
Enforcing Non-Positive Weights for Stable Support Vector Tracking

Simon Lucey
Robotics Institute, Carnegie Mellon University

slucey@ieee.org

Abstract

In this paper we demonstrate that the support vector
tracking (SVT) framework first proposed by Avidan is equiv-
alent to the canonical Lucas-Kanade (LK) algorithm with a
weighted Euclidean norm. From this equivalence we empir-
ically demonstrate that in many circumstances the canoni-
cal SVT approach is unstable, and characterize these cir-
cumstances theoretically. We then propose a novel “non-
positive support kernel machine” (NSKM) to circumvent
this limitation and allow the effective use of discriminative
classification within the weighted LK framework. This ap-
proach ensures that the pseudo-Hessian realized within the
weighted LK algorithm is positive semidefinite which allows
for fast convergence and accurate alignment/tracking. A
further benefit of our proposed method is that the NSKM
solution results in a much sparser kernel machine than the
canonical SVM leading to sizeable computational savings
and much improved alignment performance.

1. Introduction

Rather than exhaustively searching through all possi-
ble warps it is often more efficient in terms of computa-
tion to perform a non-linear optimization by iterating two
steps when performing object alignment/tracking. First, ap-
proximately minimize some cost typically by making some
sort of linear or quadratic approximation around the cur-
rent warp parameters. Second, update the current param-
eter estimate and then repeat step one until convergence.
This approach is typically referred to as a gradient descent
approach to object alignment/tracking [3]. The most no-
table application of this concept in computer vision is the
classic Lucas-Kanade (LK) [14] algorithm although many
variations upon this idea now exist in computer vision liter-
ature [3].

It has been recently found that their is an inherent
advantage in performing gradient descent object align-
ment/tracking using a discriminative rather than a genera-
tive model [1, 16, 13, 15]. The appeal of discriminative
approaches lies in their ability to generalize to situations
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Figure 1. A major contribution in our paper is the ability to train
a sparse kernel-machine with non-positive alpha weights which
we refer to as a “non-positive support kernel machine” (NSKM).
(a) A separating plane defined by a regular SVM requiring both
positively and negatively weighted support vectors. (b) A separat-
ing plane defined by “only” negatively weighted support vectors.
The filled circles and diamonds are termed positively and nega-
tively weighted “support vectors” respectively. Ensuring nega-
tively weighted alpha weights ensures the weight matrix employed
within the LK alignment algorithm remains positive semidefinite
which is critical for stable alignment/tracking behaviour.

where the appearance of the object being aligned/tracked
has not been seen previously. One of the most notable and
elegant approaches to discriminative gradient descent ob-
ject alignment/tracking was the seminal work of Avidan [1]
concerning his support vector tracking (SVT) framework.
In this work Avidan employed a support vector machine
(SVM) trained using a homogeneous quadratic kernel.
Through some manipulation he found this SVM can be re-
formulated to take a similar form as the standard LK solu-
tion for optical flow. Avidan then demonstrated how this
SVT outperformed the classic LK approaches for track-
ing. What makes the SVT framework and more generally
the LK algorithm perform well in many alignment/tracking
tasks is that it iteratively approximates the problem of find-
ing the correct warp as minimizing an unconstrained convex
quadratic optimization problem1. As noted in optimization

1Note that the quadratic function f(x) = (1/2)xT Px + qT x + r
is considered convex if P � 0 (i.e., if P is positive definite) [6]. If P is
positive semidefinite (i.e., P � 0) but not positive definite we refer to this
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literature [6] the solution to any convex quadratic problem
has a unique solution which can be found explicitly. Unfor-
tunately, if the quadratic problem is not convex then there
exists no method for explicitly finding the minima (there
may instead exist no minima or multiple minimas). Within
the canonical LK algorithm the quadratic problem being it-
eratively solved is always assured of being “close” to con-
vex so this concern can be largely ignored. Within the SVT
framework, however, we demonstrate that no such guaran-
tees can be made. This dilemma forms the central thesis of
our paper. The contributions of our paper are as follows:-
• Demonstrating that when the SVT framework is recast

