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Abstract

Geographical location is vital to geospatial applications like local search and event detection. In
this paper, we investigate and improve on the task of text-based geolocation prediction of Twitter
users. Previous studies on this topic have typically assumed that geographical references (e.g.,
gazetteer terms, dialectal words) in a text are indicative of its author’s location. However, these
references are often buried in informal, ungrammatical, and multilingual data, and are therefore
non-trivial to identify and exploit. We present an integrated geolocation prediction framework
and investigate what factors impact on prediction accuracy. First, we evaluate a range of feature
selection methods to obtain “location indicative words”. We then evaluate the impact of non-
geotagged tweets, language, and user-declared metadata on geolocation prediction. In addition, we
evaluate the impact of temporal variance on model generalisation, and discuss how users differ in
terms of their geolocatability.

We achieve state-of-the-art results for the text-based Twitter user geolocation task, and also
provide the most extensive exploration of the task to date. Our findings provide valuable insights
into the design of robust, practical text-based geolocation prediction systems.

1. Introduction

The growing volume of user-generated text posted to social media services such as Twitter, Face-
book, and Tumblr can be leveraged for many purposes ranging from natural disaster response to tar-
geted advertising (Tuten, 2008; Nunez-Redd, Diaz, Gil, Gonzalez, & Huerta, 2011; Yin, Lampert,
Cameron, Robinson, & Power, 2012). In many circumstances it is important to know a user’s loca-
tion in order to accomplish these tasks effectively. For example, disaster response managers must
know where to direct resources in order to effectively coordinate aid, and advertisers could benefit
from tailoring advertisements to a user’s location. Similarly, search results localisation hinges on
knowledge of a user’s location. Although many social media services allow a user to declare their
location, such metadata is known to be unstructured and ad hoc (Hecht, Hong, Suh, & Chi, 2011)
(e.g., melbo denoting Melbourne, AU"), as well as oftentimes non-geographical (e.g., in my own

1. Throughout the paper, we present city names with ISO 3166-1 alpha-2 country-level designators such as AU =
Australia and CA = Canada. Where US-based city names are mentioned in the context of the North American
regional dataset used in experimentation (NA), we use an ISO 3166-2:US designator such as US-CA = California or
US-PA = Pennsylvania.

(©2014 AI Access Foundation. All rights reserved.



HAN, COOK & BALDWIN

little bubble). Text-based geolocation — automatically predicting a user’s location based on the
content of their messages — is therefore becoming of increasing interest (e.g., Cheng, Caverlee, &
Lee, 2010, and others). In this paper we investigate and improve text-based geolocation prediction
for Twitter users. Specifically, we exploit the tweets and profile information of a given user to infer
their primary city-level location, which we claim is sufficiently fine-grained to support the sorts of
applications mentioned above.

As is well established in previous work (e.g., Wing & Baldridge, 2011, and others), it is reason-
able to assume that user posts in social media reflect their geospatial locum, because lexical priors
differ from region to region. For example, a user in London is much more likely to talk about Pic-
cadilly and tube than a user in New York or Beijing. That is not to say that those words are uniquely
associated with London, of course: fube could certainly be mentioned by a user outside of the UK.
However, the use of a range of such words with high relative frequency is strongly indicative of the
fact that a user is located in London. Most work in this area utilises geotagged data as ground truth
for evaluation (e.g., Eisenstein, O’Connor, Smith, & Xing, 2010, and others). The geotagged data
contains GPS coordinates inserted with the user’s consent by a GPS-enabled device such as a smart-
phone, and offers accurate information about a user’s position at the time of tweeting. Although
approaches to text-based geolocation are offering increasingly promising results, the studies to date
on this topic have been limited in a number of important ways. We raise some key issues in Section
3 and investigate them in turn, focusing on the following issues:

1.1 Location Indicative Words

Text-based geolocation prediction models for social media are predominantly based on the full text
data of tweets, including common words with no geospatial dimension (e.g., foday), potentially
hampering prediction, and because of the large number of words observed in tweets, leading to
slower, more memory-intensive models. We tackle this by automatically finding location indicative
words (LIWs) via feature selection, and demonstrating that the reduced feature set boosts geoloca-
tion accuracy. In Section 5, we carry out extensive evaluation over a wide range of feature selection
methods proposed in the literature, and show that an information gain ratio-based approach outper-
forms benchmark geolocation prediction methods by 10.6 percentage points in terms of accuracy,
and reduces the median prediction error distance by 209km on a publicly-available regional (North
America) dataset. We similarly demonstrate the effectiveness of LIW selection on a global dataset
in Section 6.

1.2 Non-geotagged Tweets

In addition to experimenting with geotagged data, we further extend our analysis to incorporate non-
geotagged tweets. Some recent work (e.g., Roller, Speriosu, Rallapalli, Wing, & Baldridge, 2012)
has incorporated non-geotagged training data, although little work has analysed the contribution of
non-geotagged data, i.e., the extent to which incorporating non-geotagged data improves geoloca-
tion accuracy. Furthermore, the evaluation of previous models has been restricted to geotagged data
(in order to have access to a ground truth) although the goal of this line of research is to be able to
infer locations for users whose locations are not known. However, it is unclear how well models
evaluated only on geotagged data will generalise to non-geotagged data. For example, because geo-
tagged tweets are sent from GPS-enabled devices such as smartphones, while non-geotagged tweets
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are sent from a range of devices (including desktop computers), these two types of data could have
different characteristics (Gouws, Metzler, Cai, & Hovy, 2011).

In Section 7, we address these issues by training and testing on geotagged tweets, non-geotagged
tweets, and the combination of the two. We show that by exploiting a user’s non-geotagged tweets,
the city-level accuracy is improved from 12.6% to 28.0% on a benchmark dataset, underlining
the potential contribution of non-geotagged data. Furthermore, the numbers also suggest that a
model trained on geotagged data indeed generalises to non-geotagged data, although sub-domain
differences between geotagged data and non-geotagged data are observed.

1.3 Language Influence

With some exceptions (e.g., Kinsella, Murdock, & O’Hare, 2011), most text-based geolocation
studies have been carried out in an English-only setting, or a primarily English setting. Because
high-accuracy language identification tools (Lui & Baldwin, 2012; Nakatani, 2010) are now readily
available, this is not a problem: messages in the target language can be identified, and text-based
geolocation methods can be applied to only those messages. However, it remains to be seen whether
text-based geolocation approaches that have been shown to work well for English perform as well
on other languages, or perform well in a multilingual setting. English is tweeted throughout the
world, whereas languages such as Indonesian are primarily tweeted in localised areas. As such, the
performance of methods developed and tested over English data could be very different when ap-
plied to other languages. We investigate the language influence on a multilingual dataset in Section
8. The results suggest that our model indeed generalises from a monolingual English to a multi-
lingual setting. Furthermore, the experiments reveal that geolocation prediction is much easier for
languages with more geographically-restricted use (e.g., Indonesian) than languages that are more
diverse in usage (e.g., English). We then go on to show that a composite model consisting of a
number of monolingual geolocation models based on language identification outperforms a model
trained on multilingual data.

1.4 Metadata and Ensemble Learning

Although tweet-based geolocation is worthy of study in its own right, tweets are accompanied by
rich metadata in public user profiles. This metadata is included in the payload of JSON objects con-
taining tweets, and offers complementary information that may be exploited to improve accuracy,
e.g., timezone data and the user-declared location. While there has been some work on utilising
timezone (Mahmud, Nichols, & Drews, 2012) and user-declared location (Hecht et al., 2011) in-
formation for user geolocation, the metadata remains largely untouched in the literature. In Section
9, we investigate the performance of metadata-based geolocation models and compare them with
benchmark methods. We show that by incorporating information from metadata and the tweet mes-
sage in a stacking-based approach, a city-level accuracy of 49.1%, and a median prediction error
distance of just 9km, can be achieved over our global dataset, which is a substantial improvement
over any of the base classifiers.

1.5 Temporal Influence

Because Twitter is a growing and evolving medium, the data in Twitter streams tends to be lo-
cally temporal to the time of posting. In addition to evaluating the geolocation model on “old”
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time-homogeneous data (sampled from the same time period as the training data), in Section 10
we evaluate the trained model on a “new” time-heterogeneous dataset, which was collected ap-
proximately one year after the training and test data used in our earlier experiments. The observed
moderate decline in results indicates that the stacked geolocation model is indeed influenced by
temporal changes. Error analysis reveals that this is primarily caused by the unreliability of the
base model trained on user-declared locations. In contrast, we find that models trained on tweet
text and timezone information are relatively insensitive to temporal changes. This finding on the
one hand justifies the efforts to-date in pursuing better text-based geolocation prediction, and on the
other hand suggests that if user-declared location data is to be used, the model has to be periodically
updated to remain current to temporal changes.

1.6 User Geolocatability and Prediction Confidence

We further discuss the geolocatability of users with regard to tweeting behaviour in Section 11.
For instance, does mentioning many local place names have a strong influence on the prediction
accuracy? Experiments suggest the number of LIWs (in particular, gazetted location names) and
user-declared metadata are key to geolocating a user. Because of different tweeting behaviours
among users, not all users are equally geolocatable, with only predictions for a proportion of them
being reliable. We further conduct a pilot study on approximating the prediction confidence through
a range of variables in Section 12.

This paper advances the state-of-the-art of text-based geolocation prediction in a number of
directions, and provides practical guidelines for the design of a text-based geolocation application.
This paper builds off our own previously-published work (Han, Cook, & Baldwin, 2012b, 2013)
with much more extensive evaluation, and new work in the following areas:

e A large-scale comparative evaluation of twelve feature selection methods for user geolocation
— nine of which were not considered in our earlier work — in Sections 4—6.

e The analysis of the impact of training on non-geotagged data in Section 7.

e A new set of experiments, and subsequent analysis, examining the influence of language in
Section 8.

e Further analysis of the utility of user-supplied metadata and ensemble learning in Section 9.

e More-detailed analysis of model generalisation on temporal change in Section 10 including
city-level meta-analysis.

e A new pilot study on user geolocatablility and privacy in Section 11.

The proposed text-based method primarily uses words for geolocation prediction, and intention-
ally excludes Twitter specific entities, such as hashtags and user mentions. The prediction accuracy
therefore largely depends on whether the text contains sufficient geospatial information for geoloca-
tion prediction. Therefore, although this paper focuses exclusively on Twitter, the proposed method
could equally be applied to other forms of social media text, such as Facebook status updates or
user-submitted comments (to services such as YouTube).
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2. Related Work

While acknowledging potential privacy concerns (Mao, Shuai, & Kapadia, 2011; Pontes, Vascon-
celos, Almeida, Kumaraguru, & Almeida, 2012), accurate geolocation prediction is a key driver
for location-specific services such as localised search, and has been the target of research across
different disciplines. For example, the tagging of both user queries (Wang, Wang, Xie, Forman,
Lu, Ma, & Li, 2005; Backstrom, Kleinberg, Kumar, & Novak, 2008; Yi, Raghavan, & Leggetter,
2009) and web pages (Ding, Gravano, & Shivakumar, 2000; Amitay, Har’El, Sivan, & Soffer, 2004;
Zong, Wu, Sun, Lim, & Goh, 2005; Silva, Martins, Chaves, Afonso, & Cardoso, 2006; Bennett,
Radlinski, White, & Yilmaz, 2011) has been considered in information retrieval. In geographical
information science, the primary focus has been on recognising location mentions in text (Leidner
& Lieberman, 2011), with named entity recognition tools typically employed to detect and extract
such mentions (Quercini, Samet, Sankaranarayanan, & Lieberman, 2010; Gelernter & Mushegian,
2011). Within the social media realm, geolocation methods have been applied to images on Flickr
(Crandall, Backstrom, Huttenlocher, & Kleinberg, 2009; Serdyukov, Murdock, & van Zwol, 2009;
Hauff & Houben, 2012; O’Hare & Murdock, 2013; Laere, Schockaert, & Dhoedt, 2013), Wikipedia
articles (Lieberman & Lin, 2009), individual tweets (Kinsella et al., 2011), Twitter users (Eisenstein
et al., 2010; Cheng et al., 2010; Kinsella et al., 2011; Wing & Baldridge, 2011; Roller et al., 2012;
Han et al., 2012b), and for identifying words and topics on Twitter that are salient in particular
regions (Eisenstein et al., 2010; Yin, Cao, Han, Zhai, & Huang, 2011; Hong, Ahmed, Gurumurthy,
Smola, & Tsioutsiouliklis, 2012; Dalvi, Kumar, & Pang, 2012).

Identifying Twitter users’ locations is non-trivial, mainly due to the unavailability of reliable
geographic information. Although Twitter allows users to declare their location in their user profile,
the location descriptions are unstructured and ad hoc (Cheng et al., 2010; Hecht et al., 2011), e.g.,
people use vernacular expressions such as philly, or non-standard spellings such as Filladephia, to
refer to Philadelphia; non-geographical descriptions like in your heart are also commonly found.
Without appropriate processing, the value of these location fields is greatly limited. Hecht et al.
(2011) demonstrate that trivially using these location fields in off-the-shelf geolocation tools is in-
effective. Alternatively, some tweets sent from mobile devices are geotagged with accurate GPS
coordinates, however, the proportion of geotagged tweets is estimated to be a mere 1% (Cheng
et al., 2010), and the location of the vast majority of users are not geotagged. Methods based on
IP addresses (Buyukokkten, Cho, Garcia-Molina, Gravano, & Shivakumar, 1999) can be applied to
the task, and in general web contexts have been shown to achieve around 90% accuracy at mapping
Internet hosts to their locations (Padmanabhan & Subramanian, 2001). Such methods are not ap-
plicable to Twitter and many other social media services, however, as the IP address of the device
the message was sent from cannot be accessed via any of the public APIs. Doubtless Twitter itself
has access to this information and can use it for user geolocation, although even here, geographi-
cal divisions of IP addresses are not always credible. For instance, departments in an international
corporation might use the same IP address range, but their true locations could be spread across the
world. VPNs are also a complication for such approaches. Any third-party service provider making
use of Twitter data, however, has to look to other sources of geospatially-identifying information,
including the text content of the user’s posts and metadata information, as targeted in this research.

