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Abstract. We propose a new primal-dual framework for representation, capture,
processing, and display of piecewise smooth surfaces, where the dual space is the
space of oriented 3D lines, or rays, as opposed to the traditional dual space of
planes. An image capture process detects points on a depth discontinuity sweep
from a camera moving with respect to an object, or from a static camera and a
moving object. A depth discontinuity sweep is a surface in dual space composed
of the time-dependent family of depth discontinuity curves span as the camera
pose describes a curved path in 3D space. Only part of this surface, which in-
cludes silhouettes, is visible and measurable from the camera. Locally convex
points deep inside concavities can be estimated from the visible non-silhouette
depth discontinuity points. Locally concave point laying at the bottom of con-
cavities, which do not correspond to visible depth discontinuities, cannot be esti-
mated, resulting in holes in the reconstructed surface. A first variational approach
to fill the holes, based on fitting an implicit function to a reconstructed oriented
point cloud, produces watertight models. We describe a first complete end-to-end
system for acquiring models of shape and appearance. We use a single multi-flash
camera and turntable for the data acquisition and represent the scanned objects as
point clouds, with each point being described by a 3-D location, a surface normal,
and a Phong appearance model.

Keywords: Multi-view reconstruction, appearance modeling, multi-flash, shape-
from-silhouette.

1 Introduction

Because of the relative ease and robustness (particularly in controlled environments) of
capturing object silhouettes, there exists a large body of work focused on reconstructing
3-D object shape based on silhouettes imaged from multiple viewpoints. All methods
based purely on object silhouettes, however, face an inherent limitation: surface points
which do not appear as part of the object silhouette from any viewpoint cannot be recon-
structed. This limitation often leads to unsatisfactory results when the imaged objects
contain details located within concavities that “protect” them from the occluding con-
tour. Our method addresses this limitation by supplementing the silhouette information
with additional depth discontinuity contours located on the object interior, providing a
more complete and detailed reconstruction.

F. Nielsen (Ed.): ETVC 2008, LNCS 5416, pp. 216–237, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://mesh.brown.edu


Shape from Depth Discontinuities 217

Fig. 1. The multi-flash 3-D photography pipeline. Data capture involves acquiring four images
(using illumination from the top, left, bottom, and right) for each of 670 viewpoints of the object.
Following data capture, a depth edge confidence map is estimated for each viewpoint. The con-
fidence maps are concatenated to form a space-time volume. Each volume “slice” corresponding
to an image scanline through all time is processed independently. After extracting subpixel ridges
in the slices, differential reconstruction is applied to estimate an oriented point cloud. In order to
fill sampling gaps, an implicit surface is fitted. Finally, for each point a Phong reflectance model
(i.e., diffuse and specular colors) is estimated using 67 viewpoints.

We propose a new primal-dual framework for representation, capture, geometry pro-
cessing, and display of piecewise smooth surfaces, with particular emphasis on imple-
menting efficient digital data processing operations in dual space, and we describe our
preliminary work based on multi-flash 3D photography [1,2] and vector field isosurface
(VFIso) fitting to oriented point clouds [3].

Piecewise Smooth Surfaces: Piecewise smooth surfaces are a very popular way to de-
scribe the shape of solid objects, such as those that can be fabricated with machine tools.
They are composed of smooth surface patches which meet along piecewise smooth
patch boundary curves called feature lines. Across feature lines the vector field of sur-
face normals can be discontinuous.

Surface Representations and Sampling: The family of piecewise smooth surfaces
has infinite dimensionality. Surface representations with finite numbers of parame-
ters must be used to operate on these surfaces in computers. Several popular surface
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representations are in use: irregular polygon meshes, semi-regular subdivision surfaces,
and disconnected point-sampled surfaces are some of them. The desired operations on
surfaces must be translated into algorithms applicable on the corresponding surface
representations. Since information such as surface normal discontinuities can be lost
through the sampling processes which produce the surface representations for com-
puter use, or just not explicitly representable, it is important to develop a theoretical
framework to analyze and predict the behavior of different algorithms.

Depth Discontinuities: Current 3D shape measurement technologies based on triangu-
lation capture points on smooth surface patches, but are unable to sample surface points
along feature lines [4,5,6,7]. Several prior-art methods try to detect the feature lines
lost in the point cloud obtained from one of these off-the-shelf sensors. We propose a
new shape capture modality potentially able to directly detect feature lines. This capture
process, which produces data complementary to triangulation based devices, is based
on a new dual representation for piecewise smooth surfaces.

The Dual Space of Rays: The dual space considered here is the space of oriented lines
in 3D, or rays

{(q,v) : q,v ∈ IR3,‖v‖ = 1} = IR3 × S2

Points in this space correspond to rays defined in parametric form:

Rqv = {p(λ ) = q + λ v : λ ≥ 0} .

