
Efficient Multi-Core Computations in Computational Statistics and Econometrics

Panagiotis D. Michailidis

University of Western Macedonia
Florina, Greece

Email: pmichailidis@uowm.gr

Konstantinos G. Margaritis

University of Macedonia
Thessaloniki, Greece

Email: kmarg@uom.gr

Abstract—The social researchers use computationally-
intensive statistical and econometric methods for data anal-
ysis. One way for accelerating these computations is to use
the parallel computing with multi-core platforms. In this
paper we parallelize some representative computational ker-
nels from statistics and econometrics on multi-core platform
using the programming libraries such as Pthreads, OpenMP,
Intel Cilk++, Intel TBB, Intel ArBB, SWARM and FastFlow.
Specifically, these kernels are multivariate descriptive statistics
(such as multivariate mean and multivariate covariance) and
kernel density estimation (univariate and multivariate). The
purpose of this paper is to present an extensive quantitative
and qualitative study of the multi-core programming models
for parallel statistical and econometric computations. Finally,
based on this study we conclude that the Intel ArBB and
the SWARM programming environments are more efficient
for implementing statistical computations of large and small
scale, respectively. The reason for which these models are
efficient because they give good performance and simplicity
of programming.

Keywords-Statistics; Parallel computing; Multi-core; parallel
programming;

I. INTRODUCTION

Researchers, particularly in the social sciences use statis-

tical and econometric methods for data analysis in order to

understand the real world of social, economic and political

phenomena. Within the social sciences, statistics and econo-

metrics is one of the most data intensive fields, with, in many

cases the data sets are becoming larger in recent years and

econometrics methods are becoming more computer inten-

sive as econometricians estimate more complicated models

and utilize more sophisticated estimation techniques. One

way to satisfy the increasing computational requirements is

to use the parallel computing with multi-core platforms. The

most important idea of parallel computing is to divide a

large-scale problem into a number of smaller problems that

can be solved concurrently on independent computers.

Parallel computing in statistics and econometrics have

quite a long research history. There are many papers about

parallel computing for statistical and econometric computing

mostly concerning specific methods and applications; see

for example, Adams et al [6] and Greel and Goffe [13]

for a review and the monograph by Kontoghiorghes [17]

treats parallel algorithms for statistics and linear econometric

models. Below we present a partial list of representative

papers in the field on parallel computing in statistics and

econometrics. Swann [20] presented a Message Passing

Inferface (MPI) parallel implementation of maximum like-

lihood estimation for a simple econometric problem with

Fortran code. We must note that the maximum likelihood

method requires much computation and can be parallelized.

Racine [18] presented a parallel implementation of kernel

density estimation on a cluster of workstations using MPI

library. Doornik et al [15] provided an example for parallel

Monte Carlo simulation of the univariate normality and trace

tests using an MPI subset for the Ox language. Creel [12]

implemented several econometric methods such as Monte

Carlo simulation, bootstrapping, estimation by maximum

likelihood and kernel regression in parallel on a cluster of

workstations using MPI toolbox (MPITB) for GNU Octave

[16]. Sevcikova [19] presented a simple framework for par-

allel programming statistical simulations (i.e., Monte Carlo

or bootstrapping) in PVM library. These simulation studies

are used for assessing the properties of statistical tests and

estimators. Rose et al [14] proposed three parallel implemen-

tations of the Bootstrap simulation technique applied in the

context of Markovian simulation on multi-core symmetric

multiprocessing (SMP) clusters. The first implementation

is a pure MPI model and other two ones are based on

hybrid programming model with MPI and OpenMP. The

parallelization of econometric methods of previous papers

are based on the data partitioning technique where each

computer executes the same operations on different portions

of a large data set.

Based on research background, there isn’t an extensive

research work in the field of the parallelization of econo-

metric methods on multi-core platforms. For programming

multi-core processors there are many representative parallel

programming models to simplify the parallelization of the

computationally-intensive applications. These models are

Pthreads [11], OpenMP [5], Intel Cilk++ [2], Intel TBB [3],

Intel ArBB [1], SWARM [9] and FastFlow [7]. These models

based on a small set of extensions to the C programming

language and involve a relatively simple compilation phase

and potentially much more complex runtime system.