In the spatial data mining community, geographical references (e.g., gazetteer terms) in text have
also been exploited to infer geolocation. Intuitively, if a place is frequently mentioned by a user in
their tweets, they are likely tweeting from that region. Methods building on this intuition range from
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naive gazetteer matching and rule-based approaches (Bilhaut, Charnois, Enjalbert, & Mathet, 2003),
to machine learning-based methods (primarily based on named entity recognition: Quercini et al.,
2010; Gelernter & Mushegian, 2011). Despite the encouraging results of this approach on longer
and more homogeneous documents sets (Quercini et al., 2010), its performance is impeded by the
nature of tweets: they are short and informal, and the chances of a user not mentioning gazetted
places in their tweets is high. Moreover, the handling of vernacular place names, e.g., melbo for
Melbourne, in this approach is limited. The reliance on named entity recognition is thwarted by the
unedited nature of social media data, where spelling and capitalisation are much more ad hoc than
in edited document collections (Ritter, Clark, Mausam, & Etzioni, 2011; Han, Cook, & Baldwin,
2012a).

Moving beyond off-the-shelf solutions, recently, many robust machine learning methods have
been applied to geolocation, with the primary approach being to estimate locations based on the
textual content of tweets. For instance, Cheng et al. (2010) exploit words known to be primar-
ily used in particular regions, along with smoothing techniques, to improve a simple generative
geolocation model when applied to data from the continental United States. Wing and Baldridge
(2011) divide the world’s surface into a uniform-size grid, and compare the distribution of words in
a given user’s tweets to those in each grid cell using Kullback-Leibler (KL) divergence to identify
that user’s most likely location. One limitation of this approach is that grid cells in rural areas tend
to contain very few tweets, while there are many tweets from more urban grid cells. Roller et al.
(2012) therefore extend this method to use an adaptive grid representation in which cells contain
approximately the same amount of data, based on a k-d tree (Bentley, 1975). Kinsella et al. (2011)
examine geolocation prediction at different granularities (e.g., zip codes, city, state and country).
Chang, Lee, M., and Lee (2012) prune noisy data based on geometrically-local words (i.e., words
that occur geographically close to each other, and are only found in a limited number of cities) and
non-stop words that are dis-similar to stop words, and they experiment with the reduced feature set
using both a Gaussian mixture model and Maximum Likelihood Estimation for location prediction.
Beyond purely text-based methods (language model-based methods), other sources of information
have also been integrated. Li, Serdyukov, de Vries, Eickhoff, and Larson (2011) investigate geolo-
cation prediction based on a linear rank combination of text and temporal factors. Mahmud et al.
(2012) combine timezone information and content-based classifiers in a hierarchical model for ge-
olocation. In particular, nouns, hashtags, and place names are considered as content in the method.
Schulz, Hadjakos, Paulheim, Nachtwey, and Miihlhduser (2013) combine scores from various geo-
graphical sources (e.g., tweet text, user profile data). The sum of scores for a location is represented
by the “aggregated height” on a polygon-partitioned map, and the highest polygon is the predicted
location.

Topics discussed on Twitter vary across geographical regions. Intuitively, for instance, Ameri-
cans are more likely to talk about NBA and baseball than Australians (who probably mention AFL
and rugby more often). To capture these regional topic variations in Twitter, topic modelling-based
approaches have also been used to incorporate geographical regions in the generative process. For
instance, Eisenstein et al. (2010) introduce a geographical variable (r); instead of generating an ob-
served word w from a per-word topic distribution ¢, as in the standard Latent Dirichlet Allocation
(LDA) model (Blei, Ng, & Jordan, 2003), their proposed approach refines this step by additionally
modeling the topic distributions across different geographical regions, i.e., w is generated from a
per-word region-topic distribution ¢,.,. Therefore, the observed user locations are generated from
geographical regions and the region variable in topic modeling is linked with user geographical
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locations. Generally, a user’s location is predicted at the regional level by adopting the location
centroid for geotagged tweets from that region. Hong et al. (2012) further improve the approach by
considering more fine-grained factors in an additive generative model. In addition to introducing
per-region topic variance, they incorporate per-user topic variance, a regional language model, and
global background topics. To compensate for the computational complexity associated with these
extra hidden variables, they adopt sparse modeling in inference. On top of these geolocation pre-
diction tasks, many other research problems also involve the modelling of geographical locations.
Dalvi et al. (2012) exploit the impact of geographical locations on users’ discussions of pre-defined
objects (e.g., restaurants) in tweets. Yin et al. (2011) propose ways to discover and compare topics
for geographical regions by jointly modelling locations and text. Despite the benefits of incorporat-
ing per-region topic variance in these models, a few concerns prevent us from using topic modeling
approaches in this study. First, the temporal currency of geographical topics can be limited, e.g.,
Olympics or playoffs. These temporally-specific topics are less indicative of location for future in-
ference, e.g., geolocating users after the model has been trained. Furthermore, topic modelling is
generally computationally expensive, and suffers efficiency problems when applied to large vol-
umes of data, such as that available through social media. Therefore we experiment with language
model-based methods that are better suited to large-scale data.

Social network information, including both explicit friendship relations (Backstrom, Sun, &
Marlow, 2010; Sadilek, Kautz, & Bigham, 2012; Rout, Bontcheva, Preotiuc-Pietro, & Cohn, 2013)
and implicit social interactions (Chandra, Khan, & Muhaya, 2011; Jurgens, 2013), has been shown
to be effective in predicting locations. City-level prediction results range from approximately 50—
80% (Rout et al., 2013) depending on a wide range of factors including the user density in the social
network and the precise scope of the geolocation prediction task. However, social networks are
dynamic, and this information is often more difficult to obtain than text data on a large scale. For
instance, obtaining social network information requires multiple requests to the rate-limited Twitter
API to reconstruct the full social graph. We therefore only focus on approaches based on text,
and metadata that accompanies each individual tweet, and leave the possibility of integrating social
network information to future work.

3. Key Questions and Geolocation Prediction Framework

Though various geolocation prediction approaches have been proposed and adapted for social media
data, some fundamental questions remain. In the rest of the paper, we address each of the these
questions in turn.

e Given that text-based methods rely on salient words local to particular regions to disambiguate
geolocations, do “location indicative words” improve the accuracy over using the full word
set?

e Does a model trained on geotagged data generalise to non-geotagged data? What is the impact
of adding non-geotagged texts to the training and test data? Is there an inherent sub-domain
difference between geotagged and non-geotagged tweets given that geotagged tweets are pri-
marily sent from mobile devices?

e Does geolocation prediction accuracy vary by language? For example, is a user who primarily
tweets in Japanese more geolocatable than a user who tweets mostly in English? If language
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does influence accuracy, how can we exploit this to improve multilingual geolocation predic-
tion?

e Does the user-declared text metadata provide geographical information complementary to
that in the tweets themselves? How can we make use of these multiple sources of textual data
to produce a more accurate geolocation predictor?

e As Twitter is rapidly growing and evolving, how do temporal factors influence the model
generalisation? Will a model trained on “old” data perform comparably on “new” test data?

e From the perspective of privacy protection, how does a user’s tweeting behaviour affect their
geolocatability, i.e., the ability of the model to predict their location? Are there steps a user
can take to reduce the risk of inadvertently leaking geographical information while sharing
tweets with the public?

e Can measures of prediction confidence be formulated to estimate the accuracy of the geolo-
cation prediction?

In this paper, we focus on predicting Twitter users’ primary (referred to as their “home”) geolo-
cation, and following Cheng et al. (2010) and others, assume that a given user will be based in a
single city-based location throughout the time period of study. We approach geolocation prediction
as a text classification task. Tweets from each city are taken to represent a class. All tweets from
a given user are aggregated and assigned to that user’s primary location. We characterise geoloca-
tion prediction by four key components, which we discuss in turn below: (1) the representation of
different geolocations, (2) the model, (3) the feature set, and (4) the data.

3.1 Representation: Earth Grid vs. City

Geolocations can be captured as points, or clustered based on a grid (Wing & Baldridge, 2011;
Roller et al., 2012), city centres (Cheng et al., 2010; Kinsella et al., 2011) or topic regions (Eisen-
stein et al., 2010; Hong et al., 2012). A point-based representation presents computational chal-
lenges, and is too fine-grained for standard classification methods. As for dynamic location parti-
tioning, the granularity of regions is hard to control and will potentially vary across time, and the
number of regions is a variable which will depend on the dataset and potentially also vary across
time. Fixed grid-based representations are hindered because there is considerable variability in the
shape and size of geographical regions: a coarse-grained grid cell is perhaps appropriate in central
Siberia, but for densely-populated and linguistically/culturally diverse regions such as Luxembourg,
doesn’t lead to a natural representation of the administrative, population-based or language bound-
aries in the region. We therefore opt for a city-based representation, which is able to capture these
boundaries more intuitively. The downside to this representation is that it is inappropriate for clas-
sifying users in rural areas. As we will see in Figure 1, however, the bulk of Twitter users are,
unsurprisingly, based in cities.

Following Han et al. (2012b), we use the publicly-available Geonames dataset as the basis for
our city-level classes.? This dataset contains city-level metadata, including the full city name, pop-
ulation, latitude and longitude. Each city is associated with hierarchical regional information, such
as the state and country it is based in, so that London, GB, e.g., is distinguished from London, CA.

2. http://www.geonames.org, accessed on October 25th, 2012.
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We hence use a city-region-country format to represent each city (e.g., Toronto, CA is represented
as toronto-08-ca, where 08 signifies the province of Ontario and ca signifies Canada).> Because
region coding schemes vary across countries, we only employ the first- and second-level region
fields in Geonames as the region. Furthermore, if the second-level field is too specific (i.e., longer
than 4 letters in our setting), we only incorporate the first-level region field (e.g., instead of using
melbourne-07-24600-au, we use melbourne-07-au). Moreover, because cities are sometimes
complex in structure (e.g., Boston, US colloquially refers to the metropolitan area rather than the
city, which is made up of cities including Boston, Revere and Chelsea), we collapse together cities
which are adjacent to one another within a single administrative region, as follows:

1. Identify all cities which share the same region code (i.e., are located in the same state,
province, county, etc.) in the Geonames dataset.

2. For each region, find the city ¢ with the highest population.
3. Collapse all cities within 50km of ¢ into ¢.*
4. Select the next-largest city ¢, and repeat.

5. Remove all cities with a population of less than 100K. The remaining cities form our city-
based representation of geolocations.

As a result of this methodology, Boston, US ends up as a single city (incorporating Revere and
Chelsea), but neighbouring Manchester, US is a discrete city (incorporating Bedford) because it is
in New Hampshire. This algorithm identifies a total of 3,709 collapsed cities throughout the world.

3.2 Geolocation Prediction Models

Various machine learning algorithms can be applied to the task of multi-class text categorisation.
However, many state-of-the-art learning algorithms are not appropriate for this particular task for
reasons of scalability. For example, support vector machines (Vapnik, 1995) are not well suited
to massively multi-class problems (i.e., 3,709 cities in our case). Finally, we would ideally like to
have a learning algorithm which can be easily retrained, e.g., to incorporate new training data from
the Twitter data stream. As such, we primarily experiment with simple learning algorithms and
ensemble learning for geolocation prediction.

3.2.1 GENERATIVE VS. DISCRIMINATIVE MODELS

Generative models (e.g., naive Bayes) are based on estimation of joint probability of observing a
word vector and a class (i.e., P(w1,ws, ..., wn,,c;), where wy, ws, ... are words and ¢; € C'is a
city from a combined set of cities C). In contrast, discriminative models are based on estimation of
a class given a word vector (i.e., P(c|lwi,ws, ..., wy,)). The objective of both models is to find a

3. Country code information can be found in http://download.geonames.org/export/dump/countryInfo.txt

4. We use the great-circle distance (Vincenty, 1975) for all distance calculations in our experiments, as opposed to
Euclidean distance, to properly capture the three-dimensional surface of the earth. The proximity of cities varies
across the world, e.g., cities on the east coast of the United States are much closer to each other than major cities in
Australia. There is therefore scope to explore the impact of this 50km setting on the city label set, which we leave to
future work.
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City ¢maz € C such that the relevant probability is maximised. In our experiments, we experiment
with both models. For instance, we choose a state-of-the-art discriminative geolocation model based
on KL divergence over k-d tree partitioned unigrams (KL) (Roller et al., 2012). We also adopt a
generative multinomial naive Bayes (NB) model (Hecht et al., 2011) as our default benchmark, for
two reasons: (1) it incorporates a class prior, allowing it to classify an instance in the absence of any
features shared with the training data; and (2) generative models outperform discriminative models
when training data is relatively scarce (Ng & Jordan, 2002).

3.2.2 SINGLE VS. ENSEMBLE MODELS

In addition to single model comparisons (e.g., discriminative KL vs. generative NB in Sections 5
and 6), we further combine multiple base classifiers — e.g., heterogeneous NB models trained
on each of Twitter text and user metadata — to improve the accuracy. First, we investigate the
accuracies of base classifiers and correlations between them. Then, we apply different ensemble
learning strategies in Section 9.

3.3 Feature Set

Predominantly, geolocations are inferred based on geographical references in the text, e.g., place
names, local topics or dialectal words. However, these references are often buried in noisy tweet
text, in which lexical variants (e.g., tmrw for “tomorrow”) and common words without any geospa-
tial dimension (e.g., weather, twitter) are prevalent. These noisy words have the potential to mislead
the model and also slow down the processing speed. To tackle this issue, we perform feature se-
lection to identify “location indicative words”. Rather than engineering new features or attempting
to capture named entities (e.g., the White House) or higher-order n-grams, we focus on feature se-
lection over simple word unigrams (see Section 4). This is partly a pragmatic consideration, in that
unigram tokenisation is simpler.® Partly, however, it is for comparability with past work, in deter-
mining whether a strategically-selected subset of words can lead to significant gains in prediction
accuracy (see Sections 5 and 6).

In addition to feature selection, the feature set can be further refined and extended in various
ways. For instance, feature selection can be enhanced by incorporating non-geotagged tweet data.
Furthermore, languages can be used to shape the feature set, as words from different languages
carry varying amounts of geospatial information, e.g., because Dutch is primarily used only in the
Netherlands, Dutch words are usually more location indicative than English words. Moreover, user-
provided metadata (e.g., location and timezone) is readily accessible in the tweet JSON objects.
This metadata can be appended as extra text features, in addition to features derived from tweet text.
We investigate the impact of these factors in later sections.