This space has been popularized by the image-based rendering literature: a light field [8]
or lumigraph [9] is a function from the space of rays into the RGB color space. Image
pixels correspond to points in IR3 through the intrinsic equations of image formation
which depend on the camera type, and the extrinsic camera pose. For an orthographic
camera (which corresponds to a physical camera with a telecentric lens), the pixels
correspond to a regular array of parallel rays; for a perspective (pinhole) camera, all the
rays share a common origin: the optical center of the lens; catadioptric cameras may
not have an optical center, and the mapping from pixels to rays may be more complex,
as has been shown by many authors, including [10,11].

Representation of Surfaces in Dual Space: A smooth surface is represented as the set of
all its tangent rays. This representation can be extended to piecewise smooth surfaces by
considering the set of all its supporting rays (in the sense of convexity theory). We call
this set the set of depth discontinuities of the surface. Note that locally concave points of
the surface, deep inside concavities, do not correspond to visible depth discontinuities
as seen from a camera located outside of the object bounded by the surface (Figure 2).

For example, let SF = {p : f (p) = 0} ⊆ IR3 be an implicit surface, with f : IR3 → IR
a smooth function which belongs to a family parameterized by a finite dimensional
vector F (e.g. a polynomial of degree ≤ D), and let q ∈ IR3 be a point external to SF .
For every unit vector v we have a ray Rqv = {q + λ v : λ > 0}. The necessary and
sufficient condition for the ray Rqv to be tangent to the surface SF at some point is that:

∃λ > 0 :

{
f (q + λ v) = 0
vt∇ f (q + λ v) = 0

(1)
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(a) (b) (c)

Fig. 2. (a) An object with concave surface points and the regions captured by: both depth dis-
continuity and silhouette-based reconstructions (blue), depth discontinuity-based reconstructions
only (green), and neither (black). Points p1 and p3 are captured by both methods from camera
position q, while p2 is only captured by depth discontinuity-based methods. (b) Visible silhouette
points. (c) Visible depth discontinuity points.

Eliminating the variable λ from these two equations we obtain a single resultant
equation

φF(q,v) = 0 (2)

which provides a necessary condition for tangency: in general if φF(q,v) = 0 then the
straight line supporting the ray is tangent to S at a point p = q + λ v, where the λ
here is not necessarily positive (in which case the opposite ray satisfies the equation
for positive λ because q + λ v = q +(−λ )(−v)). An expression for λ as a function of
(F,q,v) is usually obtained as a byproduct of the elimination process, and can be used
to determine the correct orientation for the ray. The set of depth discontinuities of the
surface SF is the set

ΦF = {(q,v) : φF(q,v) = 0} ⊆ IR3 × S2 (3)

Most previous works based on duality (e.g. [12,13]) represent a smooth surface as the
set of all its tangent planes.

Depth Discontinuity Sweeps: A depth discontinuity sweep is the time-dependent family
of depth discontinuity curves span as the pose describes a curved path in 3D. This is
a 2-surface in dual space, which typically includes self-intersections and cusps. For
example, for a pinhole camera whose center of projection moves along a trajectory
q(θ ), corresponding to the points along a curve

C = {q(θ ) : θ ∈ Θ ⊆ IR} , (4)

the corresponding depth discontinuity sweep is the set

ΦC
F = {(q(θ ),v) : θ ∈ Θ , v ∈ S2 , φF(q(θ ),v) = 0} . (5)
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(a) (b) (c) (d)

Fig. 3. (a) Multi-flash camera. (b) Sample image acquired with flash located to the left of the
camera’s center of projection. (c) Depth edge confidence image produced by method in [14], with
darker pixels representing a higher likelihood of a depth edge. (d) Approximate edge orientation
corresponding to the flash with a maximum depth edge response. Up, down, left, and right edge
orientations are shown in red, blue, purple, and green, respectively.

For a turntable sequence, the curve C is a circle of radius r > 0 in IR3. As shown in
figure 2, only part of depth discontinuity sweep is visible and measurable from a mov-
ing camera. Depth discontinuity pixels correspond to samples of the dual surface. The
depth discontinuities visible from a particular camera pose are curves which include
the silhouette visible from that pose, but convex points deep inside concavities can be
estimated from the additional information, which is impossible just from silhouettes.
Surface points laying at the bottom of concavities, however, do not correspond to depth
discontinuities and cannot be measured, resulting in holes in the reconstructed surface.
One of our future goals is to develop very efficient methods to fill these holes directly
in dual space based on extrapolating the depth discontinuity curves to include the non-
visible depth discontinuities. One method to fill these holes in primal space is described
in section 4.5.