Our main contribution is to parallelize some statistical and

econometrics kernels like multivariate descriptive statistics

(multivariate mean and multivariate covariance) and kernel

2012 IEEE 15th International Conference on Computational Science and Engineering

978-0-7695-4914-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICCSE.2012.44

267

density estimation (univariate and multivariate) on multi-

core platform using these programming libraries. Moreover,

we evaluate these kernels both quantitatively (i.e., perfor-

mance) and qualitatively (i.e., the ease of programming

effort) in order to conclude which multi-core programming

libraries are efficient for implementing these econometric

kernels.

II. MULTI-CORE PROGRAMMING MODELS

This section we present a short review for all multi-core

programming environments that are evaluated in this paper.

POSIX threads (in short, Pthreads) [11] is a commonly

portable API (Application Programming Interface) used for

programming shared memory multiprocessors and multi-

core processors. This API is a low-level library. Hence,

it provides the programmer a greater control about how

to exploit parallelism at the expense of increasing the

difficulty to use it. In the Pthreads programming model the

programmer must create all threads explicitly and use or

insert all the necessary synchronization between threads.

Pthreads provides a rich set of synchronization primitives

such as locks, mutexes, spinlocks, Read/Write-locks, barriers

and condition variables.

OpenMP [5] is a quite popular and portable API for

shared memory parallel programming. Programming using

OpenMP is based on the use of compiler directives which tell

the compiler which parts of the code should be parallelize

and how. These directives provide the programmer to create

parallel sections, mark parallelizable loops and define critical

sections. When a parallel loop or parallel region is defined,

the programmer must specify which variables are private

for each thread, shared or used in reductions. OpenMP also

provides the programmer with a set of scheduling clauses to

control the way the iterations of a parallel loop are assigned

to threads, the static, dynamic and guided clauses. If the

schedule clause is not specified, static is assumed in most

implementations. Finally, OpenMP provides some library

functions to access the runtime environment. With the most

recent version of OpenMP a new way of parallelization

is available - called the task construct - which allows the

programmer to declare and add tasks that can be executed

by any thread, despite which thread that encounters the

construct, i.e., an implementation of the task concept.

The Intel Cilk++ [2] language is based on technology

from Cilk [10], a parallel programming model for C lan-

guage. Cilk++ is an extension of the C++ language to

simplify writing parallel applications that efficiently ex-

ploit multiple processors. More specifically, the Cilk++

language provides the programmer to insert keywords

(cilk_spawn, cilk_sync, and cilk_for), into se-

quential code to tell the compiler which parts of the code

that should be executed in parallel. Cilk++ also provides

reducers, which eliminate contention for shared variables

among tasks by automatically creating views of them for

each task and reducing them back to a shared value after task

completion. Moreover, the Cilk++ language is particularly

well suited for, but not limited to, divide and conquer

algorithms. This strategy solves problems by breaking them

into sub-problems that can be solved independently, then

combining the results. Recursive functions are often used

for divide and conquer algorithms and are well supported

by the Cilk++ language. Finally, Cilk++ provides some

additional tools like performance analysis and the race

condition detector Cilkscreen.

Intel Threading Building Blocks (in short, TBB) [3] is

an open source library that offers a rich methodology to

express parallelism in C++ programs and take advantage of

multi-core processor performance. In TBB, the programmer

specifies tasks of the program instead of threads and the

threads are completely hidden from the programmer. The

idea of TBB is to extend C++ with higher level and

task-based abstractions for the parallel programming. The

runtime system automatically schedules tasks onto threads

in a way that makes efficient use of a multi-core plat-

form. TBB emphasizes data parallel programming model,

enabling multiple threads to work on different parts of a

data collection enabling scalability to larger number of cores.

Finally, TBB uses a runtime-based programming model

and provides programmers with generic parallel algorithms

based on a template library similar to the standard template

library (STL). More specifically, TBB is based on template

functions (parallel_for, parallel_reduce, etc),

where the programmer specifies the range of data to be

accessed, how to partition the data, the task to be executed

in each chunk.