in the form of the weighted LK algorithm, the weight ma-
trix learnt has no guarantees of being positive semidefinite.
When the weighting matrix is not positive semidefinite the
performance of the SVT framework can suffer catastroph-
ically as it is no longer guaranteed of iteratively solving a
quadratic optimization problem that is “close” to convex
(Section 3).
• To remedy this problem we propose the employment of

our novel “non-positive support kernel machine” (NSKM)
which learns a sparse kernel machine with non-positive
weights (see Figure 1). The NSKM results in a sparser so-
lution than the canonical SVM approach leading to sizeable
computational savings during alignment (Section 4).
•We demonstrate that our NSKM approach offers supe-

rior alignment to current generative approaches for LK type
alignment when the appearance variation of the object has
not been seen previously (Section 5).

Related Work: There has been substantial work conducted
in the field of gradient descent alignment/tracking in the
presence of appearance variation. Notably, Black and Jep-
son [5] proposed a gradient-descent approach to alignment
which employed principal component analysis (PCA) to
model object appearance variation. Within the LK frame-
work they employed a distance from feature space (DFFS)
error (i.e., reconstruction error) criterion to solve for warp
displacement. In this work a robust error function was also
employed to deal with occlusion and some degree of un-
seen appearance variation. Variations on the employment
of a DFFS error criterion have been proposed by a number
of authors, notably Hager and Belhumeur [10], with a good
review of these variations being conducted in [2]. These
approaches, however, can be considered generative, rather
than discriminative, as they employ only positive (aligned)
examples during learning and optimize an error function
based on how well the generative model (i.e., PCA) can
reconstruct the object. As a result it is well understood
these approaches suffer from problems when trying to gen-
eralize to previously unseen object appearance variation.

quadratic function as being “close” to convex. In this situation convexity
can be enforced by adding a weighted identity matrix (i.e., P← P + σI)
to P to enforce convexity.

An excellent review on the shortcomings of PCA models
for gradient-descent alignment was performed by Gross et
al. [8] concerning active appearance model (AAM) align-
ment.

Other than the work of Avidan [1], which is of central
focus in this paper, there has recently been a plethora of
work performed in the area of discriminative gradient de-
scent object alignment/tracking. An approach that is closest
in essence to the work of Avidan can be found in the re-
cent work of Liu [13] for AAM face alignment. In this ap-
proach the authors trained a classifier, using a gentle boost
procedure, to reliably classify “aligned” and “non-aligned”
faces. Although reporting good alignment performance this
approach employed a steepest descent optimization strat-
egy to fitting. As a result the approach is susceptible to the
same drawbacks seen in nearly all steepest descent methods,
specifically how to choose a good step size and the problem
of slow convergence.

Other work related to Avidan’s method are approaches
that attempt to learn a static displacement expert using dis-
criminative regression methods. Williams et al. [16] learnt
a displacement expert, which takes an image as input and
returns the warp displacement, by using a relevance vec-
tor machine (RVM). Similarly, Saragih and Goecke [15]
recently learned a displacement expert through a boosting
procedure for AAM alignment. Again, although receiv-
ing good performance these approaches are hindered by the
static nature of the learnt displacement expert. Additionally,
the convergence properties of such approaches are poorly
understood and largely based on heuristics.

2. Lucas-Kande Alignment

The standard Lucas-Kanade (LK) alignment algo-
rithm [3, 14] attempts to find the parametric warp p that
minimizes the weighted L2 norm between the template im-
age T and source image Y 2,

arg min
p
||Y (W(z; p))− T (W(z; 0))||2D (1)

The vector z = [xT
1 , . . . ,x

T
N ]T is a concatenation of indi-

vidual pixel 2D coordinates x within the template image T .
One can map the image positions z to a set of new posi-
tions z′,

z′ =W(z; p) = [W(x1; p)T , . . . ,W(xN ; p)T ]T (2)

based on the warp parameters p. The warp function is
canonically translation W(x; p) = x + p, but W(x; p)
has been extended to numerous other types of warps such

2For convenience we employ the notation that ||a − b||2C = (a −
b)T C(a − b), where a and b are column vectors and C is a symmetric
matrix.



