
An Empirical Study of
Patterns in Agent Programs

Koen V. Hindriks1, M. Birna van Riemsdijk1, and Catholijn M. Jonker1

Delft University of Technology, P.O. Box 5031, 2600 GA, Delft, The Netherlands,
{k.v.hindriks, m.b.vanriemsdijk, c.m.jonker}@tudelft.nl

Abstract. Various agent programming languages and frameworks have
been developed by now, but very few systematic studies have been done
as to how the language constructs in these languages may and are in fact
used in practice. Performing a study of these aspects contributes to the
design of best practices or programming guidelines for agent program-
ming. Following a first empirical study of agent programs written in the
Goal agent programming language for the dynamic blocks world, in this
paper we perform a considerably more extensive analysis of agent pro-
grams for the first-person shooter game Unreal Tournament 2004. We
identify and discuss several structural code patterns based on a qualita-
tive analysis of the code, and analyze for which purposes the constructs
of Goal are typically used. This provides insight into more practical
aspects of the development of agent programs, and forms the basis for
development of programming guidelines and language improvements.

1 Introduction

Shoham was one of the first who proposed to use common sense notions such
as beliefs and goals to build rational agents [15], coining a new programming
paradigm called agent-oriented programming. Inspired by Shoham, a variety of
agent-oriented programming languages and frameworks have been proposed since
then [3]. For several of them, interpreters and Integrated Development Environ-
ments (IDEs) are being developed. Some of them have been designed mainly
with a focus on building practical applications (e.g., JACK [18] and Jadex [14]),
while for others the focus has been also or mainly on the languages’ theoretical
underpinnings (e.g., 2APL [6], Goal [8], and Jason [4]).

In this paper, we take the language Goal as object of study. Goal is a high-
level programming language to program rational agents that derive their choice
of action from their beliefs and goals. Although the language’s theoretical basis
is important, it is designed by taking a definite engineering stance and aims at
providing useful programming constructs to develop agent programs. Starting
with small-size applications such as (dynamic) blocks world , the language is
being applied more and more in larger domains where agents have to function
in real-time and highly dynamic environments. To be more specific, recently the
language has been used in a project with first year BSc students of computer
science, in which groups of students had to program a team of agents to control
bots in the first-person shooter game Unreal Tournament 2004 (UT2004).

Software engineering aspects become increasingly important as applications
get more complex. For this reason, in [16] a first empirical study was presented
on how the language constructs are used in practice to program agents, and how
easy it is to read the resulting programs with the aim of designing a set of best
practices and programming guidelines that support Goal programmers. In that
paper, three Goal programs for the dynamic blocks world domain were studied.

In this paper, we take this a step further and analyze Goal programs that
were developed for UT2004 by the students of the project. This study is much
more extensive than [16]: the application domain of UT2004 is far more challeng-
ing than the dynamic blocks world, which has resulted in much larger programs
(approximately 800 lines of code per agent for the larger ones, in comparison with
around 100 for the dynamic blocks world); the Goal language has been extended
significantly since the programs studied in [16] were developed; the number of
available programs to study is much larger, namely 12 for the UT2004 domain
in contrast with 3 for the blocks world domain; the programs are multi-agent
systems, rather than single agents, which gives us the opportunity to study or-
ganization structures as used and understood by students.

The focus is on a qualitative study of the code of the agent programs. In
addition, we analyze several metrics on the code. Due to the size of the study
we do not consider run-time behavior in this paper. We identify and discuss
structural code patterns for the programming abstractions present in the latest
version of Goal, and analyze for which purposes the constructs are typically
used. Through this empirical software engineering, we contribute to forming a
body of knowledge leading to widely accepted and well-formed theories about
engineering Goal agents.

2 The Agent Programming Language GOAL

In this study, the agent programming language Goal has been used. Goal is
a high-level language for programming rational agents using cognitive concepts
such as beliefs and goals. The language is similar to other agent programming
languages such as 2APL, Jadex, and Jason. Due to space limitations, the pre-
sentation of Goal itself here will be very limited and we cannot illustrate all
features present in the language. For more information, we refer to [8].

Goal agents are logic-based agents in the sense that they use a knowledge
representation language to represent their knowledge, beliefs and goals to reason
about the environment in which they act. The knowledge representation tech-
nology we used is SWI Prolog [1]. One of Goal’s distinguishing features is that
Goal agents have a mental state that consists of the knowledge, beliefs and goals
of the agent. Knowledge is used to represent conceptual and domain knowledge
that is static. During a computation of the agent the knowledge of that agent
is never modified. As knowledge is always true, it can be used in combination
with both beliefs and goals to derive new beliefs and goals, respectively. For
example, if an agent has a conjunctive goal to have a weapon and ammo, and
knows that that combination always results in a loaded weapon, it also has the

derived goal to have a loaded weapon. The belief base and goal base are the
dynamic components of an agent’s mental state. Beliefs change by performing
actions; Goal also provides two built-in actions insert(ϕ) and delete(ϕ) to
insert and remove information from an agent’s belief base. Goals in a Goal
agent represent so-called achievement goals. An achievement goal is a condition
that the agent wants to be true but which is currently not believed to be true by
the agent. An achievement goal ϕ thus never follows from the agent’s beliefs (in
combination with its knowledge) and this constraint is enforced as a rationality
constraint. The rationale is that an agent should not put time and resources into
realizing an achievement goal that has already been achieved. This also means
that whenever a goal has been (believed to be) completely realized, the goal is
automatically removed from the goal base of the agent. Goal also provides two
built-in actions adopt(ϕ) and drop(ϕ) to, respectively, adopt a new achieve-
ment goal and drop some of the agent’s current goals. The drop action allows
an agent to revise its goals in light of, for example, changing circumstances.

