
JUNE 1998 1541S H C H E P E T K I N A N D M C W I L L I A M S

q 1998 American Meteorological Society

Quasi-Monotone Advection Schemes Based on Explicit Locally Adaptive Dissipation

ALEXANDER F. SHCHEPETKIN AND JAMES C. MCWILLIAMS

Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

(Manuscript received 25 February 1997, in final form 17 June 1997)

ABSTRACT

The authors develop and test computational methods for advection of a scalar field that also include a minimal
dissipation of its variance in order to preclude the formation of false extrema. Both of these properties are desirable
for advectively dominated geophysical flows, where the relevant scalars are both potential vorticity and material
concentrations. These methods are based upon the sequential application of two types of operators: 1) a conservative
and nondissipative (i.e., preserving first and second spatial moments of the scalar field), directionally symmetric
advection operator with a relatively high order of spatial accuracy; and 2) a locally adaptive correction operator of
lower spatial accuracy that eliminates false extrema and causes dissipation. During this correction phase the provisional
distribution of the advected quantity is checked against the previous distribution, in order to detect places where the
previous values were overshot, and thus to compute the excess. Then an iterative diffusion procedure is applied to
the excess field in order to achieve approximate monotone behavior of the solution.

In addition to the traditional simple flow tests, we have made long-term simulations of freely evolving two-
dimensional turbulent flow in order to compare the performance of the proposed technique with that of previously
known algorithms, such as UTOPIA and FCT. This is done for both advection of vorticity and passive scalar.
Unlike the simple test flows, the turbulent flow provides nonlinear cascades of quadratic moments of the advected
quantities toward small scales, which eventually cannot be resolved on the fixed grid and therefore must be
dissipated. Thus, not only the ability of the schemes to produce accurate shape-preserving advection, but also
their ability to simulate subgrid-scale dissipation are being compared. It is demonstrated that locally adaptive
algorithms designed to avoid oscillatory behavior in the vicinity of steep gradients of the advected scalars may
result in overall less dissipation, yet give a locally accurate and physically meaningful solution, whereas al-
gorithms with built-in hyperdiffusion (i.e., those traditionally used for direct simulation of turbulent flows) tend
to produce a locally unsufficient and, at the same time, globally excessive amount of dissipation. Finally, the
authors assess the practial trade-offs required for large models among the competing attributes of accuracy,
extrema preservation, minimal dissipation (e.g., appropriate to large Reynolds numbers), and computational cost.

1. Introduction

The most energetic geophysical fluid motions occur at
large spatial scales, hence have a large Reynolds number,
and thus often have advection as their dominant evolu-
tionary process. Furthermore, because of the various con-
straints of planetary rotation, stable density stratification,
and the mean shear and magnetic fields, these motions are
often anisotropic in the sense that the horizontal advection
(parallel to the earth’s surface) dominates the vertical. Fi-
nally, fluid trajectories typically span less than a density
scale height, so that the mass field is approximately in-
compressible. Therefore, skillful numerical methods for
calculating advection by an approximately two-dimen-
sional, nondivergent velocity are of great geophysical im-
portance.
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a. Advection and dissipation

Advection schemes that conserve energy (essentially a
quadratic integral functional of the solution field), enstro-
phy (mean-square vorticity or potential vorticity), and qua-
dratic variance of passive scalar have been used widely
in geophysical computational fluid dynamics (Lilly 1965;
Arakawa 1966; Arakawa and Lamb 1981; Arakawa and
Hsu 1990; Sadourny 1975). These methods usually have
had only second-order spatial accuracy, perhaps because
of the difficulty of proving their conservation properties.
The conservation properties guarantee stability of the al-
gorithms suitable for long-term simulations. However, due
both to dispersive computational errors (i.e., where dif-
ferent Fourier components in the advected field propagate
differentially, giving rise to oscillatory patterns) and to
advectively induced turbulent cascades, these methods al-
low accumulations of variance at the smallest resolved
scales (i.e., the grid scale). This variance must be con-
trolled through smoothing of the fields, hence dissipation
of the advectively conserved quantities, in order to avoid
a physically false evolution toward equipartition states
(Bennett and Haidvogel 1983). This is typically accom-
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plished through additional Laplacian or higher-order dif-
fusion operators or low-pass spatial filters. Grid-scale dis-
sipation is a necessary artifice in lieu of the continuing
cascades of variance to the actual dissipation by molecular
collisions at scales much finer than are computationally
feasible. Because of this, it is plausible that minimizing
the computational dissipation, while avoiding an equipar-
tition catastrophe, improves the geophysical realism of the
simulation.

In contrast, the advection schemes developed for en-
gineering practices have focused primarily on accuracy,
shape preservation of the profile of the advected quantity,
and handling of discontinuities, while conservation of qua-
dratic invariants has not been a design goal (Boris and
Book 1973; Zalesak 1979; van Leer 1979; van Leer 1985;
Colella and Woodward 1984). In these schemes, the nec-
essary dissipation is accomplished implicitly through the
form of their discretization errors. Some recent geophys-
ical applications of these schemes have been shown to
produce smaller overall dissipation and greater accuracy
than quadratic-conservative schemes combined with ex-
plicitly diffusive dissipation [e.g., Bennet and Cummins
(1988); Carpenter et al. (1990); Farrow and Stevens
(1995); Hecht et al. (1995); Leonard et al. (1995b)].

A nondissipative, finite-difference advection scheme is
an unachievable goal—even in the absence of physically
induced dissipation—because the introduction of a fixed
grid violates Galilean invariance, resulting in false oscil-
lations associated with the dispersive errors. As the result,
the dissipative mechanisms designed to control these non-
physical effects are also allowed to violate Galilean in-
variance (Boris 1989). These mechanisms include viscos-
ity proportional to the local velocity (Hyman 1979); non-
linear viscosity, which switches on and off, depending on
the behavior of the solution (Forester 1977); hyperdiffu-
sion inherent for upstream-biased schemes (Leonard 1979;
Davies 1980; Tremback et al. 1987; Rasch 1994); and
nonlinear, gradient-limiting, and flux-limiting algorithms
(Zalesak 1979; Colella and Woodward 1984; Sweby 1985;
Bott 1989; Colella 1990; Odstrvcil 1990; Leonard and
Niknafs 1991; LeVeque 1992; Chlond 1994; Thuburn
1996).

All dissipative algorithms may be subdivided into two
major groups:

1) Scale-selective or weak dissipation relies on an even-
order derivative as the dominant term in either the explicit
smoothing operator or the implicit truncation error. Dis-
regarding a first-order upstream scheme and Laplacian dif-
fusion (the classical fluid-dynamical representation of mo-
lecular dissipation), both of which are too dissipative for
simulation of convectively dominated flows, the lowest-
order example is a third-order scheme with a fourth-order
derivative providing the route to dissipation. The great
majority of semi-Lagrangian schemes have dissipation of
this kind [e.g., McCalpin (1988); Raymond (1994)], and
higher-order schemes are seldom used. The term ‘‘weak’’
is used because the dissipation formally vanishes when

grid size goes to 0 for a fixed degree of smoothness of
the solution.

2) Location-selective, locally adaptive, or strong dis-
sipation relies on locally imposed dissipation sufficient
enough to suppress dispersive overshoots in regions of
strong curvature in the advected quantity. This requires
the capability of the algorithm to locally lower its local
order of accuracy to the level of first-order upstream ad-
vection, although the overall amount of dissipation is much
less than with a uniformly applied first-order upstream
scheme. These algorithms are often referred to as flux
limiting, but in general it may be in done in many different
ways: for example, local explicit diffusion (Forester 1977);
gradient limiting (van Leer 1979); imposing total variance
diminishing (TVD) constraints, (Sweby 1985; LeVeque
1992); constraining the interpolation polynomials for
monotonicity preservation, (Colella and Woodward 1984);
use of exponential splines that can capture sharp change
of gradient without causing oscillations (Chlond 1994;
Böttcher 1996). The term ‘‘strong’’ is chosen to emphasize
that this kind of dissipation is allowed to be as strong as
necessary, even at the expense of a local loss of analyticity
required to estimate a formal order of accuracy.

Historically, virtually all advection algorithms that have
strong dissipation also have weak dissipation in their trun-
cation error. [An exception is the three-time-level version
of the flux-corrected transport (FCT) algorithm (Zalesak
1979).] This is because the majority of these algorithms
have forward-in-time, forward two-time-level schemes,
which require dissipation for computational stability [e.g.,
LeVeque (1992)]. Leonard (1979) formulated the follow-
ing minimal requirements for advective schemes, whether
or not flux limiting is employed: the leading-order advec-
tive truncation error should (i) have a derivative of higher
order than the highest physical derivative in the equation
to be approximated and (ii) be (weak) dissipation domi-
nant.

Below we demonstrate that it is important to maintain
high-order accuracy to minimize the phase errors in an
advective scheme. Once an adaptive damping mechanism
is used to prevent buildup of dispersive errors, the re-
quirement for the dissipative dominance is no longer nec-
essary; however, we keep the requirement that the advec-
tive scheme be numerically stable when this mechanism
is turned off.

b. Principle of monotonicity

The physically motivated principle of monotonicity for
an incompressible flow is that the concentration of an
advected scalar on a Lagrangian particle may be only (i)
conserved and (ii) diffused, satisfying the conservation
principle for advection, the maximum principle for the
diffusion equation, and the superposition principle for
both. Thus, the dissipative processes cannot amplify ex-
isting extrema nor steepen gradients beyond limits to
which they are steepened by the flow without diffusion.

A difficulty with this principle is that it cannot be trans-
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lated in a simple way to the discrete level. We repeat the
basic statements of the theory of monotone methods
(LeVeque 1992; Harten 1983), in order to understand the
consequences for the design of a numerical algorithm.

An equivalent continuous definition for the principle of
monotonicity states that for any two initial conditions
(1)q(x, t0) and (2)q(x, t0), such that

(1)q(x, t0) $ (2)q(x, t0),

for all x, this inequality remains valid at any later time,
(1)q(x, t) $ (2)q(x, t), t $ t0. (1)

As a consequence, if an additional positive amount of the
advected quantity is injected somewhere into the flow, this
injection cannot cause the altered concentration to be
smaller than the original one anywhere later in time.

A discrete two-time-level algorithm 5 H(qn; i) isn11qi

called monotone if it guarantees that for any pair of two
discrete fields (1) and (2) such that,1n nq qi i

(1) $ (2) ∀i,n nq qi i

the same property holds at the new time step,
(1) $ (2) ∀i.n11 n11q qi i (2)

If an algorithm is monotone, it has the TVD, positive-
definiteness, monotonicity [e.g., LeVeque (1992)] and con-
stancy-preserving (Leonard et al. 1996) properties. On the
other hand, none of these properties is sufficient to guar-
antee that the algorithm is monotone. To prove that an
algorithm is monotone, it is sufficient to check that it is
convex, that is,

]
n nH(q ; j) $ 0 ∀i, j, q . (3)jn]qi

This limitation is severe, because any monotone (convex)
algorithm is at most first-order accurate in space and time
(Godunov 1959).

Any linear monotone algorithm,

H (q ; j) 5 c q , (4)Oi j ij j
j

with matrix coefficients cij that do not depend on qj, is
first-order accurate globally in space. A natural means of
confining the inaccuracy to be only local is to allow the
cij to depend on the solution qj. This dependency means
that even if the continuous problem of advection of a
passive scalar is linear, the discrete algorithm is inherently
nonlinear and violates the principle of superposition. All
locally adaptive algorithms inherently have this feature.

Any locally adaptive procedure is essentially comprised
of three components: a high-order accurate basic advection
scheme; a constraining algorithm, expressing the desired
property at a discrete level; and an enforcement mecha-

1 Although both Harten and LeVeque formulate only one-dimen-
sional version of the definition of monotone algorithm, generalization
to the multidimensional case is self-evident.

nism, which allows the final solution to be as accurate as
possible without violation of the constraint, unavoidably
resulting in dissipation.

Typically the constraining algorithm requires that the
new time step values at grid point i lie within permissible
bounds,

# # ,(min) n11 (max)q q qi i i (5)

where and are usually determined from the(min) (max)q qi i

values of of field q at the previous time step at location
i and its upstream neighbors. Algorithms with this type of
constraint have been devised in one, two, and three di-
mensions.

Though the requirement for the value of the advected
quantity at the grid point i to lie within the triange/tetra-
hedron built on upstream points is a natural consequence
from the principle of monotonicity, no constraining al-
gorithm is likely to fully assure this principle. This is
because the discrete algorithms involve unreliable as-
sumptions about the behavior of the field structure between
grid points. In a flux form of discrete conservation law
the gridpoint values are naturally interpreted as the average
of the advected quantity within the control volume—the
grid cell. On the other hand, the constraining algorithm
treats them as just sampling values, which implies that for
the purpose of calculating the permissible bounds the field
is treated as it is constant within the cell.

In one dimension this limiter guarantees TVD property
of the method; however, the constraint Eq. (5) is somewhat
more restrictive than standard TVD limiters in the sense
that it not only prohibits amplification of the existent and
creation of new extrema in field q, but also restricts
changes in it from one time step to the next at grid points
which are not extrema, thus restricting possible growth of
gradients per time step. The constraint Eq. (5) does not
prevent, however, artificial steepening of the slopes in-
duced by the basic scheme over many time steps, because
it has an interval of insensitivity, in which the behavior
of the basic scheme remains uncontrolled. Since the per-
missible bounds are recomputed at every time step, it make
take several time steps before an overshot is detected. This
may result in the evolution of smooth profiles toward a
series of steps (‘‘staircasing’’). {Alternatively, one can des-
ignate slope limiters [e.g., van Leer (1979)], but the gen-
eralization to multiple dimensions is not straightforward.}

A suggestion about how to prevent staircasing is to
make the basic scheme be at least linearly stable. Although
this principle is not entirely new (van Leer 1979; Zalesak
1979; Leonard and Niknafs 1991), it is far from being
universally accepted. If their flux-limiting functions are set
to unity, the family of classical second-order TVD flux-
limited schemes described in LeVeque (1992) become
equivalent to the forward-in-time, second-order centered-
in-space scheme, which is linearly unstable. In contrast,
if the antidiffusive fluxes are applied at full weight in
Zalesak’s FCT algorithm, it becomes equivalent to its basic
scheme, which is centered in space and leapfrog or pre-
dictor–corrector in time, which is stable (Zalesak 1979).
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However, the ‘‘general FCT procedure,’’ as interpreted by
Smolarkiewicz, has a two-time-level, centered-in-space
and forward-in-time basic scheme, hence it is linearly un-
stable (Smolarkiewicz and Grabovski 1990). (Since these
kinds of FCT algorithms are becoming widely used in
geophysical modeling, we further analyze their behavior
in appendix A.)