Intel Array Building Blocks (in short, ArBB) [1] is an

open source high-level API, backed by a library that support

data parallel programming solution designed to effectively

utilize the power of existing and upcoming throughput-

oriented features on modern processor architectures, includ-

ing multi-core and many-core platforms. Intel ArBB extends

C++ for complex data parallelism including irregular and

sparse matrices and works with tools such as standards

C++ compilers. Therefore, ArBB is best suited for compute-

intensive, data parallel applications (often involving vector

and matrix math). In ArBB allow the programmers to

express parallel computations with sequential semantics by

expressing operations at the aggregate data collection level.

For this reason, ArBB model provides a rich set of data

types for representing your data collections (aggregations

of data such as matrices and arryas). Fundamental elements

of these data types are dense and nested containers, which

are collections to which data parallel operators may be

applied. All vectorization and threading is managed inter-

nally by ArBB. Furthermore, the programmer uses collective

operations with clear semantics such as add_reduce that

computes the sum of the elements in a given array. ArBB

also has language constructions for control flow, conditionals

268

and loops. These operations have their usual sequential

semantics and are not parallelized by the system, rather, only

specific collective operations are executed in parallel.

SoftWare and Algorithms for Running on multi-core

(in short, SWARM) [9] is an open source parallel pro-

gramming library. This library provides basic primitives

for multithreaded programming. The SWARM library is a

descendant of the symmetric multiprocessor (SMP) node

library component of SIMPLE [8]. SWARM is built on

POSIX threads that allows the programmer to use either

the already developed primitives or direct thread primi-

tives. SWARM has constructs for parallelization, restricting

control of threads, allocation and deallocation of shared

memory, and communication primitives for synchronization,

replication and broadcast.

FastFlow [7] is a open source and C++ parallel pro-

gramming framework for the development of efficient ap-

plications for multi-core computers. FastFlow is concep-

tually designed as a stack of layers that progressively

abstract the shared memory parallelism at the level of

cores up to the definition programming constructs sup-

ported structured parallel programming on shared mem-

ory multi-core and many-core platforms. The core of the

FastFlow framework is based on efficient Single-Producer-

Single-Consumer (SPMC) and Multiple-Producer-Multiple-

Consumer (MPMC) FIFO queues, which are implemented in

a lock-free and wait-free synchronization base mechanisms.

The upper level of the FastFlow framework provides a

high-level programming based on parallel patterns. More

specifically, FastFlow provides the programmers with a set

of patterns implemented as C++ templates: farm, farm with

feedback and pipeline patterns as well as their arbitrary

nesting and composition. A FastFlow farm is logically built

out of three entities: emitter, workers, collector. The emitter

dispatches stream item to a set of workers which compute

the output data. Results are then gathered by the collector

back into a single stream.

III. MULTI-THREADING STATISTICAL KERNELS

In this section we give the description of kernels from

computational statistics and econometrics and we also dis-

cuss how they can be parallelized using the reviewed parallel

programming environments that we examined in the Section

II.

A. Multivariate Descriptive Measures

The statisticians analyse data that from their nature is

multivariate data. A multivariate data set is a collection

of data, usually organized in tabular form. Each column

represents a particular variable and each row corresponds

to a given member of the data set in question. It lists values

for each of the variables. The data set may comprise data

for one or more members, corresponding to the number

of rows. This data set usually stored in a data matrix. In

general the data matrix on n observations (individuals) and

p variables is written as X = (xij)n×p, where xij is a

coding of information of ith individual on jth variable. For

the summarize of the data set we introduce two popular

multivariate descriptive measures such as multivariate mean

and multivariate covariance or correlation. The computation

of these measures is a necessary preliminary to subsequence

multivariate analyses in addition to being useful in its own

right as a way to summarize aspects of variation in the data.

The multivariate mean is a vector of mean values where

each mean value is concerned for each variable. The mean

vector is usually a column vector, i.e., x = [x1 x2 . . . xp]
T ,

where

xj =
1

n

n∑

i=1

xij (1)

is the average of jth variable, j = 1, 2, . . . , p. This compu-

tation can be reformulated in matrix algebra terms and is

expressed in matrix notation as

x =
1

n
XT

p×n · 1n×1 (2)

where 1 is an n×1 vector of unity and XT is the transpose

of X .