5. There is certainly an abundance of Twitter data to train models over, but the number of Twitter users with suffi-
cient amounts of geotagged tweets to be able to perform geolocation prediction is small, relative to the number of
parameters in the model (the product of the number of features and classes).

6. Also, preliminary results with both named entities and higher order n-grams were disappointing.
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Proportion of tweets

Filtering criterion . .
(relative to preceding step)

Geotagged 0.008
Near a city 0.921
Non-duplicate and non-Foursquare 0.888
English 0.513

Table 1: Proportion of tweets remaining after filtering the data based on a series of cascaded criteria.
These numbers are based on a Twitter corpus collected over two months.

3.4 Data

Geolocation prediction models have primarily been trained and tested on geotagged data.” We use
both regional datasets (i.e., geotagged tweets collected from the continental US: Eisenstein et al.,
2010; Mahmud et al., 2012) and global datasets (Kinsella et al., 2011; Han et al., 2012b) in this
research. Because of accessibility issues (e.g., many tweets in older datasets have been deleted and
are thus not accessible now) and data sparseness (e.g., there were only 10K users in the study of
Eisenstein et al., 2010), we are only able to experiment over a small number of public datasets. In
this paper, we employ three geotagged datasets:

1. A regional North American geolocation dataset from Roller et al. (2012) (NA hereafter), for
benchmarking purposes. NA contains 500K users (38M tweets) from a total of 378 of our
pre-defined cities. NA is used as-is to ensure comparability with previous work in Section 5.

2. A dataset with global coverage constructed by us in earlier work (Han et al., 2012b) (WORLD
hereafter), collected via the Twitter public Streaming API® from 21 Sep, 2011 to 29 Feb,
2012. The tweet collection is further shaped for different evaluation tasks, e.g., geotagged
English data WORLD in Section 6, incorporating non-geotagged English data WORLD+NG
in Section 7, multilingual geotagged data WORLD+ML in Section 8 and with rich metadata
WORLD+META in Section 9.

3. A second dataset with global coverage novel to this research (LIVE), which contains tweets
collected more than 1 year after WORLD (from 3 Mar, 2013 to 3 May, 2013), to analyse the
influence of temporal recency on geolocation prediction. Unlike the other two datasets, LIVE
is used only as a test dataset, in Section 10.

WORLD was restricted to English tweets in order to create a dataset similar to NA (in which
English is the predominant language), but covering the entire world. It was pre-processed by fil-
tering the data as follows. First, all non-geotagged tweets were removed. Next, we eliminated all
tweets that aren’t close to a city by dividing the earth into 0.5° x 0.5° grid cells, and discarding
any tweet for which no city in our Geonames class set is found in any of the 8 neighbouring grid
cells. We then assign each user to the single city in which the majority of their tweets occur. We

7. One exception to this is Cheng et al. (2010), who train on users whose user-declared metadata location fields corre-
spond to canonical locations (e.g., Boston, MA), and test on users whose locations are indicated with GPS coordinates
in their metadata.

8. https://dev.twitter.com/docs/streaming-apis
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Figure 1: Cumulative coverage of tweets for increasing numbers of cities based on 26 million geo-
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Figure 2: The number of users with different numbers of tweets, and different mean distances from
the city center, for WORLD.

further remove cities with fewer than 50 feature types (i.e., word types) to reduce data sparsity. This
results in 3135 cities in WORLD (as opposed to 3709 cities in the full Geonames class set). We
eliminated exact duplicate tweets and Foursquare check-ins (which encode the user location in the
form of I'm at ...). After that, non-English tweets were further removed using langid.py, an
open-source language identification tool (Lui & Baldwin, 2012). This filtering is summarised in
Table 1 which also shows the proportion of tweets remaining after each step. The total number of
users and tweets in WORLD is 1.4M and 12M, respectively. Similar to NA, the development and
test datasets both contain 10K users, and the remainder of the users are used in training. The devel-
opment and test data was sampled such that each user has at least 10 geotagged tweets to alleviate
data sparsity.” We tokenised the tweets with a Twitter-specific tokeniser (adapted from O’Connor,
Krieger, & Ahn, 2010).

Although there are certainly instances of social media users with high mobility (Li, Wang, &
Chang, 2012), recent studies have shown that most users tend to tweet from within a limited region
(Cho, Myers, & Leskovec, 2011; Hecht et al., 2011). We also analyse the spread of WORLD in

9. This restriction was not applied to the training data.
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Figure 2, in terms of: (1) the number of users with at least 10 geotagged tweets; and (2) the number
of users with differing levels of geographical spread in their tweets, measured as the average distance
between each of a user’s tweets and the centre of the city to which that user is allocated.!® This
preliminary analysis shows that most users have a relatively small number of geotagged tweets, and
most users stay near a single city (e.g., 83% users have a geographical spread of 50 kilometres or
less). The high proportion of users with an average distance of 1km to the city centre is an artefact
of their geotagged tweets being mapped to a city centre before performing this analysis. In order to
investigate the coverage of the proposed city-based partition, we examine the recall in our original
sample of 26 million geotagged tweets (prior to filtering, as described above). The analysis reveals
that 92.1% of tweets are “close” to (in a neighbouring 0.5° x 0.5° grid cell) to one of our pre-defined
cities, and that the top 40% of cities contain 90% of the geotagged tweets after filtering, as shown
in Figure 1. This supports our assumption that most (geotagged) Twitter users are based in cities.

3.5 Evaluation Measures

Having formulated the geolocation prediction task into a discrete class space through the use of our
city class set, it is possible to use simple classification accuracy to evaluate our models. However,
given that all of our class labels have a location (in the form of latitude—longitude coordinates),
we can also sensitise the evaluation to distance-based predictive error. For instance, if the correct
location for a user is Seattle, US, a prediction of Portland, US is arguably better than a prediction
of Los Angeles, US, on the basis of geospatial proximity. We use a number of evaluation measures
which capture spatial proximity, in line with previous work (Wing & Baldridge, 2011; Roller et al.,
2012):!

1. Acc: city-level accuracy, i.e., the proportion of predictions that correspond to the correct city;

2. Acc@161: the proportion of predictions that are within a distance of 161 kilometres (100
miles) from the correct city-level location. This empirical measure (Cheng et al., 2010) is a
relaxed version of Acc, capturing near-miss predictions.

3. Acc@C: country-level accuracy, i.e., the proportion of predicted locations that are in the same
country as their corresponding true locations. This measure is useful for applications relying
on country-specific Twitter data, e.g., sentiment analysis in specific countries.

4. Median: median prediction error, measured in kilometres between the predicted city centres
and the true geolocations. We prefer to use the median, as opposed to mean, distance because
the median is less sensitive to wildly incorrect predictions — e.g., a user from London, GB
classified as being based in Sydney, AU. In contrast, the mean distance can increase substan-
tially due to a small number of extreme misclassifications, although this effect is limited for
inherently-bounded regional datasets such as NA.

10. The geographical spread is calculated over a random sub-sample of 10 tweets for a given user, for efficiency reasons.

11. In very recent work, Priedhorsky, Culotta, and Valle (2014) additionally proposed a set of probabilistic metrics
to evaluate tweet-based geolocation prediction, including using the expected distance between a tweet’s true point
location to a random point location drawn from the probability distribution of the geolocation model. While we
strongly support this new direction for geolocation modelling and evaluation, depending on the application context,
we argue that point- or region-based representations and related discrete evaluation measures are equally important
in user geolocation research.
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4. Finding Location Indicative Words

Precise user locations for individual messages are embedded in geotagged tweets in the form of
latitude—longitude coordinates. By mapping these coordinates to cities and representing each tweet
as a bag of words, we are able to make connections between words (i.e., features) and cities (i.e.,
classes). In this section, we present a range of methods for ranking these words by their location
indicativeness, i.e., the degree to which a word is associated with particular cities. Words that either
explicitly (e.g., place names) or implicitly (e.g., dialectal words, slang or local references) encode
geographical information are collectively referred to as “location indicative words” (LIWSs); it is
these words that we aim to automatically identify. Examples of LIWs are:

1. local words (1-local) that are used primarily in a single city, namely yinz (used in Pittsburgh to
refer to the second-person plural pronoun), dippy (used in Pittsburgh to refer to a style of fried
egg, or something that can be dipped in coffee) and hoagie (used primarily in Philadelphia,
to refer to a kind of sandwich);'?

2. semi-local words (n-local) that refer to some feature of a relatively limited subset of cities,
namely ferry (found, e.g., in Seattle, New York and Sydney), Chinatown (common in many
of the largest cities in the US, Canada and Australia, but much less common in European and
Asian cities), and tram (found, e.g., in Vienna, Melbourne and Prague)

In addition to LIWs there are common words (common) which aren’t expected to have substantial
regional frequency variation, namely twitter, iphone and today.

In the remainder of this section, we present various feature selection methods for identifying
LIWs, drawn from the work of Han et al. (2012b), Chang et al. (2012) and Laere et al. (2013). The
feature selection methods can be broadly categorised into three types: (1) statistical; (2) information-
theoretic; and (3) heuristic. To reduce low-utility words and noise, for all feature selection methods,
we remove all words which include non-alphabetic letters, are less than 3 letters long, or have a
word frequency < 10.

4.1 Statistical-Based Methods

Statistical hypothesis testing is often used to determine whether an event occurs by chance (i.e., the
null hypothesis) or not (i.e., the alternative hypothesis) at a particular confidence level (e.g., 95%
= p < 0.05). In our case, an event is defined to be a co-occurrence between a word and a city, and
the null hypothesis assumes the co-occurrence is by chance, i.e., the word and city are independent.
The goal of feature selection is then to find word—city pairs where the null hypothesis is rejected.

4.1.1 %% AND LOG-LIKELIHOOD

The x? statistic is commonly used to examine the degree of independence between random vari-
ables. A contingency table representing the observations of the variables is formed, as in Table 2.
The general form of the statistic is:

" (0; — E;)?
Z( - )

%

12. These words were identified with the aid of datasets of regional words such as DARE: http://dare.wisc.edu/.
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inc not in ¢
w Ow,c Ow,
non-w word Og,. Og

Y]

Table 2: Contingency table for word and city co-occurrence

where O; represents an observation (i.e., co-occurrence of a city (¢) and word (w)), and n is the
number of cells in the table. O,, . and Oy ¢ denote the occurrence of word w in city ¢ and non-w
words in cities other than c, respectively. F, . denotes the expected frequency of w in ¢, calculated
from the marginal probabilities and total counts N:

Owc+OwE Owc+0wc
Epe = P P(c) x N = = ’ ’ ’
7 (w) x P(c) x ~ X I

N = Ow,c + Oi),c + Ow,E + O’U_J,(_Z

x N

If the 2 statistic is larger than the number in the y? distribution, with respect to the degrees of
freedom (in this case, 1), then the null hypothesis that city ¢ and word w are independent is rejected.
As with many statistical tests, x> can be ineffective when counts are low. We address this through
our word frequency thresholding and use of massive amounts of training data.

Conventionally, x? is used to identify the set of features which satisfies a pre-defined confidence
level (e.g., p < 0.05). However, in the case of LIW selection, we instead use the y? statistic to rank
all word—city pairs. The selection of LIWs is deferred to the parameter tuning state, in which the
boundary between LIWs and common words is optimised using development data.

At this point, a different ranking of LIWs is produced per city, where what we desire is a global
ranking of LIWs capturing their ability to discriminate between cities in the combined label set.
There are various ways to do this aggregation. As suggested by Laere et al. (2013), one approach to
selecting n features based on x? is to iteratively aggregate the top-m features from each city until
n features are obtained. Alternatively, they can be ranked based on the highest-scoring occurrence
of a given word for any city, by first sorting all city—word x? test pairs, then selecting the first
occurrence of a word type for the aggregated ranking. These two aggregation approaches produce
different feature selection rankings, and are distinguished using Chi and MazChi, respectively.'?

Similar to the x? test, the log-likelihood ratio (““Loglike”: Dunning, 1993) has also been applied
to LIW selection (Laere et al., 2013). The Loglike test determines whether hg (the null hypothesis,
i.e., the word is independent of the city) is more likely than A; (the alternative hypothesis, i.e., the
word is dependent on the city). Following Dunning, the likelihood of a hypothesis, L(-), is estimated
using binomial distributions.

e (M o (T
L(hy) = pi* (1 — pp)™ ™ <k1>P§2(1 —pg)"2 R <k2>
1 2

ﬁ _ Ow,c
ni Ow,c + Ow,c

p1 = P(wle) =

13. One possible alternative to computing x? for each word and city, and then aggregating these values into a final
ranking of words, would be to compute a single x? value for each word from a contingency table with 2 rows as in
Table 2, but with one column per city. Nevertheless, this is not the standard use of x? in feature selection, and we
leave this possibility to future work.
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_ k2 Ow c
pp=Plwle)=— = ——"———
(wle) ng Ow,e+ Oge
k1 (ko) represents the occurrences of word w in city ¢ (not in city c¢), and n; (ns) represents all word
occurrences in city ¢ (not in city ¢). L(hg) is a special case of L(h1) for which p; and ps are equal,

as below:

Ow,c + Ow,é
N
The Loglike test statistic is then expanded using observations:

Loglike(w) = 2[Oy,108 Oy c + O clog Op e + Oy e10g Oy z + Oy clog Oy + N log N
- (Ow,c + Ow,c) log(ow,c + Ow,c) - (Ow,é + Ow,é) log(Ow,E + Ow,é)
- (Ow,c + Ow,a) log(Oﬂ),c + Ou?,é) - (Ow,c + Ow,é) log(Ow,C + Ow,E)]

p1=p2=pP=

Having calculated the Loglike for each word—city pair, we then aggregate across cities similarly to
Chi (by selecting the top-m features per city until n features are obtained), following Laere et al.
(2013).14

4.1.2 RIPLEY’S K STATISTIC

Spatial information can also be incorporated into the hypothesis testing. For example, the Ripley K
function (Ripley: O’Sullivan & Unwin, 2010) measures whether a given set of points is generated
from a homogeneous Poisson distribution. The test statistic calculates the number of point pairs
within a given distance A over the square of the total number of points. With regards to LIW
selection, the set of points (Q),,) is the subset of geotagged users using a particular word w. The test
statistic is formulated as follows (Laere, Quinn, Schockaert, & Dhoedt, 2014):

{p,q € Qu : distance(p, q) < A}|
|Qu?

where A represents the total area under consideration (e.g., the whole of North America, or the
whole globe); this is dropped when generating a ranking.