as affine [5, 3] and piece-wise affine [8]. When we re-
fer to T (x) it refers to a single pixel intensity value at the
image coordinate x. Similarly, when we refer to T (z) =[
T (x1)T , . . . , T (xN )T

]T
this refers to a N dimensional

vector concatenation of pixel intensity values correspond-
ing to each coordinate x within the vector z. From here
on we shall refer to T (W(z; 0)) as T (z) because W (z; 0)
is an identity warp. The vector Y (z′) is always the same
size as T (z) and refers to the pixel values taken from the
source image we want to align. The weight matrix D is
canonically chosen to be an identity matrix, however, there
has been a lot of recent work [1, 5] demonstrating how dif-
ferent weight matrices can be defined/learned for improved
robustness and performance. The details on how D is se-
lected is a major part of our paper and shall be discussed in
detail in Section 3.

Rather than exhaustively searching all possible values
of p, which becomes exponentially expensive as the di-
mensionality of p increases, the LK algorithm derives
and solves a continuous optimization problem. The ap-
proach takes the first order Taylor series approximation
around Y (z′) to recast the non-linear optimization problem
in Equation 1 as an unconstrained quadratic optimization,

arg min
∆p
||Y (z′) + JT ∆p− T (z)||2D (3)

where ∆p is the warp of the source image Y (W(z; p +
∆p)) that minimizes the weighted sum of squared differ-
ences (SSD) between the template T (z) given that p is our
initial guess. One can solve for ∆p through,

∆p = H−1JD [T (z)− Y (z′)] (4)

where the pseudo-Hessian matrix is defined as,

H = JDJT (5)

and the Jacobian of Y (z′) is defined as,

J =
∂Y (z′)
∂p

(6)

Since we took the first order Taylor series approximation
around Y (z′) in Equation 3 we must iteratively update z′ =
W(z; p)←W(z; p + ∆p) and then solve for a new ∆p in
Equation 4 until convergence or a maximum number of iter-
ations are performed. This type of non-linear optimization
is commonly referred to as Gauss-Newton optimization [3].

Other least-squares variants have been evaluated in [3]
such as the Newton and Levenberg-Marquardt optimization
for the LK algorithm. The Levenberg-Marquardt optimiza-
tion is especially useful when H is positive semidefinite but
not positive definite as it adds a weighted identity matrix
to H to ensure the quadratic in Equation 3 has a single so-
lution. As pointed out in [3] assuming H is positive defi-
nite, even though we only have guarantees that H is positive

Figure 2. Example images from the MultiPIE database [9] used in
our alignment experiments. Eye and nose ground-truth points are
denoted on each face with red“x”s with the resulting red solid line
bounding box taken around those coordinates. A blue dashed line
bounding box denotes an instance where the ground-truth points
are perturbed by random noise ranging between 5-10 root mean
squared point error (RMS-PE). The images within the MultiPIE
database exhibit a large amount of expression variation making
alignment challenging.
semidefinite, still leads to robust performance and fast con-
vergence in practice [3]. As we can see in Equation 5, H
is guaranteed of being positive semidefinite if the weight
matrix D � 0.

3. Support Vector Tracking
SVMs have been used to great effect in a plethora of dif-

ferent machine learning tasks [7, 4] as they are able to incor-
porate positive and negative examples within their frame-
work and provide good generalization through the principle
of “maximizing the margin”. A SVM can be employed for
alignment by estimating the parametric warp p that maxi-
mizes,

arg max
p

l∑
j=1

bjγjk(Y (W(z; p)), Tj(z)) + c (7)

where Tj are the support template vectors taken from an
ensemble of offline positive (aligned) and negative (mis-
aligned) object examples (see Figure 2), γj are their support
weights, bj are their sign, and l are the number of support
vectors. k() is the kernel we choose to use, Y (W(z; p)) is
the candidate region in the source image Y we are evaluat-
ing and c is a bias term learnt during the SVM optimization
process (the constant c, however, can be dropped as it does
not affect the solution). In a similar approach to the LK al-
gorithm, Avidan proposed a method to solving Equation 7
through a continuous optimization (rather than exhaustively
searching over p). Again, we take the first order Taylor se-
ries approximation around Y (z′) so that we obtain a new
linear optimization problem,