A different kind of deficiency is amplitude ‘‘clipping’’
of narrow extrema, and it can also occur with constraining
limiters that appear to be too restrictive in the vicinity of
the extrema. Although this phenomenon is well studied
(Leonard and Niknafs 1991), a reliable algorithm to dis-
criminate physical extrema from dispersive overshoots in
multiple dimensions has not yet been designed; this is
further discussed in appendix A. If such a discriminator
is used, the resultant solution no longer has the discrete
TVD property.

In summary, the excessive dissipation and low-order
accuracy of a monotone discrete algorithm and the lack
of any assurance of consistency with the monotonicity
principle by higher-order, locally adaptive algorithms
based on particular constraining algorithms limit the direct
applicability of this principle; however, this does not pre-
clude it as a guideline in designing numerical schemes.

c. Approach

The goal of the algorithms studied in the present paper
is to achieve an optimal balance of minimal dissipation
and physically accurate behavior of the solution on the
grid scale without spurious oscillations. The advection and
dissipation stages are separated. This allows the use of a
high-order accurate, centered-in-space, nearly quadratic
conservative basic advection scheme. Its cost is offset by
the fact that it is used only once, and that it is not accom-
panied by any alternative low-order, upstream scheme.
Moreover, in comparison with high-order upstream tech-
niques, the centered scheme is simpler and less expensive
to compute because no upstream switching is involved.
After the advection step is performed, a correction stage
to suppress possible dispersive oscillations is applied. This
procedure is purely dissipative; it uses the principle of
monotonicity as the basis for its design and, unlike most
dissipative operators built into the truncation error of an
upstream advection scheme, it may be formulated in a
physically meaningful way.

However, these algorithms are not stictly monotone and
do not have either TVD or monotonicity preservation pro-
peries, for the two following reasons:

1) The dissipation stage is a nonlinear filtering proce-
dure, which involves explicit computation and iterative
diffusion of the dispersive overshoots; hence the desirable
property (the values of the advected quantity at the new
time step lie within permissible bounds) is achieved only
asymptotically.

2) We provide an option in which the constraint im-
posed by Eq. (5) is relaxed or even turned off in a con-
trollable manner in the vicinity of a physically acceptable

extremum; hence, the solution does not satisfy TVD prop-
erty even if a strict enforcement mechanism is used.

Unlike previous adaptive nonlinear filters (e.g., Forester
1977; Engquist et al. 1989; Shyy et al. 1991), the proposed
techniques are fully multidimensional for both advective
and corrective phases, and we argue that this approach is
more suitable for incompressible high–Reynolds number
flows, where the contributions due to fluxes along different
directions are strongly coupled and therefore cannot be
limited separately.

d. Organization

This paper is organized as follows. In section 2 we
introduce explicit locally adaptive dissipation and discuss
measures to minimize dispersive errors, for uniform, one-
dimensional advection. In section 3 we generalize to two
dimensions and perform traditional numerical tests for ro-
tational flow. In section 4 we describe numerical experi-
ments with two-dimensional turbulence to compare the
performance of the new algorithm with previously pro-
posed schemes, such as UTOPIA and various versions of
the FCT algorithm. In section 5 we discuss how adaptive
and nonadaptive numerical schemes simulate subgrid-
scale dissipation when turbulent cascades create strong
gradients of the advected field on the grid scale. In section
6 we discuss numerical biases arising during long time
integrations of turbulence. In section 7 we report the com-
putational costs for different schemes. In section 8 we
discuss the trade-offs associated with different degrees of
strictness in enforcement of monotonicity, higher accuracy,
and smaller dissipation.

2. One-dimensional advection

Consider first the one-dimensional hyperbolic problem:

]q ]
1 (cq) 5 0, (6)

]t ]x

where q is the advected quantity and c is the advection
speed. For one-dimensional incompressible flows, c must
be a spatial constant, and we assume c . 0.

a. Basic schemes

The general, symmetric scheme to approximate ]q/]x
at the rth order of accuracy may be represented as

r /2]q 1
ø a (q 2 q ), (7)O m i1m i2m)]x Dx m51xi

where the coefficients {am | m 5 1, r/2} are defined for
each r as
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1
r 5 2 a 51 2

2 1
r 5 4 {a , a } 5 , 21 2 5 63 12

3 3 1
r 5 6 {a } 5 , 2 ,m 5 64 20 60

4 1 4 1
r 5 8 {a } 5 , 2 , , 2m 5 65 5 105 280

5 5 5 5 1
r 5 10 {a } 5 , 2 , , 2 , . (8)m 5 66 21 84 504 1260

We use a leapfrog (LF) time step to advance in time
the discrete approximation for Eq. (6). The computa-
tional mode of LF time step is suppressed by applying
trapezoidal rule (TR) correction every 20 time steps.

As test problems we chose the three different initial
conditions shown on the top left of Fig. 1. They are a
top-hat profile on the left,

0, x , 3/32
q(x)| 5 1, 3/32 # x # 9/32 (9)t50 
0, x . 9/32,

and two relatively smooth profiles defined by

q(x)|t50


x 2 x04cos p , x 2 s # x # x 1 s0 01 2 2s5 

0, everywhere else,
(10)

where (x0, s) 5 (81/128, 3/64) for the narrower peak in
the middle and (113/128, 3/32) for the wider peak on the
right. The grid resolution is 256 for the unit periodic do-
main. Hence the square profile is 48 grid points wide,
while the narrow and wide peaks are approximately 6 and
12 grid points wide, measured on their half-height. Only
about one-third of the domain is plotted for each of the
three cases.

The five panels on the left side of Fig. 1 below the
initial conditions show nondissipative solutions obtained
by approximations (7)–(8). The Courant number is Cu 5
cDt/Dx 5 1/4, which is the half of the critical value al-
lowed by the stability limit for LF step. The solutions are
shown after 1024 time steps, corresponding to one period.
In the ideal case the final distribution should coincide with
the initial state. The exact solution, shown by the dotted
line, is superimposed for reference.

The schemes (7)–(8) with LF time step have a purely
dispersive truncation error, since they all conserve exactly
both the net content and the quadratic variance of the
advected quantity. Except for the wide peak, all of the
solutions clearly exhibit spurious oscillations. For the nar-

row and wide peaks, the solutions converge with increas-
ing order of accuracy. Measured by the negative overshoot
values at the trailing edge of the peak, the second-order
scheme is less accurate for its wide peak (i.e., with twice
as fine grid resolution) than the fourth-order scheme for
its narrow peak. For the top hat, both the amplitude and
the wavelength of the dispersive oscillations decrease with
increasing order of accuracy. There is a drastic improve-
ment when going from second to fourth order, while fur-
ther changes are moderate.

b. Explicit locally adaptive dissipation

Our proposal to suppress the spurious oscillations is
explicit locally adaptive dissipation (ELAD), as follows.
At every time step, just after the advective step is made
as above, the newly computed field q̂n11 is checked for
overshoots.

Step 1: Determine the minimum and maximum per-
missible values for at every grid point xi based onn11qi

the values of qn at xi and the adjacent upstream point xi21,

(min) n nq 5 min(q , q )i i i21

(max) n nq 5 max(q , q ). (11)i i i21

Step 2: Compute the excess field for q̂n11,

(max)n11e 5 max(0, q̂ 2 q )i i i

(min)n111 min(0, q̂ 2 q ), (12)i i

which measures the overshot magnitude. Obviously, ei

5 0 if the computed value of is within the per-n11q̂i

missible range, , , .(min) n11 (max)q q̂ qi i i

Step 3: Diffuse the excess field by applying a discrete
diffusive operator at the maximum weight allowed by the
well-known stability criterion for the diffusion equation,

1
n11 n11q 5 q̂ 1 (e 2 2e 1 e ). (13)i i11 i i212

Iterate step 2 and step 3 until overshoots are eliminated
or reduced below the acceptable level.

The solutions obtained by this corrected scheme are
shown in the right column of Fig. 1, again for successive
orders of accuracy in the basic advection scheme. Eight
diffusive iterations were used for the second-order scheme,
and four for all others. Except for the second-order scheme,
the oscillations are almost completely eliminated, but this
occurs at the expense of some clipping of the narrow peak.

We emphasize that one should not just subtract the ex-
cess field ei from in place of step 3, Eq. (13). Doingn11q̂i

so would violate the conservation principle for the total
content of q. The proposed approach provides a mecha-
nism for redistribution of the excessive amounts of q
among the grid points in order to eliminate the dispersive
wiggles while preserving total content and causing some
dissipation of variance.



1546 VOLUME 126M O N T H L Y W E A T H E R R E V I E W

FIG. 1. One-dimensional advection of sharp and smooth passive scalar profiles. (Left) Top pattern labeled
t 5 0 shows three different initial conditions. Only approximately one-third of the whole periodic domain of
256 grid points is shown in each case. The rectangle is 48 grid points wide, while the smooth profiles are 6
and 12 grid points wide, measured at a level of one half of their peak. The functions specifying the three
scalar profiles are equal to 0 outside the regions of 48, 12, and 24 grid points. For each numerical scheme
described below, these three cases were run independently from each other for one period, which corresponds
to 1024 time steps at Courant number of 1/4. Labels 2, 4, 6, 8, and 10 indicate order of accuracy of spatial
differencing, while suffix -E inicates cases when the explicit adaptive dissipation was applied. Solutions shown
on the left half are nondissipative. Note how the solution for both smooth profiles converges with the increase
of order of accuracy of the scheme. (Right) Top pattern shows first-order-accurate upstream solution.

c. Sources of numerical dispersion

The results in Fig. 1 show the advantage of higher-order
schemes, despite the fact that the solutions are not smooth
and one cannot rely on convergence in terms of Taylor
series. In fact, what is more important is that the higher-
order schemes tend to generate dispersive oscillations at
a shorter wavelength and, therefore, require fewer diffusive
iterations to remove them and cause smaller dissipation.
To explain this behavior, consider a single Fourier com-
ponent,

qk(xj) 5 5 eikDxj.ikxje

When the discrete operator (7) is applied to qk(xj), the
result is

iK (k)qk(xj).

For the continuous derivative, iK(k) 5 ik, but the discrete
derivative yields

r /22i
iK (k) 5 a sin(mkDx), (14)Or mDx m51

where 0 , k , p/Dx. The functions K r(k), r 5 2, 4, . . . ,
10, are plotted in Fig. 2a. Since ]K r(k)/]k corresponds to
the group velocity for this hyperbolic problem, the critical
value of k at which K r(k) reaches its maximum can be
interpreted as the point of dispersive breakdown of the
scheme. Beyond this point the scheme cannot propagate
Fourier components at the right speed, so this part of the
spectrum must be suppressed to avoid spurious oscilla-
tions. This critical k increases with the order of accuracy.
However, increasing order is not the only way to move
the dispersive breakdown to larger k. The dispersive break-
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FIG. 2. Spectral characteristics of discrete operators. (a) Nonstaggered finite difference approximations for the first derivative from the
second (the lowest curve) to the tenth- (top) orders of accuracy; vertical dashed line for each curve indicates point of dispersive breakdown.
(b) The same as (a), but for staggered finite differences of the second (the lowest curve) to the eighth (top) orders of accuracy. (c) Interpolation
to midpoint of the second (the lowest curve) to the eighth (top) orders of accuracy. (d) Comparison of spectral characteristics of fourth-
order nonstaggered discrete difference operator (solid curve); operator obtained by combination of fourth-order interpolation to midpoints
and fourth-order staggered difference (dashed curve above solid), and combination of fourth-order interpolation and second-order staggered
difference (dashed curve below solid).

down of staggered finite differences always happens at the
highest resolved wavenumber regardless of the order of
accuracy, unlike for the nonstaggered finite differences
above; these are defined by

r /2]q 1
ø b (q 2 q ), (15)O m i111(m21) i2(m21))]x Dx m51xi11/2

where the coefficients {bm} are

r 5 2 b 5 11

9 1
r 5 4 {b , b } 5 , 21 2 5 68 24

75 25 3
r 5 6 {b } 5 , 2 ,m 5 664 384 640

1225 245 49 5
r 5 8 {b } 5 , 2 , , 2m 5 61024 3072 5120 7168

(16)

and the spectral functions are

r /22i 2m 2 1
iK (k) 5 b sin kDx (17)Or m 1 2Dx 2m51

(see Fig. 2b).
For advection one needs to compute the derivative at

the same points as the field, and some kind of nonstag-
gered finite-difference approximation is required. This
scheme may be constructed with a staggered derivative
applied to the advected quantity after interpolation to
midpoints. Because the dispersive error of staggered
differencing is smaller than that due to the interpolation
procedure, it makes sense to use higher-order interpo-
lation in combination with lower-order staggered dif-
ferencing. For example, let

r /2
xq 5 d (q 2 q ), (18)Oi11/2 m i111(m21) i2(m21)

m51

along with the sets of coefficients

1
r 5 2 d 51 2

9 1
r 5 4 {d , d } 5 , 21 2 5 616 16

75 25 3
r 5 6 {d } 5 , 2 ,m 5 6128 256 256

1225 245 49 5
r 5 8 {d } 5 , 2 , , 2 ,m 5 62048 2048 2048 2048

(19)

be the interpolation scheme of order r. Then the discrete
approximation to Eq. (6) may be written as

x x]q q 2 qi11/2 i21/25 2c . (20)) 1 2]t Dxxi

As an alternative to (19), one can use slightly different
sets of coefficients to compute qi11/2,

7 1
r 5 4 {d9, d9} 5 , 21 2 5 612 12

37 2 1
r 5 6 {d9 } 5 , 2 ,m 5 660 15 60

533 139 29 1
r 5 8 {d9 } 5 , 2 , , 2 , (21)m 5 6840 840 840 280

so that (20) yields a scheme of order of overall accuracy
r that is equivalent to Eqs. (7)–(8) when c is constant.

Although the combination of (20), (18), and (19) or
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(21) is formally only second-order accurate in the gen-
eral case of nonconstant c, these schemes perform al-
most as well as the uniformly accurate schemes of order
r, obtained by subsequent use of rth-order interpolation
(19) and rth-order staggered differencing (15), see Figs.
2c,d. This is because the advecting velocity field is typ-
ically smoother than the advected scalar. This property
is useful for designing schemes of minimal complexity
for general domain geometry, where expansion of the
computational stencil is not desirable.

Discretization of the time derivative causes additional
error. A time-stepping algorithm for a Fourier compo-
nent qk may be written as

5 s(k) ,n11 nq̂ q̂k k (22)

where the amplification factor s(k) can be represented as
num2iv D t 2dD tks (k) 5 e e , (23)

where Dt and dDt are the phase increment and thenumvk

amplitude decay per time step. It is natural to form two
nondimensional parameters,

num numc v Dtk k5 2 , (24)
c kDx(cDt/Dx)

which is the ratio of numerical to analytical phase
speeds, and

dDt dDx
5 , (25)

(cDt/Dx) c

which is the decay rate per one-gridpoint travel, based
on analytical phase speed.