2 Multi-flash 3D Photography

We proceed to describe a first 3-D scanning system which exploits the depth disconti-
nuity information captured by a multi-flash camera as an object being scanned is rotated
on a turntable. Our method extends traditional shape-from-silhouette algorithms by uti-
lizing the full set of visible depth discontinuities on the object surface. The resulting
3-D representation is an oriented point cloud which is, in general, unevenly sampled in
primal space. We fit an implicit surface to the point cloud in order to generate additional
points on the surface of the object in regions where sampling is sparse. Alternatively,
the implicit surface can be regarded as the output of the reconstruction process. Finally,
the appearance of each surface point is modeled by fitting a Phong reflectance model
to the BRDF samples using the visibility information provided by the implicit surface.
We present an overview of each step in the capture process and experimental results for
a variety of scanned objects. The remainder of the article is structured as follows. In
Section 3 we describe previous work related to both our reconstruction and appearance
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modeling procedures. In Section 4 we describe in detail each stage of the reconstruction
procedure, and discuss its inherent advantages and limitations in Section 5. In Section 6
we present results for a variety of scanned objects to demonstrate the accuracy and
versatility of the proposed system. Finally, we conclude in Section 7.

3 Related Work

Our system draws upon several important works in both the surface reconstruction and
appearance modeling fields of computer vision. We describe these works, their strengths
and limitations, and how we extend and integrate them into our modeling system.

3.1 Surface Reconstruction

Surface reconstruction based on observing an object’s silhouette as it undergoes motion
has been extensively studied and is known broadly as shape-from-silhouette [15]. In
general, shape-from-silhouette algorithms can be classified into two groups: those with
volumetric, or global, approaches, and those which utilize differential, or local, infor-
mation. Although our system falls under the category of the differential approach, we
describe both here for completeness.

Space carving and visual hull algorithms [16] follow a global volumetric approach.
A 3-D volume which completely encloses the object is defined, and the object is imaged
from multiple viewpoints. The object silhouette is extracted in each of the images, and
portions of the volume which project to locations outside of an object silhouette in any
of the images are removed from the representation. Although robust, the quality of the
results is somewhat limited, especially for complex objects containing concavities and
curved surfaces.

An alternative differential approach uses the local deformation of the silhouettes as
the camera moves relative to the object to estimate the depth of the points [17]. Related
methods use a dual-space approach, where tangent planes to the object surface are rep-
resented as points in dual space, and surface estimates can be obtained by examining
neighboring points in this space [18,19]. These systems provide a direct method for
estimating depth based solely on a local region of camera motion, but are subject to sin-
gularities in degenerate cases. They also are not capable of modeling surface contours
that do not appear as part of the object silhouette for any view, e.g. structures protected
by concavities. Our method is similar in principle to these methods, but supplements
the input silhouette information with all visible depth discontinuities. This extra infor-
mation allows us to reconstruct structures protected by concavities that do not appear
as part of the object silhouette in any view.

3.2 Multi-view Stereo Algorithms

In addition to purely silhouette-based approaches, multi-view stereo algorithms [20]
are a class of hybrid approaches which combine image texture and color information
with silhouette information [21,22,23]. These methods are capable of producing very
accurate results, even recovering shape in areas protected by concavities. In most of
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Fig. 4. In our multi-flash 3D photography system, depth edge confidence maps estimated for
each viewpoint are concatenated to form a space-time volume, which is then sliced parallel to the
image scan lines to produce epipolar slices

these algorithms the silhouette data is only used to construct an initial estimate of the
visual hull surface represented as a polygon mesh, which is then iteratively deformed
to minimize a properly formulated photo-consistency energy function. We look at these
algorithms as operating mainly in primal space. Our system uses depth discontinuity
information alone in order to produce the surface reconstruction. There is great potential
to obtain more accurate surface reconstruction algorithms by combining multi-view
stereo and depth discontinuities. We plan to follow this path in the near future. Again,
what our multi-flash 3D photography algorithm shows is the 3D information contained
only in the visible depth discontinuities.

3.3 Appearance Modeling

Appearance modeling has become an increasingly active area of research in both the
computer vision and graphics communities. In [24], Lensch et al. introduced the notion
of a lumitexel: a data structure composed of all available geometric and photometric
information for a point on an object’s surface. In addition, Lensch advocated lumitexel
clustering to group similar surface components together and effectively increase the
diversity of BRDF measurements. These methods were recently applied by Sadlo et al.
to acquire point-based models using a structured light scanning system [25]. We apply
a similar approach to assign a per-point reflectance model to the oriented point clouds
obtained using our system.

4 System Architecture

The modeling system consists of a complete pipeline from data capture to appearance
modeling (Figure 1). Here we describe the operation at each stage of the pipeline.
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4.1 Data Capture

We use a turntable and stationary 8 megapixel digital camera to acquire data from up to
670 viewpoints in a circular path around the object (Figure 1(a)). We have constructed
a camera rig similar to those used by Raskar et al. [14] consisting of eight 120 lumen
LEDs positioned around the camera lens (Figure 3(a)) which are used as flashes. For
each turntable position, we capture four images using illumination from the top, left,
right, and bottom flashes, respectively. We have found that the four flashes positioned on
the diagonals do not add a significant amount of extra information and are therefore not
used in our experiments. The camera is intrinsically calibrated using Bouguet’s camera
calibration toolbox [26], and its position and orientation with respect to the turntable
are determined using a calibration grid placed on the table. Once the data has been
captured, we rectify each of the images to remove any radial distortion, and to align the
camera’s u axis with the direction of camera motion (i.e. perpendicular to the turntable
axis of rotation and with zero translation in the u direction as shown in Figure 1(b)).

