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Abstract. We present in this paper a new model for representing prob-
abilistic information in a semi-structured (XML) database, based on the
use of probabilistic event variables. This work is motivated by the need
of keeping track of both confidence and lineage of the information stored
in a semi-structured warehouse. For instance, the modules of a (Hidden
Web) content warehouse may derive information concerning the seman-
tics of discovered Web services that is by nature not certain. Our model
supports both querying (tree pattern queries with join) and updating
(transactions containing an arbitrary set of insertions and deletions) over
probabilistic tree data. We show that the model is as expressive as the
impractical possible worlds model and that it is more expressive than
a simple model where probability (confidence) is stored at each node of
the tree. We briefly discuss implementation issues.

1 Introduction

The Web is developing very rapidly. However, the exploitation of the invaluable
information resources it provides still mostly relies on humans overwhelmed by
its dimension. If the problem of discovering information on the surface Web is
facilitated by a number of directories and search engines, the discovery, under-
standing and use of databases published on the Web (typically via forms and
Web services) is still particularly cumbersome. It is therefore most important to
develop automatic tools to capture the semantics of this so-called Hidden Web.
Such tools require a combination of techniques, for instance from information
extraction, natural language processing, semantic analysis. We are concerned
with combining such tools to develop a content warehouse to manage tree data
coming from both the surface and Hidden Web [1]. Since such a system relies
on techniques that are by nature imprecise, we need a model for imprecise tree
data. Indeed, the main contribution of this paper is such a model, namely the
fuzzy tree model.

Models for managing imprecise information are not new. In particular, a large
literature exists for the relational model typically based on two approaches: (i) a
probabilistic approach, e.g. [2, 3], and (ii) a logic approach, e.g. [4]. An originality
of our model is that it is based on a tree model, primarily to meet the needs of
the standard for data exchanges, XML [5]. Another originality is that our model



combines the two aforementioned approaches. First, probabilities are attached
to pieces of data to capture the confidence the warehouse may have about the
semantics of such pieces. Second, we rely on probabilistic events that are in the
spirit of the logical conditions of [4], e.g. to capture choices performed during
the extraction of information or its analysis. These probabilistic events capture
dependencies between the probabilities of distinct pieces of data.

Although this model may seem complex, it turns out that it arises naturally
when considering the management of information discovered on the Web. The
model is at the same time expressive (it captures complex situations) and concise
(it provides compact representations that can be processed). This will be shown
by comparing the fuzzy tree model with two more standard models for describing
imprecision. Most importantly, we will show that the model supports queries
(tree pattern queries with joins, a standard subset of XQuery) and updates.
Queries provide the means for a user to obtain information. Updates form the
core component for the building of knowledge. The global system consists in
a number of modules (crawlers, classifiers, data extractor, etc.). These tools
introduce probabilistic knowledge in the content warehouse by updating it.

We briefly discuss an on-going implementation that supports the fuzzy tree
model with both querying and updating.

The paper is organized as follows. In Section 2, we present more motivation.
In Section 3, we briefly present preliminary notions used throughout the paper.
Sections 4 and 5 discuss two simple models. The fuzzy tree model is the topic of
Section 6. Before discussing related work and concluding, we present in Section
7 an on-going implementation of the fuzzy tree model.

2 Motivation

Since its creation in 1991, the World Wide Web has considerably grown, with
billions of freely accessible pages. (See, e.g., [6].) It is generally assumed that
the Hidden Web (also known as Deep Web or Invisible Web) that consists of
databases accessible through HTML forms or Web services, is even much larger
(see, e.g., [7]) and that its content is typically of better quality than that of the
surface Web (e.g. Yellow Pages, U.S. Census Bureau . . . ). The Hidden Web is
undoubtedly a potentially invaluable source of information.