In the case of LF time step there is no amplitude
decay and,

numc arcsin[(cDt/Dx)K (k)Dx]k 5 . (26)
c (cDt/Dx)kDx

If the argument of arcsin exceeds 1 in absolute value,
becomes complex, which indicates numerical in-numvk

stability. This function is plotted in Fig. 3, for Courant
numbers Cu 5 cDt/Dx 5 0 (a) and for Cu 5 0.375 (d)
and 0.75 (h). In case d there is a significant phase lead
for the intermediate wavenumbers, while case h is un-
stable for all orders of accuracy exceeding 2.

The Crank–Nicholson (CN, implicit) time step is also
nondissipative, and provides a phase speed ratio similar
to (26), except that arcsin is replaced by arctan. This is
shown in Figs. 3e and 3i. Unlike LF, it causes phase
delay additional to the delay due to the spatial discret-
ization error. Though CN is unconditionally stable, its
use for Cu . 1 brings additional phase error, which is
equivalent to the reduction of the effective spatial res-
olution by a factor of 1/Cu.

Two other often used time-stepping algorithms are
the LF–trapezoidal rule and LF–Adams–Multon (both
predictor–corrector) time steps. Unlike LF and CN, they
are not reversible in time, therefore some numerical dis-
sipation is the result (Figs. 3f,g,j,k). The dissipation

rates, however, are vanishingly small in comparison
with the dissipation introduced by upstream-biased
semi-Lagrangian interpolation schemes (Figs. 3b,c).

The last two cases are interesting, because one can show
that for the case of semi-Lagrangian schemes the phase
errors of time and space differencing partially comensate
each other (if Cu 5 1/2 the phase errors cancel exactly).
This advantage, however, is lost due to the large dissi-
pation. Comparison between Figs. 3b and 3g (as well as
Figs. 3c and 3k) suggests that the high-order centered-in-
space schemes provide a wider range of Fourier compo-
nents that propagate with accurate phase speed, and, at the
same time, are not suppressed by the numerical dissipation.
We therefore use high-order centered-in-space advection
schemes as the basic scheme for adaptive advection al-
gorithms like FCT and ELAD.

Comparison between different time-stepping algo-
rithms shows that even near the CFL limits of stability,
the phase error is dominated by error due to spatial
discretization. The LF–TR and AM predictor–corrector
methods are more accurate, but they also bring addi-
tional computational cost. If the FCT or ELAD proce-
dure is used, the additional cost is offset by the larger
time step allowed due to extended range of accuracy
and CFL stability because the flux limiting is done only
once per time step, not during both predictor and cor-
rector stages. Thus, the AM time step is the choice for
FCT algorithm; see appendix A.

The upstream-biased schemes retain numerical sta-
bility as long as the departure poins lie within the stencil.
Thus, the high-order versions may be used with Cu .
1. In this regime, however, the phase behavior is un-
attractive because of the phase ‘‘folding’’ associated
with aliasing. It occurs first when Cu exceeds 1/2. The
Fourier components with N/(4 Cu) , k , N/2 propagate
in the opposite direction. This effect is not noticeable
in practice up to Cu 5 1, because this portion of the
spectrum is suppressed anyway, however, further in-
crease of the Courant number is not desirable because
it is equivalent to the decrease of effective resolution
inversely proportional to the Courant number.

3. Tests in uniformly rotating flow

Rotating cone and grooved-cylinder tests have become
standard for evaluating the performance of advection
schemes (Crowley 1968; Orszag and Jayne 1974; Zalesak
1979; Smolarkiewicz 1982, 1983; Tremback et al. 1987;
Carpenter et al. 1990; Chlond 1994). Consider the two-
dimensional passive-scalar advection problem,

]q
1 =(uq) 5 0, (27)

]t

where the velocity field u 5 (u, y) corresponds to solid-
body rotation,

u 5 2vy, y 5 1vx. (28)

For v 5 2p, the period of rotation is equal to 1, and
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FIG. 3. Normalized phase speed (solid curves) and amplitide decay per gridpoint travel (if any, dashed curves) as functions of wavenumber.
(a) Centered in space for the second (the lowest curve) to tenth (the top) orders of accuracy and infinitely small Courant number; (b) semi-
Lagrangian upstream interpolations from first (the lowest phase speed, the strongest decay) to ninth orders of accuracy for Cu 5 0.375; (c)
the same as (b), but for Cu 5 0.75; (d) to (g) same as (a), but for Cu 5 0.375 and different time steps: (d) LF; (e) CN (implicit); (f ) LF–
trapezoidal (predictor–corrector); (g) Adams–Multon; (h) to (k) the same as (d) to (g), respectively, but for Cu 5 0.75. (Case h is linearly
unstable for all orders of accuracy greater than second.)

after one period the exact solution coincides with the
initial distribution. The passive scalar q is defined within
the domain 21/2 , x, y , 1/2 with cyclic boundary
conditions in both directions. The initial distribution
q|t50 (Fig. 4a or Fig. 5a) is equal to 0 everywhere except
in a circle of radius r 5 1/8 centered at x0 5 21/4, y0

5 0, which is offset from the center of rotation. Inside
the circle it either linearly decays from its central max-
imum value to 0 at the edge (Fig. 4a) or has a piecewise-
constant shape (Fig. 5a).

The discrete, conservative, nondissipative advection
step is
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FIG. 4. Rotating cone problem. Grid resolution 128 3 128. (a) Initial state/exact solution after one period. (b)
Solution after one period obtained by nondissipative sixth-order advection scheme [Eq. (25)]; (c) solution after one
period obtained by fourth-order advection scheme corrected by ELAD. (d) The same as (c), but the sixth-order advection
scheme is used.

q̂n11 5 qn21 2 2Dt[dx(uq x) 1 dy(yq y)], (29)

where dx and dy are staggered, rth-order finite differ-
ences r 5 2, . . . , 8, Eq. (15), and q x , q y are inter-
polations to midpoint locations in the x and y direc-
tions, Eq. (18). As in the one-dimensional case, over-
shooting will result from (29). To correct this, we apply
the following ELAD procedure to q̂n11 after the ad-
vection step.

Step 1: Determine the values at two upstream points,

nq , if u . 0i, j i11/2, j(sx)q 5i11/2, j n5q , if u , 0i11, j i11/2, j

nq , if y . 0i, j i, j11/2(sy)q 5 (30)i, j11/2 n5q , if y , 0,i, j11 i, j11/2

then define permissible bounds for n11q ,i, j

(min) (sy) (sy)(sx) (sx)q 5 min(q , q , q , q )i, j i21/2, j i11/2, j i, j21/2 i, j11/2

(max) (sy) (sy)(sx) (sx)q 5 max(q , q , q , q ). (31)i, j i21/2, j i11/2, j i, j21/2 i, j11/2

Step 2: Compute the excess field,
minn11e 5 min(0, q̂ 2 q )i, j i, j i, j

maxn111 max(0, q̂ 2 q ). (32)i, j i, j

Step 3: Diffuse the excess field using a nine-point
discrete Laplacian operator, applied with the maximum
weight allowed by the diffusive stability criterion
(which is somewhat less restrictive for a nine-point La-
placian than for the usual five-point one):

1
n11 n11q 5 q̂ 2 e 1 (e 1 e 1 e 1 e )i, j i, j i, j i21, j i11, j i, j21 i, j116

1
1 (e 1 e 1 e 1 e ).i21, j21 i11, j21 i21, j11 i11, j1112

(33)
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FIG. 5. Grooved cylinder rotation test. Grid resolution 128 3 128. (a) Initial state/exact solution after one period.
(b) Solution after one period obtained by nondissipative sixth-order advection scheme; (c) solution after one period
obtained by fourth-order advection scheme with explicit adaptive dissipation. (d) The same as (c), but the sixth-order
advection scheme is used.

Iteratively repeat step 2 and step 3 several times.
Numerical solutions obtained by different schemes

are shown in Figs. 4–6. Sixth-order, nondissipative so-
lutions are shown in Fig. 4b and Fig. 5b: this scheme
generates mild oscillations around the rotating cone
and stronger ones around the grooved cylinder. In all
other solutions, the ELAD procedure was applied, with
four diffusive iterations at every time step. The results
are largely with oscillations but do exhibit some degree
of smoothing of the initial profiles. For the rotating
cone, when the initial function is continuous, the
fourth- and sixth-order solutions are barely distinguish-
able (Figs. 4c,d). However, for the grooved cylinder
an improvement in accuracy is still evident going from
fourth to sixth order, (Figs. 5c,d), but further progress
is slight when going to eighth and tenth orders (Figs.
6a,b).

For comparison in Fig. 7 we also show a grooved-
cylinder solution obtained by a sixth-order FCT algo-
rithm with strictly monotone behavior (Zalesak 1979).
Notice that its shape is similar to the ELAD result in
Fig. 6d, except that the edges are somewhat smoother,
which is indicative of its greater dissipation. This com-
parison is further discussed below.

Note that the ELAD procedure yields monotone solu-
tions only if the the diffusive iterations converge. In prac-
tice we have chosen the number of iterations such that the
computational cost of the whole corrective procedure is
approximately equal to that of the basic advective scheme
at fourth order. Thus, some remaining nonmonotonicity is
seen in Figs. 5c,d. Alternatively, one might use a lower-
order advection scheme in combination with a higher num-
ber of iterations and achieve acceptably nonmonotone be-
havior; however, our experience shows that this is both
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FIG. 6. Similar to Figs. 5c and 5d, except that (a) eighth-order advection scheme is used. (b) Tenth-order advection
scheme is used.

FIG. 7. Solution after one rotation obtained by sixth-order version
of the FCT algorithm.

more dissipative and computationally more expensive than
a ‘‘cost balanced’’ combination, with at least fourth-order
advection and fewer diffusive iterations.

4. Monotonicity of extrema and dissipation rate in
two-dimensional turbulence

The numerical tests presented above are not sufficient
to evaluate the geophysical utility of an advection
scheme, because the velocity fields are too simple and
do not include the physically necessary dissipation due
to turbulent cascades. Also, their velocities are one-di-
mensionally nondivergent,

]u ]y
5 0, 5 0, (34)

]x ]y

which favors algorithms for adaptive control of non-
monotone behavior by split-directional schemes (e.g.,
Carpenter et al. 1990; Chlond 1994; Böttcher 1996).

In the case of deformational flow, relations (34) are
no longer valid, so that if a split-directional method is
used, one faces a dilemma of either chosing conser-
vative discretization for the advection equation and
treating the flow as divergent during the one-directional
substeps, or using advective discretization and aban-
doning the exact global conservation of the content of
advected quantity. Satisfying the property of exact glob-
al conservation favors the first choice, while shape- and
constancy-preservation favors the second (Leonard et
al. 1996). Typically split-directional methods cannot
have both properties simultaneously, unless special
measures are introduced (e.g., Easter 1993). These mea-
sures involve the introduction of additional terms into
the conservative discrete scheme, or solving an addi-
tional auxiliary equation to cancel the effects of one-
directional divergence. As the result, the computational
cost of the algorithm nearly doubles and becomes close
to that of a fully multidimensional approach, while the
operator-splitting error still remains. This consideration
suggests the advantage of the use of a fully multidi-
mensional method for the simulation of nondivergent
or nearly nondivergent flows.

A deformational flow test has also been proposed for
steady, two-dimensional flow (Smolarkiewicz 1982),
where a nondissipative, analytical solution is available
for comparison (Staniforth et al. 1987); however, this
test is also quite special with respect to turbulent cas-
cades.

Hence, we choose freely developing, two-dimension-
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al turbulence as our next test. The physics of this prob-
lem includes strong dissipation of both enstrophy (vor-
ticity variance) and passive scalar variance, cascades of
energy to large scales and of enstrophy and passive-
scalar variance to small scales, and spontaneous for-
mation of coherent vortices that shelter the advected
scalars in their cores. The latter occurs because of the
alignment of scalar isolines with streamlines, which sup-
presses the advective tendency (e.g., McWilliams 1984;
Babiano et al. 1987).

For this problem, we initialize vorticity z and passive
scalar concentration q as two uncorrelated random
fields, similar to McWilliams (1990). For each field we
specify a narrowband spectrum with a given shape and
random phase,

1/2ak
2p irand(k)ˆzk 5 C e , (35)

2a 2a1 2k 1 k0

and Fourier transform it back to physical space. In Eq.
(35) k 5 (kx, ky) is the two-dimensional wavenumber,
k 5 ( 1 )1/2; rand( ) is random value, uniformly2 2k kx y

distributed within the range of [0, 1]; and k0 and a are
parameters. For all computations presented here k0 5
20 and a 5 10. The normalization coefficient C is cho-
sen to make the total energy of the system to be unity.

Starting from these initial condition, the fields evolve
according to governing equations,

]z
5 2J (c, z) 1 D (36)z]t

2z 5 ¹ c (37)

]q
5 2J (c, q) 1 D , (38)q]t

where c is the streamfunction related to the velocity
components u, y by

]c ]c
u 5 2 , y 5 1 , (39)

]y ]x

the Jacobian operator is

]c ]z ]c ]z
J (c, z) 5 2 , (40)

]x ]y ]y ]x

and ¹2 denotes the Laplacian operator. The dissipative
terms Dz and Dq are defined only at the discrete level
here. Doubly periodic boundary conditions are assumed.

In discrete approximation for Eq. (40), the velocity
components u and y , computed from c by Eq. (39), are
staggered relatively to the scalar grid points,

xy xy
u 5 2d c , y 5 1d c ,y x

u9 5 2d c, y9 5 1d c. (41)y9 x9

Here u9 and y 9 are auxiliary velocity components in
diagonal directions x9 and y9, respectively; d x , d y , d x9 ,
and d y9 are the staggered second-, fourth-, or sixth-
order finite differences [Eq. (15)]; an overbar with a

single coordinate superscript denotes the second-,
fourth-, or sixth-order interpolation to the midpoint
in the indicated direction [Eq. (18)]; and 5y

c
5 is a two-dimensional interpolation of

y xx y( ) ( )c c
c to the vertices of its grid cells. Then the Jacobian
operator is discretized similarly to Eq. (29),

1 x y xy
J (c, z) 5 {d (uz ) 1 d (yz ) 1 d (u9z )x y x92

xy
1 d (y9z )}, (42)y9

which has the same order of accuracy as the elementary
differencing and interpolation schemes.

The first two terms in curly braces have a structure
similar to the energy-conserving versions of Arakawa’s
Jacobians, while the second pair corresponds to the en-
strophy-conserving version. Each of these pairs consti-
tute advection schemes in flux divergent form, and, in
principle, can be used separately. Unlike the second-
order Arakawa Jacobian (Arakawa 1966), which can be
represented in both advective and flux-divergent form,
higher-order, discrete versions of (42) cannot be written
in advective form and also do not retain exactly the
symmetry property J (c, z) 5 2J (z, c).