A larger value of K (\) indicates greater geographical compactness of the set @, (i.e., p and ¢
are spatially close). However, |Q,,| (i.e., the number of users who use word w) varies considerably
across words, and can dominate the overall statistic. A number of variations have been proposed
to alleviate this effect, including replacing the denominator with a factor based on L1, and taking
the logarithm of the overall value (Laere et al., 2014). The quadratic computational complexity of
Ripley becomes an issue when |Q,,| is large (i.e., for common words). Randomised methods are
usually adopted to tackle this issue, e.g., subsampling points from training data for Ripley calcula-
tion relative to different distances A. For our experiments, we adopt the optimised implementation
of Laere et al. using A = 100km with 5K samples.

K(\) = Ax

4.2 Information Theory-Based Methods

In addition to statistical methods, we also experiment with information-theoretic feature selection
methods based on measures which have been shown to be effective in text classification tasks, e.g.,
Information Gain (IG) (Yang & Pedersen, 1997).

14. Note also that, as we will see later in our experiments, there is almost no empirical difference between the two
aggregation methods for x2, so the choice of aggregation method here is largely arbitrary.
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4.2.1 INFORMATION GAIN AND GAIN RATIO

Information Gain (/G) measures the decrease in class entropy a word brings about, where higher
values indicate greater predictability on the basis of that feature. Given a set of words w, the /G of
a word w € w across all cities (c) is calculated as follows:

IG(w) = H(c)— H(c|w)

x —H(c|w)
x P(w) > P(clw)logP(clw) + P(w) Y  P(c|w)logP(c|w)

where P(w) and P(w) represent the probabilities of the presence and absence of word w, respec-
tively. Because H (c) is the same for all words, only H (c|w) — the conditional entropy given w —
needs to be calculated to rank the features.

Words carry varying amounts of “intrinsic entropy”’, which is defined as:

IV(w) = —P(w)logP(w)— P(w)logP(w)

Local words occurring in a small number of cities often have a low intrinsic entropy, where non-
local common words have a high intrinsic entropy (akin to inverse city frequency; see Section 4.3.1).
For words with comparable /G values, words with smaller intrinsic entropies should be preferred.
Therefore, following Quinlan (1993) we further normalise /G(w) using the intrinsic entropy of
word w, IV (w), culminating in information gain ratio (/GR):

IG(w)
IV (w)

IGR(w) =

4.2.2 LOGISTIC REGRESSION-BASED FEATURE WEIGHTS

The previous two information-theoretic feature selection methods (/G and /G R) optimise across all
classes simultaneously. Given that some LIWs may be strongly associated with certain locations,
but are less tied to other locations, we also conduct per-class feature selection based on logistic
regression (LR) modelling.!> We consider this method to be information theoretic because of its
maximisation of entropy in cases where there is uncertainty in the training data.

Given a collection of cities c, the LR model calculates the probability of a user (e.g., represented
by word sequence: wi,ws,...,wy,) assigned to a city ¢ € c by linearly combining eligible LR
feature weights:

1 m
P(clwi,wa, ... wy) = Zexp(z)\kfk)
k=1

where Z is the normalisation factor, m is the total number of features, and fj, and A are the features
and feature weights, respectively. As with other discriminative models, it is possible to incorporate
arbitrary features into LR, however, a feature (function) in our task is canonically defined as a word
w; and a city ¢: when w occurs in the set of messages for users in class ¢, a feature fi(w;, c) is

15. For the logistic regression modeller, we use the toolkit of Zhang Le (https://github.com/lzhangl0/maxent),
with 30 iterations of L-BFGS (Nocedal, 1980) over the training data.
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denoted as [class = ¢ A w; € ¢]. Each f;, maps to a feature weight denoted as \;, € R. The method
results in a per-city word ranking with words ranked in decreasing order of )y, from which we
derive a combined feature ranking in the same manner as MazChi, following Han et al. (2012b).16

Notably, incorporating a regularisation factor balances model fitness and complexity, and could
potentially achieve better results. We don’t explicitly perform regularisation in the modelling stage.
Instead, we first obtain the feature list ranked by LR as other feature selection methods and then
evaluate the subset of top-n ranked features on the development data. This is in fact equivalent to
“filter-based” regularisation (cf. filter-based feature selection: Guyon & Elisseeff, 2003), and we
leave experimentation with regularisation integrated into the models to future work.

4.2.3 DISTRIBUTION DIFFERENCE

LIW selection can be likened to finding words that are maximally dissimilar to stop words (Chang
et al., 2012). Stop words like the and roday are widely used across many cities, and thus exhibit
a relatively flat distribution. In contrast, LIWs are predominantly used in particular areas, and
are more skewed in distribution. To capture this intuition, LIW selection is then based on the
“distribution difference” across cities between stop words and potential LIW candidates (i.e., all
non-stop words). Given a pre-defined set of stop words .5, the distribution difference is calculated
as:

Count(ws)

DistDiff (wns) = Z Diff (wns, ws) Count(S)

ws€ES

where Count(w,) and Count(S) denote the number of occurrences of a stop word w; and the total
number of occurrences of all stop words, respectively. The difference (i.e., Diff (wys, ws)) between
a stop word ws and non-stop word wys can be evaluated in various ways, e.g., symmetric KL-
divergence (DistDiff 1), or the total variance (DistDiffy,) of absolute probability difference across
all cities ¢ (Chang et al., 2012):

Diﬁskl(wn&ws) = ZP(C‘wnS)IOg];((CC"IZ:w))—I—P(C’ws)logm
cec s ns
Diffy (wns, ws) = Z|P(C|wns)_P(C‘ws)’
cec

where P(c|wys) and P(c|ws) denote the probability of a word occurring in a city in the per-word
city distribution for w,,s and w;, respectively. The non-stop words are then sorted by distribution
difference in decreasing order. In our experiments, we use the implementation of Chang et al..

4.3 Heuristic-Based Methods

Other than commonly-used feature selection methods, a number of heuristics can be used to select
LIWs.

4.3.1 DECOUPLING CITY FREQUENCY AND WORD FREQUENCY

High-utility LIWs should have both of the following properties:

16. As with LogLike, the choice of aggregation method here is largely arbitrary, based on our empirical results for x?.
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1. High Term Frequency (T'F): there should be a reasonable expectation of observing it from
the users’ tweets in a city.

2. High Inverse City Frequency (/CF'): the word should occur in tweets associated with a rela-
tively small number of cities.

We calculate the ICF of a word w simply as:

: <l

e =

where c is the set of cities and cf ,, is the number of cities with users who use w in the training data.
Combining the two together, we are seeking words with high T'F-ICF, analogous to seeking words
with high TF-IDF values in information retrieval. In standard T'F'-IDF formulations, we multiply
TF and IDF. A simple product of TF and ICF tends to be dominated by the TF component,
however: for example, fwitter scores as highly as Jakarta, because twitter has a very high T'F'. We
resolve this by decoupling the two factors and applying a radix sort ranking: we first rank features
by ICF then by TF, in decreasing order. As this approach is largely based on the inverse city
frequency, we denote it as /C'F' below.

4.3.2 GEOGRAPHICAL SPREAD AND DENSITY

LIWs have “peaky” geographical distributions (Cheng et al., 2010). In this section, we discuss two
heuristic measures for LIW selection which are based on the geographical distribution of the word.
Geographical spread (GeoSpread: Laere et al., 2013) estimates the flatness of a word’s distri-
bution over cities. First, the earth is divided into 1° latitude by 1° longitude cells. For each word
w, the cells in which w occurs are stored. Then, all neighbouring cells containing w are merged
by multi-pass scanning until no more cells can be merged. The number of cells containing w after
merging is further stored. Finally, the GeoSpread score for the word w is calculated as follows:

# of cells containing w after merging
Maz(w)

GeoSpread(w) =

where Mazx(w) represents the maximum frequency of w in any of the original unmerged cells.
Smaller values indicate greater location indicativeness. This measure was originally used to rank
Flickr tags by locality, e.g., London is more location-indicative than beautiful. It ignores the in-
fluence of stop words, as they are not common in Flickr tags. However, stop words like the are
frequent in Twitter, and occur in many locations, making the numerator small and denominator
large. Furthermore, stop word frequencies in cells are usually high. Consequently, the has a sim-
ilarly small GeoSpread to London, which is undesirable. In other words, GeoSpread is flawed in
not being able to distinguish stop words from local words, although it can be effective at ranking
less common words (e.g., London vs. beautiful).

Geographical density (GeoDen: Chang et al., 2012) strategically selects peaky words occurring
in dense areas. Given a subset of cities ¢/ C ¢ where word w € w is used, the GeoDen is calculated
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as:

Zcec’ P(C|U])
‘ /|22%0k€c’j¢k dist(c;,cx)
¢ D)
ZcEc’ P(C|w)

, chyckec’jik diSt(Cj,Ck)
4 -1

GeoDen(w) =

where dist(c;, ¢x) is the great-circle distance between cities ¢; and ¢j. Similarly, P(c|w) denotes
the distribution of word w across each city ¢ € ¢/. The denominator is made up of the square
of the number of cities |c/| that w occurs in (which has a similar effect to ICF above), and the
average distance between all cities where w is used. LIWs generally have a skewed geographical
distribution in a small number of locations, meaning that the denominator is small and the numerator
is large. The issue with this measure is the computational complexity for common words that occur
in many cities. Furthermore, cities containing a small number of occurrences of w should not be
incorporated, to avoid systematic noise, e.g., from travellers posting during a trip. One approach to
counter these issues is to set a minimum P(c|w) threshold for cities, and further perform randomised
sampling from c¢’. In this paper, we follow Chang et al. in constructing the final ¢’: first, all cities
containing w are ranked by P(c|w) in decreasing order, then ¢’ is formed by adding cities according
to rank, stopping when the sum of P(c|w) exceeds a pre-defined threshold . We choose » = 0.1 in
our experiments, based on the findings of Chang et al..

5. Benchmarking Experiments on NA

In this section, we compare and discuss the proposed feature selection methods. In particular,
we investigate whether using only LIWs for geolocation prediction is better than using the full
set of features, under various configurations of models and location partitions in Section 5.2. The
subsequent experiments in this section are exclusively based on the public NA dataset. We adopt the
same user partitions for training, dev and test as was used in the original paper (Roller et al., 2012).
We primarily use the city-based class representation in our experiments over NA, but additionally
present results using the original k-d tree partitions learned by Roller et al. in Section 5.2, for direct
comparability with their published results. For the distance-based evaluation measures (Acc@161
and Median), we calculate the user’s location based on the centroid of their tweets, and, depending
on the class representation used, represent the predicted location as either: (a) a city centre; or (b)
the user-centroid for a given k-d tree cell. In the case of Acc for the city-based class representation,
we map the centroid for each user to the nearest city centre < 50km away, and use this as the basis
of the Acc calculation. In the case that there is no city centre that satisfies this constraint,'” we map
the user to the NULL class, and will always misclassify the user.'®

5.1 Comparison of Feature Selection Methods

First, we compare the effectiveness of the various feature selection methods on NA using the city-
based class representation. In total, 214K features were extracted from the training section of NA.

17. This occurs for 1139 (=~ 11.4%) of test users.
18. As such, the upper bound Acc for the city-based representation is 0.886. Note also that the Acc for the k-d tree vs.
city-based representation is not comparable, because of the different class structure and granularity.
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Figure 3: Acc@161 for varying levels of feature selection on the NA dataset, based on the city-
based class representation.

We select the top-n% of features, with a step size of 2%, and then use the selected features within
a multinomial naive Bayes learner (we return to explore the choice of learner in Section 5.2). The
tuning of n for all methods is based on Acc@161 over the 10K held-out users in the development
data. We present results for a sample of feature selection methods in Figure 3, omitting methods
which are largely identical in behaviour to other methods presented in the graph, namely:

e {DistDiffy,, DistDiffs,} = ICF
o MaxChi = Chi
e {LR,IG, GeoSpread} = LogLike

For all methods, the best result is achieved with a proper subset of features based on feature
selection, although the proportion of the features that gives the best results for a given method
varies greatly (e.g., the optima for Ripley, IGR and GeoDen are 10%, 88% and 66%, respectively).
This observation agrees with the expectations that: (1) when only a small number of features is
used, the trained model generally underfits the data; and (2) if the model is trained using the full
feature set, noisy words (e.g., the) cause overfitting. For instance, when using just the top 2% of
features in /GR, the most likely class for users with features — noting that users with no feature
representation will default to the majority class, namely Los Angeles, US-CA — is Monterrey, MX,
because Spanish words are highly location-indicative of the small number of Mexican cities in the
NA dataset. The features which are selected last are generally high-frequency function words (e.g.,
the) and common words (e.g., facebook), which give little indication as to geolocation, and lead to
prediction errors.

Two patterns can be observed in the results: (1) Chi, MaxChi, IG, LogLike, GeoSpread, LR
and Ripley (i.e., “local” methods, which initially select features for each class, with the exception
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of IG and Ripley) achieve their highest Acc@161 at an early stage, then the numbers drop grad-
ually; and (2) ICF, IGR, DistDiffs, DistDiffy, and GeoDen (i.e., the “collective” group, which
select features for all classes at once) gradually increase in accuracy as more features are added,
reach a peak when the majority of features are selected, then drop off in accuracy sharply. This
difference in behaviour can be attributed to the types of word that are preferred by the methods.
The “local” methods tend to prefer 1-local words — taking LR, for example, city names (e.g.,
philadelphia) and names of upper-level administrative regions (e.g., georgia) frequently occur in
the upper reaches of the ranking. In addition to these gazetted words, many local/regional words are
also found in the upper reaches of the feature ranking, including informal place names (e.g., philly,
an informal name for Philadelphia, US-PA), local transport references (e.g., skytrain, a public trans-
port system in Vancouver, CA) and local greetings (e.g., aloha in Honolulu, US-HI). However, it
is reasonable to believe that 1-local words — words that are predominantly used in one city and
are rarely mentioned in other cities — are not common. As a result, the accuracy is bounded by
the limited number of true 1-local words. This could be the reason for the early, yet remarkably
high, peak in accuracy, and subsequent sharp decline, for Ripley; because of its reliance on pairwise
distances between users using a given word, Ripley tends to rank 1-local words highly. In contrast,
the “collective” methods assume words carry varying amounts of geospatial information. By lever-
aging combinations of LIWSs, the true location of a user can be collectively inferred. For instance,
brunswick is a common suburb/street name in many cities, e.g., Melbourne, AU and London, GB.
This word alone is insufficient to make reliable predictions. However, if other LIWs (e.g., tram
and Flinders, which are again not uniquely disambiguating in themselves) are also observed, then
the chance of the location being Melbourne, AU becomes high, since it is unlikely that users from
cities other than Melbourne, AU would use that combination of words. This strategy can also be
explained in information-theoretic terms: by knowing more words, extra information is obtained,
and consequently the entropy is continuously reduced and the prediction of geolocation becomes
more certain.