We want to provide access to the Hidden Web via high-level queries. To
illustrate, consider a Web user interested in available options for a particular
car. A current search engine will return a list of HTML pages including the
constructor’s website. We would like our system to discover that a particular
form on this site provides the desired information, fill that form, get the answer
and directly provide the desired information. Such a semantic interpretation of
the Hidden Web implies that the system has to discover the service, understand
it, and index it so that when the query arrives, it can be correctly answered. The
different main components of this process are illustrated in Figure 1. Our way
of seeing this process is as follows. A number of modules (independent agents)
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process some XML data (the information we already have about the Hidden Web
services) and keep enriching a content warehouse that holds that knowledge.

It is essential to observe that imprecision is unavoidable: the inference per-
formed by most modules typically involves some level of confidence. For instance,
the system may be rather confident (but not certain) that a site is that of the
constructor. The system may have found more than one forms that may provide
the options for a given make, but none that it is sure of. Any module participat-
ing in the construction of the warehouse must then be able to insert, modify or
delete information with a given confidence. This confidence or, in other words,
the probability that this information is true, should be handled throughout the
entire process. It will be essential for informing the user of the confidence of
portions of an answer as well as for ranking query results. Note that the process
does not have to be sequential as shown in Figure 1 for simplicity. For instance,
information extraction on one part of a HTML page may benefit of the semantic
analysis of another part.

Probabilistic XML Warehouse

Query interface
(tree-pattern with

join)

Update interface
(insertions,
deletions)

Module 1 Module 2 Module 3}
Update

+ confidence
+ confidence

transactionQuery Results

Fig. 2. Queries and Updates on a Probabilistic XML Warehouse



Three aspects, namely (i) the independent agents, (ii) the need to monitor
the derivation of knowledge, and (iii) the non-sequentiality of the entire process,
suggest the design of a content-centric system, as shown on Figure 2 in the style
of [1]. More precisely, the system is built on top of a content (semi-structured)
warehouse, with querying and updating capabilities supporting imprecise in-
formation. Probabilistic information is stored in the warehouse and confidence
tracking is directly provided through the query and update interfaces. Each
query result and update transaction comes with confidence information.

The purpose of this paper is to detail the model used to describe, query
and update the probabilistic information stored in the warehouse. To conclude
this section, we want to stress that the setting of Figure 2 is not restricted
to a Hidden Web warehouse but is indeed much more general. Similar needs
are encountered, for instance, when performing data integration [8], information
extraction or automatic translation from natural language [9].

3 Preliminary definitions

In this section, we present preliminary definitions that are used in remaining of
the paper. We assume the existence of a set N of labels and a set V of values
(say, the set of strings, with a particular value ε, the empty string).

Although we are typically interested in XML, the standard for data exchange
on the Web, we consider a simpler tree model that in particular ignores siblings
ordering. We will mention in Section 7 how to capture more of XML.

Definition 1. An (unordered) data tree t is a 5-uple t = (S, E, r, ϕ, ν) where:

– S is a finite set of nodes and E ⊆ S2 a tree rooted in r ∈ S;
– ϕ : S → N associates a label to each node in S.
– ν associates a value in V to leaves of the tree (where a leaf is a node in

S − {r} that has no child.)

Examples of data trees are given in Figure 4. Nodes are marked with an oval
containing the label. Observe that the node IDs (values in S) are not specified
since they contain no semantics. Indeed, we will not distinguish between two
trees that are the same up to renaming of these IDs.

The queries we use form a rather standard subset of XQuery [10], namely
Tree-Pattern-With-Join. However, since there is no well accepted definition for
such queries and, indeed, different definitions are used by different authors, we
define them next formally.

Definition 2. A Tree-Pattern-With-Join (TPWJ) query is a 3-uple (t,D, J)
where:

– t = (S, E, r, ϕ, ν) is a data tree.
– D ⊆ E is a set of descendant edges (the other edges are interpreted as child

edges).
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– J ⊆ S2 is a set of join conditions, such that for all (s, s′) in J , s and s′ are
two leafs of t and s 6= s′.