From knowledge of c and z at time levels n 2 1 and
n, we can make the LF time step obtain the first guess
at time step n 1 1:

5 zn21 2 2DtJ (cn, zn).n11ẑ (43)

Next, the new field is examined for the presence of
overshoots, and the excess field is computed and dif-
fused in the same way as in the ELAD procedure, Eqs.
(31)–(33) in the previous section. Finally, from zn11, a
multigrid elliptic solver is used to compute the new c.
In order to suppress LF mode decoupling, a corrective
step is used occasionally, just after the inviscid advec-
tive step but before the ELAD procedure. The advection
and dissipation algorithm for the passive scalar q is the
same as for vorticity z.

a. Alternative schemes for comparison

There is a huge variety of advection schemes, but we
restrict our comparisons to multidimensional schemes
that are extendable to high orders of accuracy. For ex-
ample, we do not consider MPDATA (Smolarkiewicz
1984; Smolarkiewicz and Clark 1986) because it is not
extendable; nor do we consider PPM (Colella and
Woodward 1984) because it uses directional splitting.
We will compare the following four classes of alter-
native schemes.

1) STD: The standard (STD) geophysical modeling
practice is to use a low-order basic scheme with an
explicit operator for weak dissipation. A representative
of this is the second-order Arakawa Jacobian with an
iterated Laplacian operator to provide dissipation (i.e.,
hyperdiffusion), for example, Dz 5 2n4¹4z. Here the
hyperdiffusion coefficient n4 is adjusted experimentally
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to ensure adequate smoothness of the solution without
excessive dissipation. In practice, this is achieved with
a grid-size Reynolds number, Reg 5[|u|(Dx)3]/n4, in the
approximate range 20–50 for turbulent flows.

2) FCT: We use a version of the flux-corrected trans-
port algorithm whose basic scheme is symmetric and
sixth-order in space and third-order Adams–Multon in
time. The flux limiting for FCT is similar to Zalesak
(1979); see also appendix A. If the flux-limiting is
turned off, the scheme remains stable and becomes
roughly nondissipative. (The only remaining source of
dissipation is due to time stepping, which is negligible
in comparison with, say, the dissipation of an upstream-
biased scheme.) Once the flux-limiting procedure is ap-
plied, it guarantees that the new values lie within the
permissible bounds, and , for example, as in(min) (max)q qi,j i,j

Eq. (31). This algorithm produces strictly monotone be-
havior in its discrete solutions, but, as shown below,
this occurs at the expense of excessive dissipation and
‘‘clipping’’ of narrow extrema.

To avoid clipping, Zalesak proposed an extremum dis-
criminator, which assumes that extrema may occur be-
tween grid points; hence the permissible bounds may
exceed the values at the surrounding grid points. Al-
though this discriminator yields excellent results for ad-
vection in a simple flow such as solid-body rotation, we
have found that its use in a turbulent flow may be dan-
gerous because of confusion between dispersion-in-
duced oscillations and legitimate physical extreme.
Therefore, we have designed a more restrictive discrim-
inator which accepts an extremum only if the advected
quantity has its second derivative of only one sign over
four consequent grid points in each coordinate direction,
which insures that the accepted extremum is properly
resolved (see appendix A). Since ELAD also exhibits a
tendency toward clipping, albeit a milder one than with
FCT (see below), we will also use a discriminator in a
variant form of ELAD.

Whether or not the discriminator is used in this ver-
sion of the FCT algorithm, virtually all the dissipation
is due to the flux-limiting procedure; hence it is of the
strong type. This property makes it qualitatively dif-
ferent from the class of forward-in-time, upstream-bi-
ased schemes, such as UTOPIA (see below) or semi-

Lagrangian schemes, that inherently contain dissipation
of the weak type.

3) UTOPIA: Leonard (1979), Leonard et al. (1993),
Rasch (1994) and Leonard et al. (1995a,b) proposed the
Uniformly Third-Order Polynomial Interpolation Al-
gorithm (UTOPIA) as a two-dimensional generalization
of his earlier algorithm, QUICKEST (Leonard 1979).
Similarly to semi-Lagrangian schemes, UTOPIA pro-
vides partial compensation of phase errors caused by
time and space differencing truncation errors due to mu-
tually dependent time and space discretization (e.g., Da-
vies 1980). UTOPIA has a (weak-) dissipation-dominant
truncation error, proportional to the fourth derivative of
the advected field (as in hyperdiffusion) and the local
advecting velocity (cf. Leonard 1979). At the same time,
unlike semi-Lagrangian schemes, UTOPIA is formu-
lated in fully multidimensional flux-divergent form,
which guarantees global conservation. UTOPIA can
also be used as a basic scheme in a flux-limiting al-
gorithm, for example, one that enforces monotonicity
of the field in the vicinity of steep gradients (Thuburn
1995). Although developed independently, this algo-
rithm can also be viewed as a higher-order generaliza-
tion of the second-order scheme of Colella (1990) and
also as a generalization of van Leer (1985). We use a
particular version of UTOPIA developed by Rasch
(1994), as described in appendix B.

4) g-scheme: We have also devised an alternative
high-order discretization for advection and dissipation
of the weak type:

J (c, z) 2 Dz

1
5 FX 2 FX 1 FY 2 FYi11/2, j i21/2, j i, j11/2 i, j21/2[2Dh

1
1 (FX9 2 FX9i11/2, j11/2 i21/2, j21/2Ï2

1 FY9 2 FY9 ) , (44)i21/2, j11/2 i11/2, j21/2 ]
where Dh 5 Dx 5 Dy is the horizontal grid spacing;
FX and FY are the fluxes of advected quantity z in the
x and y directions, respectively; and FX9 and FY9 are
the fluxes in the diagonal directions x9 and y9:

x 1 1
FX 5 u z 1 g |u | z 2 z 1 z 2 zi11/2, j i11/2, j i11/2, j i11/2, j i12, j i11, j i, j i21, j1 23 3

y 1 1
FY 5 y z 1 g |y | z 2 z 1 z 2 zi, j11/2 i, j11/2 i, j11/2 i, j11/2 i, j12 i, j11 i, j i, j211 23 3

x9 1 1
FX9 5 u9 z 1 g |u9 | z 2 z 1 z 2 zi11/2, j11/2 i11/2, j11/2 i11/2, j11/2 i11/2, j11/2 i12, j12 i11, j11 i, j i21, j211 23 3

y9 1 1
FY9 5 y9 z 1 g |y9 | z 2 z 1 z 2 z ,i21/2, j11/2 i21/2, j11/2 i21/2, j11/2 i21/2, j11/2 i22, j12 i21, j11 i, j i11, j211 23 3
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where the velocity components are as in (41). The ov-
erbar with superscript denotes interpolation by (18)–
(21) with r 5 4 in the indicated direction.

The terms with coefficient g represent a velocity-
dependent hyperdiffusion. Because these terms at lead-
ing order are proportional to the third derivative of z
and the third power of grid spacing Dh, they vanish
when Dh → 0, and thus they do not correspond to any
physical term in the continuous equation. Their pres-
ence, however, ensures dissipative dominance of the
truncation error, making the scheme third-order accurate
with respect to the derivatives of advected scalar. This
scheme has only weak dissipation and thus does not
ensure monotonic behavior. The coefficient g is an ad-
justable nondimensional parameter whose value con-
trols the strength of the dissipation. The choice g 5 1/4
is equivalent to the use of three-point, asymmetric (up-
stream biased), quadratic interpolation for q to compute
fluxes, as in Leonard (1979). This establishes a plausible
upper limit for g, but we have found that lower values
suffice; below we present results with g 5 0.05, 0.1,
and 0.2.

When g ± 0, the operator (44) cannot be used in
combination with LF time-stepping algorithm due to
instability. A third-order predictor–corrector step is used
instead (Hyman 1979),

n11, n21 n n nz * 5 z 2 2Dt[J (c , z ) 2 D ]z

1
n11 n11,z 5 z *

5

4 Dt
n n n n1 z 1 [J (c , z ) 2 Dz55 2

n11, n11, n11,1 J (c *, z *) 2 D *] ,z 6
(45)

where n 1 1,* indicates the preliminary value of the
new time-step field, and the elliptic solver for c is used
after both the predictor and corrector stages. Unlike
UTOPIA, the g-scheme has independent discretization
of space and time. Consequently, it does not require
transverse terms in the advective flux computations to
overcome the computational instability associated with
flux-splitting in multidimensions [see Leonard et al.
(1996)].

b. Results

Our criterion for evaluating the performance of an
algorithm is its ability to produce physically plausible
solutions with as little dissipation of quadratic invariants
as possible and essentially monotone behavior. Thus,
we monitor energy, enstrophy, and quadratic variance,
as well as the time history of gridpoint extrema in z

and q (using a tracking algorithm described in appendix
C).

Figure 8 shows the z and q fields soon after the co-
herent vortices begin to form. From the numerical point
of view, this is the most difficult period because the
structures are small and subject to strong deformation
and straining. Despite the formation of quite strong gra-
dients, no oscillatory behavior is apparent. Except with-
in the vortex cores, the passive scalar is subject to strong
mixing in the filaments roughly aligned with the vor-
ticity filaments. This solution is calculated with the
sixth-order advection scheme with ELAD. The grid res-
olution is 256 3 256, so a typical vortex core at this
time is only 6–10 grid points in diameter, and filaments
are only 3–4 grid points wide.

Figure 9 shows the history of vorticity and passive-
scalar extrema for sixth- and fourth-order schemes with
ELAD. The relevant velocity scale is set by the initial
normalization of the nondimensional kinetic energy,

1
2e | 5 |=c | dx dykin t50 EE2

2 2ø (c 2 c ) 1 (c 2 c ) 5 1.O i11, j i, j i, j11 i, j
i,j∈D

(46)

The nondimensional timescale is based on this velocity
scale and the domain size, 2p. There are many extrema
in the random initial scalar fields, but most of them
rapidly decay before t ø 20 when the coherent vortices
are formed. Afterward, there is a noticeable difference
between the dominant extrema of vorticity in the co-
herent vortices, and the smaller extrema associated with
the filaments in the background. The former remain vir-
tually constant and the latter decay strongly. Virtually
no weak z extrema can endure. On average, the weak
q extrema decay faster than those of z, as indicated by
the lower bottom envelope in Fig. 9b compared to Fig.
9a. The occasional sudden drop of the strong extrema
at late times corresponds to the destruction of a vortex
by deformation in the strong strain field due to other
vortices nearby. The slowly decaying q extrema in Fig.
9b correspond to the concentrations that ‘‘paint’’ the
cores of coherent vortices. Unlike the vorticity field,
where the enduring extrema are the dominant ones, the
passive scalar concentration trapped within a coherent
vortex may be of any value established by the initial
conditions. All q extrema not trapped within coherent
vortices rapidly decay. One can see in Figs. 9a and 9b
that the number of enduring extrema is exactly the same
for z and q. There is no significant growth of any of
enduring extremal values with this advection scheme,
indicating a satisfactorily monotone behavior. Figures
9c and 9d show z extrema for fourth- and second-order
schemes with ELAD. Notice that the degree of mono-
tone behavior degrades as the order of the basic scheme
is reduced, with the biggest change occurring between
fourth and second orders.
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FIG. 8a. Snapshot of vorticity field at t ø 25.9 for turbulent flow simulation computed with sixth-order accurate advection scheme with
ELAD. Grid resolution is 256 3 256. The whole computational domain is shown. Minimum and maximum values are 610, contour interval
is 0.1, so that there are approximately 200 contour levels on this plot. Negative values are contoured in dashed lines.

Figure 10 shows extremum histories for the FCT al-
gorithm. Unlike the previous scheme, FCT without a
discriminator (panel a for z and b for q) yields a solution
that is strictly monotone in the discrete sense. Notice,
however, that this is accomplished with considerably
greater extremum decay than seen in Fig. 9, and this
FCT algorithm yields one of the most dissipative so-
lutions we have obtained. Figure 10c is for a version of
FCT algorithm with the extremum discriminator pro-
posed by Zalesak (1979). Unlike in Fig. 10a, the decay
of the dominant extrema is virtually eliminated. The fast

oscillations in the dominant extrema sampled on the
discrete grid have an amplitude of about 1% of the
extremum. They are associated with the motion of nar-
row vortices peaks along the discrete grid (ø6–8 grid
points wide), since the location of an extremum, as di-
agnosed by the discriminator, may coincide with a grid
point (which gives the maximum values in Fig. 10c) or
fall in between. Averaged over these oscillations, there
is little tendency for systematic growth of extrema, al-
though nothing in principle precludes the possibility. In
the vicinity of an extremum, this version of the FCT
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FIG. 8b. Snapshot of passive scalar field from the same flow simulation as in Fig. 8a. Time at which this snapshot is taken and contour
interval are kept the same.

algorithm completely relies on the accuracy of its basic
scheme. However, the behavior of the background ex-
trema in this solution is unacceptably noisy, especially
in the passive scalar (not shown), as evident in the large
amplitude of the bottom envelope in Fig. 10c and the
almost complete loss of monotone behavior after a new
extremum arises. Figure 10d shows the effect of the
more restrictive discriminator (appendix A). In com-
parison with Fig. 10c, its behavior is more physically
meaningful for background extrema (almost as well as
in Figs. 9a, 9c, and 10a), while in fact, looking more

similar to Figs. 10c,d and preserving the dominant ex-
trema better than do FCT and ELAD without discrim-
inators.

To better preserve the dominant extrema with ELAD,
we replace the constraint based on only gridpoint values
with the same discriminator used in Fig. 10d—see Figs.
11a,b. The results are generally similar with FCT and
ELAD, although the latter shows slightly less mono-
tone behavior and dissipation of the background field.
These disadvantages may be repaired by performing an
additional two-dimensional convexity check in the ex-
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FIG. 9. Time history of extrema of vorticity and passive scalar for two-dimensional turbulent flow. (a) Absolute values of individual
vorticity extrema as functions of time for the solution obtained by 6-ELAD. (b) The same as (a), but for the extrema of passive scalar . (c)
The same as (a) (extrema of vorticity), but for 4-ELAD. (d) The same as (a) but for 2-ELAD; 64 largest minima and 64 largest maxima are
traced in each case.

tremum discriminator. This involves replacing Eq.
(A18), in appendix A. We compute

n n nqxx 5 q 2 2q 1 qi, j i21, j i, j i11, j

n n nqyy 5 q 2 2q 1 q , (47)i, j i, j21 i, j i, j11

then check that the derivatives are of the same sign, and,
if not, reset them to 0,

qxx 5 0i, jif qxx qyy , 0 ⇒ (48)i, j i, j 5qyy 5 0.i, j

Otherwise the discriminator algorithm is unchanged.
[Because operations (47) and (48) are local with respect
to i, j, they are combined for execution efficiency.] The
solution obtained with this discriminator is shown in
Figs. 11c and 11d. Now there is little nonmonotone
behavior (less than in Figs. 11a and 11b), and both
almost as rapid decay of background extrema and less
decay of dominant extrema than in ELAD without a
discriminator (cf. Figs. 9a,b).