Among all the feature selection methods, /IGR, GeoDen and Ripley are the stand-out methods
in terms of Acc@161. We further compare the accuracy of classifiers trained using the optimised
set of LIWs (based on the development data) to that of the full model. The performance is measured
on the 10K held-out test users, using the city-based class representation. The results are displayed
in Table 3 (for the same subset of feature selection methods as were displayed in Figure 3), and
show that using LIWs offers an improvement over the full feature set for all evaluation measures
and all feature selection methods, except for slight dips in Acc@C for IGR and GeoDen. Neverthe-
less, these numbers clearly demonstrate that feature selection can improve text-based geolocation
prediction accuracy. /GR performs best in terms of accuracy, achieving 8.9% and 14.2% absolute
improvements in Acc and Acc@161, respectively, over the full feature set.

5.2 Comparison with Benchmarks

We further compare the best-performing method from Section 5.1 with a number of benchmarks
and baselines. We experiment with two class representations: (1) the city-based class representa-
tion based on Geonames; and (2) the k-d tree based partitioning of Roller et al. (2012), which
creates grid cells containing roughly even amounts of data of differing geographical sizes, such that
higher-population areas are represented with finer-grained grids.!® For both class representations,

19. Recent work (Schulz et al., 2013) also considers irregular-sized polygons, based on administrative regions like cities.
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Dataset  Features Acc Acc@161 Acc@C Median

Full 0.171 0.308 0.831 571
ICF 0.209 0.359 0.840 533
Chi 0.233 0.402 0.850 385
NA IGR 0.260 0.450 0.811 260

LogLike  0.191 0.343 0.836 489
GeoDen  0.258 0.445 0.791 282
Ripley 0.236 0.432 0.849 306

Table 3: Results on the full feature set compared to that for each of a representative sample of
feature selection methodologies on NA with the city-based class representation. The best
numbers are shown in boldface.

we compare learners with and without feature selection. As observed previously, Acc is not compa-

rable across the two class representations. Results based on the distance-based measures (Acc@161

and Median), on the other hand, are directly comparable. Acc@C results are not presented for the k-

d tree based class representation because the k-d tree cells do not map cleanly onto national borders;

although we could certainly take the country in which the centroid of a given k-d tree cell lies as the

country label for the entire cell, such an approach would ignore known geo-political boundaries.
We consider the following methods:

Baseline: Because the geographical distribution of tweets is skewed towards higher-population
areas (as indicated in Figure 1), we consider a most-frequent class baseline. We assign all
users to the coordinates of the most-common city centre (or k-d tree grid centroid) in the
training data.

Placemaker: Following Kinsella et al. (2011), we obtain results from Yahoo! Placemaker,?’ a
publicly-available geolocation service. The first SOK bytes (the maximum query length al-
lowed by Placemaker) from the tweets for each user are passed to Placemaker as queries.
The returned city centre predictions are mapped to our collapsed city representations. For
queries without results, or with a predicted location outside North America, we back off to
the most-frequent class baseline.”!

Multinomial naive Bayes: This is the same model as was used in Section 5.1.

KL divergence: The previous best results over NA were achieved using KL divergence and a k-d
tree grid (Roller et al., 2012). Using a k-d tree, the earth’s surface is partitioned into near-
rectangular polygons which vary in size, but contain approximately the same number of users.
Locations are represented as cells in this grid. KL divergence is then utilised to measure the
similarity between the distribution of words in a user’s aggregated tweets and that in each grid
cell, with the predicted location being the centroid of the most-similar grid cell.>?

20. http://developer.yahoo.com/geo/placemaker/, accessed in August 2012.

21. An alternative would be to query Placemaker with each tweet, and then aggregate these predictions (e.g., by selecting
the majority location) to get a final user-level prediction. However, Kinsella et al. (2011) found the accuracy of such
an approach to be largely similar to that of the approach we use.

22. We use the same settings as Roller et al. (2012): a median-based k-d tree partition, with each partition containing
approximately 1050 users.
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Partition = Method Acc Acc@161 Acc@C Median

Baseline 0.003 0.062 0.947 3089
Placemaker 0.049 0.150 0.525 1857

Cit NB 0.171 0.308 0.831 571
Y NB+IGR 0.260 0.450 0.811 260
LR 0.129 0.232 0.756 878

LR+IGR 0.229 0.406 0.842 369

Table 4: Geolocation performance using city-based partition on NA. Results using the optimised
feature set (+/GR) are also shown. The best-performing method for each evaluation mea-
sure and class representation is shown in boldface.

Partition ~ Method Acc Acc@161 Acc@C Median

Baseline  0.003 0.118 - 1189
NB 0.122 0.367 - 404
k-dtree  NB+IGR 0.153 0.432 - 280
KL 0.117 0.344 - 469
KL+IGR 0.161 0.437 - 273

Table 5: Geolocation performance using k-d tree-based partition on NA. Results using the opti-
mised feature set (+/GR) are also shown. The best-performing method for each evaluation
measure and class representation is shown in boldface.

Logistic regression: We also apply logistic regression from Section 4.2.2 as a learner. Instead of
modelling all the data, we use only the /GR-selected features from Section 5.1. While regu-
larisation is commonly employed in logistic regression learners, we made a conscious choice
not to use it in our experiments as the implementation of the regulariser would differ across
learners and complicate the direct comparison of feature selection methods (i.e. it would be
difficult to tease apart the impact of the specific regulariser from the feature selection). Hav-
ing said that, if the objective were to maximise the raw classifier accuracy — as distinct from
exploring the impact of different features and feature selection methods on classification ac-
curacy — we would advocate the incorporation of a regulariser.

Instead of evaluating every possible combination of model, partition and feature set, we choose
representative combinations to test the extent to which LIWs improve accuracy. The results on the
city-based partition are shown in Table 4. We begin by considering the baseline results. The most-
frequent class for the city-based representation is Los Angeles, US-CA.?* Both the majority class
baseline and Placemaker perform well below multinomial naive Bayes (NB) and logistic regression
(LR), and have very high Median distances. Furthermore, when using the features selected in Sec-
tion 5.1 (i.e., NB+I/GR and LR+IGR), the performance is further improved by a large margin for
both models, demonstrating that identification of LIWs can improve text-based geolocation predic-
tion. Finally, although LR performs poorly compared to NB, LR+/GR still improves substantially

23. New York is further divided into suburbs, such as manhattan-ny061-us, brooklyn-ny047-us, in Geonames. As
an artefact of this, these suburbs are not merged into a single city.
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over LR. We plan to further explore the reasons for LR’s poor performance in future work. Overall,
NB+IGR performs best for the city-based representation in terms of Acc, Acc@161, and Median
distance.

Turning to the k-d tree-based partition in Table 5, we again observe the low performance of the
most-frequent class baseline (i.e., a grid cell near New York state). NB and KL — representative
generative and discriminative models, respectively — are evaluated using software provided by
Roller et al. (2012).>* Both approaches clearly outperform the baseline over the k-d tree class
representation. Furthermore, performance increases again when using the resultant feature set of
LIWs,? demonstrating that for a variety of approaches, identification of LIWs can improve text-
based geolocation.

Overall, compared to the previously-published results for the k-d tree based representation (KL),
IGR-based feature selection on the city-based partition achieves a 10.6% absolute improvement in
terms of Acc@161, and reduces the Median prediction error by 209km.

From the results on the k-d tree based representation, it is not clear which of KL or NB is better
for our task: in terms of Acc@161, NB outperforms KL, but KL+IGR outperforms NB+/GR. All
differences are small, however, suggesting that the two methods are largely indistinguishable for the
user geolocation task. As to the question of which class representation should be used for user ge-
olocation, empirically, there seems to be little to separate the two, although further experimentation
may shed more light on this issue. The city-based approach is intuitive, and enables a convenient
country-level mapping for coarser-grained geolocation tasks. Furthermore, our observation from
Figure 1 suggests most Twitter users are from cities. We therefore use the city-based partition for
the remainder of this paper for consistency and ease of interpretation.

A spin-off benefit of feature selection is that it leads to more compact models, which are more
efficient in terms of computational processing and memory. Comparing the model based on LIWs
selected using IGR with the full model, we find that the prediction time is faster by a factor of
roughly five.

6. Experiments on WORLD

In addition to establishing comparisons on NA, we further evaluate the feature selection methods
on WORLD. This extends the evaluation from regional benchmarks to global geolocation perfor-
mance. Similar to NA, for WORLD we reserve 10K random users for each of dev and test, and the
remainder of the users are used for training (preprocessed as described in Section 3.4). Here and in
all experiments over WORLD and related datasets, we base our evaluation on the city label set.

We apply the same tuning procedure as was used over NA to obtain the optimal feature set for
each feature selection method. We present results for a representative sample of the best-performing
methods in Figure 4. Once again, we omit methods that are largely identical in behaviour to other
methods, namely:

e {DistDiff,, DistDiffs,} = ICF
e {MaxChi, Chi, LogLike, IG, GeoSpread} = LR

24. https://github.com/utcompling/textgrounder/wiki/RollerEtAl_EMNLP2012

25. Note that after LIWSs are selected, a small proportion of users end up with no features. These users are not geolocatable
in the case of KL, a discriminative model. We turn off feature selection for such users, and backoff to the full feature
set, so that the number of test instances is consistent in all rows.
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Figure 4: Acc@161 for varying percentages of features selected using representative feature selec-
tion methods on the WORLD dataset.

The biggest differences over Figure 3 are: (1) the y?-based methods converge in behaviour with
LR, LogLike and related methods; and (2) LR performs marginally better than LogLike, and is
thus the method we present in the graph.

Despite the difference in scope and data size, the overall trend over WORLD mirrors that for
NA. In particular, GeoDen, IGR and Ripley achieve the best Acc@ 161 numbers on the dev data,
although the numbers are lower than those achieved for NA in Figure 3. This is because WORLD
has fewer tweets per user than NA (as we only utilise geo-tagged data), and disambiguation at the
global level also makes it a more challenging task.

The results for multinomial naive Bayes with the chosen feature selection methods on WORLD
are shown in Table 6. Again GeoDen (62%), IGR (86%) and Ripley (20%) achieve the best
accuracy, although there is no clear winner: /GR achieves the best Acc and Ripley achieves the
best Acc@161. Nevertheless, the improved city-based Acc and Acc@161 numbers confirm the
general effectiveness of feature selection. On the basis of these similar results and the earlier NA
results (in which /GR delivers better results), we adopt /GR as our default LIW feature selection
method for the remainder of the paper.

In summary, the findings on the utility of feature selection in Table 3 (NA) and Table 6 (WORLD)
tell a similar story, namely that feature selection improves user geolocation accuracy. The impact
of feature selection on NA is much greater than WORLD, because WORLD has a larger number
of classes and smaller average number of tweets per user and also per class, making it a more
challenging dataset.
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Dataset Features Acc Acc@16] Acc@C Median

Full 0.081 0.200 0.807 886
ICF 0.110 0.241 0.788 837
IGR 0.126 0.262 0.684 913
WORLD LR 0.104 0.233 0.792 640

GeoDen  0.123 0.266 0.691 842
Ripley 0.121 0.268 0.582 1128

Table 6: Results on the full feature set compared to that of each of a representative sample of feature
selection methodologies on WORLD using NB. The best numbers are shown in boldface.

Train Test Acc Acc@161 Acc@C Median
G G 0.126 0.262 0.684 913
G+NG G 0.170 0.323 0.733 615
G G+NG 0.187 0.366 0.835 398
G+NG G+NG 0.280 0.492 0.878 170
G NG 0.161 0.331 0.790 516
G+NG NG 0.241 0.440 0.826 272
G G-small 0.121 0.258 0.675 960
G NG-small 0.114 0.248 0.666 1057

Table 7: The results of geolocation models trained and tested on geotagged (G) and non-geotagged
(NG) tweets, and their combination.

7. Exploiting Non-geotagged Tweets

Most Twitter-based geolocation research carried out to date (Eisenstein et al., 2010; Wing & Bald-
ridge, 2011) has been trained only on geotagged tweets, that is tweets with known geographical
coordinates. Some work (Roller et al., 2012) has also incorporated non-geotagged tweets from
users whose location can be inferred from geotagged tweets. Clearly, if it is possible to effectively
utilise non-geotagged tweets, data sparsity can be ameliorated (as we aren’t restricting ourselves to
training on only the approximately 1% of tweets with known location), but there is a clear tradeoff
in the confidence we can place in the labels associated with those tweets/users. In this section, we
investigate the utility of non-geotagged tweets in geolocation prediction.

For experiments in this section, and the rest of the paper, we use WORLD+NG to denote
the dataset which incorporates both the geotagged and non-geotagged tweets from the users in
WORLD. We refer to the subparts of this dataset consisting of geotagged and non-geotagged tweets
as G and NG, respectively. Of the 194M tweets in WORLD+NG, 12M are geotagged and the re-
maining 182M are non-geotagged. We use the same partitioning of users into training, development,
and testing sets for WORLD+NG as for WORLD. We compare the relative impact of NG in which
we train and test the geolocation method on G, NG, or their combination. Results are presented in
Table 7.