Such a TPWJ query is represented as a graph as in Figure 3. Note the join
condition between the nodes labelled C and D. Intuitively, this query will be
matched by a tree having, in particular, a child of its root labelled D and a
descendant of the root labelled C. The notion of matching of data tree by a
TPWJ query is defined in a classical way:

Definition 3. Let Q = (t, D, J) with t = (S, E, r, ϕ, ν) be a TPWJ query and
t′ = (S′, E′, r′, ϕ′, ν′) a data tree. Then a valuation Ψ (from Q in t′) is a mapping
from S to S′ verifying:

(i) (root) Ψ(r) = r′.
(ii) (labels) ∀s ∈ S, ϕ(Ψ(s)) = ϕ(s).
(iii) (edges)∀(s1, s2) ∈ E, if(s1, s2) ∈ D, Ψ(s2) is a descendant of Ψ(s1), other-

wise it is a child of Ψ(s1).
(iv) (values) For each leaf s of t with ν(s) 6= ε, Ψ(s) is a leaf of t′ and ν′(Ψ(s)) =

ν(s).
(v) (join conditions) For each (s1, s2) ∈ J , both Ψ(s1) and Ψ(s2) are leaves of t′

and ν′(Ψ(s1)) = ν′(Ψ(s2)).

Let Ψ be such a valuation. Then the minimal subtree of t′ containing Ψ(S) is
called an answer (we consider that a subtree is defined by a connected subset of
the set of nodes containing the root). The set of all answers is denoted Q(t′).

Figure 4 gives an example of a valuation from the query of Figure 3 to a
simple data tree. Observe that neither the second B node nor the F node is part
of the answer, by definition of minimal subtree.

We next define here update operations, whose basic components are in-
sertions and deletions. Let t = (S, E, r, ϕ, ν) and t′ = (S′, E′, r′, ϕ′, ν′) be
two data trees. Assume without loss of generality that they use different IDs,
i.e. S ∩ S′ = ∅. An insertion is an expression i(t, n, t′) where n is in S, the
node where t′ is to be inserted. The result of the insertion is the data tree:
v = (S ∪ S′, E ∪ E′ ∪ {n, r′}, r, ϕ t ϕ′, ν t ν′).
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Fig. 4. Matching of the query of Figure 3 on an example tree

A deletion is an expression d(t, n) where n is in S − {r}. Node n is removed
as well as all its descendants. The formal definition is straightforward and thus
omitted.

Insertions and deletions are elementary updates that are used to define update
transactions. Typically, one want to perform a number of update operations
based on the result of a query. This motivates the following definition.

Definition 4. An update transaction is a pair τ = (Q, U) where:

– Q = (tQ, D, J) is a TPWJ query.

– U is a set (i1 . . . ip, d1 . . . dq) where i1 . . . ip are insertions on tQ and d1 . . . dq

are deletions on tQ.

Queries are used to select the nodes of the trees where insertions or deletions
are made. Intuitively, when one applies a transaction on a data tree t, one op-
eration, say di, results in the deletion of a subtree for each valuation of Q. We
assume that the various trees that are inserted all use fresh IDs.

Definition 5. Let τ = (Q, U) be an update transaction.

Let t be a data tree matched by Q and let Ψ1 . . . Ψn be the valuations of Q on
t.

Let (ni1 . . . nip , nd1 . . . ndq ) be the nodes of Q of the insertions and deletions
of U .

For each k with 1 ≤ k ≤ p, we define the set Ik =
⋃

1≤j≤n{Ψj(n
ik )}. For

each k with 1 ≤ k ≤ q, we define the set Dk =
⋃

1≤j≤n{Ψj(n
dk )}.

The result of the transaction τ on t, denoted τ(t), is the result of the in-
sertions i1 . . . ip on, respectively, each of the nodes of I1 . . . Ip and the deletions
d1 . . . dq on, respectively, each of the nodes of D1 . . . Dq.

We are now ready to consider models for probabilistic tree data.
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Fig. 5. Example Possible Worlds set

4 Possible Worlds Model

A natural way of representing probabilistic information is to list all possible
worlds, each with its probability. See the example in Figure 5. More formally:

Definition 6. A Possible Worlds (PW) set T is a finite set of pairs (ti, pi)
where each ti is a data tree, each pi is a positive real and

∑n

i=1 pi = 1.

