached to vertices and edges. Our experiments were conducted on an Intel Xeon 2.67 GHz
CPU with 100 Gb of main memory, running 64-bit Debian GNU/Linux 6.0 (“Squeeze”).

6.1 Graph transaction database

Figure 7 shows the runtime and memory performance of substructure discovery for the ACS
graph transaction database with the unconstrained search and constrained search, calculat-
ing LOFs on absolute time, elapsed time and on a two-dimensional feature vector of absolute
+ elapsed time. With unconstrained search, the lowest possible minimum support threshold
(minsup) was 1.3 %; below this, memory was exhausted and the search became intractable.
Using constrained search, it was possible to lower minsup to 0.4 % within the same time and

Shttp://www.boost.org/doc/libs/1 53 0/libs/graph/doc/isomorphism.html
Shttp://www.nowozin.net/sebastian/gboost/

7Environment for Developing KDD Applications Supported by Index Structures (Achert et al. 2013), http://
elki.dbs.ifi.Imu.de/

8Graph Exchange XML Format, http://gexf.net/format/
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memory limits. At minsup 1.3 %, constrained search with one numeric attribute ran ~ 100
times faster than unconstrained search. Using two numeric attributes ran 183 times faster.

Figure 8a shows the number of patterns returned at different minimum support thresh-
olds. The maximum number of patterns that could be discovered using the unconstrained
search was 54. With the constrained search, it is possible to find more patterns by lowering
the minimum support threshold.

As with all approximation approaches, our method does not guarantee completeness.
Figure 8b shows the coverage of the result set for various minimum support thresholds. As
a baseline, we took the 54 patterns discovered by unconstrained gSpan with minsup 1.3 %.
The figure shows that most of these patterns only show up between minsup 1.3-1.6 %.
The result set discovered using the elapsed time constraint at minsup 1.3 % is the same
as unconstrained search at minsup 1.6 %. By lowering minimum support, the constrained
search gradually recovers more of the result set. At minsup 1.0 % the constrained search
recovers around 45 % of the patterns in 16.8 seconds (against the unconstrained search
which takes 22.7 minutes to discover 100 % of the patterns).

Figure 8c and d give some insights into which patterns are retained. For comparison,
we set minimum support for constrained search to return approximately the same number
of patterns as the maximum number for unconstrained search: unconstrained search with
minsup 1.3 % (54 patterns; 1,363 secs) is compared to constrained search with minsup
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Fig. 8 Analysis of subgraphs returned by constrained and unconstrained substructure discovery in the
Access Control System graph database
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0.7 % (50 patterns; 10 secs). Figure 8c shows the count of each of the 54 patterns in the
unconstrained result set. In the constrained result set, the support of most patterns is reduced
slightly; where the support level dropped below the minimum support threshold, the count
shows as zero. Figure 8d shows the relative ranking of the top 20 patterns for the same result
set. The top 10 patterns (those with the highest support) are all retained, though the ranking
order is changed.

These results show a beneficial trade-off between improved performance and reduced
coverage. We have argued that the patterns which are retained are the most descriptive ones,
as they satisfy both minimum support and the normal numeric attribute constraint. This
conclusion could be strengthened by applying our approach to a supervised learning task on
a dataset with ground truth.

6.2 Single large graphs

The results for single large graphs (LOF + Subdue) are shown in Figs. 9 and 10. Figure 9
shows the results on the Enron graphs for a range of Subdue parameter settings: depth con-
trols how large discovered substructures are allowed to grow before the search terminates;
beam width controls the “greediness” of the search.

The Enron Social graph (Fig. 9a) has a single numeric attribute (edge weight). At depth
4, the constrained search was 142 times faster. Increasing to depth 7, the unconstrained
search was intractable; narrowing the beam width to 10, the constrained search was 155
times faster. At depth 10, the unconstrained search was intractable even at beam 10, but the
constrained search could still complete in reasonable time, even at beam 100.

The Enron Bipartite graph (Fig. 9b) has two numeric attributes: as in Section 6.1, cal-
culating LOFs across the two-dimensional feature vector gives better performance than
using either attribute in isolation. Memory requirements are similarly reduced (Fig. 9c¢);
using more numeric attributes makes the search more tractable. These results demonstrate
that using our approach, we can relax the greediness of the Subdue search while keeping
processing time tractable.