arg max
∆p

l∑
j=1

αjk(Y (z′) + JT ∆p, Tj(z)) (8)



where αj = bjγj combines the support weight and sign
into a single value which we shall refer to herein as al-
pha weights. Avidan demonstrated that if a homogeneous
quadratic polynomial given by the kernel k(a,b) = (aT b)2

is employed it is possible to solve for ∆p explicitly. In this
particular case the equations resemble the standard LK so-
lution seen in Equation 4 with the support vectors replacing
the role of the template T (z). In Appendix A we demon-
strate that the two solutions are actually identical given that,

D =
l∑

j=1

−αjTj(z)Tj(z)T (9)

and assuming our object template T (z) (not the support
vectors denoted by Tj(z)) is zero in Equation 4. We can
now view SVT as minimizing the weighted error in Equa-
tion 1 rather than maximizing the classification score in
Equation 8. As we shall discuss in subsequent sections this
insight leads to a number of interesting avenues for improv-
ing the behavior of Avidan’s SVT algorithm.

Problems with the Positive Alpha Weights: As discussed
previously in Section 2 for the weighted LK algorithm to
perform effectively the pseudo-Hessian matrix H must at
least be positive semidefinite. This is because each iteration
of the LK algorithm performs a type of curve fitting which
is quadratic. When H is positive semidefinite it ensures that
this surface is a convex quadratic and thus has a unique min-
imum. If H is negative semidefinite or indefinite then the
convexity requirement [6] for the unconstrained quadratic
optimization problem being iteratively solved is violated. In
the special situation when H is positive semidefinite but not
positive definite (i.e., singular) we assume a weighted iden-
tity matrix can be added to H to enforce convexity (e.g.,
Levenberg-Marquardt optimization).

When alpha weights are allowed to become positive it is
possible for the Hessian H to violate our positive semidefi-
nite assumption and turn our convex quadratic optimization
into a non-convex problem. Combining Equations 5 and 9
to form the pseudo-Hessian matrix,

H = JDJT = −
l∑

j=1

αjJ
[
Tj(z)Tj(z)T

]
JT (10)

it is clear that we must have only non-positive alpha weights
to ensure H is positive semidefinite (since the non-zero
weighted sum of a set of convex functions is strictly con-
vex [6]). Inspecting Equation 10 further it becomes clear
that if D is positive semidefinite then the Hessian matrix H
is guaranteed of being positive semidefinite.

Unfortunately, by definition [7, 4] the alpha weights for
an SVM must sum to zero (i.e.,

∑l
j=1 αj = 0) thus imply-

ing there will always be positive and negative alpha weights.
We should emphasize, however, that the zero sum constraint

on the SVM alpha weights does not prohibit D from being
positive semidefinite which explains why in many circum-
stances the conventional SVT framework performs well.

4. Our Approach
As discussed in Section 3 major problems can occur

if we do not enforce our weight matrix D to be positive
semidefinite within the LK framework. A naı̈ve way to
solve this problem is to learn a least-squares convex ho-
mogeneous quadratic classifier directly. This optimization
problem can be posed as a convex quadratically constrained
quadratic programming (QCQP) problem [6] (as forcing D
to be semidefinite involves quadratic constraints). While
this convex QCQP can be solved by standard online pack-
ages, general-purpose solvers tend to scale poorly in the
number of constraints.

By imposing additional structure on D (e.g., enforc-
ing D to be diagonal) so all constraints are linear this QCQP
problem can reduce to a quadratic programming (QP) prob-
lem3. Unfortunately, even in this instance for reasonable
values of M the amount of memory required to store this
QP problem is far too large (i.e., (M + 1)(M/2) × (M +
1)(M/2)) to be stored in memory making such an optimiza-
tion untenable in practice. Another option is to borrow the
“kernel” trick employed by Avidan [1] from within the SVT
framework and attempt to optimize,

arg min
α

=
1
2
||b−Kα||2

=
1
2
αT Qα− eTα (11)

given,
Q = KT K, e = KT b

Ki,j = ψT
i ψj = (Tj(z)TTi(z))2

i = j = 1, . . . , N
b = [b1, . . . , bN ]

subject to, −C ≤ αi ≤ 0, i = 1, . . . , N

where bj ∈ {+1,−1} are the class labels for the N of-
fline M dimensional training vectors Tj(z) and ψj =
vec
[
Tj(z)Tj(z)T