The first row of Table 7 shows the results using only geotagged data (our best result from Table
6). In rows two and three, we show results when the data for each user in the training and test
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datasets, respectively, is expanded to incorporate non-geotagged data (without changing the set
of users or the label for any user in either case). In both cases, for all evaluation measures, the
performance is substantially better than the benchmark (i.e., the first row). This finding is in line
with Cheng et al.’s (2010) results that data spareness is a big issue for text-based geolocation. It also
validates our hypothesis that non-geotagged tweets are indicative of location. The best results are
achieved when non-geotagged tweets are incorporated in both the training and testing data (shown
in row four). In this case we achieve an accuracy of 28.0%, a 15.4 percentage point increase over
the benchmark using only geotagged tweets to represent a given user. Moreover, our prediction
is within 161km of the correct location for almost one in every two users, and the country-level
accuracy reaches almost 88%.2°

Although research on text-based geolocation has used geotagged data for evaluation, the ulti-
mate goal of this line of research is to be able to reliably predict the locations of users for whom the
location is not known, i.e., where there is only non-geotagged data. Because geotagged tweets are
typically sent via GPS-enabled devices such as smartphones, while non-geotagged tweets are sent
from a wider range of devices, there could be systematic differences in the content of geotagged
and non-geotagged tweets. We examine this issue in rows five and six of Table 7, where we test
our model on only non-geotagged data. In this case we know a test user’s gold-standard location
based on their geotagged tweets. However these geotagged tweets are not used to represent the user
in the test instance; instead, the user is represented only by their non-geotagged tweets. The results
here are actually better than for experiments with the same training data but tested on geotagged
tweets (i.e., rows one and two of the table).?” This confirms that a model trained on G or G+NG
indeed generalises to NG data. However, it is not clear whether this finding is due to there being
much more non-geotagged than geotagged data for a given user, or whether some property of the
non-geotagged data makes it easier to classify. To explore this question, we carry out the follow-
ing additional experiment. First, we construct a new dataset NG-small by down-sampling NG to
contain the same number of features per user as G (in terms of the feature token count). To make
the comparison fairer, we constructed a second new dataset — G-small — in which we exclude
test users with more G tweets than NG tweets. This guarantees that users in NG-small will contain
the same number of LIWs as in G-small. We average over five iterations of random subsampling,
and list the result in the final row of Table 7.?® Here we see that the results for NG-small are not
as good as G-small (i.e., row seven), suggesting that there might be minor sub-domain differences
between geotagged and non-geotagged tweets, though a strong conclusion cannot be drawn without
further in-depth analysis. One possible explanation is that there could be differences (e.g., demo-
graphic variations) between users who only have non-geotagged tweets and users who have both
non-geotagged tweets and geotagged tweets; however, comparing these two sources is beyond the
scope of this paper. Nonetheless, the results suggest the difference between NG and G is largely due
to the abundant data in NG. This explanation is also supported by the recent work of Priedhorsky
et al. (2014).

26. Note that this evaluation is over exactly the same set of users in all four cases; all that changes is whether we
incorporate extra tweets for the pre-existing set of users, in the training or test data.

27. We remove users who only have geotagged tweets in the test data, reducing the number of users marginally from
10,000 to 9,767.

28. Note that we calculated the variance over the five iterations of random subsampling, and found it to be negligible for
all evaluation measures.
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In summary, we have quantitatively demonstrated the impact of non-geotagged tweets on ge-
olocation prediction, and verified that models trained on geotagged data are indeed applicable to
non-geotagged data, even though minor sub-domain differences appear to exist. We also estab-
lished that representing a user by the combination of their geotagged and non-geotagged tweets
produces the best results.

8. Language Influence on Geolocation Prediction

Previous research on text-based geolocation has primarily focused on English data. Most studies
have either explicitly excluded non-English data, or have been based on datasets consisting of pri-
marily English messages, e.g., through selection of tweets from predominantly English-speaking
regions (Eisenstein et al., 2010; Cheng et al., 2010; Wing & Baldridge, 2011; Roller et al., 2012).
However, Twitter is a multilingual medium and some languages might be powerful indicators of
location: for example, if a user posts mostly Japanese tweets, this could be a strong indication that
the user is based in Japan, which could be used to bias the class priors for the user. In this section,
we explore the influence of language on geolocation prediction. The predominant language in a
given tweet was identified using 1angid. py,?° which has been trained to recognise 97 languages
(Lui & Baldwin, 2012).

To create a dataset consisting of multilingual geotagged tweets, we extract all geotagged data
— regardless of language — from the same Twitter crawl that WORLD was based on. This multi-
lingual dataset consists of 23M tweets from 2.1M users. 12M tweets are in English as in WORLD,
while the remaining 11M tweets are in other languages. Figure 5 shows the proportion of tweets
in the fifteen most common languages in the dataset.>* An immediate observation is the large dif-
ference in language distribution we observe for geo-tagged tweets as compared to what has been
observed over all tweets (irrespective of geotag: Hong, Convertino, & Chi, 2011; Baldwin, Cook,
Lui, MacKinlay, & Wang, 2013): among the higher-density languages on Twitter, there appears to
be a weak positive bias towards English users geotagging their tweets, and a strong negative bias
against Japanese, Korean and German users geotagging their tweets. We can only speculate that the
negative bias is caused by stronger concerns/awareness of privacy issues in countries such as Japan,
South Korea, Germany and Austria. We explored the question of whether this bias was influenced
by the choice of Twitter client by looking at the distribution of Twitter clients used to post messages
in each of English, German, Japanese and Korean: (a) overall (irrespective of whether the message
is geotagged or not), based on a 1M sample of tweets from 28 Sep, 2011; and (b) for geotagged
tweets, based on WORLD. Overall, we found there to be huge variety in the choice of client used
within a given language (with the top-10 clients accounting for only 65-78% of posts, depending on
the language), and significant differences in popular clients between languages (e.g. “Keitai Web”
is the most popular client for Japanese, “web” for English and German, and “Twitter for Android”
for Korean). For geotagged tweets, on the other hand, there is much greater consistency, with the
three most popular clients for all languages being “Twitter for i0S”, “Twitter for Android” and
“foursquare”, accounting for a relatively constant two-thirds of posts for each language. This is
suggestive of the fact that the choice of client is one factor in biasing the relative proportion of

29. Based on the simplifying assumptions that: (a) every tweet contains linguistic content; and (b) all tweets are mono-
lingual, or at least are predominantly in a single language.
30. We represent languages in Figure 5 using two-letter ISO 639-1 codes.
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Figure 5: The percentage of tweets in WORLD+ML written in each of the fifteen most frequent
languages in the collected Twitter data. These fifteen languages account for 88% of the
tweets in the full dataset.

geotagged tweets in the different languages, although more research is required to fully understand
this effect.

The training, development and test data is re-partitioned for the multilingual setting to stratify
on language, and the resultant dataset is referred to as WORLD+ML. Again, the development and
testing sets consist of 10K users each, with the remaining users in the training set as in WORLD.
Although in Section 7 we showed that adding non-geotagged data improves geolocation accuracy,
the experiments in this section are based only on geotagged data, because of the prohibitive compu-
tational cost of experimenting with a much larger dataset. Note that this doesn’t limit the generalis-
ability of our results, it simply means that we have to be careful to compare them to the monolingual
results from Table 7 based on only geotagged tweets (the first row).

We first compare geolocation performance in a multilingual setting with that in an English-only
setting, a comparison that past work on geolocation has not considered. The data in WORLD+ML
is further partitioned into two subsets — E and NE — according to whether the majority of a given
user’s tweets are in English or non-English, respectively. Of the 10K test users in WORLD+ML,
5,916 are English and 4,084 are non-English. One challenge with the multilingual setting of these
experiments is tokenisation. Although rudimentary tokenisation of many languages such as English
and French can be accomplished using whitespace and punctuation, tokenisation is much more
challenging for languages such as Japanese and Chinese which do not represent word boundaries
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Train Test Acc Acc@161 Acc@C Median

E+NE E+NE 0.196 0.343 0.772 466
E+NE E 0.134 0.256 0.715 1067
E+NE NE 0.287 0.468 0.855 200
E E 0.169 0.317 0.746 632

Table 8: Results for multilingual geolocation, training and testing on English (E) and non-English
(NE) users, and their combination.

with whitespace. However, amongst the most-common languages on Twitter (as shown in Figure
5), Japanese is the only language which accounts for a substantial portion of the data (> 1%)
and requires a specialised tokenisation strategy (compared to English). For Japanese tweets we
apply the Japanese morphological segmenter MeCab (with the IPA dictionary),3! and post-correct
tokenisation errors relating to Twitter-specific tokens such as mentions, hashtags, and URLs (e.g.,
in instances where MeCab over-segments a mention into multiple morphemes). For non-Japanese
tweets, we apply the same tokeniser based on regular expressions used in our previous English-only
experiments.

After resolving the tokenisation issue, we apply the same /GR method from Section 4.2.1 to
select the optimised feature selection cut-off, based on Acc over the development data. We observe
that a much larger proportion of tokens are selected in the multilingual setting compared to the
English-only experiments. For example, of the 400K token types in the multilingual experiment,
384K (the top 96%) are selected as location-indicative, while for the English-only case 83K (the top
86%) location-indicative words are selected from the total of 96K token types.

The experimental results are shown in Table 8.3> The first row gives results for training and
testing on the full dataset of both English and non-English tweets. The next two rows show the
results when testing on English (E) and non-English (NE) subsets of the data. The much lower
accuracy for E compared to NE indicates that English tweets are much more difficult to geolocate
than non-English tweets. One reason for this is that for many non-English languages, there is a
strong bias towards a small number of cities. We verify this by calculating the class entropy with
respective to a language on the training data. The class probabilities are smoothed using a simple
add-a method, with o = 1/3709 (where 3709 is the size of the class set). As shown in Table 9, the
class entropy on English (en) data is the largest, indicating that English is prevalent across a large
number of locations. In contrast, Thai (th) and Turkish (tr) have much smaller entropies, suggesting
the location distributions are heavily skewed, and user geolocation over these languages will be
easier than for English.

To explore the extent to which the geolocatability of a user varies with respect to the predom-
inant language of their tweets, we further break down the results by language in Table 10, which
shows results for the top-10 most frequent languages (by number of tweets) with at least 100 users
in our test data. This cut-off on users ensures we do not consider under-represented languages.

31. nttp://sourceforge.net/projects/mecab/
32. The English-only results reported here are not the same as for the comparable experiment in Table 7 using only
geotagged data, because the test sets consist of different users in these two cases.
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Language Entropy Language Entropy Language Entropy
en 6.279 id 3.868 fr 5.538
es 5.069 it 5.244 ms 3.970
pt 4.144 ru 3.772 th 2.697
ja 3.523 de 6.207 ko 2.781
nl 3.820 tr 2.888 ar 3.281

Table 9: Geolocation class entropy for top-15 languages

Per-language Majority Class Unified Multilingual Monolingual Partitioning
Lang. No. Acc Acc@161 Acc@C Med. Acc Acc@161 Acc@C Med. Acc Acc@161 Acc@C Med.
en 5916 0.019 0.039 0.655 3671 0.134 0.256 0.715 1067 0.169 0.317 0.746 632

es 945 0.116 0.159 0324 4267 0267 0346 0.734 391 0362 0478 0.802 185
pt 673 0.223 0296 0952 490 0.232 0305 0952 490 0.400 0.489  0.961 200
id 398 0.264 0472 0899 197 0324 0565 0965 115 0440 0.736  0.960 16
nl 342 0.175 0.789  0.889 87 0173 0.789  0.889 87 0298 0.871 0.845 58
ja 298 0.326 0530  0.960 96 0336 0.544  0.956 95 0463 0.695 0.950 27
ru 217 0336 0378 0857 633 0346 0387 0862 633 0341 0378 0.862 633
tr 186 0.538 0.656  0.930 0 0538 0656 0930 0 0522 0645 0.930 0
ar 164 0335 0470 0463 379 0354 0488 0500 301 0457 0591  0.750 21
th 154 0325 0.766  0.981 20 0279 0.623  0.792 41 0325 0.766  0.974 30

All 10000 0.107 0.189  0.693 2805 0.196 0343 0.772 466 0.255 0.425 0.802 302

Table 10: Geolocation performance and comparison for the top-10 most frequent languages in the
multilingual test data, using (1) language prior (i.e., the city where a language is mostly
used); (2) a unified multilingual model (i.e., training and testing on multilingual data
regardless of languages); and (3) language-partitioned monolingual models (i.e., first
identify the primary language of users, train one model per language, and classify test
users with the model corresponding to the language of their tweets)

We observe that the results vary remarkably by language in the multilingual section of Table
10. The results are overall lowest for English (en), although the lowest country-level accuracy is for
Arabic (ar); we speculate that this is caused by the large number of countries that Arabic is spoken
in, and the relatively small number of Arabic speakers in our training data. Furthermore, the city-
level accuracy is better than 30% for Indonesian (id), Japanese (ja), Russian (ru), Turkish (tr) and
Arabic (ar); the regions in which these languages are commonly-spoken are more geographically-
restricted than for English, suggesting that geolocation accuracy on languages with smaller geo-
graphic footprints will tend to be higher than for languages which are widely-used throughout a
larger geographical area. This finding agrees with the recent work of Priedhorsky et al. (2014), and
further underlines the power of language information in predicting locations. The best city-level
accuracy of 53.8% is observed for Turkish (one of the languages with the lowest city-level entropy).
Manually inspecting the outputs, we find that this is because our model predicts the city Istanbul for
all Turkish users, and a large proportion of Turkish tweets come from this city.
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Based on this finding, we further consider a language-based benchmark which predicts the most
frequent city given the predominant language of a user’s tweets (denoted as Per-language Majority
Class). We also observe the performance gap between the multilingual model on English (the second
row of Table 8) and an English-only model (the bottom row in Table 8). These results show that if
the target data is known to be written in a single language then a monolingual model outperforms
a multilingual one. It also suggests an alternative approach for multilingual geolocation prediction:
rather than training and predicting on multilingual data (E+NE), we can train and evaluate models
on language-specific data. Motivated by this observation, we also apply a monolingual partitioned
model for users of a particular language based on langid.py (i.e., language partitions), e.g.,
selecting all Japanese users in the training data, and only applying the Japanese-specific model to
Japanese users in the test data. This is denoted as Monolingual Partitioning in Table 10, and is
contrasted with the simple approach of a combined model for all languages and users (‘“Unified
Multilingual”).

By comparing the Per-language Majority Class with the Unified Multilingual model, we find
that the unified model performs better overall, with the exception of Thai (th) and Dutch (nl), both
of which are associated with a very small number of cities, and one city which is much larger than
the others (Bangkok, TH and Amsterdam, NL, respectively). Because of the relatively poor results
for this benchmark method on languages such as English (en) and Spanish (es) which are frequent
on Twitter, and its relatively poor overall performance, the Per-language Majority Class is not an
appropriate method for this task. Nevertheless, when using a Monolingual Partitioning model, the
results are far superior, and the partitioning effect of language can be seen. This suggests that
modelling each language independently can improve geolocation performance.