In Fig. 12, z extremum histories are shown for several
algorithms with weak-type dissipation. The STD algo-
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FIG. 10. The same as Fig. 9, but for the the different options of FCT algorithm. (a) and (b) History of extrema of vorticity and passive
scalar, FCT without extrema discriminator. (c) The same as (a) (vorticity only), but the extrema discriminator from Zalesak (1979), is used
to avoid clipping. (d) The same as (c), but with the use of sixth-point convexity check discriminator in each direction (see appendix A).

rithm (Fig. 12a), even with a hyperdiffusion coefficient
chosen as a compromise between grid-scale smoothness
and small dissipation, is still deficient by both measures
compared with ELAD (with or without the discrimi-
nator; Figs. 9a and 11d) as well as with the g-scheme
(Figs. 12b,c with g 5 0.05 and 0.2) and UTOPIA (Fig.
12d). The scheme with g 5 0.05 does exhibit excessive
nonmonotone behavior and background noise, but these
gradually disappear with increasing g in association
with increasing dissipation; even g 5 0.1 (not shown)

is satisfactory by these measures. With g 5 0.2 the
extrema behave very similar to those with UTOPIA,
except for a small increase in an enduring extremum
immediately before its collapse during a destructive vor-
tex interaction (associated with insufficient dissipation
with the g-scheme during strong deformation, as further
discussed in section 5).

Although flux limiting was not used in the version of
UTOPIA used here, and therefore monotone behavior
is not formally guaranteed, there are virtually no oc-
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FIG. 11. The same as Fig. 9, but for 6-ELAD with two different versions of extrema discriminators: Histories of vorticity (a) and (c) and
passive scalar (c) and (d) extrema are shown. (a) and (b) Modified extrema discriminator from appendix A (the same as in FCT algorithm
in Fig. 10d) applied in each direction; (c) and (d) Same as (a) and (b), but for discriminator with two-dimensional convexity check.

casions of artificial extremum growth. This scheme pro-
duces a smooth, physically meaningful solution. The
similarity between Figs. 12c,d is not arbitrary. One can
show that the truncation errors (based on Taylor series
analysis) of UTOPIA and g-scheme [Eq. (44) with g 5
0.2], are very similar (both are third-order accurate).
This is further confirmed by the histories of dissipation,
Fig. 13. One can see however, that unlike the g scheme,
UTOPIA produces less artificial rises in extremal values
before their drop in the case of vortex destruction. This

is because of the generally smaller dispersive error for
the highest resolved Fourier components due to phase
error compensation of an algorithm with dependent dis-
cretization of time and space. Recall that in the case of
constant advecting velocity UTOPIA becomes equiva-
lent to semi-Lagrangian upstream interpolation algo-
rithm (cf. Fig. 3).

Time series of energy, enstrophy, and passive-scalar
variance are shown in Figs. 13a–c. Algorithms with
ELAD are, in general, less dissipative than both algo-
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FIG. 12. (a) The same as Fig. 9a (vorticity extrema only) but for the ‘‘standard’’ second-order-accurate Arakawa Jacobian with explicit
hyperdiffusion Dz 5 2n4¹4z; (b) g 5 0.05 scheme; (c) g 5 0.2 scheme. (d) UTOPIA: In case (a) the hyperdiffusivity coefficient n4 is
chosen to make n4/[|umax|(Dx)3] 5 0.0125, where |umax| is the maximum absolute value of velocity. Although the overall dissipation of this
simulation is comparable to that of UTOPIA as well as g-scheme Eq. (42) with g 5 0.2, this solution appears to be much noisier.

rithms with FCT and schemes with weak-type dissi-
pation. The use of our new discriminator reduces the
dissipation in both ELAD and FCT algorithms. Algo-
rithms based on a second-order scheme are relatively
dissipative, but fourth- and six-order schemes have sim-
ilar dissipation rates. Passive-scalar dissipation is much
greater than enstrophy dissipation, because the enduring
vortex cores typically contain larger z than q values.
The energy dissipation is the least among these qua-

dratic measures, as expected from its inverse-cascade
tendency in two-dimensional turbulence, and it occurs
almost entirely during the early period before the co-
herent vortices emerger. The total energy losses over
the integration period in Fig. 13a vary significantly
among the different algorithms by as much as a factor
of 5. The relative ordering among the algorithms is gen-
erally similar in all three dissipation measures, but FCT
is anomalously dissipative in energy even with the use
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FIG. 13. Time history of resolved quadratic moments for turbulent flow similation. (a) Energy, normalized by its initial value; (b) enstrophy;
(c) quadratic variance of passive scalar. Labels 1, 2, and 3 correspond, respectively, to sixth-, fourth- and second-order centered advection
schemes combined with ELAD; 4, 5, 6 to FCT algorithm with sixth-order accurate in space, Adams–Multon time step basic scheme, and 4,
no extrema discriminator; 5, new discriminator, see appendix A; 6, discriminator from Zalesak (1979); 7, the same as 4, but the basic scheme
is now second-order accurate in space; 8, 9, and 10, algorithm (42) with g 5 0.05, 0.1, and 0.2, respectively; 11, UTOPIA; 12, second-
order Arakawa Jacobian with hyperdiffusivity; 13, sixth-order ELAD with extrema discriminator similar to that used in 5; 14, the same as
13, but with two-dimensional convexity check in the extrema discriminator.

of an extrema discriminator. Causes of this effect are
discussed in appendix A.

5. ELAD as a minimal sufficient model for
subgrid-scale mixing: How does it work?

Our hypothesis about the physical mechanism of dis-
sipation in turbulent flows with high Reynolds number

is the following. Straining creates regions with steep
gradients of vorticity and passive scalar. In these regions
the molecular diffusive fluxes become strong enough to
limit further steepening. In terms of the dissipation rate
the details of the molecular dissipation, such as diffusion
coefficients, are not important. The molecular diffusion
simply ‘‘absorbs’’ the nonlinear cascade and, therefore,
is entirely controlled by it. Decrease (or increase) of
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molecular transport coefficients would result in subse-
quent increase (or decrease) of gradients of the advected
quantity, so that the net effect of molecular fluxes re-
mains virtually unchanged. Conversely, the molecular
dissipation plays no significant role, unless it is en-
hanced by the nonlinear cascade.

By their design, adaptively dissipative mechanisms
have a purely numerical nature: advective flow with
strong deformation creates steep changes in gradients
of the advected quantity, which can no longer be re-
solved by the discrete advection operator. Centered ad-
vective schemes generate dispersive overshoots, which
are detected and diffused by the correction procedure.
In this section we show that this numerical mechanism
also creates physically interpretable dissipation in a sit-
uation when dissipation is both physically necessary and
numerically unavoidable. Of course, the corrections
triggered by violation of a given constraint may under-
estimate the totality of the cascade routes to dissipation,
but we here examine the hypothesis that the minimal
dissipation provided by adaptive schemes is sufficient.

We have selected an event corresponding to a sudden
drop of a z extremum at t 5 200 on Fig. 9a. During
this event a vortex is strained by a stronger nearby vor-
tex, and a partial merger ensues. The initial state is
chosen at t 5 199 from the simulation obtained by a
sixth-order scheme with ELAD. It is shown on the left-
most panel of the third row (labeled as 6-ELAD) in Fig.
14, where only a 51 3 51 gridpoint portion of the whole
computational domain of 256 3 256 is plotted. The
small rectangle drawn in the bottom-left corner of this
panel represents an 8 3 8 fragment of the actual grid
used in this simulation. The vortices are approximately
8–10 grid points across, which suggests that they are
only marginally resolved. We expect that their evolution
will generate even smaller scales, which unavoidably
are underresolved and, therefore, must be suppressed by
the dissipative mechanism of the numerical algorithm.

This marginally resolved dynamics is compared with
solutions produced on a finer grid. For these we inter-
polate the initial vorticity field to a twice-as-fine grid
using a ‘‘convex and monotone’’ procedure:

P [z → z ]:{c} { f }

9 3 3 1
z 5 z 1 z 1 z 1 zi11/4, j11/4 i, j i11, j i, j11 i11, j1116 16 16 16

z 5i13/4, j11/4 similar bilinear interpolation
z 5 (49)i11/4, j13/4 5based on z , z , z , z .i, j i11, j i, j11 i11, j11z 5i13/4, j13/4

Since all weighting coefficients in (49) are positive, no
extremum can be created that is not present on the coars-
er grid. The procedure is applied to the interpolated field
to double its resolution once again. The refined fields
are used as the initial conditions for solutions on grids
512 3 512 and 1024 3 1024, shown in the top and
second from the top rows in Fig. 14. The results using

6-ELAD at the three different resolutions are in the top
three rows in Fig. 14. In each row the times shown are
t ø 199, 207, 215, 223, and 231.

Because the effective dissipation of an ELAD scheme
depends on the grid resolution, the three different so-
lutions are for three physically different problems. Thus,
we do not expect convergence in a classical sense with
refinement of the grid. Instead, we observe the appear-
ance of finer and finer structures, while the behavior of
the features resolved by all of the grids retain similarity.
After one of the vortices is strained, the filament (see
middle pattern for each sequence) is only three to four
points wide for each resolution. When axisymmetriza-
tion of the surviving vortex occurs, the gradients of
vorticity are adjusted to approximately three grid points
wide. (For high-resolution cases it may take a longer
time, since the scale change is greater and the dissipation
is reduced.) The radial vorticity profile has a distinct
central core with approximately the same peak value of
vorticity as in the larger vortex of the initial condition.
Around this core there is a peripheral ‘‘skirt’’ of smaller
vorticity, which was produced by a mixing of fluid from
the strained vortex with the ambient fluid. After axi-
symmetrization, this profile will persist until the next
strong vortex interaction.

4-ELAD produces a result very similar to 6-ELAD.
The only visible differences are a slightly larger area of
negative vorticity (this is the overshoot seen in Fig. 14
in dashed lines) and an insignificant difference in ori-
entation of the vortices on the second panel. During the
transition from the first to the second panel, the line
connecting the centers of the vortices turns slightly more
than 1808 in the counterclockwise direction, and the
lower-order basic scheme results in a small phase delay,
hence a different orientation.

Use of a second-order basic scheme (in 2-ELAD)
results in a catastrophic loss of both accuracy and mono-
tone behavior. The orientation of the vortex pair is sig-
nificantly off its true position and the magnitude of dis-
persive overshoots is comparable to the value of vor-
ticity of the strained core. The fundamental explanation
of this failure is the relatively low wavenumber of dis-
persive breakdown in the second-order scheme (Fig. 2).
Because the ELAD procedure can efficiently suppress
oscillations only on the smallest resolved scale, the com-
bination of the second-order scheme with ELAD results
in an algorithm that has an intermediate range of spatial
scales which are neither accurately advected by the basic
scheme nor effectively suppressed by ELAD. In 2-
ELAD in Fig. 14, dispersive error causes an amplifi-
cation of vorticity of the strained core and, at the same
time, creates a spurious region of negative vorticity just
behind the strained core. The region and the core form
a dipole, which tends to propagate away from the larger
vortex, and, as a result, merger is inhibited and virtually
no vorticity from the strained vortex attaches to the
larger vortex.

The FCT algorithm with a sixth-order basic scheme
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FIG. 14. Vortex straining event simulated by different schemes with dissipation of strong type.

produces results similar to 6- and 4-ELAD in Fig. 14,
with a slightly smaller amplitude of filaments in the
background and a somewhat larger surviving vortex
with a flatter profile in the core. Unlike ELAD, this
version of FCT has a strictly monotone behavior on the

discrete level, thus no negative vorticity (dashed lines)
is present in this solution.

Figure 15 represents the weak dissipation class of
algorithms. Although the built-in dissipation in both
UTOPIA and g-scheme (44) depends on the local ve-
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FIG. 15. The same as Fig. 14, but for schemes with dissipation of weak type.

locity magnitude, and therefore has some adaptive as-
pects, these schemes do not make any explicit attempt
to enforce monotonicity. They provide physically ac-
ceptable solutions, although some generation of artificial

extrema can be seen near the tail of the filament and
between the filament and the surviving vortex (see three
middle times on Fig. 15). UTOPIA and the g 5 0.2
scheme produce very similar results. A choice of too
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FIG. 16. Three-dimensional plots of vorticity field at t ø 400 for turbulent flow simulations produced by different numerical schemes. (a)
UTOPIA; (b) g 5 0.1 scheme; (c) 6-FCT; (d) 6-ELAD. Grid resolution is 256 3 256. Vertical spikes at rear-left and front-right corners
indicate the largest vorticity values of the initial state.

small a g value results in spurious oscillations (see g
5 0.05 middle panel), without returning a significant
reduction of the overall dissipation during the event.
The artificial extrema eventually go away, but clearly
the scheme does not provide enough dissipation to pre-
vent their creation. At the same time, the overall smooth-
ing of the z profile in these three cases is obviously
larger than that for adaptive schemes, Fig. 14.

As with 6-ELAD in Fig. 14, we have calculated so-
lutions with three different resolutions using UTOPIA.
The convergence tendencies with the grid refinement
for the UTOPIA scheme are similar to that of ELAD
schemes, except for providing a somewhat lower effec-

tive resolution. Thus, the final pattern of the vortex
straining event experiment for UTOPIA on 1024 3 1024
grid is similar to 6-ELAD on 512 3 512, rather than
on the finest grid. If the 1024 3 1024 UTOPIA cal-
culations were carried forward, the vortex profile would
evolve into a smooth shape, similar to that obtained on
the coarser grids, even without further strong vortex
interactions (unlike with ELAD). The final row in Fig.
15 is based on the STD algorithm. As expected, its
behavior is less accurate, produces more oscillatory be-
havior, and causes greater vortex profile smoothing than
all previously described algorithms.