Actions are selected by a Goal agent by inspecting their mental state and
by means of rules. Goal agents are able to inspect their mental state by means
of mental state conditions. Mental state conditions allow the agent to inspect
both its beliefs and its goals, and provide Goal agents with expressive reason-
ing capabilities. In an agent program, mental atoms of the form bel(ϕ) and
a-goal(ϕ) are used to verify whether ϕ is believed or ϕ is an achievement goal.

Actions are selected in Goal by rules of the form
if < cond > then < action > where < cond > is a mental state condition.
The < action > part may consist of single actions, or of multiple actions that
are combined by means of the + operator. Rules provide Goal agents with the
capability to react flexibly and reactively to environment changes but also allow
a programmer to define more complicated strategies. Rules may be located in
either the program section or the perceptrule section of an agent program. In the
program section, every cycle of the interpreter a single applicable rule is selected
and rules in this section are typically used to select actions that are executed
in the environment. In the perceptrule section, every cycle of the interpreter
all applicable rules are executed in order. Rules in the perceptrule section are
typically used to process percepts from the environment and messages received
from other agents. All built-in actions of Goal may occur in both sections but
user-specified actions of both internal or environment actions may only occur in
the program section. This restriction implies that the number of environment
actions executed every cycle is limited to at most one.

Modules provide a means to structure action rules into clusters and to define
different strategies for different situations [8]. In particular, modules facilitate
structuring the tasks and role assignment of an agent, as it allows an agent to
focus on some of its current goals and disregard others for the moment. Different
types of modules are distinguished based on whether the module is entered by
means of a trigger related to the beliefs or the goals of an agent.

Finally, mas files provide a recipe for launching multi-agent systems com-
posed of several Goal agents. A mas file specifies which environment to start

and how it should be initialized, which agent source code files are used to create
agents, and when to create an agent. An agent may or may not be connected to
an environment. In our UT2004 case study agents may be connected to bots; an
agent may be launched e.g. when a bot becomes available in the environment.
Agents connected to an environment are able to execute environment actions
to change the environment and receive percepts from the environment which
enables an agent to monitor its environment. Percepts - received every cycle of
the interpreter - are stored in an agent’s percept base. At the end of each cycle
this percept base is cleared again and all percepts are removed. This implies that
each cycle all percepts need to be processed immediately.

Additional features of Goal include among others a macro definition con-
struct to associate intuitive labels with mental state conditions to increase the
readability of the agent code, options to apply rules in various ways, and com-
munication. Various communication primitives are available but the most basic
action is the send action to send a message to another agent. Messages that are
sent as well as those that are received are archived in the mailbox of an agent,
and are only removed when the agent explicitly does so.

3 Experimental Setup

We perform a qualitative study (rather than a quantitative study) since it better
fits the aim of this paper, namely to analyze how students use Goal as a step
towards developing programming guidelines for Goal. Qualitative methods are
used for exploratory research in which hypotheses are formed, while quantitative
methods are used to test pre-determined hypothesis and produce generalizable
results [12]. Our research is exploratory, since we are in the process of investigat-
ing which structural code patterns might be part of programming guidelines for
Goal, as examples of recommended or not recommended uses of the language
(comparable to design patterns and antipatterns used in software engineering).

In programming language research, several criteria for good language design
have been identified. The following are particularly relevant in the context of this
paper. The value of linear flow of control was, for example, recognized, primar-
ily for its value in program debugging and verification, it was recognized that
a language must be comprehensible, so that programs written in the language
can be read and maintained, and modular program structures were observed to
make an important contribution to the production of large software systems [17].
Moreover, in [10] several language evaluation criteria are distinguished among
which: human factors (to what degree does the language alow a competent pro-
grammer to code algorithms easily and correctly, how easy is the language to
learn), software engineering (maintainability, reusability, etc.), and application
domain (how well a language supports development for a specific domain).

In agent research, software engineering has mainly been studied in the context
of agent-oriented software engineering methodolgies such as Prometheus [13].
These methodologies, however, are either too abstract to provide programming
guidelines for concrete agent programming languages, or, to the extent to which

they provide concrete implementation guidance, do not fit the programming
abstractions as used in languages like Goal. In the agent programming field,
[11] focuses on structural metrics related to dependencies between abstractions,
which among others indirectly predict the likelihood of bugs. This paper can be
viewed as complementary to ours.