The multivariate covariance is a covariance matrix S =
[sjk]p×p, where sjk is the covariance between jth and kth

variables. This is calculated (based on Pearson’s method) as

sjk =
1

n

n∑

i=1

(xij − xj)(xik − xk), j, k = 1, 2, . . . , p (3)

where xj and xk are pre-computed mean vectors. On the

other hand, the multivariate correlation is a correlation

matrix R = [rjk]p×p, where rjk is the correlation between

jth and kth variables. This is calculated as

rjk =
sjk√

sjj · √skk
, j, k = 1, 2, . . . , p (4)

The computation of covariance and correlation can be re-

formulated in matrix algebra terms. More specifically, the

variance can be expressed in matrix notation as

S =
1

n− 1
XT

p×n ·Xn×p − xp×1 · xT
1×p (5)

where XT is the transpose of X and x is pre-computed mean

vector. The correlation can be expressed in matrix notation

as

R = D−1
p×p · Sp×p ·D−1

p×p (6)

where D is a diagonal matrix D = diag(s1, . . . , sp)
and D−1 is the inversion matrix of D, i.e., D−1 =
diag(1

s1
, . . . , 1

sp
).

For the parallelization of multivariate mean and mul-

tivariate covariance/correlation, we parallelize the compu-

tational formulas 2, 5 and 6. The formula 2 consists of

two matrix operations such as matrix transpose and matrix

269

- vector product whereas the formulas 5 and 6 consists

of five matrix operations such as matrix transpose, matrix

product, matrix - vector product, outer product and matrix

substration. Therefore, we parallelize these matrix operations

as individual routines using the multi-core programming

models of Section II. The parallel processing of these matrix

operations is based on a simple data partitioning technique

that involves partitioning the data such that each thread

works concurrently on an local part of the data. More

specifically, we divide the matrix and vector into blocks of

rows of equal size, i.e., �m/c� where m is the number of

rows of any matrix or vector and c is the number of cores.

B. Kernel Density Estimation

Most statistical inferences heavily depend on the density

function. A density can give an intuitive picture of such

characteristics as skewness of the distribution or the number

of modes. A further advantage of having an estimate of

the density is ease of interpretation for non-statisticians. In

econometrics, kernel density estimation is a non-parametric

way to estimate the probability density function of a random

variable. Kernel density estimation is a fundamental data

smoothing problem where inferences about the population

are made, based on a finite data sample [4]. We begin with

the simplest kernel estimator that is called a univariate den-

sity estimator. Consider a random vector x = [x1 x2 . . . xn]
T

of random variable x of length n. Drawing a random sample

of size n in this setting means that we have n observations

of the random variable x and xj is denoted j observation

of the random variable x. Our goal now is to estimate the

kernel density of the random variable x = [x1 x2 . . . xn]
T

that originally proposed by Rosenblatt which is defined as

[18]

f̂(xj) =
1

n

n∑

i=1

1

hi
K(

xj − xi

hi
), j = 1, 2, . . . n (7)

where K(z) is the kernel function that satisfies
∫
K(z)dz =

1 and some other regularity conditions depending on its

order, and hi is a bandwidth satisfying hi → 0 as i → ∞.

We must note that the bandwidth which is used in formula 7

is adaptive with weights depending on xi rather than xj .

Extension of the above approach to multivariate density

estimation is straightforward so that involving k random

variables. Consider a k-dimensional random vector x =
[x1, . . . , xk]

T where x1, . . . , xk are one-dimensional random

variables. Drawing a random sample of size n in this setting

means that we have n observations for each of the k
random variables, x1, . . . , xk. Suppose that we collect the

jth observation of each of the k random variables in the

vector xj , i.e., xj = [xj1, . . . xjk]
T for j = 1, 2, . . . n,

where xji is the jth observation of the random variable

xi. We adapt the univariate kernel density estimator to the

k-dimensional case using a product kernel. Therefore, the

multivariate kernel density estimator is defined as

f̂(xj) =
1

n

n∑

i=1

{
k∏

d=1

1

hid
K(

xjd − xid

hid
)}, j = 1, 2, . . . n

(8)

We must note that in this paper we implement the uni-

variate and multivariate adaptive bandwidth density estima-

tor with Gaussian kernel function. Two kernels of kernel

estimation involve O(n2k) computations in contrast to, say,

the univariate density estimation that involve only O(n2)
computations (in this case, k = 1).