The primary flaw of scale-selective dissipation—ei-
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FIG. 16. (Continued) (e) 6-FCT with extrema discriminator; (f ) 6-ELAD with extrema discriminator. The same as (a), (d), and (f ) but for
grid resolution 512 3 512. (g) UTOPIA; (h) 6-ELAD; (i) 6-ELAD with extrema discriminator.

ther by hyperdiffusion or through the truncation terms
of weak-type dissipation—stems from its primary hy-
pothesis about the turbulent cascade. In two-dimen-
sional turbulence, there is greater net dissipation of en-
strophy, which cascades toward small scales, than of
energy, which cascades toward large scales. Hyperdif-
fusion is a simple operator that produces such effects.
However, these properties of the nonlinear cascade are
meaningful only in a statistical or domain-integrated
sense, while hyperdiffision imposes this tendency lo-
cally at every grid point, without regard to the particular
flow configuration or dynamical behavior. As a conse-
quence, scale-selective dissipation is often a compro-
mise that is both locally insufficient and globally ex-
cessive. The design philosophy behind FCT and ELAD
(as well as any other algorithm with dissipation of strong
type) is the principle of monotonicity. It tries to provide
a physically adequate treatment of all scales supported
by the grid in a deterministic, rather than statistical,
sense while suppressing only the features that cannot
be properly treated by the basic advection scheme. There
is no explicit assurance that adaptive dissipation will
ensure the desirable statistical properties of the turbulent

cascade, but these nevertheless occur simply as con-
sequences of the nonlinear local fluid dynamics.2

6. Numerical biases imposed on long-term
dynamics and statistics of turbulent flow

The vortex straining event discussed in the previous
section has a duration of 30 time units near t 5 200. Given
that a typical value of peak vorticity is approximately 10,
this interval is about 10 parcel recirculation times within

2 It should be mentioned that UTOPIA may be combined with a flux-
limiting procedure similar to FCT (Thuburn 1995). The resultant algo-
rithm guarantees monotone behavior, at the expense of increasing the
overall dissipation of the algorithm, which is already more dissipative
than any of the algorithms presented in Fig. 14. A potential remedy is
to generalize UTOPIA to higher (odd) orders of accuracy, thus main-
taining the dissipative dominance of the truncation error. This measure
will decrease the built-in dissipation, making the subsequent flux-limiting
the primary dissipative mechanism [e.g., NIRVANA in one dimension
and MACHO in multidimensions (Leonard and Niknafs 1991; Leonard
et al. 1995a; Leonard et al. 1996]. This path thus has some similarities
with that of FCT and ELAD.
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FIG. 16. (Continued)

a coherent vortex, which is only 7% of the integration
period for the calculated solutions.

Over an integration spanning many vortex straining
events, biases due to the numerical algorithm may accu-
mulate and contaminate the statistics of the turbulent flow.

One such effect, mentioned above, is the numerical aging
associated with hyperdiffusion, either as an explicit op-
erator or as implicit in the g-scheme and UTOPIA. Hy-
perdiffusion tends to smooth vorticity gradients indiscri-
minantly both in the background vorticity filaments (en
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route to being physically dissipated because of their con-
tinuing stretching) and on the edges of the vortex cores
(where, once an axisymmetric, stable, stationary state oc-
curs and filamentation ceases, there is no physical mech-
anism for continued dissipation). Maintaining the vorticity
gradient on the vortex edge is conducive to resisting further
vortex filamentation in straining flow. When hyperdiffu-
sion smooths a vortex profile, it both broadens the vortex
radius, which expands its critical merger distance and in-
creases its interaction cross section with other vortices,
and it creates a broader peripheral skirt of weak vorticity
that can be swept away in filaments by straining, thereby
weakening the vortex circulation. These effects will act
more strongly on smaller vortices and thereby make them
relatively less persistent than larger vortices, beyond what-
ever physical tendencies there might be.

Vorticity profiles at the late time of t ø 400 are plotted
in Fig. 16 for the whole computational domain of 256 3
256 grid points. Only a few large vortices remain in so-
lutions with dissipation of weak type: UTOPIA (Fig. 16a)
and g 5 0.1 scheme (Fig. 16b). In both solutions, albeit
to an apparently lesser degree in Fig. 16b with this smallish
value of g, the sizes, shapes, and vorticity gradients of all
surviving vortices appear to have undergone significant
numerical aging over the individual vortex histories. This
interpretation is based on the expectation that extrema
within surviving vortices should be preserved (Carnevale
et al. 1991; Weiss and McWilliams 1993).

In contrast, the algorithms with dissipation of strong
type, ELAD (Figs. 16d,f) and FCT (Figs. 16c,e), tend to
produce vortices with much stronger edge gradients in z.
The resultant vortices also preserve their shape except
when they are involved in vortex interactions. After emer-
gence, the vortices remain somewhat more compact and
occupy a smaller fraction of the domain, compared to
solutions with hyperdiffusion. Hence, the probability of
inelastic interactions for each individual vortex is also
smaller, so the vortex number remains larger because of
more surviving small vortices. Thus, there appears to be
less numerical aging here. One apparent bias is in the
vortex core shapes, where both algorithms without the use
of discriminators (especially FCT; Figs. 16c,d) tend to
produce overly flat core distributions, suggesting that vor-
ticity mixing takes place in a region where it is expected
to be small. Although its rate is slower than that caused
by hyperdiffusion, this results in growth of the vortex
radius and reduction of the extremum amplitude. Both of
these effects decrease the survival probability for an in-
dividual vortex and act preferentially on the smaller vor-
tices.

This bias may be countered by using extremum dis-
criminators: see Fig. 16e for FCT with the discriminator
algorithm in appendix A and Fig. 16f for ELAD with this
algorithm augmented by the convexity check in Eqs. (47)–
(48). Now the vortices have much larger extrema and are
somewhat narrower. Small vortices of six to eight grid
points in diameter may survive during the whole period
of time without significant decay. The vortex profiles now

more evidently depend on their histories of interaction;
one can see multiple peripheral skirts for some vortices
in Figs. 16e,f indicating incremental growth through merg-
ers with weaker vortices.

To verify these findings, we repeated the numerical
calculations with the ELAD and UTOPIA algorithms
on a finer grid of 512 3 512. The initial condition was
obtained by the interpolation described in the previous
section. Because now there are twice as many points
per vortex extremum in the initial state, the vortices are
better resolved and we do not expect that extremum
discriminator to make as much difference as in the 256
3 256 solutions. The results are shown in Figs. 16h,i.
Now the decay of extrema in the absence of a discrim-
inator is significantly smaller, and although the flat-core
shape bias is still evident, it occurs at a smaller scale
relative to the typical vortex radius. Use of the discrim-
inator still brings some change, but it is not as strong
as on the coarser grid. Furthermore, solutions at differ-
ent grid resolutions using ELAD with a discriminator
(Figs. 16f and 16i) exhibit relatively modest differences,
although there are still more vortices and steeper edges
on the finer grid. A similar resolution comparison for
solutions with UTOPIA can be made between Figs. 16a
and 16g. The resolution tendencies are the same as with
ELAD: more vortices remain and gradients are steeper.
However, the biases toward lower extremum amplitude
and smoother profile shape remain. In terms of the num-
ber of remaining vortices and sharpness of vorticity gra-
dients, the 512 3 512 UTOPIA solution is more like
that of the 256 3 256 FCT and ELAD solutions with
extremum discriminators, rather than their 512 3 512
counterpart.

7. Convergence of dissipative properties of
turbulent flow

Despite the clear indication that adaptive techniques
are generally less dissipative, the fundamental ques-
tion—Do they produce the optimum amount of dissi-
pation?—remains to be answered. This question is non-
trivial, because reliable fully converged solutions for
turbulent flows are not available. No discrete model can
resolve all possible scales, especially in the situation
when there are nonlinear cascades toward small scales.
Some dissipative mechanism must be employed to pre-
vent accumulation of excessive variance in the small
scales. If achieving high Reynolds number is the goal,
so that the Reynolds number based on grid size, physical
velocity, and molecular viscosity is much larger than
1,3 viscous dissipation can no longer accomplish this

3 In practice, for the turbulent flow simulations with a reasonably
high-order accurate centered (nondissipative) finite-difference ad-
vection scheme the actual threshold is roughly 10–20. This also sets
a limit to the maximum physical Reynolds number that can be
achieved on a given grid for a simulation that resolves viscous pro-
cesses directly, making it impractical to use such solution on a fine
grid for the purpose of verification of a subgrid-scale mixing model
run on a relatively coarse grid.
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goal, and apparently no other physical mechanism is
available. Moreover, because the threshold between
scales that are and are not correctly represented is set
by the discretized advection scheme, introduction of an
additional artificial term into the continuous equation
immediately introduces the dilemma of double count-
ing—for some scales the subgrid dissipation model adds
to the physically resolved processes. The opposite sit-
uation may also occur, where the basic advection scheme
cannot properly handle strain-induced gradients and the
resultant discretization errors are not suppressed by the
subgrid model. The former situation results in overdis-
sipated and the latter in underdissipated solutions. Un-
derdissipation leads to an unphysical solution because
of aliasing contaminating the resolved scales. Overdis-
sipation is, on the other hand, somewhat less harmful
because it can be simply viewed as underutilization of
the grid resolution, and in principle, be compensated for
by the use of a finer grid. In practice, however, every
doubling of resolution for a two-dimensional problem
causes an increase of computational effort by a factor
of 8 (2 of which is due to a finer time step required to
satisfy the CFL criterion), which strongly limits the
practically achievable Reynolds number.

It is instructive to compare histories of decay of en-
strophy and quadratic variance of passive scalar pro-
duced by the same scheme at different resolutions. In
the best case, the subgrid-scale model would have the
property that scales resolved by both fine and coarse
grids behave in a similar way, while scales that can be
resolved only on the fine grid are simulated directly on
that grid, and if the same simulation is carried out on
the coarse grid they are suppressed without causing
feedback to the resolved scales. Of course, this is ap-
plicable only for a quantity that is cascaded toward small
scales. This is not valid, for example, for energy in 2D
turbulent flow, because energy is cascaded toward large
scales. In fact, we have found that the time history of
energy converges with the refinement of the grid toward
nearly zero dissipation, and for the finest resolution we
have used (1024 3 1024 grid, 6-ELAD with discrimi-
nator), the system loses less than 1% of its initial energy.

We interpolate the initial vorticity and passive scalar
fields from 256 3 256 to 512 3 512 grid using the
‘‘monotone’’ interpolation procedure (49) described in
the previous section. Then the interpolated field is in-
terpolated again to 1024 3 1024 grid by the same pro-
cedure. Starting from these three fields, the simulations
were carried out independently from each other using
both UTOPIA and 6-ELAD with discriminator algo-
rithms.

Given a fine-grid solution, we compute quadratic vari-
ance (both for vorticity and passive scalar) on that grid
as well as the portion of the quadratic variance resolved
by the coarser grid. To do so, first we apply a smoothing
operator to the fine-grid solution,

S [z → z9 ]:{ f } { f }

1
z9 5 zi11/4, j11/4 i11/4, j11/44

1
1 (z 1 zi21/4, j11/4 i13/4, j11/48

1 z 1 z )i11/4, j21/4 i11/4, j13/4

1
1 (z 1 zi21/4, j21/4 i13/4, j21/416

1 z 1 z ), (50)i21/4, j13/4 i13/4, j13/4

where indices i, j ∈ { f} are half-integers (i, j 5 1, 3/2,
2, 5/2, . . .) because they belong to the refined grid { f}.
After that the smoothed field is projected to coarse grid
by the cell-centered restriction operator,

R [z → z ]:{ f } {c}

1
z 5 (z9 1 z9 1 z9 1 z9 ),i, j i21/4, j21/4 i11/4, j21/4 i21/4, j11/4 i11/4, j11/44

(51)

which is adjoint to operator P defined by Eq. (49). In
Eq. (51) the indices i, j ∈ {c} are integer numbers be-
cause they belong to the coarse grid {c}. The quadratic
variance is computed again, but now from field z{c},
consequently the portion of quadratic variance of field
z{ f } is resolved by grid {c}. The smoothing step Eq.
(50) removes fine structures that exist on grid { f} but
cannot be resolved on grid {c}. Not doing so will cause
aliasing error. In principle, this smoothing may be ap-
plied several times, but we found that the results re-
ported here are not very sensitive to it. There is also
inherent smoothing in both the interpolation P and the
restiction R operators themselves. In fact, one can verify
that for any field z{c} on grid {c}

R [P [z{c}]] 5 S[z{c}]. (52)

The whole procedure may be repeated again in order
to compute the portion of quadratic variance resolved
by an even coarser grid. These quadratic variances are
compared with variances computed from the solutions
obtained directly on those grids.4

The results are presented in Fig. 17. Labels such as

4 In the present study we avoid using discrete Fourier transforms
as a diagnostic tool. The fine scales filtered out by the technique
described above are associated with filamental vorticity and passive
scalar in the background field outside the coherent structures. When
successive coarsening is applied, this background field becames more
and more flat, while the steepness of vorticity gradients on the edges
of the coherent structures remains unchanged, if it can be resolved
by the coarse grid, or restricted consistently with the resolution of
that grid, if it cannot. If, as an alternative analysis, one tries to apply
spectral filtering by eliminating Fourier components above some cut-
off wavenumber, a spurious wavy pattern appears in the background
if the field is transformed back to physical space. This wavy pattern
is associated with spectral ‘‘leakage’’ from the steep gradients on the
edges of coherent structures.
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FIG. 17. Time history of resolved quadratic moments for turbulent flow similations for different grid resolutions. (a) Enstrophy, UTOPIA;
(b) passive scalar variance, UTOPIA; (c) enstrophy, 6-ELAD with discriminator; (d) passive scalar variance, 6-ELAD with discriminator ;
The first number of 256, 512, and 1024 indicates resolution of the grid on which the simulation is performed; the second number, → 512
or → 256, if any, resolution of the grid to which the solution was coarsened before the second moment is computed.

1024 → 256 indicate that the simulation is performed
on grid 1024 3 1024, then fields are coarsened to grid
256 3 256 (in this particular case twice) in order to
compute the variance. If the curve is labeled by a single
number, the variance is computed on the same grid as
the solution. The results in Fig. 17 suggest that for the
solution produced by 6-ELAD scheme with a discrim-
inator the behavior of the coarsened enstrophy and qua-
dratic variance of passive scalar is reasonably close to
that computed directly on the same grid as the solution.

It should be stressed that for this class of problems there
is no convergence in a deterministic sense. The initial
states for all these problems are 100% correlated across
all three grid resolutions; however, we observe that they
become almost completely uncorrelated after a time of
roughly 20–35, which is less than 10% of the duration
of the whole simulation. There is no indication that the
coarsened variance falls below that computed from the
coarser-grid solution, except, perhaps, for a few brief
fluctuations of enstrophy and quadratic variance from
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the solution on the 256 3 256 grid associated with
discrete vortex merger events. This verifies that despite
smaller overall dissipation relative to the other methods,
6-ELAD does not produce underdissipated solutions. At
the same time, the closeness of the curves labeled 1024
→ 512 and 512 (especially for enstrophy dissipation)
suggests that the solutions on these two grids are rea-
sonably well converged in a sense of similarity of sta-
tistical behavior. This convergence is somewhat less
successful for the passive scalar, which exhibits a larger
overall dissipation.

UTOPIA, Figs. 17a,b, produces an excessive amount
of dissipation. The variances of fine-grid solutions are
less sensitive to coarsening than those produced by
ELAD, simply because they are smoother on the grid
scale. At the same time, the differences between dif-
ferent grid resolutions are much larger, and there is no
indication that the rate of dissipation is close to the
converged state.