In summary, this series of experiments has shown the influence of language on geolocation pre-
diction. Among the top-10 languages found on Twitter, English is the most difficult to perform user
geolocation over, as English is the most global language. Despite language variance, multilingual
geolocation prediction is certainly feasible, although the best way to leverage language for geoloca-
tion prediction is by training language-partitioned monolingual models and geolocating users based
on their primary language.

9. Incorporating User Meta Data

The metadata accompanying tweets is a valuable source of geographical information beyond that
available in tweets. In this section, we explore incorporating metadata information into our text-
based geolocation system. We begin by selecting four metadata fields that could potentially provide
insights into the location of a user, and first evaluate models trained on each of these sources of
information. We then consider a number of ways to incorporate information from this metadata
with our best text-based method developed in Section 7. As discussed in Section 8, language has a
strong influence on geolocation prediction, and English-posting users are the hardest to geolocate.
As such, we experiment only on English data (i.e., WORLD+NG) for the remainder of this paper.
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Data LOC TZ DESC

Training 0.813  0.752  0.760
Test 0.813 0.753 0.761

Table 11: The proportion of users with non-empty metadata fields in WORLD+NG

9.1 Unlock the Potential of User-Declared Metadata

We choose the following four user-supplied metadata fields for our study: location (LOC), timezone
(TZ), description (DESC), and the user’s real name (RNAME).>? In contrast to rich social network
information which is much more expensive to extract, these metadata fields are included in the
JSON object that is provided by the Twitter Streaming API, i.e., we can extract this metadata at no
extra crawling cost. This information, however, is dynamic, i.e., users can change their profiles,
including the metadata of interest to us. By aggregating the extracted tweet-level metadata for each
user, we can calculate the ratio of users that change each metadata field. 18% of users changed their
DESC field during the approximately five months over which our dataset was collected. During this
same time period, for each of the other fields considered, less than 8% of users updated their data.
Given the relatively small number of profile updates, we ignore the influence of these changes, and
use the most frequent value for each metadata field for each user in our experiments.

All of this user-supplied metadata can be imprecise or inaccurate, because the user is free to
enter whatever textual information they choose. For example, some LOC fields are not accurate
descriptions of geographical locations (e.g., The best place in the universe). Moreover, although
some LOC fields are canonical renderings of a user’s true location (e.g., Boston, MA, USA), a large
number of abbreviations and non-standard forms are also observed (e.g., MEL for Melbourne, AU).
Cheng et al. (2010) find that only a small proportion of location fields in their US-based dataset are
canonical locations (i.e., of the form city, state). Nevertheless, these non-standard and inaccurate
location fields might still carry information about location (Kinsella et al., 2011), similarly to how
the text of tweets can indicate location without explicitly mentioning place names.

These metadata fields also differ with respect to the explicitness of the location information they
encode. For instance, while LOC and TZ can give direct location information, DESC might contain
references to location, e.g., A geek and a Lisp developer in Bangalore. Although RNAME does not
directly encode location there are regional preferences for names (Bergsma, Dredze, Van Durme,
Wilson, & Yarowsky, 2013), e.g., Petrov might be more common in Russia, and the name Hasegawa
might be more common in Japan. Finally, for all of the tweets that we consider, the text field (i.e., the
content of the tweet itself) and RNAME are always present, but LOC, TZ, and DESC can be missing
if a user has chosen to not supply this information. The proportion of non-empty metadata fields for
LOC, TZ and DESC for users in WORLD+NG are listed in Table 11.

9.2 Results of Metadata-Based Classifiers

Because of the variable reliability and explicitness of the selected metadata, we incorporate these
fields into our statistical geolocation model in a similar manner to the message text. In prelimi-

33. The user-supplied real name could be any name — i.e., it is not necessarily the user’s actual name — but is a different
field from the user’s screen name.
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Classifier Acc Acc@161 Acc@C Median

LoC 0.405 0.525 0.834 92
TZ 0.064 0.171 0.565 1330
DESC 0.048 0.117 0.526 2907
RNAME 0.045 0.109 0.550 2611
BASELINE  0.008 0.019 0.600 3719
TEXT 0.280 0.492 0.878 170

Table 12: The performance of NB classifiers based on individual metadata fields, as well as a base-
line, and the text-only classifier with /GR feature selection.

nary experiments, we considered bag-of-words features for the metadata fields, as well as bag-of-
character n-gram features for n € {1,...,4}.>* We found character 4-grams to perform best, and
report results using these features here. (A bag-of-character 4-grams represents the frequency of
each four-character sequence including a start and end symbol.) The geolocation performance of a
classifier trained on features from each metadata field in isolation, as well as the performance of a
most frequent city baseline (BASELINE) and our best purely text-based classifier (TEXT, replicated
from Table 7), is shown in Table 12.

The classifier based on each metadata field outperforms the baseline in terms of Acc, Acc@161,
and Median error distance. This suggests these metadata fields do indeed encode geographically-
identifying information, though some classifiers are less competitive than TEXT. Notably, despite
the potential for noise in the user-supplied location fields, this classifier (LOC) achieves even better
performance than the purely text-based method, reaching a city-level accuracy of over 40%, pre-
dicting a location within 161km of the true location for over half of the users. This suggests LOC
contains valuable information, even though LOC fields are noisy (Cheng et al., 2010), and are not
easily captured by off-the-shelf geolocation tools (Hecht et al., 2011). Manual analysis suggests
many vernacular place names are captured in the statistical modelling, such as Kiladelphia and
Philly used to represent Philadelphia. The utility of metadata fields is also confirmed by the recent
work of Priedhorsky et al. (2014).

9.3 Ensemble Learning on Text-Based Classifiers

To further analyse the behaviour of the four metadata classifiers, we consider the pairwise city-level
prediction agreement between them. Cohen’s Kappa (Carletta, 1996) is a conventional metric to
evaluate inter-annotator agreement for categorical items (such as the predicted cities in our case);
larger Kappa values indicate higher pairwise agreement. The double fault measure (Giacinto &
Roli, 2001) incorporates gold-standard information, and is equal to the proportion of test cases for
which both classifiers make a false prediction. This measure offers the empirical lowest error bound
for the pairwise ensemble classifier performance.

34. Although we could certainly also consider character n-grams for the text-based classifier, we opted for a bag-of-
words representation because it explicitly captures the LIWs that we believe are especially important for geolocation.
There could also be location-indicative character n-grams, the exploration of which we leave for future work.
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RNAME

Table 13: Pairwise correlation of the base classifiers using Cohen’s Kappa (bottom left, in light
grey; higher numbers indicate greater prediction similarity) and the double fault measure
(top right, in white; lower numbers indicate greater prediction similarity).

Pairwise scores for Cohen’s Kappa and the double fault measure are shown in Table 13. The
Kappa scores (bottom-left of Table 13) are very low, indicating that there is little agreement between
the classifiers. Because the classifiers achieve better than baseline performance, but also give quite
different outputs, it might be possible to combine the classifiers to achieve better performance.
The double fault results (top-right) further suggest that improved accuracy could be obtained by
combining classifiers.

We combine the individual classifiers using meta-classification. We first adopt a feature con-
catenation strategy that incrementally combines the feature vectors of TEXT, LOC, TZ, DESC and
RNAME. We also consider stacked generalisation (Wolpert, 1992), referred to simply as stacking,
in which the outputs from the base classifiers, and the true city-level locations, are used to train a
second classifier which produces the final output. The base classifiers, and the second classifier,
are referred to as the L0 and LI classifiers, respectively. In conventional applications of stacking,
homogeneous training data is used to train heterogeneous L0 classifiers; in our case, however, we
train homogeneous L0 multinomial Bayes models on heterogeneous data (i.e., different types of
data such as TEXT, LOC, and TZ). We consider logistic regression (Fan, Chang, Hsieh, Wang, &
Lin, 2008) and multinomial Bayes as the L/ classifier.

We carry out 10-fold cross validation on the training users to obtain the L/ (final) classifier
results, a standard procedure for stacking experiments. We use stratified sampling when partitioning
the data because the number of users in different cities varies remarkably, and a simple random
sample could have a bias towards bigger cities. The ensemble learning results are tabulated in Table
14.

The combination of TEXT and LOC is an improvement over LOC (i.e., our best results so far).
However, using feature concatenation and multinomial naive Bayes stacking, accuracy generally
drops as metadata feature sets that perform relatively poorly in isolation (i.e., TZ, DESC, RNAME)
are incorporated. On the other hand, using logistic regression stacking, we see small increases in
accuracy as features that perform less well in isolation are incorporated. Though DESC and RNAME
are moderately useful (as shown in Table 12), these fields contribute little to the strong ensembles
(i.e., TEXT, LOC and TZ). The best model (using logistic regression stacking and all features)
assigns users to the correct city in almost 50% of the test cases, and has a Median error of just
9km. Moreover, with this approach the country-level accuracy reaches almost 92%, indicating the
effectiveness of our method for this coarse-grained geolocation task.
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Feature concatenation

Features Acc Acc@161 Acc@C Median
1. TEXT+LOoC 0.444 0.646 0.923 27
2. l.+71Z 0.429 0.639 0.929 32
3. 2. +DESC 0.319 0.529 0.912 127
4. 3. +RNAME 0.294 0.503 0.912 156
Multinomial Bayes stacking
Features Acc Acc@161 Acc@C Median
1. TEXT+LOC 0470 0.660 0.933 19
2. 1l.+712 0.460 0.653 0.930 23
3. 2.+ DESC 0.451 0.645 0.931 27
4, 3.+RNAME 0451 0.645 0.931 27
Logistic regression stacking
Features Acc Acc@161 Acc@C Median
1. TEXT+LOoC 0.483 0.653 0.903 14
2. 1l.+12 0.490 0.665 0.917 9
3. 2. +DESC 0.490 0.666 0.919 9
4. 3. +RNAME 0.491 0.667 0.919 9

Table 14: The performance of classifiers combining information from text and metadata using fea-
ture concatenation (top), multinomial Bayes stacking (middle), and logistic regression
stacking (bottom). Features such as “l1. + TZ” refer to the features used in row “1.” in
combination with TZ.

It is interesting to observe that, while we found NB to outperform LR as a standalone classifier
in Section 5.2, as an L1 classifier, LR clearly outperforms NB. The reason for this is almost cer-
tainly the fact that we use a much smaller feature set relative to the number of training instances
in our stacking experiments, under which circumstances, discriminative models tend to outperform
generative models (Ng & Jordan, 2002).

10. Temporal Influence

In addition to the held-out English test data in WORLD+NG, we also developed a new geotagged
test dataset to measure the impact of time on model generalisation. The training and test data in
WORLD+NG are time-homogeneous as they are randomly partitioned based on data collected in
the same period. In contrast, the new test dataset (LIVE) is much newer, collected more than 1
year later than WORLD+NG. Given that Twitter users and topics change rapidly, a key question is
whether the statistical model learned from the “old” training data is still effective over the “new”
test data? This question has implications for the maintenance and retraining of geolocation models
over time. In the experiments in this section we train on WORLD+NG and test on our new dataset.

The LIVE data was collected over 48 hours from 3 Mar, 2013 to 5 Mar, 2013, based on geo-
tagged tweets from users whose declared language was English. Recent status updates (up to 200)
were crawled for each user, and 1angid. py was applied to the data to remove any remnant non-
English messages. In addition to filtering users with less than 10 geotagged tweets for the test data
as in WORLD+NG, we further exclude users with less than 50% of geotagged tweets from one
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WORLD+NG
Features Acc Acc@161 Acc@C Median
1. TEXT 0.280 0.492 0.878 170
2. LOC 0.405 0.525 0.834 92
3.TZ 0.064 0.171 0.565 1330
1.+2.+3. 0490 0.665 0.917 9
LIVE
Features Acc Acc@161 Acc@C Median
1. TEXT 0.268 0.510 0.901 151
2. LOC 0.326 0.465 0.813 306
3.TZ 0.065 0.160 0.525 1529
1.+2.+3. 0.406 0.614 0.901 40

Table 15: Generalisation comparison between the time-homogeneous WORLD+NG and time-
heterogeneous LIVE (1. + 2. + 3. denotes stacking over TEXT, LOC and TZ).

city. This is because if a user’s geotagged tweets are spread across different locations, it is less
credible to adopt the user’s most frequent location as their true primary location in evaluation. A
post-check on the WORLD+NG test data shows that 9,977 out of 10K users satisfy this requirement
on geographical coherence, and that we aren’t unnecessarily biasing the data in LIVE in applying
this criterion. Finally, all status updates are aggregated at the user-level, as in WORLD+NG. After
filtering, 32K users were obtained, forming the final LIVE dataset.

We use only TEXT, LOC and TZ in this section, as they require less computation and achieve
accuracy comparable to our best results, as shown in Table 14. The temporal factor impact on
geolocation prediction model generalisation is revealed in the accuracy for WORLD+NG and LIVE
shown in Table 15. Acc and Acc@161 numbers in the stacked model (1. + 2. + 3.) drop by
approximately 8 and 5 percentage points, respectively, on LIVE as compared to WORLD+NG. The
Median prediction error distance also increases moderately from 9km to 40km. By decomposing
the stacked models and evaluating against the base classifiers, we find the accuracy declines are
primarily caused by accuracy drops in the LOC classifier on the new LIVE data, of approximately
9% in Acc and 6% in Acc@161. This could be viewed as a type of over-fitting, in that the stacked
classifier is relying too heavily on the predictions from the LOC base classifier. The Tz classifier
performs relatively constantly in terms of accuracy, although the Median error increases slightly.
The TEXT classifier is remarkably robust, with all numbers except for Acc improving marginally.