]
. Attempting to solve for D using a

least-squares classifier, rather than through a SVM, is ad-
vantageous as we no longer have the constraint that the
alpha weights αj must sum to zero. By posing Equa-
tion 11 as a QP problem we can actually enforce the alpha
weights αj all to be negative or zero. The solution to this
problem can also be solved using QP. Additionally, the ma-
trix Q, in Equation 11, can be stored feasibly in memory
(i.e., N × N ) which is now a function of the number of
training images N . This kernel solution is not equivalent

3Readers are encouraged to read [11] to gain an insight for how least-
squares fitting of a polynomial can be constrained to be convex.



to the naı̈ve solution as we are just ensuring that the alpha
weights αj are negative (which implies indirectly that D
is positive semidefinite) rather than directly ensuring D is
positive semidefinite. This stronger constraint, however, is
acceptable as it allows us to solve for D in a practical man-
ner.

We shall refer to this classifier from here on as a non-
positive support kernel machine (NSKM). The NSKM
shares many similarities with conventional SVMs with the
exception that we employ a “least-squares” error-function
rather than the “hinge” error-function used in the canoni-
cal SVM formulation [7, 4]. In a similar manner to SVMs,
we also have a regularization parameter C that controls the
magnitude of the alpha weights which indirectly controls
overfitting. As with the SVMs used in this paper we se-
lect C through a cross-validation procedure.

Optimization through Projected Gradients: Even though
we can now store the matrix Q in memory, the optimization
of Equation 11 using conventional quadratic programming
packages can be extremely time consuming, especially ifN
is large and Q is dense. In recent work by Lin [12] on the
related problem of non-negative matrix factorization (NMF)
it was demonstrated that good results could be achieved for
the optimization problem described in Equation 11 when Q
is large using projected gradient methods. In this work Lin
demonstrated that this approach exhibited good results and
quick convergence for large scale problems. More details
on this approach can be found in [12].

5. Experiments

All experiments in this paper were conducted on the
frontal portion of the MultiPIE face database [9]. A total
of 1128 images were employed in this subset of the database
taken across 141 subjects. Face images varied substantially
in expression (see Figure 2 for examples) making detec-
tion and alignment quite challenging. This data set was
separated into subject independent training and testing sets
with 560 and 568 images in each set respectively. In our ex-
periments we assume that all warped images are referenced
as an 80 × 80 image. We obtained negative face examples
by synthetically adding affine noise to the ground-truth co-
ordinates of the face (located at the eyes and nose). We
randomly generated affine warpsW(z; p) in the following
manner. We used the top left corner (0, 0), the top right cor-
ner (79, 0) and the center bottom pixel (39, 79). We then
perturbed these points with a vector generated from white
Gaussian noise. The magnitude of this perturbation was
controlled to give a desired root mean squared (RMS) pixel
error (PE) from the ground-truth coordinates. During learn-
ing, the negative/misaligned class was defined to have be-
tween 5−10 RMS-PE. This range of perturbation was cho-
sen as it approximately reflected the range of alignment er-

ror seen when employing the freely available OpenCV face
detector (see Figure 1 for examples of this perturbation).
In all experiments we conducted in this paper our warped
training and testing examples (both positive and negative)
are assumed to have zero bias and unit gain.