Subjects The programmers whose code we have analyzed are first-year BSc com-
puting science students who followed our second-semester course on Program-
ming Multi-Agent Systems and the consecutive Project Multi-Agent Systems.
These students are the subjects of our experimental research. In the course the
students were trained in both Prolog as well as the agent programming language
Goal. As an indication of the level these students had, we briefly provide some
observations related to their skills in Prolog which is a prerequisite for writing
Goal agents since Prolog is used as the knowledge representation language in
these agents. The Prolog skills demonstrated by students are basic but sufficient.
Students were, for example, able to apply negation as failure and recursion.

Project UT2004 is an interactive, multi-player computer game where bots can
compete with each other in various arenas. The game provides ten different game
types. The game type that was used in the student project is called Capture The
Flag (CTF). In this type of game, two teams compete with each other that have
as main goal to conquer the flag located in the home base of the other team.
Points are scored by bringing the flag of the opponent’s team to ones own home
base while making sure ones own flag remains in its home base. Students have
to implement basic agent skills regarding walking around in the environment
and collecting weapons and other relevant materials, communication between
agents, fighting against bots of the other team, and the strategy and teamwork
for capturing the flag. We chose CTF because teams of bots have to cooperate,
which requires students to think about coordination and teamwork in a mas.

In the project, students are divided into teams of five students each. Every
group has to develop a team of Goal agents that control three UT bots in the
CTF scenario. In the project manual, it was suggested that although the number
of bots in the UT environment is three, students can also implement agents that
do not control bots in the environment, e.g., for coordination purposes. The
time available for developing the agent team was approximately two months,
in which each student has to spend about 1 to 1,5 days a week working on
the project. At the end of the project, there was a competition in which the
developed agent teams compete against one another. The grade is determined
based on the students’ report and their final presentation.

For the project, an interface was designed that is suitable for connecting logic-
based BDI (Belief-Desire-Intention) agents to a real-time game. Such an interface
needs to be designed at the right abstraction level. The reasoning typically em-
ployed by logic-based BDI agents does not make them suitable for controlling
low-level details of a bot. It makes little sense, for example, to require such agents
to deliberate about the degrees of rotation a bot should make when it makes
a turn. Such low-level control is better delegated to a more behavioral control

layer, which was built on top of Pogamut [5]. At the same time, however, the
BDI agent should be able to remain in control and the interface should support
sufficiently finegrained control. Details on the interface can be found in [9].

Sample In quantitative research, a random and relatively large sample of sub-
jects to study is selected such that results can be generalized to the population
of interest. By contrast, in qualitative research the most productive sample to
answer the research question is selected, e.g., based on experience or expertise
of the subjects. In our case, 12 teams of 5 students participated in the project.
The focus of our qualitative analysis is on the code of Teams 1, 2, and 3 who
performed best in terms of code and performance in the competition, and Team
12 who performed worst in terms of code and performance.

4 Identification of Patterns

In this section, we present the observations we made by doing a qualitative
analysis of the code of our sample. We identify numerous structural code patterns,
and augment this qualitative analysis with metrics concerning, e.g., the number
of times certain Goal constructs were used. Also, we analyze for which purposes
the constructs are typically used. Sections 4.1 to 4.7 each treat a particular
language element; sect. 4.8 discusses coordination and mas organization; sect.
4.9 discusses more general software engineering aspects.

4.1 Knowledge and Belief Base
The knowledge base typically was used to define predicates for computing, e.g.,
distances and other relevant aspects related to navigation. The belief base was
used to keep track of the actual state of the environment and typical functions of
code in the belief base are to (i) represent global features of the environment (e.g.,
where is the flag), and (ii) represent assigned tasks or roles (agents were typically
assigned a single role or task at any one time). On average the knowledge base
was significantly larger than the belief base (23.25 versus 15.67 clauses, with a
standard deviation of 24.23 versus 8.7, respectively); moreover, the number of
predicates defined in the knowledge base is larger (ranging from 7 to more than
25 predicates) than that in the belief base (about 5) with some exceptions. This
suggests that most of the domain logic was located in the knowledge base, in
line with its main function to represent conceptual and domain knowledge.

One observation made by inspecting the code of various teams is that this
code includes predicates in the knowledge base that have motivational connota-
tions such as priority to indicate relative importance and needItem and wants.
The code fragments for defining these predicates are significant portions of the
code, sometimes more than a 100 lines of code.

4.2 Goal Base
The use of explicit goals has been limited. On average about 1.13 initial goals
were used with a standard deviation of 1.36. By inspection of code, it turns out

that initial goals most of the time are abstract goals such as visitFlags or
even win. These abstract goals are not actually used in action or percept rules
and are never removed, neither explicitly using a drop action nor implicitly by
inserting a belief into the belief base which implies the goal has been achieved.
These abstract goals thus are redundant and serve no functional purpose. In 6
out of 12 teams goals are added during runtime by using the adopt action; on
average 3.86 adopts are used by these 6 teams with a standard deviation of 4.29.

