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Summary. Two main theories exist with respect to face encoding and representa-
tion in the human visual system (HVS). The first one refers to the dense (holistic)
representation of the face, where faces have “holon”-like appearance. The second one
claims that a more appropriate face representation is given by a sparse code, where
only a small fraction of the neural cells corresponding to face encoding is activated.
Theoretical and experimental evidence suggest that the HVS performs face analysis
(encoding, storing, face recognition, facial expression recognition) in a structured
and hierarchical way, where both representations have their own contribution and
goal. According to neuropsychological experiments, it seems that encoding for face
recognition, relies on holistic image representation, while a sparse image represen-
tation is used for facial expression analysis and classification. From the computer
vision perspective, the techniques developed for automatic face and facial expres-
sion recognition fall into the same two representation types. Like in Neuroscience,
the techniques which perform better for face recognition yield a holistic image rep-
resentation, while those techniques suitable for facial expression recognition use a
sparse or local image representation. The proposed mathematical models of image
formation and encoding try to simulate the efficient storing, organization and coding
of data in the human cortex. This is equivalent with embedding constraints in the
model design regarding dimensionality reduction, redundant information minimiza-
tion, mutual information minimization, non-negativity constraints, class informa-
tion, etc. The presented techniques are applied as a feature extraction step followed
by a classification method, which also heavily influences the recognition results.

Key words: Human Visual System; Dense, Sparse and Local Image Repre-
sentation and Encoding, Face and Facial Expression Analysis and Recogni-
tion.
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14.1 Introduction

In the human visual system (HVS), the visual image propagates from retina
to the inferotemporal (IT) cortex, where the visual signal is decoded and pro-
cessed. The question of how the human brain stores the image patterns in
its visual cortex and how many pattern-specific neurons are activated and re-
spond to a specific visual stimulus is a fundamental problem of psychology. A
huge amount of research has been done in the attempt to understand how in-
formation captured by sensory channels is represented in the brain at different
levels. Nowadays, this task is not only a concern of psychologists but also of
image processing and computer vision experts. The pattern features that must
be extracted from the data is a task-dependent matter. Among the huge visual
data our eyes are overwhelmed by, facial images receive particular attention,
due to their biological and sociological significance. This fact explains why the
face analysis enjoys an important status with psychologists, anthropologists,
neuroscientists and computer scientists alike. It is well known that in social
interaction the human face constitutes the primary source of information for
person recognition. As far as the computer scientists are concerned, the devel-
opment of an automated face recognition system is necessary in order to cope
with a large and complex area of applications, such as biometrics for secu-
rity, surveillance, banking, law enforcement, video indexing, human-computer
interaction, etc.

Another aspect closely related to face analysis is provided by facial ex-
pressions. Emotions can typically be conveyed by facial expressions. like for
face recognition, the recognition of facial expressions is a subject of interdisci-
plinary research. From the psychological and anthropological perspectives the
following questions are addressed: What information does a facial expression
typically convey? Can there be emotions without facial expression? Can there
be facial expression without emotions? How do individuals differ in their fa-
cial expression of emotions? [23]. It is well known among psychologists that
the social context is dominated by language. However, the language alone is
insufficient when it comes to successful social interaction. Plenty of commu-
nication comes through non-verbal communication. As Mehrabian suggested
in [40], people express only 7% of the messages through a linguistic language,
38% through voice, and 55% through facial expressions.

A good understanding of the underlying process that governs the appear-
ance of expressions is necessary in order to develop an appropriate facial im-
age representation. In a human-computer interaction task, this constitutes the
input to a human facial expression recognition system with satisfactory clas-
sification performance and, eventually, to artificial facial expression synthesis
on an avatar for friendlier human-computer interface.

This chapter is organized as follows. Face encoding in the HVS from the
neuroscience perspective is described in section 14.2. It starts with the analy-
sis of dense, sparse and local face image representation followed by examples
of these representations for face and facial expression recognition. A com-
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Fig. 14.1. Visual pathway in HVS. Information passes from the retina to the lateral
geniculate nucleus (LGN) before arriving in cortical area V1. Further processing
occurs in areas V2 and V4 and the posterior and anterior inferotemporal (IT) cortex
(PIT and AIT).

puter vision analysis of face and facial expression recognition approaches is
undertaken in section 14.3, where both dense and sparse image representation
techniques are presented. The chapter ends with a discussion in section 14.4.