If (t, p) is in a PW set T , this means that there is a probability p that the
information contained in T is indeed t. This is the rather general way of rep-
resenting probabilistic semi-structured information. In complex cases, one may
have a very large number of possible worlds and clearly, it would be more practi-
cal to have a more compact representation of sets of possible worlds; indeed, we
will propose some in the next sections. But for now, let us consider the Possible
World sets and a particular issue, namely normalization.

A PW set T = {(ti, pi)} is said to be normalized if there is no i, j dis-
tinct such that ti, tj are identical (up to node isomorphism). The normaliza-
tion of a PW set T is obtained by regrouping the identical component trees
into one component and summing their probabilities. For instance, consider
T = {(t1, 1/3), (t2, 1/3), (t3, 1/3)} where t1, t3 are identical up to node renaming.
Then the normalization of T is the PW set {(t1, 2/3), (t2, 1/3)}. In the remaining
of this paper, we will assume that all PW trees are normalized.

We extend this notion of normalization to sets of (ti, pi) pairs where the pi

do not sum to 1.

The definition of TPWJ query on a data tree can be extended in a quite
natural way to PW sets.

Definition 7. Let Q be a TPWJ query and T = {(ti, pi)} a PW set. The set of
probabilistic possible answers is:

P = {(t, pi) | (ti, pi) ∈ T, t ∈ Q(ti)}

The result of Q for T is the normalization Q(T ) of P.



Note that by construction Q(T ) is not always a PW set since the sum of
probabilities is not 1 in the general. The fact that (t, p) ∈ Q(T ) is interpreted as
there is a probability p that t is a result of the query Q over T . So, for instance,
the query “Who are the children of John?” may return “Alice” with a probability
0.9 and “Bob” with a probability 0.4. Note that the sum is greater than 1.

Now consider updates. By having defined an update transaction with a
TPWJ query matching the tree and not by an absolute position in the tree,
it is possible to extend this definition to PW sets.

A probabilistic update transaction is a pair (τ, c) where τ is an update trans-
action and c ∈]0; 1] is the confidence we have in the transaction. Now we have:

Definition 8. Let T = {(ti, pi)} be a PW set, (τ, c) a probabilistic update trans-
action, τ = (Q, Seq), the result of (τ, c) on T , denoted (τ, c)(T ), is a PW set
obtained by normalizing:

{(t, p) ∈ T | t is not selected by Q}
⋃

{(τ(t), p · c) | t is selected by Q}
⋃

{(t, p · (1 − c)) | t is selected by Q}

In other words, the possible worlds set resulting from an update transaction
with confidence c of a component t of a possible worlds set T contains both the
original tree t, with probability multiplied by (1−c), and the tree resulting from
the transaction, with probability multiplied by c. This implicitly supposes that
all update transactions are independent.

Note that in the worst case, the number of components is multiplied by 2.
This may occur for instance if one inserts a node as a child of the root. Then
Q matches all data trees. Thus, the number of components grows, in the worst
case, exponentially in the number of update transactions performed on the PW
set.

To conclude this section, note that the PW model is not practical storage-
wise. It is neither practical for query and update processing (in particular be-
cause of the potential exponential explosion). We next look at alternative ways
of representing probabilistic tree information. The possible world semantics is
natural and will provide guidelines for these more complex models.

5 Simple Probabilistic Tree Model

In the spirit of probabilistic models for the relational model, we can attach a
probability to each node in the tree. This is the basis of the model studied in
[11]. The intuition is that it captures the probability of that node to be present
assuming its parent is. A limitation of this model is that the only probability
dependency that is captured is between the dependencies of nodes in a par-
ent/child relationship. We study next this model and highlight limitations that
will motivate the fuzzy tree model of the following section.

Definition 9. A Simple Probabilistic (SP) tree T is a pair (t, π) where t =
(S, E, r, ϕ, ν) is a data tree and π : S − {r} →]0; 1] assigns probabilities to tree
nodes.
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Such an SP tree is represented as in Figure 6. Only probabilities non set to
1 are shown.