The parallel processing solution to the univariate kernel

estimation i,.e. the formula 7 involves the partitioning of the

vector x into blocks of equal size, i.e., �n/c� (where n is

the number of elements of vector and c is the number of

cores) so that each core can calculates a block of �n/c�
sum kernels. Finally, we follow similar parallel solution to

the multivariate kernel estimation, i.e., the formula 8 that

involves the partitioning of the matrix x into blocks of rows

of equal size, i.e., �n/c� so that each core can calculates a

block of product and sum kernels.

IV. RESULTS

In order to gain an insight into the practical behavior of

each one of the reviewed programming model for imple-

menting statistical kernels, we carried out a quantitative and

a qualitative comparison.

A. Quantitative Comparison

For the quantitative or performance comparison we have

been performed some computational experiments. The ex-

periments were run on an Dual Opteron 6128 CPU with

eight processor cores (16 cores total), a 2.0 GHz clock speed

and 16 Gb of memory under Ubuntu Linux 10.04 LTS.

During all experiments, this machine was not performing

other heavy tasks (or processes). All statistical kernels have

been implemented in C/C++ programming language using

all reviewed multi-core programming models. For compiling

of the multi-thread statistical kernels we used three compil-

ers. For compiling of the Pthread, OpenMP and SWARM

programs we used the C compiler from the GNU Compiler

Collection (GCC) since it is a very widely used compiler.

For compiling of the Cilk++ program we used the Intel

Cilk++ which is a wrapper compiler around GCC and is the

only compiler available for Cilk++. Finally, for compiling

of the TBB, ArBB and FastFlow programs we used the g++

compiler which is part of the GCC collection. It is necessary

to mention that the compilation of the programs has been

made without the optimization.

Several sets of data matrices and vectors were used to

evaluate the performance of the multi-thread multivariate

mean and correlation and the univariate and multivariate

kernel estimation, a set of randomly generated input ma-

trices or vectors with sizes ranging from 1024 × 1024 to

270

5120 × 5120. Moreover, we set the parameters p and k
of two multivariate descriptive measures and of two kernel

estimators to a constant and maximum value of 1024 vari-

ables, respectively. To assess the performance of the multi-

thread statistical kernels for all programming models, we

used the practical execution time and model’s performance

as a measures. The practical execution time is the total

time that an multi-thread algorithm needs to complete the

computation. The execution time is obtained by calling

the C function gettimeofday() and it is measured in

seconds. To decrease random variation, the execution time

was measured as an average of 40 runs. On the other hand,

model’s performance for each statistical kernel has been

calculated using the relation

BT (model)t

T (model)i
× 100, i = 1, 2, . . . , 7 (9)

where BT (model)t is the best execution time for a specific

statistical kernel, run by all seven models and T (model)i is

the execution time of the model i for the same statistical

kernel. The best timing is then set equal to 100%. To

calculate the overall performance for each model, for any

combination of the problem size and number of cores, we

add the percentage values for every statistical kernel and

divide it by the total number of kernels, i.e., 4. Finally, the

largest percentage corresponds to the best overall perfor-

mance.

Following in this section, there are some figures extracted

from the performance evaluation experimental data. They

are presented as three figures, one presents the graphs for

all statistical kernels while the other two show average

and overall performance. The time in the y-axis in the

figures below is in logarithmic scale. Figure 1 presents the

mean execution times for all the statistical kernels using all

reviewed multi-core programming models. It is necessary

to mention that the mean execution time is referred to

the average time for all problem sizes (from 1024 × 1024
to 5120 × 5120) because it is impossible to present the

execution times of all problem sizes due to space limitations.