4.2 Depth Edge Estimation

Using the four images captured with different illumination at each turntable position,
we are able to robustly compute depth edges in the images (Figure 1(b)) using the algo-
rithms introduced by Raskar et al. [14] for non-photorealistic rendering. The distances
between the camera center and the four flashes are small compared with the distance
to the scene, so a narrow shadow can be observed adjacent to each depth discontinuity
(Figure 3(b)) in at least one of the four images. As presented in [14], a simple method
exists to extract both the position and orientation of the depth edges using the infor-
mation encoded in these shadows. First, a maximum composite is formed by taking the
largest intensity observed in each pixel over the multi-flash sequence. In general, this
composite should be free of shadows created by the flashes. In order to amplify the shad-
owed pixels in each flash image (and attenuate texture edges), a ratio image is formed
by dividing (per pixel) each flash image by the maximum composite. Afterwards, the
depth edges can be detected by searching for negative transitions along the direction
from the flash to the camera center (projected into the image plane) in each ratio image.
With a sufficient distribution of flash positions and under some limiting assumptions on
the baseline and material properties of the surface [14], this procedure will estimate a
considerable subset of all depth discontinuities in the scene. A depth edge confidence
image corresponding to the likelihood of a pixel being located near a depth discontinuity
(see Figure 3(c)) is produced for each of the 670 turntable positions. Images encoding
the flash positions which generated the greatest per-pixel responses are also stored in
order to facilitate surface normal estimation in the reconstruction stage. By dividing the
high resolution images between a cluster of 15 processors, we are able to complete the
depth edge estimation for all 670 positions in under one hour.

4.3 Extracting Curves in Epipolar Slices

The epipolar parameterization for curved surfaces has been extensively studied in the
past [27,17]. For two cameras with centers q1 and q2, an epipolar plane is defined as the
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Fig. 5. Simulated orthographic epipolar slices showing invisible depth discontinuities

plane containing q1, q2, and a world point X being imaged. The epipolar planes slice the
image planes, forming a pencil of epipolar lines in each image, and each point in one
image corresponds to an epipolar line in another. A point x1 along an apparent contour
in one image is therefore matched to a point x2 in the second image by intersecting the
epipolar line defined by q1,q2, and x1 with the corresponding apparent contour in the
second image. For a continuous path of camera centers, q(t), an epipolar plane at time
t is spanned by the tangent vector q̇(t) to q(t) and a viewing ray r(t) from q(t) to a
world point p. So called frontier points occur when the epipolar plane is identical to the
tangent plane of the surface.

Because we have rectified each input image so that the camera motion is parallel to
the image u axis (Section 4.1), the depth edge confidence images exhibit the same prop-
erty. By stacking the sequence of confidence images (Figure 1(c)) and “slicing” across
a single scanline, we have an approximation to the epipolar constraint in local regions.
We refer to these images containing a particular scanline from each image as epipolar
slices (Figures 1(d) and 4). By tracking the motion of apparent contours in the slices, we
are in effect implicitly utilizing the epipolar constraint for curve matching. The tracking
problem can be solved using a form of edge following optimized to take advantage of
properties of the slice images. The curve extraction stage is decomposed into three sub-
stages: subpixel edge detection, edge linking, and polynomial curve fitting. Although
nearby slice images are strongly correlated, we treat them as independent in order to
facilitate parallel processing. However, the inherent correlation between epipolar slices
is exploited in the extraction of surface normals as described in section 4.4. So in fact,
each estimated 3D point is a function of a 3D neighborhood of the corresponding depth
discontinuity point in dual space.

Edge Detection. We begin by detecting the pixel-level position of the depth discontinu-
ities by applying a two-level hysteresis threshold. Afterward, we estimate the subpixel
position of each depth discontinuity by fitting a sixth order polynomial to the neigh-
boring confidence values. Non-maximum suppression is applied to ensure that a single
subpixel position is assigned to each depth edge.
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Fig. 6. Epipolar slice curve tracking and fitting

Edge Linking. As shown in Figures 1(d) and 5, the epipolar slices are complex and typ-
ically contain many junctions, indicating points of bi-tangency. These junctions emerge
for a variety of reasons, including when external silhouettes becomes internal contours
(and vice versa). Our edge linking algorithm follows edges through such transitions.
We initialize the tracking process by finding the first detection to the left of the axis of
rotation in an epipolar slice. Next, we search for the closest detection in the neighbor-
ing views within a small window. If any match is found, then we initiate a track using
a linear prediction based on these two observations. We proceed to search for new de-
tections within a neighborhood of the predicted edge position. The closest detection
(if any) to the prediction is added to the track and neighboring detections are removed
from future consideration. Once three or more detections have been linked, we predict
the next position using a quadratic model. If a track ends, a new edge chain is initiated
using the first available detection either to the left or right of the axis of rotation. This
process continues until all detections have been considered. While simple, this tracking
method consistently and accurately links depth discontinuities through junctions.