We can give a possible worlds semantics to an SP tree as follows. Choose an
arbitrary X ⊆ S. Consider tX the tree obtained by removing from t all nodes
not in X (and their descendants). We assign to this tree, the probability:

pX =
∏

s∈X

π(s) ×
∏

s∈S−X

(1 − π(s))

The possible world semantics of T , denoted Sem(T ), is defined as:

normalization({(tX , pX) | X ⊆ S})

Note that, as X is an arbitrary subset of S, a given tree t′ can be obtained
from various subsets X , including subsets which contain nodes not in t′. The
normalization, by summing on the different X leading to the same tree, ensures
that the probability of t′ is correct. In particular, this definition correctly provides
a PW set because:

∑

X⊆S

(
∏

s∈X

π(s) ×
∏

s∈S−X

(1 − π(s))) = 1

from classical probability equations.
As an example, the semantics of the SP tree of Figure 6 is the PW set on

Figure 5. A natural question is then whether the SP tree model is as expressive
as the PW tree model. The answer is no.

Proposition 1. There exists a PW set which is not the PW semantics of an
SP tree.

Figure 7 is an example of a PW set that has no equivalent SP tree. Intuitively,
an equivalent SP tree would necessarily have nodes A, B, C and D, so the PW set
would contain a tree with these 4 nodes, which it does not have, a contradiction.

This negative result is not a sufficient reason for rejecting the SP model, since
one might argue that PW trees not representable in the SP model are of little
practical interest. Let us consider queries and updates in the SP model.
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Definition 10. Let Q be a TPWJ query and T = (t, p) an SP tree. The result
of Q on T , denoted Q(T ), is the normalization of the set:

⋃

u∈Q(t)

{(u,
∏

n node of u

p(n))}

Once again, Q(T ) is not in general a PW set. The way to read (t′, p′) ∈ Q(T )
is that there is a probability p′ that t′ is a result to Q(T ). We have the following
result, which shows that the definition is coherent with the PW semantics of an
SP tree:

Theorem 1. Let Q be a TPWJ query. Then Q(Sem(T )) = Q(T ).

Now consider updates. The following result demonstrates that the SP tree
model does not meet our requirements in terms of update, so motivates the last
model we consider in the next section.

Proposition 2. There exists an SP tree T and a probabilistic update transaction
(τ, c) such that there is no SP tree whose semantics is (τ, c)(Sem(T )).

In other words, “SP trees are not closed under transactions”. This comes from
the fact that dependencies between nodes are not expressible in the SP model.
For instance, if an update transaction adds two nodes under one common node,
their presence is completely correlated whereas the presence of siblings is inde-
pendent in the SP model. Indeed, a simple modification that can be seen as an
interdependent succession of an insertion and a deletion, cannot be represented
in the SP model. Actually, the problem is even deeper: as the positions where
the updates are performed are selected by a query, the update to be performed
may be conditioned by the assumptions that were made to realize the query.
There is no way to specify this kind of dependency.

We next present an other model that overcomes this limitation.

6 Fuzzy Tree Model

In this section, we propose an original model for representing probabilistic in-
formation in semi-structured databases, that we call the fuzzy tree model. This



model is inspired by the SP model from the previous section and enriches it using
conditions à la [4], that are called probabilistic conditions here. We first intro-
duce the model; then consider the possible world semantics; and finally queries
and updates.

6.1 Model

The conditions we use are defined using the auxiliary concept of probabilistic
event. Given a set W of event names, a probability distribution π assigns prob-
abilities, i.e. values in ]0; 1] to elements of W . An event condition (over W ) is a
finite (possibly empty) set of event atoms of the form w or ¬w where w is an
event in W .

A

B

w1

C

D

w2

Event Proba.

w1 0.8
w2 0.7

Fig. 8. Example fuzzy tree

The intuition is that we assign probabilistic conditions to nodes in the trees,
instead of assigning them simple probabilities like in the SP model. This mech-
anism captures complex dependencies between nodes in the database.