Based on the graphs of Figure 1, we can say that the

mean execution time of all reviewed models for all statistical

kernels is decreased as the number of cores is increased

with some exceptions. More specifically, the mean execution

time of the multivariate covariance/correlation and the two

kernels of Kernel estimation is decreased significantly is

compared to the execution time of the multivariate mean. On

the other hand, the marginal reduction in computing times

of the multivariate mean dissipates as additional cores are

added (i.e., one obtains a larger reduction when going from

two to eight cores than when going from 8-16 cores). This

is due to the fact that the multivariate mean require small

number of steps i.e., n steps approximately is compared to

the other statistical kernels which require n2 steps. Another

reason for low performance of the multivariate mean is

that for implementing this kernel uses the matrix transpose

operation. It is known that this matrix operation has poor

spatial locality because scans the matrix column by column

instead of row by row and it leads to occur higher cache

miss rate. We must note that this matrix transpose operation

is used in the multivariate covariance kernel but doesn’t

seem to take effect in their performance because the time of

matrix transpose is very small is compared to the time of

the matrix product. Finally, it is necessary to mention that

for the Intel ArBB programming model we haven’t seen

a significant decrease at execution time as a function of

the number of cores, but we have a significant decrease

execution time compared to the execution time of the C

sequential program. In other words, the relative speedups of

ArBB implementation over the C sequential implementation

for all kernels are significant (except for multivariate mean).

More specifically, the relative speedup of the multivariate

variance/correlation over the serial implementation ranging

from 45 to 138 times faster, the speedup of the univariate

kernel estimation ranging from 2 to 8 times faster and the

speedup of the multivariate kernel estimation ranging from 2

to 125 times faster. These important speedups of the ArBB

implementation are due to the vectorization of the model,

i.e., many operations are performed at the aggregate data

collection level using dense containers as a data structures.

However, the relative speedup of the multivariate mean over

the C serial implementation is not significant because the

runtime overhead of the ArBB model dominates in relation

to the low volume of computation.

From the graphs of Figure 1, we can make specific

performance remarks. For the multivariate mean kernel,

the SWARM implementation has the best performance at

execution time for any number of cores whereas the ArBB

implementation has the slowest performance. We must note

that the TBB implementation gives good performance for

two cores and it also presents performance closest to the

SWARM implementation. The good performance of the

SWARM implementation is due to the fact that there is

a small runtime system overhead and therefore it works

well on a problem of small and medium scale. The low

performance of the ArBB implementation is explained ear-

lier. Moreover, the performance of the remaining models are

closest to the Pthread implementation.

For the multivariate covariance/correlation kernel, the

ArBB and the FastFlow have the first and second best

performance at execution time for any number of cores,

respectively. The very good performance of the ArBB im-

plementation is due to the vectorization and the fact that

the problem is large scale. On the other hand, OpenMP

implementation has the worst execution time for any number

of cores and it is due to the fact that this model does not sup-

port backstage code optimization routines. The performance

of the other programming models are close to OpenMP

implementation with some exceptions for large number of

271

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
tim

e
in

 (
se

cs
)

Number of cores

Multivariate Mean

Pthread
OpenMP

Cilk++
TBB

ArBB
SWARM
FastFlow

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
tim

e
in

 (
se

cs
)

Number of cores

Multivariate Covariance/Correlation

Pthread
OpenMP

Cilk++
TBB

ArBB
SWARM
FastFlow

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
tim

e
in

 (
se

cs
)

Number of cores

Univariate Kernel Estimation

Pthread
OpenMP

Cilk++
TBB

ArBB
SWARM
FastFlow

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
tim

e
in

 (
se

cs
)

Number of cores

Multivariate Kernel Estimation

Pthread
OpenMP

Cilk++
TBB

ArBB
SWARM
FastFlow

Figure 1. Mean execution times (in secs) of the statistical kernels as a function of the number of cores

cores.

For the univariate kernel estimation, the ArBB and

SWARM/OpenMP have the best performance at execution

time for small and large number of cores, respectively. The

low performance of ArBB implementation for large number

of cores is due to the fact that the runtime system overhead

dominates in relation to the low volume of computation.

For the rest programming models, their performance are

approximately same for any number of cores.

Finally, for the multivariate kernel estimation we observe

that the ArBB implementation is the winner of this compari-

son for any number of cores. The satisfactory performance of

the ArBB implementation is due to the fact that it performs

very well the vectorization on a large-scale problem. The

performance of the rest implementations are identical.