Curve Fitting. Once the subpixel detections have been linked, a sixth order polynomial
is fit to each chain – providing an analytic model for the motion of depth discontinuities
as a function of viewpoint. Sixth order polynomials were chosen because of their ten-
dency to fit the chain points with low error, and no over-fitting in practice. RMS errors
for the polynomial fits vary depending on the length and curvature of the chain, but
are generally on the order of one pixel. Typical results achieved using this method are
shown in Figure 1(e) and 6.

4.4 Point Cloud Generation

Once curves in the epipolar slice domain have been extracted, we can directly estimate
the depth of the points on these curves and produce a point cloud representation of the
object (Figure 1(f)).

The properties of surface shapes based on the apparent motion of their contours in
images are well-studied [27,17]. In general, we represent a surface point p on a depth
discontinuity edge as

p = q + λ r (6)

where q is the camera center, r is the camera ray vector corresponding to a pixel [u,v],
and λ is the scaling factor that determines the depth. Cipolla and Giblin [17] showed
that the parameter λ can be obtained from the following equation
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(a) (b)

Fig. 7. (a) The epipolar plane (dotted line) used for curve parametrization is spanned by the view-
ing ray, r, and the camera’s velocity vector, q̇. The images are rectified such that the epipolar lines
correspond to scan lines in the image. Unless the camera motion is linear, this plane is only an
approximation for finite Δ t, since the neighboring camera centers are, in general, not contained in
the plane. (b) The tangent ray from the camera to the object slides over the surface as the camera
moves. Depth can be estimated based on the apparent motion of the contour in the image plane
relative to the camera motion in space.

λ = −nt q̇
nt ṙ

(7)

where n is the normal vector to the surface at the point p, and ṙ, q̇ are derivatives in time
as the the camera moves with respect to the object and the camera ray r “slides over”
the object (Figure 7-(b)). This method assumes that the functions q(t), r(t), and n(t),
as well as their derivatives with respect to t are known. The epipolar parametrization
is then used to construct these curves from multiple silhouettes. Because the camera
motion q(t) is known from calibration, we effectively recover the function r(t) by fitting
analytic models to the curves in the epipolar slice images. For a given epipolar slice
image, we have constant v = vs and image axes corresponding to u and t, where, for a
given contour, u is function of t. We therefore express Equation 6 as:

p(u(t),t) = q(t)+ λ r(u(t), t) (8)

and Equation 7 as

λ = − n(u(t), t)t q̇(t)
n(u(t),t)t d

dt {r(u(t),t)}
(9)

where
d
dt

{r(u(t),t)} =
∂ r
∂u

(u(t),t) u̇(t) . (10)

We use the standard pinhole camera model with projection matrix

P = K
[

I 0
][

R T
0 1

]
(11)

where R is a 3x3 rotation matrix and T is a 3x1 translation vector relating the world co-
ordinate frame to that of the camera. K is a 3x3 matrix containing the camera’s intrinsic
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projection parameters. We recover these parameters along with 5 radial and tangential
distortion coefficients using Bouguet’s camera calibration toolbox [26]. We project im-
age points in homogeneous coordinates to vectors in world space using the “inverse”
projection matrix, P̂.

P̂ =
[

Rt −RtT
0 1

][
I
0

]
K−1 (12)

The function ∂ r
∂u (u(t),t) can then be calculated from the inverse projection matrix

(Equation 12) associated with camera position q(t):

∂ r
∂u

(u(t)) =

⎡
⎣P̂1,1(t)

P̂2,1(t)
P̂3,1(t)

⎤
⎦ (13)

The contour path’s motion in the u direction, u̇(t), can be obtained directly from
the coefficients of the curve fit to the contour path (Section 4.3) in the slice image.
We estimate the image normal m(u(t), t) by performing principal component analysis
(PCA) on a local region about the point (u(t),vs) in the original depth edge image
corresponding to time t. There exists a sign ambiguity in this normal computation, so
we compare m with the coarse normal information given by the flash with the maximum
depth edge response (Section 4.2) and flip its direction as needed. The surface normal
n(u(t), t) in 3-D must then be perpendicular to the viewing ray r(u(t), t), and contained
in the plane spanned by r(u(t),t) and the projection of n(u(t), t) onto the image plane,
m(u(t), t).

n(u(t),t) = (P̂(t)
[

m(u(t), t)
0

]
× r(u(t), t))× r(u(t), t) (14)

Substituting back in to Equation 9, we can now recover the depth of any point on the
contour path, assuming known camera motion q̇(t). In our experiments, we dealt with
the simple case of circular motion, so q̇(t) is well defined for all t.

Again dividing the computations between 15 processors, the curve extraction and
depth estimation procedures take on the order of 20 minutes for our data sets.