The goals adopted dynamically are used in context conditions of modules.
In these cases, the context condition consists of a check on a single goal which
forms the goal of the module, e.g., goal protectBot for the module protector

(Team 3). In these cases, goals are removed explicitly (never implicitly) using
drop actions (occurring in both action and percept rules). In Team 3, the goal
of a module is removed only after the module was exited explicitly based on
beliefs about role changes. In Team 2, an action rule if goal(not(camp))

then exit-module. is present at the top of the camp module, to express that
the module should be exited if the agent no longer has the camp goal. How-
ever, this behavior is already in the semantics of Goal, and thus the rule is
redundant. Another observation on the goals used by Team 3 is that some goals
could naturally be modelled as achievement goals (even though not used as
such), while others rather express an activity over time. For example, the goal
getFlag (which expresses an activity) could be replaced by the achievement
goal haveFlag. In fact, Team 3 uses an action rule to drop the goal getFlag
if the agent believes haveFlag. The goal protectBot expresses a behavior that
is not so easily transformed into an achievement goal, since it is not clear in
which state the agent has “achieved” protecting a bot. Finally, Team 12 has a
one-to-one relation between goals and modules where each module corresponds
with a different role or task. The use of goals in conjunction with modules and
their function is a recurrent pattern in the code that has been analyzed.

We investigated various hypotheses related to the use of goals, built-in goal-
related actions, and modules. First, for all teams except Team 6, whenever the
code contains occurrences of drop actions the code also contained adopt actions.
The reason that in one agent of Team 6 only one drop action was used is that
the agent has one goal start in the initial goal base that is used to initialize
the roles of other agents and thereafter is dropped. Second, whenever an adopt

action occurs it occurs in tandem with drop actions. And, finally, occurrences
of adopt actions entail the presence of modules. The latter suggests that goals
have been typically used to implement roles.

4.3 Rules

As explained, rules in a Goal agent can be placed in the program and the
perceptrule section. The former kind of rules are called action rules and are used
among others to select actions that are performed in the environment. These
rules define the agent’s strategy or action selection policy, and determine what
the bot that the agent controls will do in the environment. The latter kind of
rules are called percept rules and are used, among others, to process percepts

and messages. Rules can be classified along other dimensions based on their use
and in comments in analyzed code we find that rules are used as communication
rules to send messages, exit rules to exit a module, as mailbox cleanup rules to
cleanup messages stored in an agent’s mailbox, etc.

Some examples of patterns observed in rules are:

if bel(received(_, role(X)), role(Y))

then insert(role(X)) + delete(role(Y))

This rule inserts an instance of a predicate role that has been received via
communication and overwrites an old instance of that predicate.

The following rule retrieves the agent’s name and communicates the role with
the name to all other agents once:

if bel(me(X)) then sendonce(allother, navServer(X)).

Although the last rule can only be used to select the single sendonce action,
using the + operator multiple actions may be selected simultaneously as illus-
trated by the second last rule above. This feature allows an agent to execute
more than one action in a cycle of the interpreter. All teams make frequent use
of the + operator to execute multiple actions with one action rule.

The average number of action rules per agent over all twelve teams is approxi-
mately 28. The average number for agents that are connected to the environment
is 42. The average number for agents connected to the environment for Teams 1,
2 and 3 is 65.5. As action rules determine strategy, this suggests that Teams 1, 2,
and 3 have implemented the most elaborate strategies and suggests more strate-
gic programming. This is in line with performance in the competition where
Teams 1, 2, and 3 outperformed other teams. The hypothesis that Teams 1, 2,
and 3 have coded more elaborate strategies is also corroborated by the fact that
the number of percept rules used by these teams is only little above average.

Since goals are used to a very limited extent, the majority of mental state con-
ditions in action rules consists of conditions on beliefs. The number of conjuncts
of belief conditions varies, but typically no more than five conjuncts are used.
Since most conditions are on beliefs only, never more than one belief operator is
used per action rule. This holds for all twelve teams.

Percept rules, i.e. rules in the perceptrule section, are used for several main
purposes: processing percepts and messages, sending messages, cleaning up the
mailbox, and adoption and dropping of goals (e.g. Team 3). The average number
of percept rules per agent over all twelve teams is approximately 51. The average
number for agents that are connected to the environment is 69. The average
number for agents connected to the environment for Teams 1, 2 and 3 is 78.
Note that the number of percept rules overall is higher than the number of
action rules per agent. This probably is related to the fact that all applicable
percept rules are executed in every cycle of the interpreter whereas only one
applicable action rule is executed in that same cycle. The perceptrule section
thus allows to process all incoming percepts and all received messages. It also
facilitates updating mental states in other ways, for example, to adopt a goal
when the agent learns the environment has changed.