14.2 Face encoding in human visual system: a
neuroscience view point

14.2.1 Dense and sparse image representation

How can we represent facial image information so that it can activate a rep-
resentation in human memory under various conditions? Is human perception
of a facial image based on its parts or it is viewed as a whole? Despite the
huge amount of psychological research done in this respect, there is no general
consensus in answering these questions. Rather, the answer to the problem of
how the visual cortex understands complex objects, and, in particular human
faces, is a controversial one. In recent years it has been argued from a visual
neuroscience viewpoint that the architecture of the visual cortex suggests a
hierarchical organization, in which neurons become selective to progressively
more complex aspects of image structure.

Figure 14.1 depicts the visual pathway starting from the retina and ending
at the two regions of inferotemporal cortex – IT (PIT and AIT). Multiple rep-
resentations of the retinal space are mapped onto the cortex in a manner that
preserves the visual topology. These representations define the visual mod-
ules: V1, V2, V4, IT. Whereas the earliest stages of the human visual system
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(e.g. retina and V1 neurons) seem to produce a local distributed image rep-
resentation, as we step into the higher visual system levels (such as V2, V4
areas or IT), the neurons have increasing receptive field sizes, being able to
tackle increasingly complex stimuli [34]. Concerning neuroscience, the type of
image encoding is related to the number of neurons that are active (respond)
to a certain piece of information represented by a specific sensory stimulus
caused by the image. We refer to a local image code when only a single indi-
vidual specific cell is activated. We have a dense image code, when a large cell
population with overlapping sensory input is activated and contributes to the
image representation. The local code is “computed” very fast and occupies lit-
tle memory. However, it cannot generalize (i.e., when trained with a sufficient
number of samples, it achieves satisfactory results when tested on samples
from the training set, but performs poorly on new test samples not belong-
ing to the training set) [27]. This is caused by the fact that the input-output
unit association (as in single-layer neural networks) is very weak and a new
sample cannot be linked with the old association learned during the training
process. On the other hand, a system based on a dense code suffers from slow
training, requires heavy training and is likely to produce redundant image
representations. However, it has a large capacity of making new associations.
In between local and dense codes, we have the sparse image codes, where only
a fraction of a large neuronal population is active. It is a trade-off between
dense and local image codes, combining their advantages and trying to elimi-
nate their drawbacks. Dense and local codes are closely related to holistic and
local (component, or part-based) image representation and processing. The
term holistic refers to an image representation which stores a face as a per-
ceptual whole, without explicitly specifying its parts (components). The term
component describes the separated parts of the face (e.g. eyes, nose, mouth,
chin) that are perceived independently as distinct parts of the whole.

Atick and Redlich [1] support the idea of a dense image code within the
HVS and argue for compact, densely decorrelated codes for image representa-
tion. They have demonstrated that receptive fields of retinal ganglion cells can
be viewed as local “whitening” filters that remove second-order correlations
between image pixels. Bandpass, multiscale and oriented receptive fields of
V1 neurons may also be considered as filters that remove second-order corre-
lation, the way Principal Component Analysis (PCA) does. Regarding human
facial images, PCA has a certain appeal as a psychological model of face per-
ception and memory. For example, the application of principal components
is consistent with psychological evidence that the PCA of a set of face im-
ages accounts for some aspects of human memory performance, as shown by
Valentine [56].

Ample evidence for sparse image coding within HVS has been collected
by other researchers. They argue for a sparse image representation that leads
to “efficient coding” in the visual cortex [26]. Since spatial receptive fields of
simple cells (including V1 neurons) have been reasonably well described phys-
iologically as being localized, oriented and bandpass, Olshausen and Field [42]
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Fig. 14.2. Thatcher illusion [54]. The eyes and mouth of Margaret Thatcher (former
Prime Minister of England whose face is depicted in the left hand image) have been
inverted relative to the rest of her face (middle and right hand image). When the
picture is viewed upright the face appears (middle image) highly grotesque. This
strange distortion is much less evident when the face is turned upside-down (right
hand image). Reproduced with permission from [54].

show that efficient image coding can be produced by considering an approach
where the image is described by a small number of descriptors. These descrip-
tors can be found by applying principles such as entropy minimization [3],
which is equivalent to minimizing the mutual information in a such a way
that the higher-order correlation between images is removed. Palmer [45] and
Wachsmuth et al. [58] have drawn psychological and physiological evidence
for parts-based object representations in the brain. Biederman came up with
the theory of recognition-by-components (RBC) [7]. Empirical tests support
his idea that complex objects are segmented into components called ‘geons’,
which are further used by humans for image understanding. The “Thatcher
illusion” presented in [54] suggests that parts of the face are processed inde-
pendently. As depicted in figure 14.2 the rotated face seems to be processed
by matching parts, which could be the reason why the face looks normal when
turned upside-down.