4.5 Hole Filling

Each curve in each slice is processed independently, and sampled uniformly in t. This
sampling in t causes the reconstructed points to be sampled very densely in areas of
high curvature (since the viewing ray moves slowly over these regions) and conversely,
very sparsely in areas of very low curvature, e.g. planes. The effects of this non-uniform
sampling can be seen in Figure 1(f) in the form of gaps in the point cloud. Several ap-
proaches have been developed for resampling and filling holes in point clouds. Moving
Least Square surfaces [28] provide resampling and filtering operations in terms of lo-
cal projection operations, however these methods are not well-suited for filling large
holes. Diffusion-based methods for meshes [29] and point clouds [30] have also been
developed. As an alternative to these advanced methods, a standard approach is to fit
an implicit surface or polygonal mesh to the point cloud and subsequently display this
representation using the conventional graphics modeling and rendering pipeline.
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(a) before resampling (b) after resampling

Fig. 8. Example of filling sampling gaps using the implicit surface as described in Section 4.5

We use a variant of this approach proposed by Sibley and Taubin [31] since we re-
quire both an intermediate surface for visibility computations as well as a method for
introducing samples in regions that were not acquired using the multi-flash reconstruc-
tion (e.g., those shown in Figures 1(g) and 8). The surface fitting reduces to solving a
linear least squares problem, and proceeds as follows: Given an oriented point cloud
D = {(p1,n1), . . . ,(pm,nm)} sampled from a surface M, the method computes an im-
plicit surface M′ = {p| f (p) = 0} where f : R

3 → R is a scalar function, such that ide-
ally ∇ f (pi) = ni, and f (pi) = 0. If pα denotes the position of a grid node, the problem
reduces to the minimization of the following quadratic energy

E = ∑
i

f (pi)2 + μ ∑
i

‖∇ f (pi)− ni‖2 + λ ∑
(α ,β )

‖∇ f (pα)− ∇ f (pβ )‖2 (15)

where (α,β ) are edges of the grid, and μ ,λ > 0 are a regularization constant. The scalar
field f is represented as a linear combination of basis functions (e.g., trilinear) defined
on a uniform Cartesian grid, f (p) = ∑α fα φα(p), where fα = f (pα). The gradient is
approximated with finite differences.

Afterwards, we extract a triangular mesh with Marching Cubes (as shown in
Figure 1(g)), and use it to resample the surface in regions where the original sampling
was sparse.

Of course, since no information is captured from the invisible depth discontinuity
points, the locally concave points at the bottom of concave areas are only hallucinated
by this algorithm. Figure 9 is a simple illustration of some of the variability encountered
in practice. The five shapes in this figure have identical visible depth discontinuities.
The reconstruction produced by our algorithm is most probably close to the fourth ex-
ample because the third terms in our energy function tends to minimize the variation of
the function gradient, i.e., of the surface normal. So, holes tend to be filled with patches
of relatively constant curvature. Additional primal space information, such as from
triangulation-based sensors or multi-view stereo photometric information, is needed
to differentiate amongst these shapes and to produce a more accurate reconstruction. In
our view, the multi-view stereo approach, which is based on a similar variational for-
mulation, seems to be the simplest to integrate with our system, as we already capture
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Fig. 9. Different shapes that produce the same visible depth discontinuity epipolar slices. Note the
variability in the shape and location of the curves corresponding to invisible depth discontinuity
points.

the necessary photometric information (currently ignored). As we mentioned before,
we plan to explore these ideas.

4.6 Appearance Modeling

As shown in Figures 1(g) and 8(b), the output of the gap-filling stage is a dense oriented
point cloud. Given this representation of the surface shape, we assign a per-point ap-
pearance model using a subset of 67 images acquired from the turntable sequence. Note
that, despite the relatively large number of available viewpoints, the BRDF remains
sparsely-sampled since the illumination sources and camera are nearly coincident. As
a result, we simply fit a Phong reflection model to the set of reflectance observations
at each point. For simplicity, we assume that the surface does not exhibit significant
subsurface scattering or transparency and can be represented by a linear combination of
a diffuse term and a specular reflection lobe as described in the Phong model.

We begin the appearance modeling process by extracting a set of color observations
for each point by back-projecting into each image. In order to determine the visibility of
a point p = q+λ r, where q is the camera’s center of projection, we perform a ray-mesh
intersection test with the triangulated implicit surface. The first point of intersection is
given by p′ = q + λ ′r. If p is outside some displacement ε from p′ or if the point is
facing away from the camera, then we mark the point as invisible, otherwise the color
of the corresponding pixel is assigned to the observation table. Note that, unlike similar
texture assignment methods such as [25], we can detect (or remove) shadows automati-
cally using the maximum composite of the four images (described in Section 4.2) before
assigning a color to the observation table. As a result, the combination of the implicit
surface visibility test and the shadow removal afforded by the multi-flash system mini-
mizes the set of erroneous color observations.