We conclude that algorithms with adaptive dissipa-
tion, and expecially those with discriminators, help re-
sist numerical aging and increase the effective resolution
on a given computational grid. They also give at least
an indication of solution convergence in terms of long-
time vortex statistical behavior to a greater degree than
the solutions with dissipation of weak type. Without
being able to calculate solutions with even more initial
vortices on even finer grids, we are not yet prepared to
discuss the asymptotically true vortex population sta-
tistics. Nevertheless, any further tests of the theoretical
predictions of Carnevale et al. (1991), Weiss and
McWilliams (1993), and Bartello and Warn (1996)
should be made with adequate attention to possible nu-
merical aging biases.

8. Comparison of computational costs

All computations presented in this paper were per-
formed on an SGI Power Challenge with a 90-MHz
R8000 processor. This is a pipelined processor, which
requires codes similar to those for vector machines. The
available software allows direct estimation of the com-
putational cost for every DO loop in the code, thus not
only is timing possible for the complete algorithm but
also for the distribution throughout the different steps.
It is natural to express computational costs in CPU clock
cycles per grid point. All codes were manually tuned
to the level of at least 90% of maximum theoretical
performance, and a special effort was made to ensure
optimal pipelining of all logical switches.

The computational costs of Jacobians of different or-
ders Eq. (42) are the following: second order, 21 clock
cycles, where 12 are spent to compute terms associated
with normal and 9 with diagonal fluxes; fourth, 36 5
20 1 16, respectively; sixth, 48 5 27 1 21. These
schemes are computed with uniform orders of accuracy,
that is, both interpolations and differencing are done
with the same order, Eqs. (19)–(16). Increasing the order

of accuracy causes only a moderate increase of cost,
despite the use of a larger grid stencil. Thus, the fourth-
order Jacobian uses a 7 3 7 5 49 point stencil with all
c and z points involved, while the sixth-order scheme
has a 9 3 9 5 81 point stencil. It is only slightly more
than twice as expensive in comparison with the simple
second-order Arakawa Jacobian, which has only a nine-
point stencil. With only a small degradation of numerical
performance, the higher-order schemes can be simplified
by using second-order, staggered differencing for inter-
polation along with Eq. (21), and the computational cost
will be decreased by 10% and 15%.

The ELAD costs are the following: step 1 1 iter(step
2 1 step 3) 5 14 1 iter(7/2 1 5), where iter is the
number of diffusive iterations. In all computations pre-
sented in this paper we chose iter 5 4, resulting in 48
clock cycles for the whole procedure. Thus, sixth-,
fourth-, and second-order ELAD schemes require 96,
84, and 69 clock cycles, respectively.

The FCT algorithm with simplified permissible
bounds requires 83 cycles, in which 25 are spent to
compute both low- and high-order fluxes and their di-
vergences and 58 are spent for the flux-limiting pro-
cedure. The extremum discriminator from Zalesak
(1979) needs an extra 49 cycles, which results in an
overall cost of 118 clock cycles. The new extremum
discriminator with the six-point convexity check in each
direction requires 22 clock cycles.

Rasch’s UTOPIA algorithm costs 49 clock cycles per
grid point, while the g scheme (44) needs only 42. These
costs should be doubled because of the use of a pre-
dictor–corrector step.5,6

We can compare these costs with that of the needed
multigrid Poisson solver, which is approximately 90
clock cycles per grid point. Thus, all of these advection–
dissipation operators have a similar cost.

In general, adaptive algorithms are more expensive
and the flux-limiting procedure itself is the largest con-
tributor to the cost. This encourages the use of the high-
est possible order of accuracy for the basic advection
scheme, since the use of a second- instead of a fourth-
order scheme brings only minor savings while dramat-
ically degrading performance.

The traditional strategy for improving the numerical
quality of a solution merely by grid refinement is not
cost-effective compared to an algorithmic improvement.
Each doubling of the grid resolution for a two-dimen-
sional problem increases the computational effort by a
factor of 8 (4 because of the increased number of grid
points and 2 because of the time-step restriction of the

5 In the case of passive-scalar advection where velocities are
known, there is no need for a predictor–corrector step for UTOPIA.
However, our experience is that it is needed for advection of vorticity.

6 A useful simplification for the g-scheme is to drop g terms during
the LF predictor step, while doubling their weights during the cor-
rector. This results in a 69 clock-cycle scheme instead of 84.
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CFL criterion for an explicit scheme). In contrast, the
increase in computational cost per time step and grid
point due to replacing the STD algorithm (with the nec-
essary addition of explicit hyperdiffusion) with any of
the algorithms studied in this paper is only about a factor
of 3. Thus, it is generally more attractive to choose a
more sophisticated technique instead of increasing the
grid resolution.

9. Discussion

Many computational algorithms commonly used for ad-
vection and dissipation have solutions with either exces-
sive nonmonotone behavior (numerical dispersion error)
or excessive smoothing and dissipation, depending upon
the choice of the diffusion or hyperdiffusion coefficient.
We have developed a quasi-monotone advection algo-
rithm, which consists of a high-order, integrally conser-
vative and nondissipative, advection scheme followed by
a locally adaptive corrective procedure, ELAD. This pro-
cedure detects grid points where the values of the advected
scalar were overshot during the advection step, calculates
the overshooting excess, and iteratively diffuses it away.
Although the combination of low-order dissipation with
high-order advection has been used previously [e.g., For-
ester (1977); Hyman (1979); also see Woodward and Co-
lella (1984) for a review], our algorithm is unlike its pre-
decessors because the correction is applied only to the
excess field, not the total advected scalar. The proposed
procedure may also be viewed as an inversion of the FCT
design strategy. The multidimensional, antidiffusive flux-
limiting procedure of the FCT algorithm is performed in
a safe mode: discrete monotonicity is guaranteed during
every step, while the high-order solution is approached
‘‘from below’’ by correcting a low-order predction. In
contrast, ELAD starts from a high-order, nonmonotone
solution and iteratively approaches monotone behavior
‘‘from above.’’

We have tested ELAD in one and two space dimensions.
The tests include scalar advection leading to shape-in-
variant, spatially uniform translation and rotation, as well
as cascading, dissipative two-dimensional turbulence. In
these tests we have also included representatives from sev-
eral classes of alternative algorithms that also seek a bal-
ance among small dissipation, shape preservation, and
monotone behavior.

Existing algorithms provide two essentially different
mechanisms for numerical dissipation: weak type, which
occurs through a hyperdiffusively dominant truncation er-
ror, usually proportional to fourth- or higher even-order
spatial derivative of the advected quantity; and strong type,
which locally corrects nonmonotone behavior in a high-
order advective prediction with a flux-limiting procedure.
Semi-Lagrangian and all forward-in-time, upstream-biased
schemes unavoidably have weak-type dissipation, with the
option of a subsequent strong-type correction; we have
used UTOPIA as a representative of this class. Alterna-
tively, symmetric-in-space, three-time-level methods may

be used as basic schemes to construct algorithms with
dissipation of purely strong type; FCT and ELAD are in
this class. The overall dissipation of FCT and ELAD de-
pends on the dispersive properties of the basic scheme,
which encourages the use of high-order advection. We
have also included explicit hyperdiffusion and the g-
scheme as other algorithms with weak-type dissipation.

In all the tests, ELAD performs at least as well as the
alternative algorithms. Compared to ELAD, the algorithms
with weak-type dissipation escape less well the problem
of compromising unsatisfactorily between low dissipation
and montone behavior. The behavior of ELAD in the vi-
cinity of strong gradients in the advected quantity is closest
to that of FCT; however, it produces significantly less dis-
sipation than FCT, especially in energy. They both appear
to introduce a long-time shape bias toward flat-top extre-
ma, hence excessive decay of extremum amplitudes, but
this bias can be countered by use of extremum discrimi-
nators based upon a refined definition of overshooting. We
have demonstrated a gain in effective resolution for meth-
ods with strong-type dissipation in comparison with weak-
type dissipation. Although the resultant algorithms are
more sophisticated and more expensive per grid point and
time step, the extra computational cost is offset by a gain
in solution quality that cannot be achieved at a similar
cost simply by refinement of the grid resolution.

Our experience with turbulent flows shows that algo-
rithms with dissipation of only strong type can absorb the
nonlinear cascade near the grid scale, where advective
dynamics can no longer be accurately calculated, and thus
provide an adequate, albeit minimal, subgrid-scale model
for maintaining smoothness of the solution. This supports
the views advocated by Boris (1989) (Boris et al. 1992;
Beets and Koren 1996):

1) Adaptive monotone algorithms themselves can provide
a sufficient parametrization for the subgrid-scale trans-
fer and dissipation processes.

2) Any such subgrid-scale model should be constructed
by considering not only the unresolved, continuously
differentiable physical processes, but also the discre-
tized model properties.

These two principles are justified even if the discrete dis-
sipative mechanism cannot be expressed as representing
any particular continuous operator, always remembering
that the important standard of solution convergence is to
molecular dissipation at some large but finite Reynolds
number.

Although we restricted ourselves to two-dimensional
flows, the generalization of ELAD is straightforward to
three-dimensional, incompressible flows for scalars con-
served on Largrangian parcels. This makes it potentially
quite useful for oceanic and atmospheric models, although
further consideration is needed for the appropriate bound-
ary conditions. If the advective equation involves more
than Lagrangian conservation, then the simpler g-scheme
may still provide benefits compared to alternative methods.
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APPENDIX A

FCT Algorithm

We follow the methodology of the original FCT al-
gorithm (Zalesak 1979). For brevity of notation we re-
strict our discussion to the one-dimensional case. Gen-
eralization to multidimensions is self-evident, provided
that the components of velocity and fluxes are placed
on fully staggered grids.

Consider the three-time-level FCT algorithm. The
low-order upstream fluxes, high-order fluxes, and an-
tidiffusive fluxes are defined as

n21q u u . 0i i11/2 i11/2n21FLX 5 (A1)i11/2 n215q u u , 0,i11 i11/2 i11/2

xnnFHX 5 q u , (A2)i11/2 i11/2 i11/2

n n21AX 5 FHX 2 FLX , (A3)i11/2 i11/2 i11/2

where q x is computed using one of the interpolation
formulas (18)–(21).

Then, using the low-order fluxes, compute prelimi-
nary values for qn11,

2Dt
n21 n21 n21q* 5 q 2 (FLX 2 FLX ), (A4)i i i11/2 i21/2Dx

and, after the limiting functions CX are computed, the
antidiffusive fluxes are added to this preliminary field
to complete the computation of the field q at the new
time step,

2Dt
n11q 5 q* 2 (CX AX 2 CX AX ).i i i11/2 i11/2 i21/2 i21/2Dx

(A5)

Flux-limiting functions CX, 0 # CX i11/2 # 1 are com-
puted by Eqs. (7)–(13) from Zalesak (1979) [Eqs. (79)–
(139) are to be used in multidimensions], so there is no
need to repeat these formulas here. Unlike in the original
algorithm, we do not reset the antidiffusive fluxes ac-
cording to Eqs. (14) or (149), and we use a slightly
different definition for the permissible bounds for ,n11qi

which will be discussed below.
If all CX in Eq. (A5) are set to 1, the algorithm

becomes equivalent to its basic scheme, which is leap-
frog (LF) time step. As long as the high-order fluxes
are computed by a symmetric interpolation scheme, this
basic scheme is stable and nondissipative.

The FCT algorithm (A1)–(A5) behaves reasonably
well, however its major disadvantage is the time lag in
computation of the low-order fluxes, which may result
in some distortion of the shape of advected profiles (see
Fig. A1, cases with prefix LF). Also, in our experience,
it is sensitive to the LF computational mode, which

requires the use of a corrective step every few time
steps.

As an alternative to Eqs. (A1), (A3), (A4), and (A5)
one can choose

nq u , u . 0i i11/2 i11/2nFLX 5 (A6)i11/2 n5q u , u , 0,i11 i11/2 i11/2

n nAX 5 FHX 2 FLX , (A7)i11/2 i11/2 i11/2

Dt
n n nq* 5 q 2 (FLX 2 FLX ), (A8)i i i11/2 i21/2Dx

Dt
n11q 5 q* 2 (CX AXi i i11/2 i11/2Dx

2 CX AX ), (A9)i21/2 i21/2

which makes the basic scheme unstable when all flux-
limiting functions are set to 1. Though the presence of
flux-limiting restricts the growth of instability, and the
resultant algorithm has TVD, ENO, and positive-defi-
niteness properties, it exhibits strong ‘‘staircasing’’ ten-
dency, which diminishes its practical usefulness (see
Fig. A1, cases labeled with prefix FW-).

A sensible choice is to use predictor–corrector time
stepping (LF–trapezoidal rule), where both stages are
FCT procedures. In practice, however, one can simplify
the algorithm, avoiding the repetition of the flux-lim-
iting procedure, thus, allowing only a mild increase of
the computational cost in comparison with FCT algo-
rithm (A1)–(A5).

At first, using the unlimited high-order fluxes and LF
step, predict the new time step values,

2Dt
n21 n nq** 5 q 2 (FHX 2 FHX ), (A10)i i i11/2 i21/2Dx

then interpolate qi in time, recompute the high-order
fluxes and compute the antidiffusive fluxes,

1 1
n n21q*** 5 2 g q** 1 1 2g q 2 gq , (A11)i i i i1 2 1 22 2

x***FHX*** 5 q , (A12)i11/2 i11/2

nAX 5 FHX*** 2 FLX . (A13)i11/2 i11/2 i11/2

Because and are needed exclusively to com-q** q***i i

pute the high-order and antidiffusive fluxes, their values
may be overshot. This preliminary step does not have
to be an FCT procedure, and generally speaking, it even
does not have to be conservative. Equations (A10) and
(A11) may be combined into

1 1
n n21q*** 5 1 2g q 1 2 2g qi i i1 2 1 22 2

1 2Dt
n n2 2 g (FHX 2 FHX ), (A14)i11/2 i21/21 22 Dx
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FIG. A1. Comparison of various options of FCT algorithm. The initial conditions, top left, are the same
as in Fig. 1. Labels FW, LF, TR, and AM correspond to forward Euler, LF, LF–trapezoidal rule and Adams–
Multon time steps for the basic scheme, which is sixth-order centered in space for the all cases presented
here. To make the differences between the different time steps more transparrent, the Courant number is set
to 1/3. Suffix -L labels cases when flux limiting is enabled, while -D indicates activation of both flux-limiting
and extrema discrimination. Note the location of the dominant dispersive spikes near the step in the three
cases when flux-limiting is turned off. Forward scheme is ustable and, therefore, was not tested in this
regime. When flux limiting is enabled it produces the sharpest resolution of the step function (due to interplay
between instability and flux limiting); however, smooth profiles are heavily damaged by staircasing. Also
note distortion of shape of the narrow peak profile for the LF-L and LF-D cases, caused by time lag of the
diffusive fluxes.

where there is no need to keep qn21 after q*** is com-
puted. (In practice fields qn21, qn11, q*, q**, and q***
share the same storage array.)