4.4 Program Section

The program section contains all the action rules, from which exactly one of
the applicable action rules is selected for execution. This section comes with the
option to evaluate rules randomly or in linear order. When rules are evaluated
randomly, a rule is chosen randomly, and the conditions associated with the
rule and action(s) are evaluated; in case these conditions hold, the action(s) is
executed, otherwise randomly another rule is chosen. Linear order evaluation
means that rules are evaluated in order. This type of evaluation is deterministic
and potentially ease programming as conditions of rules that have been evaluated
but failed can be assumed to be false in rules below these rules. Linear order may
provide a programmer thus with a greater sense of control. It turns out that all
teams use the option order=linear to enforce linear execution of action rules.

The management bot of Team 1 does not have action rules in the program
section. All other agents have (functional) action rules in the program section.
The number of action rules on top level, i.e., not within modules, is typically
small (ranging from 0 to 2 in Teams 1, 2 and 3).

4.5 Modules

Modules facilitate structuring code as well as the behavior of agents and are
used by all teams. A module may be entered when an associated context con-
dition holds and thereafter only action rules inside the module are executed. A
module can be exited automatically or by means of selecting and executing an
exit-module action. Automated exit of modules works differently for the two
types of modules, namely reactive and goal-based modules. Reactive modules
have a context condition that does not check whether goals are present but does
inspect the beliefs of the agent; such modules are automatically exited when
there are no options anymore to execute an action. Goal-based modules have
context conditions that inspect the goal base of an agent and after entering the
module focus on goals that satisfy the context condition; such modules are auto-
matically exited when all goals have been achieved. Note that the semantics of
exiting a module is built-in but is a delayed effect. That is, exiting may happen
after a number of cycles of the interpreter that is not easily predicted.

Teams 1, 2, and 12, who make use of a management agent, have significantly
fewer (sub)modules for this agent (0, 1, and 0 respectively) than for the agents
that are connected to bots (13, 7, and 4, respectively). The average number
of (sub)modules used in the agents of all twelve teams is approximately 3. Al-
though a module may contain the same sections as a Goal agent except for the
perceptrule section, often, only the program section is used in modules.

Modules are used to encapsulate behavior for roles or (high-level) tasks. For
example, Team 2 distinguishes the modules defender, assault, bodyguard, flag-
carrier, and hunter on top level, which form the roles as indicated by correspond-
ing context conditions such as bel (role(defender)). Team 1 distinguishes
capture, defend, attack, and waitAtEnemyBase, which form tasks as indicated
by corresponding context conditions such as bel(task(capture())).

If submodules are used, they are used one level deep, i.e., a module within a
module. Team 1 makes frequent use of submodules (1 to 3 per top level module)
and Team 2 uses one submodule (camp as a submodule of defender). Teams 3
and 12 do not make use of submodules.

Several patterns can be observed concerning strategies for entering and ex-
iting modules. The context condition usually consists of a single belief or goal
condition, expressing the task (Team 1 uses, e.g., bel(task(capture()) and
similarly for other modules) as the context condition for the module capture),
the role (Team 2 uses, e.g., the context condition bel (role(defender))

in the module defender and similarly for other modules), or the goal of the
module (Team 3 uses, e.g., the context condition a-goal (getFlag) in the
attacker module and similarly for other modules). Teams 1, 2, 3 and 12 use the
exit-module action to explicitly specify when to exit the module. Modules typi-
cally start with such an action rule, which has as the condition the negation of the
context condition of the module, e.g., Team 2 uses bel(not(role(defender))

) in the defender module where the context condition is bel (role(defender)

). Sometimes, additional action rules for explicitly exiting modules are intro-
duced. For example, Team 1 uses rules that allow the agent to exit the module
because it has a more important task (if the agent sees an item it needs, it will
get it and afterwards continue).

Interestingly, Team 6 uses modules for initialization purposes. Their man-
agement agent uses a single goal start which is present in the initial goal base
of that agent to enter a module that contains some initialization code; after ex-
ecuting that code the initial goal start is dropped and the module is exited.
(Recall that Team 6 also is the only team that has an agent with a drop action
without an adopt action; this explains why.)

4.6 Actions specification

The action specification section needs to contain specifications for all actions that
are used in the agent program but not built-in into Goal. Such actions are called
user-specified actions, and can be actions with effects only on the mental state,
called internal actions, as well as actions which also change the environment,
called environment actions. In principle there is no need to introduce internal
actions as whatever can be achieved with such actions can be achieved with the
built-in actions of Goal but introducing such actions may increase readability.

Concerning internal actions, i.e., actions that are not executed in the envi-
ronment, we observe that only Teams 1, 2 and 4 have used these. Team 1 only
implements a dummy nothing action. Teams 2 and 4 implement internal actions
only in the management bot which is not connected to the environment.

All agents that are connected to the environment contain action specifica-
tions for environment actions. The interface to the UT2004 environment made
available in the student project [9] provides 9 different actions with a range of
different parameters to select from. Actions, without mentioning parameters, in-
clude, for example, selectWeapon, goto, pursue, lookAt. On average the goto

and halt actions are used 23 times versus 13 times that other actions are used.

The goto and halt actions thus are used about 4 to 5 times more often than
other actions. This suggests that navigational issues are dominant in the project.