Detection Experiments: Before employing our proposed
NSKM classifier on a gradient-descent alignment task, it is
of use to analyze how this classifier performs in terms of
detection. In our first set of experiments we evaluated the
detection performance of three classifiers each having the
same quadratic form,

E(Y (z)) = ||Y (z)− T (z)||2D (12)

where Y (z) is the input image to the classifier, T (z) is
the bias and D is the weighting matrix. Note that Equa-
tion 12 has the same parametric form as Equation 3 ex-
cept we are now obtaining an error score instead of solv-
ing for a warp displacement. Note the error score in Equa-
tion 12 departs from how a canonical classifier behaves as
when Y (z) belongs to a positive class E(Y (z)) is aiming
to be low (rather than high) and when Y (z) belongs to a
negative class E(Y (z)) is aiming to be high (rather than
low). All the quadratic classifiers used in our experiments
were trained on 560 positive face examples and 5000 neg-
ative examples (if the approach required negative examples
during learning). We evaluated these classifiers initially for
a detection task with a test set of 568 positive face examples
and 10, 000 negative examples. The train and test sets used
to learn and evaluate the quadratic classifiers were com-
pletely independent from one another. To ensure that there
was no bias, subject identities were also completely inde-
pendent between train and test sets. Detection performance
for the three quadratic classifiers can be seen in Figure 3
in terms of a detection error tradeoff (DET) curve. A short
description of each classifier follows:-

DFFS: This classifier was inspired by the “project-out” al-
gorithm of Hager and Belhumeur [10] which was for-
malized by Baker et al. [2] where we define a quadratic
classifier to output the distance from feature space
(DFFS) measure. PCA was employed to model 95%
of the appearance variation in the positive/aligned face
class. The ensemble of eigenvectors A stemming
from the PCA process was then used to define D =
null(A)null(A)T . As a result D is always positive
semidefinite for a DFFS classifier.

SVM: This classifier was trained according to the descrip-
tion in Section 3 such that a canonical SVM was
trained using a homogeneous quadratic kernel. The
weight matrix D was found by applying Equation 9.

NSKM: This classifier was trained according to the descrip-
tion in Section 4 such that a homogeneous quadratic
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Figure 3. Detection performance on the test-set for different
quadratic classifiers. In this figure we demonstrate that the canon-
ical SVM and our NSKM extension receive the best detection per-
formance. Next, comes the DFFS classifier based based on the
principal components of the positive object. All quadratic clas-
sifiers shown have guarantees on D being positive semidefinite
except the SVM classifier.

kernel machine is learnt with alpha weights that are
constrained to be non-positive. Again, the weight ma-
trix D was found by applying Equation 9.

For all classifiers the bias T (z) was estimated as the average
image across all images stemming from the positive face
class4. As expected the SVM classifier outperformed the
other three classifiers. Our proposed NSKM classifier, al-
though not performing as well as the SVM classifier, exhib-
ited superior performance to the DFFS classifier thus vali-
dating the utility of this type of quadratic classifier.

Alignment Experiments: In our next set of experiments
we analyze the error score and alignment convergence prop-
erties of the SVM, NSKM and DFFS classifiers within the
weighted LK algorithm. To test the ability of our algorithms
to correctly register a previously unseen source image we
again synthetically generated random initial affine warps to
range between 5 − 10 RMS-PE. In Figure 4 one can see
the normalized average error score taken across all trials
of the SVM and NSKM approaches as a function of the
number of iterations performed within the weighted LK al-
gorithm. The DFFS classifier was not considered in these
experiments as the convergence properties of this quadratic
classifier within the LK algorithm is already well under-
stood [10, 2]. The error scores for both techniques were
normalized so the maximum average error score at any iter-
ation is not above unity. The normalization was performed
as the magnitude of the error scores between the two ap-
proaches varied considerably. Inspecting Figure 4 we can
see that the NSKM error score is monotonically reducing at

4Employing a non-zero bias within the SVM learning framework de-
parts slightly from Avidan’s original approach. In our experiments employ-
ing a zero or non-zero bias had almost no effect on the quadratic SVM’s
detection performance. However, employing a non-zero bias for the other
two classifiers did effect performance substantially. For consistency we
chose to use the same bias for all the classifiers.
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Figure 4. Convergence of the average error scores, as a function of
the number of iterations, within the weighted LK algorithm for the
SVM and NSKM algorithms. The error scores for both classifiers
were normalized so the maximum average value at any iteration
is not above unity. Results demonstrate that the NSKM classifier
behaves as we expect with fast convergence on average within a
couple of iterations. The SVM approach, however, has dramat-
ically different performance with the error score diverging. The
poor behaviour of the SVM approach can be linked to the fact
that D, for the SVM approach, is not positive semidefinite (see
Figure 5) so the quadratic being solved in many of the iterations
of the weighted LK algorithm is not unique.