Another sparse model of the neural receptive fields in early visual system
was provided by Gabor functions [37]. A Gabor function is a sinusoid win-
dowed with a Gaussian function. Its size, frequency and orientation can be
manipulated to produce a wide range of different receptive field models. By
convolving the image with the Gabor functions, a new image representation
can be achieved with features that are sparse, oriented and localized.

Despite the large number of experiments and investigations, it is still un-
clear whether holistic/sparse image representations are unique and global or
face image processing is a task-dependent [8, 16]. For instance, some evidence
has been found that face identification and facial expression recognition are
two independent tasks based on different representations and processing mech-
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anisms. This hypothesis comes from the dissociation of these two processes
found in brain damaged patients. It leads to the hypothesis that multiple
representations of faces may reside in the visual cortex. The IT area of the
temporal lobe contains neurons whose receptive fields cover the entire visual
space. It also contains specialized neurons (face cells) that are selectively tuned
to faces. There are dedicated areas in temporal cortical lobe that are respon-
sible for processing information about faces [20], [47], [33]. It was also found
that in AIT areas neurons with responses related to facial identity recogni-
tion exist, while other neurons (located in the superior temporal sulcus) are
specialized to respond only to facial expressions [28].

14.2.2 Face and facial expression recognition

Experimentally, evidence for both sparse and dense face representations in the
HVS has been found by neurophysiologists. However, the contribution of each
representation depends on the task to be processed. While face recognition
seems to favor a dense image representation (hence producing a holistic ap-
pearance of the faces), a more sparse (or even local) image representation has
been found to account for facial expression analysis. This difference has been
noticed in several works. Tanaka and Farah presented evidence in favor of a
holistic process involved in face recognition [51]. These findings are stressed
by the work of Farah et al. [25], which brings new evidence that part-based
shape representation for faces has less impact in recognition than the holis-
tic one. Furthermore, their theory is emphasized by the work of Dailey and
Cottrell [19].

Contrary to representation for face identification, the work of Ellison and
Massaro [24] has revealed that facial expressions are better represented by
facial parts, suggesting non-holistic representation. This is consistent with re-
search results showing that human subjects respond to information around
the eyes independently from variation around the mouth and they are able
to recognize and distinguish isolated parts of faces. The dissociation between
face and facial expression recognition is also noted by Cottrell et al. [16] who
found that PCA (which produces eigenfaces) performs well for face recogni-
tion but eigeneyes and eigenmouth (nonholistic eigenfeatures) perform better
in recognizing expressions than eigenfaces, suggesting that eigenfeatures might
transmit facial expression information. One of the techniques successfully ap-
plied to classify facial actions related to facial expressions, was Independent
Component Analysis (ICA), which looks for components as independent as
possible from each other and produces image features that can mimic the out-
put of V1 receptive fields with orientation selectivity, bandpass and scaling
properties [6]. In a direct comparison between PCA and ICA, Draper et al [22]
found that facial identity recognition performance is better when the features
are represented by a holistic approach (PCA) while an approach based on
more localized features (ICA) performs better for facial action recognition.



14 Facial Expression Analysis and Face Recognition 305

14.3 Face and facial expression analysis: a
computer-vision view point

The HVS often serves as an informal standard for evaluating systems. There-
fore, not surprisingly, most face analysis approaches rely on biologically in-
spired models. To be plausible, these computer vision models have to share
some characteristics and constraints with their organic models. A common
characteristic of the proposed HVS models is the dimensionality reduction
principle of image space. This physical constraint is easily understood if we
consider, for instance, that an image of 64×64 pixels has dimensionality 4096.
It is commonly accepted that the intrinsic dimensionality of the space of pos-
sible faces is much lower than that of the original image space. Basically, the
latent variables incorporated there are discovered by decomposing (project-
ing) the image onto a linear (nonlinear) low dimensional image subspace. By
reference to neuroscience, the receptive fields can be modeled by the basis
images of the image subspace and their firing rates can be represented by the
decomposition coefficients [42].