In action specifications, we make several observations concerning the use of
pre- and postconditions in environment actions. First, we can distinguish actions
for moving around in the environment, namely goto, pursue, halt and respawn,
from other actions such as selectWeapon. For moving actions, Teams 1, 2, and 3
use pre- and postconditions that express how to change the agent’s moving state.
The moving state is expressed by all three teams as state(moving(Route)),
state(pursue), or state(reached([]). This is related to the fact that moving
actions are typically durative (except for the halt action), and it needs to be
recorded whether the agent is currently executing such an action. For instan-
taneous actions, postconditions typically express the (immediate) effect of the
action, such as the current weapon for selectWeapon (Teams 2 and 3), or the
postcondition true, in which case percepts are used for observing the effect of
the action in the agent’s next reasoning cycle (Team 1).

4.7 Communication

Plain communication in which send actions of the form send(A,Proposition)

are used is distinguished from advanced communication with mental models
in which actions of the form send(A,:Proposition), send(A,!Proposition),
send(A,?Proposition) are used. Mostly plain communication is used. Team 3
uses a few messages with :, e.g., send(allother, :myTeam(MyName, MyRole)

). The management agent of Team 1 uses a few instances of messages with !,
e.g., send(Bot, !task(capture(return))), to tell other agents what to do.

Two main ways of handling received messages can be distinguished. The
first is by preprocessing messages using percept rules, which insert the received
information into the belief base and delete the received message. The following
pattern for preprocessing messages is used by Teams 1 and 3, and the agent
connected to the environment of Team 2.

if bel(received(A,Proposition))

then insert(Proposition) + delete(received(A,Proposition))

The second is by using the received messages directly in conditions of action
rules to select the next action (the management agent of Team 2), without pre-
processing them. Team 2 also uses the received predicate in the knowledge base
of the management agent. The first method yields better readable code because
action rules and knowledge base are not cluttered with received predicate, and
allows reasoning with the added propositions using the knowledge and belief
base. The second method may have efficiency benefits since no preprocessing is
needed, and is simpler since no preprocessing rules have to be written.

4.8 Coordination and MAS Organization

The organisation structures chosen by the students were hierarchical and net-
work [7]. Irrespective of the organisation structure the teams used roles (or tasks)

to differentiate in behaviour and let the bots change their behaviour over time,
with the exception of Team 11. Team 11 had a static role division over the bots.
Team 7 uses a bit of a mixture; two of their bots have to change roles depending
on the game state, the third always has to defend the flag.

The hierarchical models all consist of one management agent and three team
member bots, where the team members were just copies of each other. The bots
in the teams using a network organisation (Teams 3, and 11) did not collectively
deliberate about strategy and tactics. Each bot decides for itself when to switch
roles and only informs the others of its new role. In the hierarchical teams the
management agent gets progress information from the team member bots and
on the basis of that information decides on role changes for the bots.

The initialisation differed at bit over the teams. Some had the management
agent assign the roles arbitrary over the bots (e.g., Team 12), some initially gave
the bots a kind of nothing role (e.g., Team 1), some intially gave each of the
bots a specific active rol like defender, attacker (e.g., Team 3), and Team 11 used
three differently coded bots (an attacker, a defender and a support bot).

The roles and their number in different teams vary. The smallest number
of roles used is two: attacker and defender (Team 5). Some introduced three
roles: hunter, defender, and supporter. Typically, however, a bit more variation
was used, as for example by Team 2 who used: attacker, bodyguard, defender,
flagcarrier, hunter, and none. The more roles, the more rules were defined to
switch between behaviours, and in general the more sophisticated the code to
determine the expected behaviour for the various roles.

4.9 Human Factors & Software Engineering

We make several observations concerning human factors and software engineer-
ing, in particular with respect to readability, maintainability, and reusability.

We observe that none of the teams have used macros. Readability of mental
state conditions in rules might have been improved by the use of macros, since the
number of conjuncts in these conditions can become relatively large (see Section
4.3). A large number of conjuncts can make it difficult to grasp what is expressed
by the condition. Macros may not have been used because they received little
attention in the lectures preceding the project, since their definition and meaning
is relatively simple. Another reason may be related to the fact that the students
used only one belief operator per rule. This may make it less natural to use
macros, since one might expect that multiple macro definitions would be used
to replace belief conditions with many conjuncts. This would then require the
use of multiple macros in rules, instead of using a single belief condition.

Another observation related to human factors and software engineering is
that we found frequent occurrences of duplicate code. The most notable example
was found in the code of Team 3, which coded two agent files that are almost
exact duplicates (lines of code = 884). The only difference seems to concern
the initial role of the agents. Duplicates are undesirable since it makes it more
difficult to understand resulting programs (readability), as it is often not easy

to identify the differences between very similar pieces of code. Also, it has a
negative influence on maintainability, since changes have to be duplicated too.