each iteration. One can additionally see that the error score
for the NSKM approach reaches convergence on average
within a couple of iterations which is consistent with what
one would expect in a Gauss-Newton optimization. The
SVM approach, however, has dramatically different perfor-
mance to the NSKM result. Most noticeably, the error score
is not reducing at each iteration, but instead increasing in an
erratic manner.

These differing error score convergence curves can be
best explained by inspecting the signs of the eigenspectrum
of D in Figure 5. This figure depicts whether the eigen-
values of D are positive, negative or sparse (i.e., equal to
zero). One can see that a sizable portion of the eigenval-
ues for the SVM classifier are both positive and negative
indicating that D is indefinite. Conversely, the eigenvalues
for the NSKM classifier are all positive or sparse indicat-
ing that D is positive semidefinite. As discussed in Sec-
tion 4, by enforcing D to be positive semidefinite within
the NSKM approach we can ensure that the quadratic being
minimized at each iteration has a unique minimum. When
this assumption is violated poor performance often occurs
as can be seen in the error score convergence curves in Fig-
ure 4. We should emphasize here that Figure 5 depicts the
nature of the eigenvalues for a specific SVM and NSKM
classifier and is not a general result for SVM classifiers.
A major contribution we are trying to make in this paper,
however, is that the conventional SVT framework to ob-
ject alignment/tracking provides no guarantee on the nature
of D which can have dire consequences when attempting to
use this framework generically. In fact, in Avidan’s original
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Figure 5. Depicting how many eigenvalues of D are positive, neg-
ative or sparse (i.e., zero). For the SVM classifier trained on the
MultiPIE face data in our experiments the matrix D has a sizable
number of eigenvalues that are both positive and negative indicat-
ing the matrix is indefinite. The NSKM classifier, however, has
only positive or sparse eigenvalues indicating that D is positive
semidefinite.

work he demonstrated that the SVT framework performed
extremely well for the task of car tracking. The nature of
his results would indicate that the D learnt for his specific
application was positive semidefinite.

Inspecting Figure 5 further we can see that the NSKM
classifier has 198 non-zero eigenvalues and is noticeably
more sparse than the SVM classifier with 1638 non-zero
eigenvalues. This is another highly desirable attribute
within our proposed framework as the application of our
NSKM approach within the weighted LK algorithm is con-
siderably more efficient than the conventional SVM ap-
proach. In Avidan’s original approach [1] he employed
a reduce set method to reduce the number of support vec-
tors stemming from the SVM considerably. This approach
worked off the basis that the number of support vectors
should be bounded by the dimensionality of the input space.
Since we are dealing with image templates of dimensional-
ity 80× 80 such a method will have no benefit in our exper-
iments.

To gauge the performance of the three described ap-
proaches for the task of alignment within the weighted LK
algorithm we also present an alignment convergence curve
(ACC) in Figure 6. These curves have a threshold distance
in RMS-PE on the x-axis and the percentage of trials that
achieved convergence (i.e., final alignment RMS-PE below
the threshold) on the y-axis. A perfect alignment algorithm
would receive an ACC that has 100% convergence for all
threshold values. We can see in Figure 6 that our pro-
posed NSKM approach outperforms both the DFFS [5] and
SVM [5] strategies. The drastic difference in performance
between the NSKM and SVM approaches is consistent with
the error score convergence curves seen in Figure 4 depict-
ing the stable and fast convergence of the NSKM approach
in comparison to the erratic convergence curves produced
by the SVM approach.
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Figure 6. Alignment results demonstrating the benefit of our pro-
posed NSKM approach over the canonical DFFS [5] and SVM [1]
approaches for gradient descent object alignment in the presence
of unseen appearance variation.