In Figures 2 and 3, we present the overall performance for

all the reviewed programming models as a function of the

number of cores and problem sizes, respectively. We should

mention that the average performance of Figure 2 for each

model and number of core is the average value for all the

statistical kernels and problem sizes. Similarly, the average

performance of Figure 3 for each model and problem size

is the average value for all the kernels and number of cores.

Based on these results, we can observe that the ArBB

has the best overall performance for any number of cores

and problem sizes. Moreover, the overall performance of

the ArBB is decreased as the number of cores is added

whereas its performance is constant as the problem size is

increased. Furthermore, the next best performance in the

final order is the SWARM, TBB, OpenMP, Pthread and

Cilk++ programming models with very large difference from

the ArBB model for any number of cores and problem sizes.

Finally, at the third place comes the FastFlow model that

have the lowest performance.

B. Qualitative Comparison

To assess the ease of programming effort in the multi-

core programming models, we have to take into account a

series of software engineering parameters such as lines of

code, library popularity, support for online help facilities

and documentation and learning curve. As far as the lines

of code, we counted the number of lines of code needed

to solve the problem in each case except for the variables

declarations. In Table I we present the number of lines of

code for all statistical kernels that required by each model.

Based on this table, we can make the following remarks:

The ArBB algorithm implementations were, in general,

shorter in length, more concise and hence easier to under-

stand. The ArBB code for implementing statistical kernels

is more concise because the statements or operations in

272

Figure 2. Overall performance as a function of the number of cores

Figure 3. Overall performance as a function of the problem size

Statistical Kernel Pthread OpenMP Cilk++ TBB ArBB SWARM FastFlow
Multivariate mean 27 12 12 26 3 10 42
Multivariate correlation 50 26 26 53 10 21 82
Univariate Kernel Estimation 14 6 6 13 4 5 18
Multivariate Kernel Estimation 17 9 9 17 5 8 21

Table I
LINES OF CODE IN THE MULTI-CORE PROGRAMMING MODELS

the ArBB implementation are vector or expressed at the

aggregate data collection level using dense containers as a

data types without the use of for loops.

The SWARM, OpenMP and Cilk++ implementations were

identical in number of lines and their codes were not sig-

nificantly longer than ArBB implementations. The SWARM

implementation allow the programmers to use constructs for

parallelization, i.e., in a for loop to parallelize should be used

the par_do construct which implicitly partitions the loop

among the cores without the need for coordinating overheads

such as synchronization of communication between the

cores. Furthermore, the SWARM model provides the pro-

grammer library functions for synchronization and reduction

operations. In the OpenMP and Cilk++ implementations,

the programmer inserts compiler directives (i.e., pragma) or

keywords into sequential code to tell the compiler which

parts of the code that should be executed parallel. Moreover,

the codes of the SWARM, OpenMP and Cilk++ models are

easier to understand and it isn’t required complex program-

ming effort.

The Pthread implementations require more lines of code

and the programming effort was complex. In the Pthread

programming model provides the programmer low-level

library routines and the parallelization of a algorithm isn’t

automatic in relation to the rest models, i.e., the programmer

is responsible to write the code of parallelism and the

distribution of data to each thread.

Finally, the TBB and FastFlow algorithm implementations

required many lines of code although these provide C++

templates. We must note that the code which is obtained

by the TBB and FastFlow programming models is easier to

understand but because each algorithm is implemented as a

object class is required additional statements except for the

core code of the algorithm. In other words, these models

require restructuring of the sequential code so that the code

to be more object oriented.

273

As far as the other software engineering parameters,

we observe that the Pthread and OpenMP programming

models are the most popular by programmers because they

developed earlier and these are used in many research

works by all researchers of parallel computing. The re-

maining libraries have medium and low popularity because

of they are developed now with appearance of multicore

processors. Moreover, the Pthread, OpenMP and the three

libraries of Intel (such as Cilk++, TBB and ArBB) support

online documentation/books and these provide many code

examples. In particularly, the Pthread and OpenMP models

provide many and very good teaching tutorials. On the other

hand, the SWARM and FastFlow models provide a few

manuals and code examples. Finally, the learning curve for

the Pthread model is long for novices programmers because

it is low-level programming whereas the models such as

OpenMP, Cilk++, ArBB and SWARM have small learning

curve because the programmers inserts compiler directives

or uses ready parallelization constructs into the sequential

code. The TBB and FastFlow libraries have medium learning

curve because the programmers must study lot of terms and

terminology in order to understand the functionality of the

object-oriented design.