Definition 11. A fuzzy tree T is a 3-uple (t, π, γ) where:

– t = (S, E, r, ϕ, ν) is a data tree
– π is some probability distribution over some set W of events
– γ assigns event conditions to nodes in S − {r}.

Figures 8 and 9 show examples of fuzzy trees. True conditions (i.e. empty set
of events) are not shown.

6.2 Possible Worlds Semantics

The semantics of a fuzzy tree is defined using PW sets as follows:

Definition 12. Let T = (t, π, γ) with t = (S, E, r, ϕ, ν) be a fuzzy tree. Let W
be the event names occurring in T . The possible worlds semantics of T is the
PW set, denoted Sem(T ), defined as the normalization of:



A

B

w1,¬w2

C

D

w2

Event Proba.

w1 0.8
w2 0.7

Fig. 9. More complex fuzzy tree

⋃

V ⊆W

{(

t|V ,
∏

w∈V

π(w)
∏

w∈W−V

(1 − π(w))
)}

where t|V is the subtree of t where all nodes conditioned by a ‘¬w’ atom with
w ∈ V or a ‘w’ atom with w /∈ V are removed (as well as their descendants).

Example of PW semantics of fuzzy trees are given in Figures 5 and 7, respec-
tively for the fuzzy trees of Figures 8 and 9. Observe that the fuzzy tree model is
more expressive than the SP model, since the latter did not have an equivalent
of the PW set represented in Figure 7. Actually, the following important result
states that the fuzzy tree model is as expressive as the PW model.

Theorem 2. For each PW set X, there exists a fuzzy tree T such that X =
Sem(T ).

To see the previous result, consider a PW set X . For each (ti, pi) in X ,
consider an event wi. Besides the root that is not conditioned, each node in the
fuzzy tree has a condition of the form ¬w1,¬w2 . . .¬wi−1, wi,¬wi+1 . . .¬wn.
Obviously, this construction is very verbose since the resulting fuzzy tree has
approximatively the size as the original PW set. It will be of course interesting
to consider more compact equivalent fuzzy trees.

6.3 Querying

Definition 13. The result of Q on a fuzzy tree T = (t, π, γ), denoted Q(T ), is
the normalization of the set:

⋃

u∈Q(t)

{(

u, eval
(

⋃

n node of u

γ(n)
))}

where eval(cond) returns 0 if there is an event w such that both ‘w’ and ‘¬w’
are in cond, and

∏

w∈cond π(w) ·
∏

¬w∈cond(1 − π(w)) otherwise.
When normalizing the set, if one of the probability is 0, the element is re-

moved. If the resulting set is empty, Q does not match T .



Note that we define above the result of a query directly as a result in the
possible world semantics. Although not done here, one could define it as a fuzzy
tree whose semantics captures all the answers. The correctness of this definition
is demonstrated in the following result:

Theorem 3. Let T be a fuzzy tree and Q be a TPWJ query. Q matches T if
and only if Q matches Sem(T ). Moreover, Q(T ) = Q(Sem(T )).

6.4 Updating

Finally, we show that unlike the SP model, the fuzzy tree model supports arbi-
trary probabilistic update transactions. We present informally the definition of
the way updates are carried out for fuzzy trees. The formal definition somewhat
more involved is omitted.

Let (τ, c) with τ = (Q, U) be a probabilistic update transaction and T =
(t, π, γ) a fuzzy tree. Let w be a fresh event variable.

If Q(T ) = ∅, the result of (τ, c) on T is obviously T . Consider now the case
where |Q(T )| = 1, that is where the position of update operations is uniquely
defined. Let u be the unique element of Q(T ) and cond =

⋃

n node of u γ(n). cond
is the set of conditions that should be applied to the inserted and deleted nodes.
The result of (τ, c) on T , denoted (τ, c)(T ), is the fuzzy tree where:

– Insertions are performed at the position mapped by Q on t in u. If n is the
position to insert a subtree t′, and condancestors is the union of the event
conditions on the (strict) ancestors of n, t′ is inserted and its root is assigned
the condition {w} ∪ (cond − (γ(n) ∪ condancestors)).