In order to generate the subspace image representation produced by the
methods presented in this chapter, 164 image samples from the Cohn-Kanade
AU-coded facial expression database [32] have been used. The number of basis
images (subspace) was chosen to be 49.

14.3.1 Holistic image representations

As already mentioned, one of the most popular techniques for dimensional-
ity reduction is PCA, which represents faces by their projection onto a set
of orthogonal axes (also known as principal components, eigenvectors, eigen-
faces, or basis images) pointing into the directions of maximal covariance in
the facial image data. The basis images corresponding to PCA are ordered
according to the decreasing amount of variance they represent, i.e., the respec-
tive eigenvalues. PCA-based Representations of human faces give us a dense
code and the post-processed images have a holistic (“ghostlike”) appearance,
as can be seen from the first row of figure 14.3.

The principal components produce an image representation with minimal
quadratic error. One of the proposed general organizational principles of the
HVS refers to redundancy reduction. In PCA, this is achieved by imposing
orthogonality among the basis images, thus redundancy is minimized. The
nature of information encoded in the basis images was analyzed by O’Toole
et al. [43] and Valentin and Abdi [57]. They found that the first basis im-
ages (containing low spatial frequency information) were most discriminative
for classifying gender and race, while the basis images with small eigenvalues
(corresponding to a middle range of spatial frequencies) contain valuable in-
formation for face recognition. This is coherent with findings that the face cells
within HVS respond most strongly to face images containing energy within
a middle range of spatial frequency between 4 and 32 cycles per image [49].
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Fig. 14.3. Holistic subspace image representation. From top to bottom, each row
depicts the first 10 basis images (out of 49) corresponding to PCA, FLD, ICA2 and
NMF. For PCA the basis images are ordered by decreasing variance, for ICA2 and
NMF by decreasing kurtosis.

Also, different components were found to be responsible for encoding identity
and facial expression by Cottrell et al. in [15].

PCA has been successfully applied to face recognition [17], [5] and [55],
and facial expression recognition, respectively [18], [44] and [14]. One statisti-
cal limitation of PCA is that it only decorrelates the input data (second-order
statistics) without addressing higher-order statistics between image pixels. It
is well known and accepted that, at least for natural stimuli, important in-
formation (e.g. lines, edges) is encoded in the higher-order statistics. Another
limitation is related to the poor face recognition results for PCA when the
faces are recorded under strong illumination variations.

Another holistic subspace image representation is obtained by a class-
specific linear projection method based on Fisher’s linear discriminant (FLD)
[5]. This technique projects the images onto a subspace where the classes are
maximally separated by maximizing the between-classes scatter matrix and
minimizing the within-class scatter matrix at the same time. The basis im-
ages obtained through FLD are depicted in the second row of figure 14.3. This
approach has been shown to be efficient in recognizing faces, outperforming
PCA. Although this method seems to be more robust than PCA when small
variation in illumination conditions appears, it fails in case of strong illumina-
tion changes. This is due to the assumption of linear separability of the classes.
This assumption is violated, when strong changes in illumination occur. An-
other drawback of this method is that it needs a large number of training
image samples for reasonable performance. Furthermore, the projection onto
too few subspace dimensions does not guarantee the linear separability of the
classes, hence the method will yield poor performance.

Along with redundancy reduction, another principle of HVS image coding
mechanism is given by phase information encoding. It was shown by Field [26]
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that methods relying only on second order statistics capture the amplitude
spectrum of images but not the phase. The phase spectrum can be captured by
employing higher order statistics. This has been proven to be accomplished by
extracting independent image components [6]. There are several optimization
principles taken into account when extracting independent components. The
one described in [6] is based on the maximal information transfer between
neurons and, among all the proposed ICA techniques, it seems to be the most
plausible approach from the neuroscientific point of view.

Bartlett et al. [4] used two ICA configurations to represent faces for recog-
nition. PCA was carried out prior to ICA for dimensionality reduction. An
intermediate step for “whitening” the data has been introduced between PCA
and ICA processing. The data were then decomposed into basis images and de-
composition coefficients. Their second ICA configuration (ICA2) yields holistic
basis images very similar to those produced by PCA. Such basis images are
depicted in the third row of figure 14.3. In that case, ICA is applied to the pro-
jection matrix containing the principal components. Under this architecture,
the linear decomposition coefficients are as independent as possible.