As described by Lensch et al. [24], we obtain a lumitexel representation for each
point (i.e., a set color observations). We apply the Phong reflection model given by

Iλ = kaλ + kdλ n · l+ ksλ(r ·v)n (16)
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(a) (b) (c) (d)

Fig. 10. (a) A portion of the bust point cloud, generated with no outlier rejection. An area of
instability can be seen under the arm, where the surface is nearly perpendicular with the axis
of rotation. (b) Outliers removed by back-projection validation using a small set of segmented
images. (c) The generated point cloud using our algorithm with silhouette information only. (d)
Reconstruction using all depth discontinuities. Notice increased detail in the eyes, hair, and neck
concavities.

where Iλ is the wavelength-dependent irrandiance and {kaλ ,kdλ ,ksλ ,n} are the ambi-
ent, diffuse, and specular coefficients, and the specular exponent, respectively. In this
equation, the directions to the light source and camera are given by l and v, whereas
the direction of the peak of the specular reflection lobe is given by r and the surface
normal is n. Given the small baseline between the camera’s center of projection and
the flashes, we make the simplifying assumption that the flashes are coincident with the
camera center (such that l = v).

We fit the per-point Phong reflectance model independently in each color channel.
Following a similar approach as [25], we estimate the model parameters by applying
Levenberg-Marquart nonlinear optimization. When insufficient data is available to fit
the specular reflection component, we only estimate the diffuse albedo. Typical ap-
pearance modeling results are shown in Figure 12, where (c) and (d) illustrate typical
diffuse and specular reconstructions, respectively. Note that, experimentally, we found
that the median diffuse albedo (given by the median of the lumitexel values) was a
computationally-efficient and visually-plausible substitute for the diffuse component of
the Phong model. For applications in which only the diffuse albedo is required, the
median diffuse albedo eliminates the need for applying a costly nonlinear estimation
routine.

5 Analysis of Reconstruction Algorithm

5.1 Stability

One drawback to using Equation 7 to estimate depth is its dependence on usually noisy
derivatives. In fact, in a previous implementation we used first order difference oper-
ators to estimate the derivatives and observed noisy and unstable depth estimates. By
fitting polynomial curves to the contour samples in the epipolar slices, we essentially
average out the noise and obtain accurate and stable derivative measurements as shown
in our results.

A second drawback of our reconstruction algorithm is its ill-conditioning close to
frontier points, where n(t)t ṙ(t) ≈ 0. In these cases, the denominator of Equation 7
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approaches zero, causing unreliable depth estimates. Giblin and Weiss [27] have pre-
sented an alternate expression for depth that avoids this mathematical instability, but in
our experiments the depth estimates remained unstable at frontier points. This is most
likely due to the imprecision of matching when the epipolar lines are tangent to the
surface contours. We combat this ill-conditioning in two ways. First, we reject recon-
structed points with an infinitesimally small n(t)t ṙ(t) value (i.e. frontier points) outright,
since they rarely provide meaningful reconstructions. Second, we deal with instability
in the regions near these frontier points by performing the simple validation proposed
by Liang and Wong [19]. We segment the object from the background in a small subset
(15 views) of the original input images. We then back-project the reconstructed points
into the images, making sure that each point lies within the image foreground. For the
bust data set, 3.7% of points were removed in this way (Figure 10-(a,b)). One draw-
back of this approach is that points which are incorrectly reconstructed “inside” of the
surface are not removed.

5.2 Surface Coverage

One key contribution of our reconstruction system is the use of the additional informa-
tion provided by the full set of observable depth discontinuities. A typical example of
the additional surface information that can be extracted can be seen in Figure 10-(c,d).
Structure located in the concavities of the hair, eyes, and neck is successfully captured,
while lacking in the silhouette-based reconstruction. Although a significant improve-
ment in surface coverage can be seen, locally concave regions which do not produce
visible depth discontinuities are not captured. Figure 2 demonstrates the theoretical
limit of surface regions that can and cannot be captured with the two approaches.

6 Experimental Results

As presented, the multi-flash 3-D photography system represents a new, self-contained
method for acquiring point-based models of both shape and appearance. In this section,
we first present the reconstruction results for a 3-D test object with known dimensions
in order to assess the system’s accuracy. We then discuss (qualitatively) the reconstruc-
tions obtained for a variety of other physical objects in order to explore the system’s
versatility.

6.1 System Accuracy

In order to experimentally verify the accuracy of the system, we designed and manufac-
tured a test object using the SolidWorks 3-D modeling program and a rapid prototyping
machine. The rapid prototyping machine specifications indicate that it is accurate to
within 0.1 mm. We designed an object roughly in the shape of a half-torus, with vary-
ing curvature at different points on the surface (Figure 11-(a)). We then reconstructed
a point cloud of the the model using the algorithm described in Sections 4.1 through
4.4, and aligned it with a rigid transformation to the original SolidWorks mesh using
ICP. No segmentation-based outlier detection or surface fitting were used. Figure 11-
(b,c) shows the aligned reconstructed point cloud, with points color-coded according
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(a) (b) (c) (d)

Fig. 11. (a) The manufactured test object. (b) Reconstructed point cloud overlayed on original
mesh. (c) The reconstructed points are color-coded according to their absolute reconstruction
error in mm. (d) The probability distribution of the point cloud reconstruction errors.