We further investigate the poor LOC classifier generalisation on LIVE. First, we down-sample
LIVE to 10K users, the same size as WORLD+NG, and then compare the per-city prediction num-
bers on the two datasets using only the LOC classifier. We find two factors jointly cause the accuracy
decrease on LIVE: (1) the composition of test users, and (2) the decline in per-city recall. For in-
stance, 80 test users are from London, GB in WORLD-+NG. This number sharply increases to 155 in
LIVE, meaning that the influence of London, GB test users on the overall accuracy in LIVE is almost
doubled. Furthermore, the recall — the proportion of users from a given location who are correctly
predicted as being from that location — for London, GB drops from 0.676 in WORLD+NG to
0.568 in LIVE. We observe that the proportion of empty LOC fields among London, GB test users
jumps from 13% (WORLD+NG) to 26% (LIVE). This reduces the utility of the LOC data in LIVE
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Rank cities in LIVE LIVE users LIVE recall WORLD+NG users WORLD+NG recall
1 Los Angeles, US 201 0.766 81 0.691
2 Kuala Lumpur, MY 168 0.482 50 0.560
3 London, GB 155 0.568 80 0.675
4 Jakarta, ID 129 0.550 86 0.686
5 Anaheim, US 85 0.447 26 0.346
6 Singapore, SG 76 0.474 160 0.556
7 Fort Worth, US 76 0.289 35 0.371
8 Chicago, US 72 0.569 123 0.577
9 Pittsburgh, US 72 0.431 39 0.487
10 San Antonio, US 66 0.455 82 0.585

Table 16: The number of test users, and recall using LOC, by city, for the top-10 largest cities in
LIVE, compared with WORLD+NG.

and explains why the per-city recall drops: all test users with an empty LOC field are assigned to
the city with highest class prior in the model (i.e., Los Angeles, US). Overall, the ratios of empty
Loc fields in WORLD+NG test data and LIVE are 0.176 and 0.305, respectively, suggesting that
user-declared locations in LIVE carry much less geospatial information than in WORLD+NG. We
show other comparisons for the top-10 cities in terms of test users in Table 16,3 as the accuracy
of more highly-represented cities has a greater impact on overall results than that of smaller cities.
Like London, GB, most cities shown in Table 16 experience lower recall scores for LIVE, and many
of them have more test users in LIVE than in WORLD+NG. Nevertheless, some cities have higher
recall and more test users in LIVE, e.g., Los Angeles, US and Anaheim, US in Table 16. The overall
numbers are, of course, determined by aggregated performance over all cities. To provide some in-
sight, 35.6% of cities in WORLD+NG have more than 40% in recall, but the number is only 28.5%
in LIVE.

While an important base classifier in the stacked model, the LOC accuracy numbers are most
influenced by temporal changes, whether it is because of an increased reluctance to supply a user-
declared location (although admittedly for users who geotag their tweets), or primarily due to vari-
ance in user proportions from different cities in the sampled stream. Either way, a periodically re-
trained LOC classifier would, no doubt, go some way towards remedying the temporal gap. Overall,
the numbers suggest that time-homogeneous data (WORLD+NG) is easier to classify than time-
heterogeneous data (LIVE). However, training on “old” data and testing on “new” data has been
shown to be empirically viable for the TEXT and TZ base classifiers in particular. This result also
validates efforts to optimise text-based user geolocation classification accuracy. Recently, similar
results on tweet-level geolocation prediction were observed by Priedhorsky et al. (2014), supporting
the claim that the accuracy of geolocation prediction suffers from diachronic mismatches between
the training and test data.

35. We observe that the city proportions changed drastically between WORLD+NG and LIVE. The reasons for this are
unclear, and we can only speculate that it is due to significant shifts in microblogging usage in different locations
around the world.
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11. User Tweeting Behaviour

Having improved and extended text-based geolocation prediction, we now shift our focus to user
geolocatability. If a user wishes to keep their geolocation private, they can simply disable public
access of their tweets and metadata. However, if users choose to share their (non-geotagged) tweets,
are there different tweeting behaviours which will make them more susceptible to geolocation pri-
vacy attacks? To investigate this question, in this section, we discuss the impact of user behaviour
on geolocation accuracy relative to predictions over LIVE based on the stacking model from Section
10.%

As an obvious first rule of thumb, geotagged tweets should be avoided, because they provide
immediate access to a user’s geographical footprint, e.g., favourite bars, or their office address.
Second, as an immediate implication of our finding that location metadata is a strong predictor of
geolocation (Section 9.2), if a user wants to avoid privacy attacks, they should avoid presenting
location metadata, in effect disabling the LOC base classifier in our stacked classifier. Third, the text
of a user’s posts can be used to geolocate the user (at approximately 27% Acc, from Table 15). To
investigate the impact of the volume of tweets on user “geolocatability”, we perform a breakdown
of results over LIVE across two dimensions: (1) the number of LIWSs, to investigate whether the
sheer volume of tweets from a user makes them more geolocatable; and (2) the source of geospatial
information which we exploit in the geolocation model. We evaluate these questions in Figure 6
in four feature combination settings, relative to the: (1) tweet text-based classifier; (2) tweet text-
based classifier with gazetteer names removed;?” (3) metadata stacking using LOC and TZ (invariant
to tweet number changes); and (4) the stacking of TEXT, LOC and TZ for all users. In each case,
we partition the data into 20 partitions of 5% of users each, ranked by the total number of LIWs
contained in the combined posts from that user. In addition to the Acc for each user partition, we
also indicate the average number of LIWs per user in each partition (as shown in the second y-axis,
on the right side of the graph).

Overall, the more LIWSs are contained in a user’s tweets, the higher the Acc for text-based meth-
ods. When gazetted terms are removed from the tweets, Acc drops by a large margin. This suggests
gazetted terms play a crucial role in user geolocation. Metadata also contributes substantially to ac-
curacy, improving the text-based accuracy consistently. Moreover, if a user tweets a lot, the Acc of
the tweet text-based approach is comparable to our best model, even without access to the metadata
(as shown in the top right corner of the graph). As an overall recommendation, users who wish to
obfuscate their location should leave the metadata fields blank and avoid mentioning LIWs (e.g.,
gazetted terms and dialectal words) in their tweets. This will make it very difficult for our best ge-
olocation models to infer their location correctly (as demonstrated to the bottom left of the graph).
A similar conclusion on user geolocatability was recently obtained by Priedhorsky et al. (2014). To
help privacy-conscious Twitter users to avoid being geolocated by their tweets, we have made the
list of LIWs publicly available.?8

36. Our analysis is limited to behaviours that could easily be adopted by many users. Given that our system predicts the
most likely city from a fixed set for a given user, one simple way to avoid being geolocated is to move far away from
any of these cities. However, it seems unlikely that this strategy would be widely adopted.

37. Our gazetteer is based on the ASCII city names in the Geonames data.

38. nttp://www.csse.unimelb.edu.au/~tim/etc/liw-jair.tgz
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Figure 6: The impact of the use of LIWs on geolocation accuracy. Users are sorted by the number
of LIWs in their tweets, and are partitioned into 20 bins. Metadata includes LOC and TZ.

12. Prediction Confidence

In the task setup to date, we have forced our models to geolocate all users. In practice, however,
many users don’t explicitly mention any geolocating words in their posts, making the task nigh on
impossible even for a human oracle. An alternative approach would be to predict a user geolocation
only when the model is confident of its prediction. Here, we consider a range of variables that
potentially indicate the prediction confidence.

Absolute probability (AP): Only consider predictions with probability above a specified thresh-
old.

Prediction coherence (PC): We hypothesise that for reliable predictions, the top-ranked locations
will tend to be geographically close. In this preliminary exploration of coherence, we formu-
late PC as the sum of the reciprocal ranks of the predictions corresponding to the second-level
administrative region in our class representation (i.e., state or province) of the top-ranking
prediction, calculated over the top-10 predictions.** For example, suppose the top-10 second-
level predictions were in the following states in the US: US-TX, US-FL, US-TX, US-TX,
US-CA, US-TX, US-TX, US-FL, US-CA, US-NY. The top-ranking state-level prediction is
therefore US-TX, which also occurs at ranks 3, 4, 6 and 7 (for different cities in Texas). In
this case, PC would be % + % + i + % + %

Probability ratio (PR): If the model is confident in its prediction, the first prediction will tend to
be much more probable than other predictions. We formulate this intuition as PR, the ratio of
the probability of the first and second most-probable predictions.

39. It could be measured by the average distance between top predictions as well.
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Figure 7: Acc@161 for classification of the top-n% most-confident predictions for each measure
of text-based prediction confidence on NA

Feature number (FN): We take the number of features found in a user’s posts as the prediction
accuracy. The intuition here is that a geolocation prediction based on more features is more
reliable than a prediction based on fewer features.

Feature weight (FW): Similar to FN, but in this case we use the sum of /GR of all features, rather
than just the number of features.

We investigate these variables on both NA and LIVE results. In particular, we only evalu-
ate them using the text-based model, as we experiment only with text-based user geolocation in
this section. Nevertheless, exploration of other metadata classifiers is also possible. We sort the
predictions by confidence (independently for each measure of prediction confidence) and measure
Acc@161 among the top-n% of predictions for the following values of n: {0.0,0.05, ..., 1.0}, akin
to a precision—recall curve, as shown in Figures 7 and 8. Results on Acc show a very similar trend,
and are omitted from the paper.

The naive AP method is least reliable with, surprisingly, accuracy increasing as AP decreases
in both figures. It appears that the raw probabilities are not an accurate reflection of prediction
confidence. We find this is because a larger AP usually indicates a user has few LIW features, and
the model often geolocates the user to the city with the highest class prior. In comparison, PR —
which focuses on relative, as opposed to raw, probabilities — performs much better, with higher
PR generally corresponding to higher accuracy. In addition, PC shows different trends on the two
figures. It achieves comparable performance with PR on NA, however it is incapable of estimating
the global prediction confidence. This is largely because world-level PC numbers are often very
small and less discriminating than the regional PC numbers, reducing the utility of the geographic
proximity of the top predictions. Furthermore, FN and FW display similar overall trends to PR, but
don’t outperform PR.
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These experiments suggest that there is indeed a trade-off between coverage and accuracy, which
could be further exploited to obtain higher-accuracy predictions in applications that do not require
all the data to be classified. PR, as well as FN and FW, are fairly effective indicators of predic-
tive accuracy. A further extension on this line of research would be to investigate the prediction
confidence per city, e.g., are users from New York, US more predictable than users from Boston,
US?

13. Future Work

This research could be expanded in a number of directions. First, hierarchical classification mod-
els (Mahmud et al., 2012; Ahmed, Hong, & Smola, 2013) are becoming increasingly popular, and
could be combined with our stacked model. Although explicit social network data (e.g., followers)
can be non-trivial to retrieve, user interactions can be reconstructed from the content of tweets (e.g.,
replies, retweets and user mentions: Jurgens, 2013). This implicit network information could be
combined with our current text-based geolocation methods to further improve geolocation accu-
racy. Additionally, we hypothesise that text-based geolocation prediction is a challenging task for
humans, and that our method is achieving or surpassing the accuracy levels of a human. It would be
interesting to test this hypothesis, e.g., using crowdsourcing methods.

Recently, Priedhorsky et al. (2014) proposed evaluating message-level geolocation. They use
Gaussian mixture models to characterise n-gram probability distributions and evaluate the geolo-
cation prediction accuracy using probabilistic metrics. Their conclusions strongly agree with our
findings, although our task setting is at the user-level and the evaluation metrics are different. In the
future, we plan to adapt our methods to tweet-level geolocation and carry out a systematic evaluation
with their probabilistic analysis of geolocation.
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14. Summary

In this paper, we have investigated a series of key issues relating to text-based geolocation prediction
for Twitter users. We applied a number of feature selection methods to identify location indicative
words (LIWs), and demonstrated the effectiveness of feature selection on both regional (NA) and
global (WORLD) datasets. We then extended our study to analyse the impact of non-geotagged data,
the influence of language and the complementary geographical information in the user metadata.
We further evaluated our model on a time-heterogeneous dataset to assess the model’s sensitivity
to temporal change. Moreover, we discussed how users’ tweeting behaviour affects geolocation
prediction, and drew conclusions on how users make themselves less easily geolocatable. Finally,
we explored various indicators to estimate prediction confidence, in terms of the balance between
prediction coverage and accuracy.

A number of conclusions can be drawn from this study, corresponding to the different sections of
the paper. We believe these findings contribute to a deeper understanding of text-based geolocation
prediction, and further shape the design of practical solutions to the problem:

o We demonstrate that explicit selection of location indicative words improves geolocation pre-
diction accuracy, as compared to using the full feature set.

e Non-geotagged tweets (from users whose location is known) boost the prediction accuracy
substantially in both training and testing. We also demonstrate that modeling on geotagged
data and inferencing on non-geotagged data is indeed feasible. This is largely because of the
similarity between geotagged data and non-geotagged data, although minor differences are
observed between geotagged and non-geotagged tweets.

e Modelling and inference on multilingual data is viable and easier than on monolingual En-
glish data. This is because tweet language strongly affects the prediction accuracy. Due to the
uneven geographical distribution of languages in tweets, users of geographically-diverse lan-
guages (e.g., English and Spanish) are much harder to geolocate than users of geographically-
focused languages (e.g., Japanese or Dutch). Although trivially determining locations based
on the language in tweets is fine for geographically-focused languages, it is insufficient for
the majority of users who post tweets using geographically-diverse languages. By integrating
language information in different ways, we found training a range of monolingual models
based on language identification, and predicting location using a model based on the user’s
primary language, achieves better results than a monolithic multilingual model.

e User-declared metadata, though noisy and unstructured, offers complementary location-in-
dicative information to what is contained in tweets. By combining tweet and metadata infor-
mation through stacking, the best global geolocation results are attained: over 49% of English
users can be correctly predicted at the city level, with a Median error distance of just 9km.

e Results on time-heterogeneous evaluation suggest applying a model trained on “old” data to
predict “new” data is generally feasible. Although the user-declared location field (LOC) is
sensitive to temporal change, classifiers based on the tweet content (TEXT) and user timezone
(TZ) generalise reasonably well across time.

e Our pilot study on user geolocatability led to the following recommendations to preserve
geolocation privacy: (1) reduce the usage of location indicative words, particularly gazetted

494



TEXT-BASED TWITTER USER GEOLOCATION PREDICTION

terms; and (2) delete location-sensitive metadata (e.g., user-declared location and timezone
metadata).

e Probability ratio, which measures the ratio of the probability of the top prediction with that
of the second prediction, can be used to estimate prediction confidence, and select only users
where the system prediction is more accurate, e.g., for downstream applications that require
more-reliable geolocation predictions and where exhaustive user geolocation is not required.
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