A recently proposed subspace image decomposition technique is Nonnega-
tive Matrix Factorization (NMF) [36], which allows the data to be described as
a combination of elementary features that involve only additive parts to form
the whole. Both basis images and decomposition coefficients are constrained
to be non-negative. Allowing only addition for recombining basis images to
produce the original data is justified by the intuitive notion of combining parts
to form the whole image. Another argument for imposing non-negativity con-
straints comes from neuroscience and is related to the non-negative firing
rate of neurons. Finally, the positivity constraint arises in many real image
processing applications. For example, the pixels in a grayscale image have
non-negative intensities. Euclidean distance and Kullback-Leibler (KL) di-
vergence were originally proposed as objective functions for minimizing the
difference between the original image data and their decomposition product.
Although, theoretically, the decomposition constraints tend to produce sparse
image representations of basis images by composing the parts in an additive
fashion, this is not always the case. It has been noticed in several works that,
for some databases, the NMF decomposition rather produces a holistic image
representation [38, 12, 30]. The representation could be affected by the im-
precise image alignment procedure performed on the original database prior
to NMF. It is known that the subspace techniques are generally sensitive to
image alignment (registration). As noted in the last row of figure 14.3, for
Cohn-Kanade database images, the basis images retrieved by NMF have a
holistic appearance. A measure for quantifying the degree of sparseness in im-
age representations is provided by the normalized kurtosis. If the basis images
are stored as columns of a matrix Z the kurtosis of a base image z is defined

as k(z) =
∑

i(zi − z)4

(
∑

i(zi − z)2)2
− 3, where zi are the the elements of z (pixels of

base image) and z denotes the sample mean of z. The average normalized kur-
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Fig. 14.4. Sparse subspace image representation. From top to bottom, each row
depicts the first 10 basis images (out of 49) corresponding to ICA1, LNMF and
DNMF, respectively. The basis images are ordered by decreasing kurtosis.

tosis for the 49 basis images are: kPCA = 1.22, kFLD = 1.23, kICA2 = 0.93,
kNMF = 5.93. Thus, by far, NMF is the sparsest representation among ones
represented in Figure 14.3.

14.3.2 Sparse image representations

The first ICA (ICA1) configuration produces independent basis images [4]. In
this case, ICA is applied to the projection coefficients of PCA. Entropy mini-
mization leads to a highly kurtotic distribution of basis image pixels, most of
them having zero value, thus producing a sparse representation, as can be seen
in the first row of Figure 14.4. Another representation, Local Non negative
Matrix Factorization (LNMF) [38] enhances the sparseness of basis images
by generating much more sparse, even localized and oriented image features.
The extremely sparse basis images resulting from the LNMF approach are
depicted in the second row of figure 14.4. The proposed approach uses the
KL divergence as objective function to be minimized [38]. In addition to the
non negativity constraints imposed for both decomposition factors, the redun-
dant information is minimized by adding orthogonality constraints in the basis
images formation. Furthermore, two more terms are added to the objective
function for maximizing both sparseness and total activity and retaining only
the most “expressive” image components [38]. In direct comparison for face
recognition LNMF outperformed NMF [38, 12]. Buciu and Pitas further mod-
ified the LNMF algorithm in [11] and proposed a supervised NMF approach
called Discriminant Nonnegative Matrix Factorization (DNMF) for facial ex-
pression classification. Besides the common constraints borrowed from NMF
and LNMF, its underlying objective function also contains terms referring to
discriminant class information. The basis images found by running the algo-
rithm on image samples are sparse, oriented and localized, as can be seen
in the last row of figure 14.4. DNMF is differentiated from the other NMF
algorithms in that its facial basis images emphasize the salient facial features
(eyes, eyebrows, mouth), when the images are labeled according to facial ex-
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pression. These features convey the most discriminative information and are
of great relevance for facial expression recognition. As can be seen by visual
comparison of the basis images in figure 14.4, DNMF preserves local spatial
information of salient facial features (that are almost absent in the case of
LNMF) while it discards information less important for expression analysis
(e.g., nose and chin, which is not the case for NMF) by incorporating class
information. The average normalized kurtosis for the 49 basis images are:
kICA1 = 17.26, kLNMF = 49.16, kDNMF = 31.69. The preservation of the
spatial facial topology correlates well with the findings of Tanaka et al. [52],
who argued that some face cells require the correct spatial feature configura-
tion in order to be activated for facial expression recognition. Interestingly,
DNMF seems to resemble many characteristics of the neural receptive fields
[13]. The three NMF approaches have been applied to classify facial expres-
sions [11] and to face recognition [10]. The DNMF approach was found to
perform best for facial expression recognition, a fact that is indicating the
role of sparse image representations. However, for face recognition, DNMF
did not achieve the best performance compared to the other two approaches.