to their absolute distance from the original mesh. As expected, concave surface points
are not reconstructed, nor are regions close to frontier points. Scanning the object using
multiple camera paths and merging the reconstructions could alleviate this deficiency.
Figure 11-(d) shows the distribution of the reconstruction errors. Roughly 9% of the
points had error greater than 2.5 mm and were considered outliers. These points were
mainly due to reconstruction of surfaces not part of the CAD model, such as the base

(a) input image (b) median diffuse albedo

(c) specular coefficient (d) diffuse coefficient

(e) Phong appearance model

Fig. 12. Estimated appearance for “woman with fruit basket” using 67 images. Note how the
median diffuse albedo provides a computationally-efficient and visually-plausible substitute for
the diffuse component of the Phong model.
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Fig. 13. Summary of reconstruction results. From left to right on each row: an input image, the
reconstruction viewed under similar illumination conditions, another input image, and a corre-
sponding view of the model. The first through fourth rows show the “woman with fruit basket”,
“bust”, “pig chef”, and “hand” models, respectively. Each model is represented by approximately
1,000,000 points and was processed using a polygonal implicit surface with about 250,000 faces.
Note that, for the hand model, both the diffuse wood grain and highlights were reliably recon-
structed. Similarly, the detailed geometric and color structure of the “women with fruit basket”
were also captured.
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used to hold the object. Disregarding the outliers, the mean reconstruction error was
0.20 mm, with a standard deviation of 0.16 mm. These results are very promising and
suggest that the accuracy of the system is on par with commercially available scanning
systems.

6.2 System Versatility

As shown in Figure 13, four objects were acquired with varying geometric and material
complexities (from the top to bottom row: “woman with fruit basket”, “bust”, “pig
chef”, and “hand” models).

The “pig chef” model (shown on the third row of Figure 13) demonstrates low geo-
metric complexity (i.e. its surface is nearly cylindrical with few self-occlusions). Sim-
ilarly, its material properties are fairly benign – most of the surface is composed of a
diffuse material and specularities are isolated to the jacket buttons and the spoon in
the left arm). As with laser scanners or other active illumination systems, we find that
highly specular surfaces cannot be reconstructed reliably. For example, consider the ge-
ometric and material modeling errors produced by the highly specular spoon in the left
arm. Future work will examine methods to mitigate these errors, such as those presented
in [32].

The “hand” model (shown on the last row of Figure 13) is challenging due to multiple
self-occlusions and the moderately specular wood grain. For this example, we find the
multi-flash approach has successfully reconstructed the fingers – regions that could not
be reconstructed reliably using existing shape-from-silhouette or visual hull algorithms.
In addition, the specular appearance was modeled in a visually-acceptable manner using
the Phong appearance model. Note the “bust” model (shown on the second row of
Figure 13) demonstrates similar self-occlusions in the hair and was also reconstructed
successfully.

The “woman with fruit basket” model (shown on the first row of Figure 13) repre-
sents both material and geometric complexity with multiple self-occlusions and regions
of greatly-varying material properties. As with other examples, we find the multi-flash
approach has achieved a qualitatively acceptable model which accurately captures the
surface shape and appearance of the original object.

7 Conclusions

We have presented in this article a fully self-contained system for acquiring point-based
models of both shape and appearance using multi-flash photography. As demonstrated
by the experimental results in Section 6, the proposed method accurately reconstructs
points on objects with complex features, including those located within concavities. The
geometric reconstruction algorithm is direct and does not require solving any non-linear
optimization problems. In addition, the implicit surface fitted to the oriented point cloud
provides an efficient proxy for filling holes in the surface, as well as determining the
visibility of points. Finally, recent work in appearance modeling has been extended to
the specific problem of texturing multi-flash image sequences.
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While current results demonstrate the significant potential of this approach, we be-
lieve that the greatest benefit of multi-flash 3-D photography will be achieved by com-
bining it with existing methods for shape recovery (e.g. laser scanners and structured
light systems). These systems provide an efficient means to reconstruct regions of
low-curvature, whereas the multi-flash reconstruction accurately models high-curvature
regions and points of bi-tangency where these approaches have difficulties. Future
work will explore the synergistic combination with existing approaches, especially with
regard to planning optimal viewpoints for 3-D scanning.

7.1 Future Work

While sampling is regular for triangulation-based systems in primal space, in the pro-
posed approach samples are highly concentrated in the vicinity of high curvature points.
Feature line points, which are highly localized in primal space, are easy to estimate in
dual space because they correspond to extended and smooth curve segments. We will
implement hybrid systems combining depth discontinuities with triangulation-based
systems, as well as multi-view photometric stereo, to achieve more accurate reconstruc-
tions of solid objects bound by piecewise smooth surfaces with accuracy guarantees for
metrology applications. Applications to be explored range from reverse engineering to
real-time 3D cinematography. Variational algorithms to fit watertight piecewise smooth
implicit surfaces to the capture data, as well as isosurface algorithms to triangulate these
implicit surfaces preserving feature lines will be developed as well.
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