– Deletions are performed at the position mapped by Q on t in the follow-
ing way. Let n be the node to be deleted and condancestors be the union of
the event conditions on the (strict) ancestors of n. Let condnew = {w} ∪
cond − (γ(n) ∪ condancestors). Intuitively, the deletion of the node should
be conditioned by condnew; in other words, the node should remain if the
disjunction of the negated atoms of condnew is true. More precisely, the
original n node is replaced by as many copies as elements of condnew .
Let a1 . . . ap be the p elements of condnew . The first copy of n is anno-
tated with condition γ(n) ∪ {¬a1}. The second copy of n is annotated with
condition γ(n) ∪ {a1,¬a2}. The third copy of n is annotated with condi-
tion γ(n) ∪ {a1, a2,¬a3}. . . The last copy of n is annotated with conditions
γ(n) ∪ {a1 . . . an−1,¬an}.

This handles the case where |Q(t)| = 1. Consider now what happens when a
query returns more than one result:

– Insertions are performed at the positions mapped by any of the valuations
of Q. This means that a subtree may be inserted twice under the same node,
but with different conditions.



– Deletions are performed at the positions mapped by any of the valuations of
Q. If two deletions occur at the same position, the deletion is conditioned by
the disjunction of the two condition sets. Let F be the corresponding logical
formula. The node should remain if ¬F is true. Let G be the disjunctive
normal form of ¬F . The node n is replaced by as many nodes as terms in
the disjunction G, each of them corresponding to one of this conjunctive
term, as in the case where |Q(t)| = 1.

This definition, in particular the deletion part, is quite complex. Let us con-
sider the example of the simple deduplication task on Figure 10. Here, the two
B nodes are considered as representing the same information with confidence
0.9; therefore, they are removed from the tree and replaced with a new unified
node with the same probability. However, the first B will not be deleted if the
deduplication hypothesis is not true (w1,¬w3) or if the deduplication hypothesis
is true but the second B does not exist (w1,w3,¬w2). The same holds for the
second B. This simple example shows that the information contained in the tree
can become quite complex, all the more in the presence of deletions.

A

B

w1

B

w2

Event Proba.

w1 0.8
w2 0.7

A

B

w1,¬w3

B

w1,w3,¬w2

B

w2,¬w3

B

w2,w3,¬w1

B

w1,w2,w3

Event Proba.

w1 0.8
w2 0.7
w3 0.9

Fig. 10. Deduplication example
We now have:

Theorem 4. Let (τ, c) be a probabilistic update transaction and T a fuzzy tree.
Then Sem((τ, c)(T )) = (τ, c)(Sem(T )).

The fuzzy tree model provides a more concise representation of imprecision
than the possible world model. Updates can be captured in this model. Complex
operations may still be costly, but simple operations (insertions, or deletions
without dependency on another branch of the tree) do not yield an exponential
growth, as it is the case for the PW model. As for the conditional tables of [4],
the “simplification” of a fuzzy tree, i.e. finding a fuzzy tree that is minimal in
some sense, is rather complex. Its exact complexity is still open.

Remark 1. An interesting side benefit of using the fuzzy tree model is the possi-
bility to keep lineage (or history) information about the data. Since every node
is conditioned by event variables corresponding to update transactions, we can
associate meta-data to these variables to record information about the origin
(when? who? why?) of the corresponding transaction. Note that these variables



are preserved throughout the whole process and a fuzzy tree system would be
able to deliver, along with query results and probabilities, information about
the lineage associated with a piece of data (possibly updated more than once)
and query results. This is an important component toward understanding why
a given piece of data occurs in the data or in a query result.

7 Implementation

This section briefly discusses our implementation of a fuzzy tree system. The
on-going implementation is based on the following components, and will soon be
available at http://pierre.senellart.com/software/fuzzyxml/.

– XML documents are stored in a file system. (The use of an XML repository
will be considered in the future.)