Local Feature Analysis (LFA) is another biologically inspired method that
retrieves local image features [46]. Its biological motivation comes from the
same redundancy minimization principle stating that, among the tremendous
amount of neural receptors in the human retina, only a small fraction are
active — corresponding to natural stimuli that are statistically redundant.
To exploit this redundancy, LFA is used to extract a set of topographic local
features defined by kernel filters that are optimally matched to the second-
order statistics from the global PCA modes. They are found by minimizing the
image reconstruction error and by using a process called sparsification [46].
To achieve this, a LFA neural network is employed, where the active units
found by LFA are sparsely distributed. The selection of the spatial support of
100 filters found by LFA is shown in Figure 14.5 over a mean face from the
experiment database.

One of the two most popular techniques for face recognition are known as
“elastic graph matching” [35], and its relative, named “elastic bunch graph
matching” [59]. “Elastic bunch graph matching” is based on applying a set of
Gabor filters to special representative landmarks on the face (corners of the
eyes and mouth, the contour of the face). Gabor filters represent the multi-
scale nature of receptive fields, as each component has a unique combination
of orientation, frequency tuning and scale. The face is represented by a list of
values that comprise the amount of contrast energy that is present at spatial
frequencies, orientations and scales included in the jet. For recognition, each
face is compared with any other one with a similarity metric that takes into
account the spatial configuration of the landmarks. It has been noted that
the similarity metric involved in this approach is in line with the one used by
the HVS [8]. Similar Gabor filters have been used by Würtz in [60] to extract
local features that are robust to translations, deformations, and background
changes. Each image is convolved with a set of different Gabor kernels, fol-
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Fig. 14.5. A set of 100 optimally localized topographic kernel filters found by Local
Feature Analysis (LFA) . The clusters of these filters are located around the fiducial
points represented by eyes, eyebrows and mouth of the mean face. The algorithm
from [46] has been applied to samples from the Cohn-Kanade database.

lowed by amplitude thresholding and discarding all units influenced by the
background. Once the local features are extracted, four matching approaches
(namely, multidimensional template matching, global matching, mapping re-
finement and phase alignment) are employed and combined to form corre-
spondence maps used further for the face recognition task. To remove the
weak correspondence points a relative similarity threshold is introduced, thus
a final correspondence map is obtained. The combination of these matching
approaches leads to a hierarchical structure of the algorithm with several de-
cision levels, where the correspondence maps obtained by this method was
proved to be very reliable. Furthermore, the Gabor functions have been suc-
cessfully used for facial expression synthesis or recognition. The convolution
of images with the set of Gabor filters can be performed either at the location
of fiducial points (landmarks) [64] or, alternatively, the Gabor filters can be
applied to the entire face image instead to specific face regions [9]. Figure 14.6
presents the result of the convolution of a set of 40 Gabor filters (5 frequen-
cies and 8 orientations) with a sample image from the Cohn-Kanade database.
The features extracted by the Gabor filters are localized and oriented [9].

One drawback of this feature extraction technique is the manual annota-
tion of landmarks when the Gabor filters are applied to specific fiducial points.
To overcome this issue, Heinrichs et al. [29] reduce the manual annotation to
only one single image from which a self-organizing selection strategy builds
up the bunches by adding the most similar face to the bunch graph and then
the matching is recomputed. Another improvement is the replacement of the
resulting Gabor wavelet bunches by principal components of the nodes of all
training images. An enhancement in both the precision of landmark local-
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Fig. 14.6. The output of an image sample from the database convolved (filtered)
with 40 Gabor filters (5 frequencies and 8 orientations).

ization and face recognition accuracy was obtained with this new approach.
An extension of “elastic bunch graph matching” with a new application was
recently proposed by Tewes et al. in [53]. They have developed a flexible ob-
ject model using Gabor-wavelet-labeled graphs to synthesize facial expression.
The graphs are then parameterized to allow flexible facial expression gener-
ation, where the expression parameters are viewed as a graph function. An
overview of “elastic bunch graph matching” approach and its relationship to
the Organic Computing paradigms is presented in [61].