Once the antidiffusive fluxes are computed, FCT pro-
cedure given by Eqs. (A8)–(A9) is used to compute

. The choice of g 5 1/12 makes the basic schemen11qi

equivalent centered in space, third-order in time Adams–
Multon step, which is stable and has excellent dispersive
properties (see Fig. A1, cases labeled with AM). Setting
g 5 0 makes the corrective step equivalent to trape-
zoidal rule. It is also stable, but it causes mild phase
delay for the high-wavenumber Fourier components (see
patterns labeled TR in Fig. 17).

a. Limiter and discriminator

Let q̂i11/2 be the value of q at nearest point upstream
from velocity point ui11/2,

nq , if u . 0i i11/2q̂ 5 (A15)i11/2 n5q , if u , 0,i11 i11/2

(in practice this operation is performed at virtually no
cost because it is combined with computation of the
upstream fluxes). After this step, the permissible bounds
for are defined asn11qi

min(q̂i21/2, q̂i11/2) # # max(q̂i21/2, q̂i11/2),n11qi (A16)
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which is more restrictive than in Zalesak (1979) and
Smolarkiewicz and Grabovski (1990), where the
bounds are defined simply as the minimum and the
maximum values among all nearest surrounding
points, including downstream points. Now the down-
stream points are excluded. In the two-dimensional
case, similar to (A15), both q̂ i11/2,j and q̂ i,j11/2 are de-
fined at the same points as the velocity components
ui11/2,j and y i,j11/2 . Then Eq. (A16) becomes

min(q̂ , q̂ , q̂ , q̂ )i21/2, j i11/2, j i, j21/2 i, j11/2

n11# q # max(q̂ , q̂ , q̂ , q̂ ). (A17)i, j i21/2, j i11/2, j i, j21/2 i, j11/2

Because the flow is nondivergent, at least one of four
surronding velocity components is directed away from
point i, j; therefore is automatically included into thenqi,j

arguments of min and max.
The permissible bounds described above do not allow

a possibility of existence of an extrema between grid
points, thus ‘‘clipping’’ of narrow extrema is the result.
To avoid clipping, we design an extremum discrimi-
nator, which is described below.

As a preliminary step, compute the discrete analog
of second derivative of field q,

qxxi 5 2 1 ,n n nq 2q qi21 i i11 (A18)

then, the criterion of the existence of an extremum be-
tween points i and i 1 1, without specifying its type
(minimum or maximum) is formulated as follows,

there is an extre-
n n n n if (q 2 q )(q 2 q ) , 0i i21 i12 i11 ⇒ mum between i6and qxx qxx . 0 i i11 and i 1 1,

and the location of the extremum and the extremal value
may be computed, for example, as the point of inter-
section of straight lines going trough pairs of points qi21,
qi and qi11, qi12 [see Fig. 8 in Zalesak (1979)]:

1 1 qxx 2 qxxi11 i(peak)x 5 Dx i 1 2 ,1 22 2 qxx 1 qxxi11 i

1(peak) n nq 5 (q 1 q )i11/2 i11 i2

1
n n(q 2 q )(qxx 2 qxx ) 2 qxx qxxi11 i i11 i i11 i2

1 .
qxx 1 qxxi11 i

(A19)

The intersection point x (peak) is within xi and xi11 as long
as qxxi and qxx i11 are of the same sign; this point is an
extremum if the first derivative changes sign; thus the
logical conditions above are the necessary conditions
for the existence of an extremum between xi and xi11.

In practice neither of Eqs. (A19) is used. Instead, the
permissible bounds are reset to 6` if the extremum is
detected. It turned out to be more important to impose
a more restrictive criterion for acceptance of the extre-

mum in order to exclude a possibility of treatment of
dispersion induced oscillations as legitimate physical
extrema. Thus, an extremum is accepted if the second
derivative retains its sign in at least four consequent
grid points around the point i 1 1/2. To do so, we assign

5 q̂i11/2 5 q̂i11/2 ∀i,(min) (max)q qi11/2 i11/2 (A20)

and then reset these values, if an extremum is detected,

n n n nif (q 2 q )(q 2 q ) , 0i i21 i12 i11

(min)and qxx qxx . 0 q 5 2`i i11 i11/2⇒ (max)5and qxx qxx . 0 q 5 1`,i21 i i11/2
and qxx qxx . 0i11 i12

(A21)

finally, as an alternative to Eq. (A16),

min( , ) # # max( , ).(min) (min) n11 (max) (max)q q q q qi21/2 i11/2 i i21/2 i11/2 (A22)

Similarly, in two dimensions,
(min) (min) (min) (min)min(q , q , q , q )i21/2, j i11/2, j i, j21/2 i, j11/2

(max) (max) (max) (max)n11# q # max(q , q , q , q ), (A23)i, j i21/2, j i11/2, j i, j21/2 i, j11/2

where , , , and are defined in a(min) (max) (min) (max)q q q qi11/2,j i11/2,j i,j11/2 i,j11/2

manner similar to Eqs. (A20)–(A21), provided that the
discrete analog of second derivatives qyyi,j is computed
as a preliminary step similar to Eq. (A18). By its design,
the discriminator (A21) is a purely logical construction.
Unlike in Leonard and Niknafs (1991), no prescribed
threshold criterion is involved. At the same time, (A21)
is more restrictive than discriminators used in Zalesak
(1979) and Leonard and Niknafs (1991) because it re-
quires satisfaction of the convexity check in a wider
region around the extremum.

Equations (A15)–(A16) are used in cases labeled with
suffix -L (limiter only) in Fig. A1, while Eqs. (A15),
(A18), (A20), (A21), and (A22) are used in cases with
-D (limiter and discriminator).

b. Uncompensated residual dissipation

Although by its design the FCT algorithm applies
the antidiffusive fluxes with the maximum possible
‘‘safe’’ weight, there are causes for systematic un-
derestimation of the antidiffusive fluxes. One such
cause is due to Eq. (13) [or (139)] in Zalesak (1979),
where the limiting functions are chosen as mimima
between the two adjacent grid points. This happens
in both in one dimension and in multidimensions. The
other, perhaps more important, cause occurs in mul-
tidimensions only. In the FCT flux-limiting algorithm
the collective effect of antidiffusive fluxes at every
grid cell is decomposed into sums of incoming and
outgoing fluxes [Eqs. (79) and (109)]. In the case
where there is a large velocity component in the di-
rection perpendicular to the gradient of advected
quantity, the antidiffusive fluxes associated with this
velocity component are the dominant contributors to
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both sums. If the sums are combined, these fluxes
approximately cancel each other, so that the absolute
value of each sum may be much larger than that of
the combined effect. On the other hand, because the
value of advected quantity is smooth along the di-
rection of this component, these fluxes are not the
major sources of the dispersive error, compared to the
antidiffusive fluxes along the gradient. The latter ones
will be restricted by the weighting coefficients gov-
erned predominantly by the stronger fluxes, which
will result in underestimation of these coefficients.

More quantitative analysis of this effect is com-
plicated because of highly anisotropic, nonlinear, and
nonanalytical nature of the flux-limiting algorithm.
Also, there is no obvious way to improve the flux-
limiting part of the FCT algorithm by somehow re-
laxing the logical constraints in any of Eqs. (79)–(139)
without causing overshoots. A potential way to elim-
inate the underestimation is to construct an iterative
FCT procedure, similar to approach used in MPDATA
(Smolarkiewicz and Grabovski 1990). This path,
however, does not seem attractive because it implies
the iterative repetition of the flux-limiting procedure,
which is already the most computationally expensive
part of the FCT algorithm. Because the residual dis-
sipation is effectively low order (like Newtonian dif-
fusion), it is mostly seen in the overall decay of en-
ergy, rather than enstrophy or quadratic variance of
the passive scalar.

APPENDIX B

Details of Rasch’s Algorithm

In this technical description we focus on implemen-
tation of the two-dimensional upstream switch, which,
we believe, is the most efficient method on a pipelined
or vector processor machine. Inquires about philosophy
of the scheme and derivation should be addressed to
Rasch (1994) and Leonard et al. (1995b). The algorithm
implies that

n11 nq 5 q 2 FX 1 FX 2 FYi, j i, j i11/2, j i21/2, j i, j11/2

1 FY , (B1)i, j21/2

where, in order to compute fluxes we compute first the
spatial derivatives of the advected quantity,

n n n nqx 5 q 2 q 1 q 2 qi11/2, j11/2 i11, j11 i, j11 i11, j i, j

n n n nqy 5 q 2 q 1 q 2 qi11/2, j11/2 i11, j11 i11, j i, j11 i, j

n n nqxx 5 q 22q 1 qi, j i11, j i, j i21, j

n n nqyy 5 q 22q 1 qi, j i, j11 i, j i, j21

n n n nqxy 5 q 2 q 2 q 2 q . (B2)i11/2, j11/2 i11, j11 i11, j i, j11 i, j

Define Courant numbers in both directions as

Dt Dt
û 5 u , v̂ 5 y , (B3)

Dh Dh

where Dh 5 Dx 5 Dy is the grid spacing and Dt is the
time step. If computed from streamfunction field c, the
natural placements of the velocity components are ui,j11/2

and y i11/2,j, so that in order to compute fluxes, one needs
to reinterpolate them to the locations ui11/2,j and y i,j11/2.
In practice we use a fourth-order accuracy interpolation
scheme. In fact, all four of these fields are needed to
compute fluxes FX and FY.

To compute flux component FX, first, at location i 1
1/2, j we define intermediate quantities,

qxx , if û . 0i, j i11/2, jCURVX 5i11/2, j 5qxx , if û , 0i11, j i11/2, j

qyy , if û . 0i, j i11/2, jCURVY 5i11/2, j 5qyy , if û , 0i11, j i11/2, j

qy , if v̂ . 0i11/2, j21/2 i11/2, jGRADY 5i11/2, j 5qy , if v̂ , 0i11/2, j11/2 i11/2, j

qxy , if v̂ . 0i11/2, j21/2 i11/2, jTWIST 5 (B4)i11/2, j 5qxy , if v̂ , 0,i11/2, j11/2 i11/2, j

then compute the flux component itself,

n n n n 2q 1 q q 2 q 1 2 ûi, j i11, j i11, j i, j i11/2, j
FX 5 û 2 û 2 CURVXi11/2, j i11/2, j i11/2, j i11/2, j[ 2 2 6

1
2 v̂ (GRADY 1 (1 2 v̂ )CURVY 2 û TWIST ) . (B5)i11/2, j i11/2, j i11/2, j i11/2, j i11/2, j i11/2, j ]4

There is no need to store CURVX, CURVY, GRADY,
and TWIST in scratch workspace arrays. However, to
eliminate operations inside the upstream switches (B4)
one needs to precompute and store in scratch arrays

intermediate fields (B2). This feature of the algorithm
is important for the efficiency when the vector or pipe-
lined processor is used, because these kind of processors
execute both versions inside the logical switch, then
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accept one of the results and discard the other, thus
doubling the cost of operations inside the switch. For
the same reason we have rearranged operations (cf.
Rasch 1994) in order to eliminate the use of nested
switches. One can easily recognize CRAY implemen-
tation of the upstream switches [Eq. (B4)] via CRAY
conditional vector merger functions CVMGM and
CVMGP.

Flux component FY is computed in a similar way,

qxx , if v̂ . 0i, j i, j11/2CURVX 5i, j11/2 5qxx , if v̂ , 0i, j11 i, j11/2

qyy , if v̂ . 0i, j i, j11/2CURVY 5i, j11/2 5qyy , if v̂ , 0i, j11 i, j11/2

qx , if û . 0i21/2, j11/2 i, j11/2GRADX 5i, j11/2 5qx , if û , 0i11/2, j11/2 i, j11/2

qxy , if û . 0i21/2, j11/2 i, j11/2TWIST 5 (B6)i, j11/2 5qxy , if û , 0i11/2, j11/2 i, j11/2

and

n n n n 2q 1 q q 2 q 1 2 v̂i, j i, j11 i, j11 i, j i, j11/2
FY 5 v̂ 2 v̂ 2 CURVYi, j11/2 i, j11/2 i, j11/2 i, j11/2[ 2 2 6

1
2 û (GRADX 1 (1 2 û )CURVX 2 v̂ TWIST ) . (B7)i, j11/2 i, j11/2 i, j11/2 i, j11/2 i, j11/2 i, j11/2 ]4

To ensure second-order accuracy in time, a predictor–
corrector time step is used. At first, the streamfunction
c is extrapolated to time level n 1 1/2,

3 1
n11/2 n n21c 5 c 2 c . (B8)

2 2

Then velocity components are computed and the vor-
ticity field is advanced in time according to Eq. (B1).
After the new time step streamfunction cn11 is obtained
by resolving the elliptic problem, it is interpolated be-
tween the time steps n and n 1 1, and velocities at half
time step n 1 1/2 and vorticity at new time step n 1
1 are recomputed again. Finally, computation of the new
time streamfunction completes the time step.

APPENDIX C

Algorithm for Identification of Extrema

Suppose fields z, q, and c are known at two moments
of time, typically 10–20 time steps apart. First, we an-
alyze both old and new time fields z and q for the pres-
ence of extrema. A value at point 3 is accepted as an
extremum if it dominates over its 20 neighbors 1,

1 1 1

1 1 1 1 1

1 1 3 1 1. (C1)

1 1 1 1 1

1 1 1

For each field, minima and maxima are sorted by
amplitude and stored along with indices i, j. At the old
time at every extremum we initialize a Lagrangian par-
ticle and trace it to the new time step. To do so, first

determine to which grid box (i, i 1 1) 3 (j, j 1 1) the
particle belongs and interpolate the streamfunction be-
tween times in the surrounding 16 points. Then we de-
termine fractional displacements of the particle from the
center of the box, hx, hy, so that 21/2 , hx, hy , 1/2,
hx, hy 5 0 if the particle is located exactly in the center
of the box and hx, hy 5 61/2 on the side. Using cubic
interpolation and off-centered fourth-order differencing,

]c
5 ac 1 (b 2 a)ci12 i11)]x i11/21h

1 (g 2 b)c 2 gc , (C2)i i21

where
21 h h

a 5 2 1 1
24 2 2

227 h 3h
b 2 a 5 1 2 2

24 2 2
227 h 3h

g 2 b 5 2 2 1
24 2 2

21 h h
2g 5 1 1 2 , (C3)

24 2 2

compute the velocitiy components at particle. Finally,
advance the coordinate of the particle in time. Because
in the vicinity of a strong extremum of vorticity La-
grangian particles tend to spin around, we choose an
iterative backward Euler time step for this procedure,
which ‘‘locks’’ the particle on the extremum.

After the location of the Lagrangian particle is de-
termined at the new time, the new time list of extrema
is searched for an extremum located no further than a
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prescribed critical radius, which is chosen to be 1.5 of
the grid size. If an extremum is found (positive iden-
tification), a line connecting its value at the old and new
time is plotted.

In practice we use a 20-time-step interval between
examining the extrema and the same time step as in the
main model for the tracking the Lagrangian particles.
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