V. CONCLUSIONS

In this paper, we parallelized the four representative

kernels from computational statistics and econometrics using

all reviewed multi-core programming models. Moreover, we

performed a computational quantitative and qualitative com-

parison of the programming models in order to answer the

question which is the appropriate model for implementing

statistical kernels on multi-core. Based on the performance

and qualitative comparison we can conclude that the Intel

ArBB programming environment is more efficient model for

parallelizing the computationally-intensive statistical compu-

tations such as the multivariate covariance/correlation and

the two kernels of kernel estimation such as univariate and

multivariate whereas the SWARM library is efficient model

for small-scale computations like the multivariate mean ker-

nel. The reason for which these models are efficient because

they give good performance and simplicity of programming.

REFERENCES

[1] Intel Array Building Blocks, 2012. http://software.intel.com/
en-us/articles/intel-array-building-blocks/.

[2] Intel Cilk Plus, 2012. http://software.intel.com/en-us/articles/
intel-cilk-plus/.

[3] Intel Threading Building Blocks, 2012. http:
//threadingbuildingblocks.org/.

[4] Kernel density estimation, 2012. http://en.wikipedia.org/wiki/
Kernel density estimation.

[5] The OpenMP API specification for parallel programming,
2012. http://openmp.org/wp/.

[6] N. M. Adams, S. P. J. Kirby, P. Harris, and D. B. Clegg.
A review of parallel processing for statistical computation.
Statistics and Computing, 6:37–49, 1996.

[7] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati.
Programming Multi-core and Many-core Computing Systems,
chapter FastFlow: high-level and efficient streaming on multi-
core. Wiley, 2011.

[8] D. A. Bader and J. JaJa. Simple: A methodology for
programming high performance algorithms on clusters of
symmetric multiprocessors (SMPs). Journal of Parallel and
Distributed Computing, 58:92–108, 1999.

[9] D. A. Bader, V. Kanade, and K. Madduri. SWARM: A
Parallel Programming Framework for Multicore Processors.
In Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007, pages 1–8, 2007.

[10] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. In Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 207–216, Santa Barbara, California,
July 1995.

[11] D. Buttlar, J. Farrell, and B. Nichols. PThreads Programming:
A POSIX Standard for Better Multiprocessing. O’Reilly
Media, 1996.

[12] M. Creel. User-friendly parallel computations with econo-
metric examples. Comput. Econ., 26(2):107–128, Oct. 2005.

[13] M. Creel and W. L. Goffe. Multi-core CPUs, Clusters, and
Grid Computing: A Tutorial. Comput. Econ., 32(4):353–382,
Nov. 2008.

[14] C. A. F. de Rose, P. Fernandes, A. M. de Lima, A. Sales, and
T. Webber. Exploiting multi-core architectures in clusters for
enhancing the performance of the parallel bootstrap simula-
tion algorithm. In IPDPS Workshops’11, pages 1442–1451,
2011.

[15] J. A. Doornik, N. Shephard, and D. F. Hendry. Parallel com-
putation in econometrics: A simplified approach. Economics
Papers 2004-W16, Economics Group, Nuffield College, Uni-
versity of Oxford, Jan. 2004.

[16] J. Fernandez, M. Anguita, S. Mota, A. Caas, E. Ortigosa, and
F. Rojas. MPI toolbox for Octave. In VecPar’2004, 2004.
http://atc.ugr.es/∼javier/investigacion/papers/VecPar04.pdf.

[17] E. J. Kontoghiorghes. Handbook of Parallel Computing and
Statistics. Chapman & Hall/CRC, 2005.

[18] J. Racine. Parallel distributed kernel estimation. Comput.
Stat. Data Anal., 40(2):293–302, Aug. 2002.

[19] H. Sevcikova. Statistical simulations on parallel comput-
ers. Journal of Computational and Graphical Statistics,
13(4):886–906, 2004.

[20] C. A. Swann. Maximum likelihood estimation using par-
allel computing: An introduction to MPI. Comput. Econ.,
19(2):145–178, Apr. 2002.

274