The constrained search returns a similar set of patterns to the unconstrained search
(Fig. 10). As Subdue uses a greedy search heuristic, it does not guarantee completeness, so
it is not meaningful to compare coverage. The relative counts of the top patterns are shown
in Fig. 10a-b. As Subdue ranks patterns by their compression ratio, the most frequent pat-
terns are not necessarily ranked highest. While the total number of instances of each pattern
have been reduced by the constraint, the relative count of each pattern is approximately
preserved.
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Fig. 9 Performance of substructure discovery in the Enron graphs
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Fig. 10 Analysis of subgraphs returned by substructure discovery in the Enron graphs

The compression ratios of the top patterns are compared in Fig. 10a—d. The shape of the
curve is approximately preserved for the constrained and unconstrained search. In Fig. 10c,
the gradient of compression ratios is steeper using the constraint. By removing anomalous
edges, we have increased the discrimination between “good” patterns and less good patterns.
In the Bipartite graph (Fig. 10d), there are a smaller number of interesting patterns to begin
with (patterns with a compression ratio of 1.0 or less are not interesting). The compression
ratios of the interesting patterns are preserved very well.
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Fig. 11 Random Projection (RP) + PINN + LOF on “bag of words” feature vectors on Enron bipartite graph

The ranking of the top 20 substructures discovered by the constrained and unconstrained
searches is shown in Fig. 10e—f. For both graphs, 17 of the top 20 results are the same,
and the ordering is very similar. Thus our constraint-based approach provides order-of-

magnitude improvements in discovery time with little impact on which substructures are
discovered.

6.3 High-dimensional numeric attributes

Our experiments using RP + PINN + LOF to calculate outliers on the Enron bipartite graph

(Fig. 11) are preliminary, but suggest some interesting directions for future research.
Figure 11a shows the time to compute outliers on the full Enron bipartite graph of

300,000 vertices, each with numeric attributes of 1,000-4,000 dimensions.® This verifies

9We were unable to calculate RP + PINN + LOF for larger datasets due to memory constraints. The random
projection (Achlioptas 2003) used by PINN is designed to be “database-friendly”’; by changing the indexing
method it would be possible to create a PINN implementation which creates its index on disk in order to
process larger or higher-dimensional datasets.
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that the PINN approach is tractable for processing the high-dimensional attributes of large
graphs.

Figure 11b shows the distribution of LOF scores at the lower end of the scale (values
above 6 in the long tail are not shown). Figure 11c—d show the full distribution of LOF
scores for 1,000 and 4,000 dimensions. The shape of the curve in Fig. 11b is somewhat
different to the characteristic shape of LOF for low-dimensional attributes (Fig. 4). At first
glance, the threshold at which a point is an outlier seems to be around & 2.5 rather than 1. As
dimensionality increases, the distribution of normal values changes only slightly (Fig. 11b),
but the distribution of outliers becomes spread out over a wider range (Fig. 11c—d).

These initial results are encouraging, but further investigation is required. The L ,-norm
distance measures used by LOF are valid on dense feature vectors (as long as each dimen-
sion adds information (Zimek et al. 2012)) but we need to establish that they remain
meaningful on sparse feature vectors such as our bag of words. If the distances are valid, it
may be necessary to rescale the LOF scores, for example using one of the methods presented
in Kriegel et al. (2011).

6.4 Comparison with random removal

To verify that performance improvements are not simply because the graph is smaller,
we compared our constraint-based approach to random removal of graph edges. For this
experiment, we randomly deleted 10-90 % of the edges in the ACS graph database before
searching for frequent substructures (Fig. 12).

Figure 12b shows how random removal affects the frequency of the top 10 substruc-
tures, compared to the constraint-based approach. Randomly removing edges increases the
entropy of the graph: the shape of the curve becomes flatter as more of the graph is removed.
After 20 % edge removal, discrimination between substructures 4-10 has degraded and
by 50 % edge removal, the order is random. Randomly deleting graph edges reduces the
computational load, but does not preserve information about the “goodness” of discovered
substructures.

Our results show that our constraint-based approach can find frequent subgraphs more
efficiently than an unconstrained approach. While we do not guarantee completeness, we
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retain the most descriptive subgraphs and improve the discrimination between subgraphs
in the result set. In many cases where the input graph is intractable with an unconstrained
approach due to the computational or memory overheads, our approach allows the graph to
be processed.

7 Conclusions

In this paper we have presented a method of using numeric outliers as a constraint on the
search for frequent substructures in graphs. Our thesis is that the “best” substructures are
those which are not only the most frequent, but which are also normative in terms of their
numeric attributes.

We evaluated our approach on frequent subgraph mining and heuristic graph mining in
single large graphs. For frequent mining, we measured the trade-off between improved pro-
cessing time and completeness of the result set. For the heuristic search, we show that the
relative count and compression ratio of each pattern are approximately preserved, yielding
an order of magnitude improvement in runtime and memory requirements, without signifi-
cantly altering which patterns are discovered. An important consequence is that substructure
discovery remains tractable for larger graphs than is possible with the standard algorithms.