Further, we observe that Team 1 uses hardcoding of agent names both in the
manager agent as well as in the agent program that is used to launch agents
that are connected to a bot in the environment. This introduces dependencies
between these files which are hard to maintain as, for example, such hardcoding
makes it difficult to extend or reduce the number of agents launched in a mas
file. Reducing the number of agents would cause runtime errors (as messages
are being sent to agents that do not exist) and extending the number of agents
would decrease the functionality of these new agents as messages will never be
sent to these additional agents. An example of the use of hardcoded agent names
is the following. In the agent program that is connected to the environment,
percept rules are used to store information about the environment in the belief
base, and to send this information to the manager agent. The information sent
to the manager agent is divided over the other agents, yielding the following
patterns for percept rules, where zombieA is the name of an agent connected to
the environment, and godMother is the name of the manager agent:

if bel (me(zombieA), percept(<Percept>))

then insert(<Percept>) + send(godMother, :<Percept>)

if bel (not(me(zombieA)), percept(<Percept>))

then insert(<Percept>).

5 Discussion

Explicit Control Several of our observations suggest that programmers prefer
explicit control over built-in semantics with delayed effects. In particular, de-
terminism (by selecting linear rule order evaluation, Section 4.4) is preferred
over non-determinism (random action option selection). This is related to linear
flow of control, which has been proposed as a criterion for good language de-
sign (see Section 3). Another well-known paradigm of computing that involves
non-determinism is concurrent programming. Non-determinism in concurrent
programming stems from the fact that it is unknown how much of one pro-
cess is executed during the time another one executes an instruction. Interest-
ingly, high-school students of concurrent programming were found to avoid using
concurrency [2]. Another observation related to explicit control is that explicit
strategies for exiting modules were programmed using the exit-module action,
rather than relying on the automatic exit mechanisms of the language (see Sec-
tion 4.5). Also, goals were not used as often as could have been. What’s more,
if goals were used, automatic goal deletion upon achievement was not exploited,
since corresponding beliefs were never added to the belief base.

We conjecture that these findings are on the one hand due to an inherent pref-
erence for explicit control, and on the other hand due to lack of understanding of
these mechanisms. Exam results indicate that students were more competent in
explaining and/or applying action rules, action specifications, linear rule order

option and basic Prolog than they were able to do so for modules and subtle dif-
ferences between communication primitives (send versus sendonce command).
Scores on questions related to the former were significantly higher than those
related to the latter. Moreover, the use of explicit module exit strategies in cases
where use of built-in mechanisms would have been simpler, also suggest a lack of
understanding. To some extent, lack of understanding of the nature of achieve-
ment goals is indicated by the fact that corresponding beliefs are never inserted
into the belief base, but more research is needed to explain the code fragments
in some agent programs related to motivational notions in the knowledge base
instead of the goal base. These findings provide valuable input for teaching the
language, since it suggests more time needs to be devoted to explaining and prac-
ticing with the features of Goal that have built-in semantics with delayed effect.
In particular, programming examples and patterns will have to be developed to
demonstrate possible uses of the language.

A possible pattern for using modules, derived from the observations and dis-
cussion above, is the following. For each role that the agent should be able to
take, create a module with the goal of the module as the context condition. If
the goal of the module is adopted, the agent can enter the module to perform
the corresponding role. The program rules of the module should aim at achiev-
ing the goal of the module. If the goal is reached, the agent will automatically
exit the module. If the agent should no longer pursue the goal because, e.g.,
more important goals should be pursued, percept rules can be used for specify-
ing when the goal should be dropped, in which case the agent would also exit
the module automatically. It is important to specify such goal revision policies,
due to incomplete information and incomplete control over the environment.
New observations of or changes in the environment may cause an adopted goal
to become obsolete, requiring the need for specifying when the goal should be
dropped. A similar observation about dropping of goals being used for dealing
with dynamics of the environment was made in [16].

Language Design The idenfication of patterns has yielded not only insights on
how Goal constructs are (to be) used, but also gives rise to multiple possibilities
for language improvement and further investigation of language design choices.
For reasons of space, we briefly discuss some of them.

Mailbox clean-up as performed in percept rules suggests investigation of
whether keeping received and sent messages by default in the mailbox is to
be preferred over cleaning up the mailbox in every cycle. This can be done by
introducing these modes as an option in an agent program. In this way, we can
find out by experience and practice what is preferred by the programmer.

One of the difficulties of continuous language design is to monitor whether
code parts keep providing useful functionality throughout the changes that are
made to the language. For example, the Goal syntax requires agent files to
provide an agent name. However, this agent name is just a label at the top of an
agent file which is never used as the functionality of naming and making agent
names public has been delegated to the mas file. Using these labels in agent
files thus only creates confusion and it is better to remove these agent names.

Similarly, early requirements on syntax may not be so useful anymore as the
language is extended. In particular, after introducing the perceptrule section the
requirement to have at least one action rule in the program section seems not
as useful anymore (Team 1 introduced a trivial ‘obligatory’ rule in the program
section in their management agent). We plan to remove this requirement and
allow an empty program section, and only generate a warning at parse time.

We will consider the introduction of warnings and automatic dependency
analysis and checks: check on whether goals can ever become beliefs of the agent
(to indicate proper use of achievement goals); check for single send actions in the
program section, since these could just as well have been added in the percept
rules; automated support for dependency analysis to identify duplicate code, etc.
Also, support will have to be added to prevent duplicate code, e.g., by providing
import and extension functionalities.