6. Discussion and Conclusions

In this paper, we have demonstrated that the support vec-
tor tracking (SVT) framework proposed by Avidan [1], un-
der specific constraints, is equivalent to the weighted LK al-
gorithm. From this equivalence we have also demonstrated
that, in certain circumstances, the SVT framework is theo-
retically prone to unstable behaviour. This behaviour was
also confirmed empirically and can be directly attributed to
the nature of the weight matrix being employed within the
weighted LK algorithm. Specifically, if this weight matrix
is not positive semidefinite we have no guarantees that the
quadratic being iteratively solved is “close” to convex. In
these circumstances the quadratic, being solved iteratively,
may have multiple or no minima resulting in erratic be-
haviour.

To circumvent this problem we have presented a novel
framework for performing discriminative alignment of
an object with “unseen” appearance variation using the
weighted LK algorithm. The approach employs what we
refer to as a non-positive support kernel machine (NSKM).
This machine learns a weight matrix, that is suitable for use
within the weighted LK algorithm, that is guaranteed of be-
ing positive semidefinite. This guarantee is important as
it ensures theoretically that the weighted LK algorithm be-
haves in a stable manner during alignment/tracking. For the
specific object-class evaluated (i.e., faces) the NSKM has
demonstrated superior convergence properties to the canon-
ical SVT approach [1] and is considerably more computa-
tionally efficient due its sparser nature. Our approach also
exhibits superior alignment performance when compared to
leading generative approaches [5] for dealing with appear-
ance variation within the weighted LK algorithm.

Our approach enjoys advantages over existing ap-
proaches [13, 16, 15] to discriminative gradient descent ob-
ject alignment/tracking as it: (i) is based on the well under-
stood Gauss-Newton optimization framework, (ii) enjoys



fast convergence without the requirement for specifying a
step-size, and (iii) is adaptive to the current iterative warp
estimate. Future work shall try and extend our work to other
more complex warps (e.g., piece-wise affine) and also ex-
tend our current method for learning a discriminative posi-
tive semidefinite weight matrix.
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A. Equating the SVT and LK Equations

In Avidan’s original work [1] (section 4.1.2., Equation
6) he demonstrated that for a translational warpW(x; p) =
[x + p1, y + p2]T we arrive at the following equation for
aligning the source image Y with an SVM employing a ho-

mogeneous quadratic kernel k(a,b) = (aT b)2,(
A11 A12

A21 A22

)(
∆p1

∆p2

)
=
(
b1
b2

)
(13)

where,

A11 =
l∑

j=1

αj(Tj(z)TYx(z′))2

A12 = A21 =
l∑

j=1

αjTj(z)TYx(z′)Tj(z)TYy(z′)

A22 =
l∑

j=1

αj(Tj(z)TYy(z′))2

b1 = −
l∑

j=1

αjTj(z)TYx(z′)Tj(z)TY (z′)

b2 = −
l∑

j=1

αjTj(z)TYy(z′)Tj(z)TY (z′)

given Y (z′) is short notation for the source image vec-
tor Y (W(z; p)) and Yx(z′) and Yy(z′) are the x- and y-
derivatives of the source image at warp p. Tj(z) are the
support vectors from the SVM, αj are the alpha weights
and l is the number of support vectors. ∆p1 and ∆p2 are
the translation warp parameters we are attempting to esti-
mate in the x- and y-directions respectively.

It is trivial to show that Equation 13 is just a re-
arrangement of the standard LK solution shown previously
in Equation 4 and for completeness shown here,

H∆p = JD [T (z)− Y (W(z; p))] (14)

where,

H = JT DJ = −
(
A11 A12

A21 A22

)
(15)

JD [0− Y (W(z; p))] = −
(
b1
b2

)
(16)

and ∆p = [∆p1,∆p2]T . The Jacobian matrix J and weight
matrix D are defined previously in Equations 6 and 9 re-
spectively. Note, that we are subtracting Y (W(z; p)) by
a template T (z) in Equation 14 which is considered to be
zero in Avidan’s SVT formulation (see Equation 16). An
advantage of our reformulation over the one originally pro-
posed by Avidan is that it becomes trivial to employ more
complex warps (e.g., affine) and we can study the SVT al-
gorithm from the perspective of the weighted LK algorithm.