In this paper, we implemented our approach as a pre-processing step. It is also pos-
sible to incorporate it directly into the support calculation. The LOF scores for each
edge are LOF(d,) ~ 1.0 for normal values and LO F(d,) > 1 for anomalous values.
By weighting each edge as 1/LO F(d,), we can calculate the weighted support of each
instance as the average of the edge weights. Instances with normal numeric attribute will
have support ~ 1, while instances with anomalous numeric attributes will have support
< 1. This approach can be used as a measure within the weighted constraint framework
of Eichinger et al. (2010). We propose to evaluate this method experimentally in our future
work.

We have argued that the patterns returned by our approach are the most descriptive ones,
because they have normal numeric attributes in addition to meeting minimum support. We
propose to objectively measure the accuracy of our approach by applying it to a classifi-
cation task on a dataset with ground truth. We expect to be able to improve classification
accuracy by incorporating numeric attributes.

While constraints based on a single numeric attribute provided significant improvements,
the best results were observed when using multiple attributes. We also presented an outline
of how our method could be applied to graph objects with very high-dimensional features
(e.g., image or text attributes). For graphs with a sparse high-dimensional representation,
such as the Enron bag of words, further investigation is indicated to determine whether
L ,-norm distances are still discriminitive. If L ,-norm distances are not appropriate, fur-
ther research is required to determine whether there exists a “database-friendly” random
projection for other more suitable distance measures.

Where there is a high-dimensional representation with many irrelevant attributes, we
could amend our approach to detect numeric anomalies in subspaces rather than in
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full space by choosing only locally-relevant attributes on which to calculate the outlier
score.

Finally, we note that while our main concern in this work has been to discover the most
descriptive patterns, it is also possible to use it to detect anomalous subgraphs. Anomalous
subgraphs can be defined in terms of frequent subgraphs with anomalous numeric attributes.

Acknowledgments We would like to thank Erich Schubert at Ludwig-Maximilians Universitit Miinchen
for assistance with verifying our LOF implementation and providing us with the RP + PINN + LOF
implementation ahead of its official release in ELKI.

Appendix

The substructure discovery algorithms referred to throughout the paper are included here
for convenience. The original references are Yan and Han (2002) for gSpan and Cook and
Holder (2000) for Subdue.

A gSpan

To apply our method to gSpan, we calculate numeric anomalies for all vertices and edges

by Definition 8 as a pre-processing step. Then amend step 2 to Remove infrequent and
anomalous vertices and edges.

Algorithm 1 GRAPHSET PROJECTION: search for frequent substructures

Require: Graph Transaction Database D, minSup

1:  Sort the labels in D by their frequency
2:  Remove infrequent vertices and edges
3:  Relabel the remaining vertices and edges
4:  S! <« all frequent 1-edge graphs in D
5:  SortS! in DFS lexicographic order
6: S« 8!
7. foralledgee € S' do
8: Initialise s with e, set s.D to graphs which contain e
9: Subgraph Mining(D, S, s)
10: D« D-e
11: if |D| < minSup then
12: break
13:  return Discovered Subgraphs S
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B Subdue

To apply our method to Subdue, calculate numeric anomalies for all vertices and edges by
Definition 8 as a pre-processing step (as above). Prune all anomalous vertices and edges
from the graph before step 5.

Algorithm 2 SUBDUE: search for frequent substructures
Require: Graph, BeamWidth, MaxBest, MaxSubSize, Limit

1: let ParentList = {}

2:  let ChildList = {}

3: let BestList = {}

4:  let ProcessedSubs = 0

5:  Create a substructure from each unique vertex label and its single-vertex instances;

insert the resulting substructures in ParentList

6:  while ProcessedSubs < Limit and ParentList is not empty do

7 whileParentList is not empty do do

8: let Parent = RemoveHead(ParentList)

9: Extend each instance of Parent in all possible ways
10: Group the extended instances into Child substructures
11: for all Child do
12: if SizeOf(Child) < MaxSubSize then
13: Evaluate the Child
14: Insert Child in ChildList in order by value
15: if Length(ChildList) > BeamWidth then
16: Destroy the substructure at the end of ChildList
17: let ProcessedSubs = ProcessedSubs + 1
18: Insert Parent in BestList in order by value
19: if Length(BestList) > MaxBest then
20: Destroy the substructure at the end of BestList
21: Switch ParentList and ChildList

22:  return BestList
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