6 Conclusion

In this paper, we have studied Goal programs that were written by first year
computer science students for the domain of UT2004. This study is far more
extensive than a previous study of Goal programs for the dynamic blocks world.
It has provided insights into how students use Goal to program agent teams
for a real-time dynamic environment. Overall, we can conclude that Goal and
the interface that was provided between Goal and UT2004 allow students to
program multi-agent systems in which high-level team strategies are used, in
combination with navigation and interaction with the virtual environment.

Our analysis has identified patterns that seem to be very useful, such as the
use of modules to implement agent roles; patterns that indicate a preference for
explicit control and lack of understanding of implicit built-in semantics, such as
use of the exit-module action to explicitly exit modules; patterns that suggest
improvements to the language are needed, such as the frequent occurrence of
duplicate code; patterns that require further analysis, such as the use of prepro-
cessing of received messages versus direct use of messages, and the limited use
of goals. One issue that is hard to disentangle is whether problems we identified
in the source code are due to programming skills and teaching effort, or rather
due to the design and semantics of the language studied. To deal with this issue,
here we have tried to establish by looking at exam results, for example, if code
practices could be related to skills. More research is needed to get a better grip
on this issue, however. It remains to be established, for example, why students
use the knowledge base in ways not envisaged at design time.

Through this analysis, we have come closer to the development of best prac-
tices and programming guidelines for Goal, we have identified aspects that can
be improved in the language, and we have gained a better understanding of which
aspects of the language are easy to use and which are more difficult to grasp.
A better understanding of problems that programmers face when using the lan-
guage will help us make better debugging and development software. Note also
that some of our main findings seem applicable to other agent programming lan-

guages as well. E.g. the use of modules to program roles has also been suggested
elsewhere [3]. Our method and the results obtained may extend in particular to
languages such as 2apl and Jason as the components in these languages are
similar in many respects, but, of course, more research is required.

In future work, we plan on improving Goal along the lines suggested in this
paper, using the identified patterns to improve teaching of how to use Goal
and studying the effects of this, and further investigating the hypotheses formed
through our analysis, e.g., concerning the reasons for the use of explicit control
rather than built-in semantics.

References

1. SWI Prolog. http://www.swi-prolog.org/.
2. M. Ben-Ari and Y. Ben-David Kolikant. Thinking parallel: The process of learning

concurrency. In Fourth SIGCSE Conference on Innovation and Technology in
Computer Science Education, pages 13–16, 1999.

3. Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni.
Multi-Agent Programming: Languages, Tools and Applications. Springer, 2009.

4. Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming
Multi-agent Systems in AgentSpeak using Jason. Wiley, 2007.

5. Ondrej Burkert, Rudolf Kadlec, Jakub Gemrot, Michal B́ıda, Jan Havĺıèek, Martin
Dörfler, and Cyril Brom. Towards fast prototyping of IVAs behavior: Pogamut 2.
In Proc. of IVA’07, 2007.

6. Mehdi Dastani. 2APL: a practical agent programming language. JAAMAS,
16(3):214–248, 2008.

7. Virginia Dignum. A Model for Organizational Interaction: Based on Agents,
Founded in Logic. PhD thesis, 2004.

8. Koen V. Hindriks. Goal Programming Guide. http://mmi.tudelft.nl/~koen/

goal, 2010.
9. Koen V. Hindriks, M. Birna van Riemsdijk, Tristan Behrens, Rien Korstanje, Nick

Kraaijenbrink, Wouter Pasman, and Lennard de Rijk. Unreal GOAL agents. In
Proc. of AGS’10, 2010.

10. James Howatt. A project-based approach to programming language evaluation.
ACM SIGPLAN Notices, 30(7):37–40, 1995.

11. R. Jordan Howell and Rem Collier. Evaluating agent-oriented programs: Towards
multi-paradigm metrics. In Proc. of ProMAS’10, pages 63–79, 2010.

12. Martin N. Marshall. Sampling for qualitative research. Family Practice, 13(6):522–
525, 1996.

13. Lin Padgham and Michael Winikoff. Developing Intelligent Agent Systems: A
Practical Guide. Wiley Series in Agent Technology. John Wiley and Sons, 2004.

14. Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Jadex: a BDI rea-
soning engine. In Multi-Agent Programming. Springer, Berlin, 2005.

15. Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60:51–92, 1993.
16. M. Birna van Riemsdijk and Koen V. Hindriks. An empirical study of agent

programs: A dynamic blocks world case study in GOAL. In Proc. of PRIMA’09,
volume 5925 of LNAI, pages 200–215. Springer, 2009.

17. Anthony I Wasserman. Issues in programming language design— an overview.
SIGPLAN Notices, 1975.

18. Michael Winikoff. JACKTM intelligent agents: an industrial strength platform. In
Multi-Agent Programming: Languages, Platforms and Applications. Springer, 2005.