A representative research work for facial expression recognition was con-
ducted by Donato et al. [21], who investigated several holistic and sparse image
representation techniques and measured their performance. Their work shows
that the extraction of sparse features from the entire face space by convolving
each image with a set of Gabor filters having different frequencies and orien-
tations can outperform other methods that invoke the holistic representation
of the face, when it comes to classify facial actions, closely related to facial ex-
pressions. They achieved the best recognition results by using ICA and Gabor
filters. However, they also found that other local spatial approaches, like local
PCA and PCA jets provide worse recognition accuracy than, for example,
Fisher Linear Discriminant (FLD), which is a holistic approach.
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14.4 Discussion

It has been argued that the tuning of the temporal cortex neurons that re-
spond preferentially to faces represents a trade-off between fully distributed
encoding (holistic or global representation, as PCA, FLD, ICA2, NMF result)
and a grandmother cell type of encoding (local representation, achieved by
LNMF) [50]. Psychophysiologically, one single pixel representation is similar
to having a grandmother cell where a specific image is represented by one
neuron. Among the approaches presented in this chapter, Gabor, ICA and
DNMF turns out to be the most suitable biologically plausible models used
in computer vision. However, it has to be noted that the DNMF approach is
a relatively a new method and yet insufficiently investigated. In recent stud-
ies [11], it showed superior facial expression classification performance, when
compared to Gabor, NMF, LNMF, and ICA approaches. However, its per-
formance was not the one expected when applied to face recognition. More
research has to be done in this regard. As we show in this chapter, one of the
most popular techniques used for face and facial recognition tasks is PCA.
When higher-order statistics are to be extracted and processed, ICA is cho-
sen over PCA, which also seems to resemble the neuroscientific paradigms.
However, a question related to ICA and PCA for face and facial expression
recognition arises. Is ICA really better for these tasks than PCA? First of
all, regardless of the feature extraction technique, the recognition results are
not solely dependent on subspace image representation. It is also up to the
classifier involved in the final step of the recognition task. A nearest neighbor
classifier is usually chosen employing various similarity measures (distance
metrics), such as L1 (city block), L2 (Euclidean), Mahalanobis or cosine dis-
tance. Several metrics favor the holistic representations, while others favor
the sparse ones. This is mainly the reason, why, in the PCA-ICA debate,
several works reported ICA outperforming PCA [21, 4, 22, 62, 39], while in
other works ICA was found inferior to PCA [2], or, finally, no difference was
found between them [41, 31]. Recently, new results on the ICA - PCA de-
bate for face recognition have been revealed through the work conducted by
Yang et al. [63]. They have repeated the experiments from [4] and have found
that it is the “whitening” process (the intermediate step between PCA and
ICA) that is responsible for the difference in the classification performance.
Thus, as conclusion, ICA has an insignificant effect on the performance of
face recognition . ICA was applied to cope with face recognition assuming
that important information to discriminate between identities is contained in
high-order image statistics, statistics that the PCA cannot retrieve. Interest-
ing evidence that supports the observation that the elimination of high-order
correlations between image pixels could not be so important for the neural
receptive fields was brought by Petrov and Li [48]. They investigated local
correlation and information redundancy in natural images and found that
the removal of higher-order correlations between the image pixels increased
the efficiency of image representation insignificantly. Accordingly, their results
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suggest that the reduction of higher-order redundancies than the second-order
ones is not the main cause of receptive field properties of neurons in V1.

Still two main questions remain: Are the holistic subspace image represen-
tations more appropriate for face recognition and the sparse subspace image
representation more suitable for facial expression recognition? And, if it is
so, which similarity measures should these representations be combined with
in order to achieve the best recognition performance? Unfortunately, one of
the shortcomings in neuroscience literature on face analysis is that no psy-
chological measures for similarity of face image features (neither holistic nor
sparse) exist. A large number of psychological studies are required in order
to validate an existing subspace image representation model in combination
with the optimal choice of the similarity metric.
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