– TPWJ queries are represented as XML fragments.
– The query evaluation over fuzzy trees is implemented using the Qizx/open

Java XQuery engine [12]. TPWJ queries are compiled into XQuery queries,
whose results are converted to the minimal subtrees referred to in Defini-
tion 2. A post-processing is performed on the resulting subtrees to compute
the associated probabilities.

– Query compilation uses a dataguide of the document obtained by using the
XML Summary Drawer described in [13] for optimization.

– Updates are performed directly on the XML tree (cf Section 6.4).
– The complete system is made available as a webservice, to be integrated in

more complex systems such as the one represented in Figure 2.

Observe that we need to record probabilistic meta-information in the XML
documents. This is achieved by adding an element containing event conditions
on every conditioned node, and maintaining external tables with the associa-
tion between event names and probabilities. To conclude this section, we briefly
discuss the limitations of our work when exposed to real-life XML documents:

– The trees we consider are unordered, which is absolutely inherent to the
approach; we have to assume that the applications we will support are only
concerned with queries that do not rely on the order of siblings. This is a
rather standard assumption.

– Mixed content (nodes including both subnodes and textual content) is not
yet supported. This can be easily fixed by adding virtual text nodes above
every text fragment.

– Attribute nodes are not yet supported either. They can easily be replaced
by standard nodes.

8 Related Work

The topic of probabilistic databases has been much studied, see for instance [4,
3, 14–16], and [2, 17] for more recent works. In [17], Widom stresses the need for



a system maintaining both probability and lineage of the data. In that paper, im-
precision comes from three distinct sources: inaccuracy of the values, confidence
in the tuples of the relations and incompletude in the coverage of relations. We
were only interested here in this second source of imprecision. The idea of asso-
ciating probabilistic formulas to node comes from the conditional tables of [4].

The semi-structured data model [18] and its concrete representation XML
[5] are now widely used for exchanging data on the Web, where flexible schemas
are preferred to the strict typing of the relational model. A relatively small
number of works, however, have dealt with the representation of probabilistic
semi-structured data. In [19], Dekhtyar and all use a semi-structured database to
store complex probabilistic distributions of data which is essentially relational.
Works closer to ours are [11, 20, 8]. Nierman et al [11] describe a variant of the SP
model and present strategies for efficient evaluations of logical queries. In [20],
a very complex model, based on directed acyclic graphs, is developed, along
with an algebraic query language. Finally, Keulen et al [8] present an approach
to data integration using probabilistic trees; their model is a mix of the PW
and SP model, which allows both extensive descriptions of the possible worlds
and node-based factorization. Querying and the way to present data integration
results on this model are also shown. It is to be noted that none of the previous
works, to the best of our knowledge, describes in an extensive way how to do
updates on a probabilistic semi-structured database, which is one of the main
contributions of this paper.

9 Conclusion

The work presented here is part of a larger project on the construction of content
warehouses from (Hidden) Web resources as described in Section 2. After working
for a while on the topic, we realized that imprecision had to be a core part of
the XML-based warehouse since ad-hoc processing of imprecision simply did not
scale. This observation motivated the present work. We need now to complete the
implementation of the fuzzy tree system, move it to an efficient XML repository
and experiment it in real conditions.

A most important direction of research is to develop optimization techniques
tailored to the fuzzy tree model. In particular, one would like to cut off tree
branches that provide low confidence data. Also, we want to study fuzzy tree
simplification, i.e. finding more compact representations of imprecise data, pos-
sibly at the cost of some moderate loss of precision.

As it is defined, the fuzzy tree model is not completely algebraic: if the result
of an update is a tree, the result of a query is a set of tree/probability pairs. It
turns out that using a similar construction, one can also obtain a representation
of the answer in terms of fuzzy trees. The details have to be worked out.

Finally, an interesting aspect is schema validation. Suppose we have a fuzzy
tree representation T of some data and also know that it is conform to some
DTD D. Its semantics can be seen as X = {Sem(T )∩ sat(D)} where sat(D) is
the set of documents validating D. An issue is to efficiently compute a fuzzy tree



for X . Of course, we will have to ignore order-related typing issues. But other
aspects such as cardinalities are already quite challenging.
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