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Abstract— We present a communication based navigation
algorithm for robotic swarms. It lets robots guide each other’s
navigation by exchanging messages containing navigation infor-
mation through the wireless network formed among the swarm.
We study the use of this algorithm in two different scenarios. In
the first scenario, the swarm guides a single robot to a target,
while in the second, all robots of the swarm navigate back and
forth between two targets. In both cases, the algorithm provides
efficient navigation, while being robust to failures of robots in
the swarm. Moreover, we show that in the latter case, the system
lets the swarm self-organize into a robust dynamic structure.
This self-organization further improves navigation efficiency,
and is able to find shortest paths in cluttered environments.
We test our system both in simulation and on real robots.

I. INTRODUCTION

Swarm robotics studies systems consisting of large groups

of relatively simple robots that interact and cooperate with

each other in order to jointly solve tasks that are outside their

own individual capabilities [1]. Such cooperative task solving

often relies on self-organization and emergence, where self-

organization refers to the fact that the swarm’s organization

comes from within the system (i.e., is not imposed from

outside), and emergence means that the organization comes

about in a decentralized way, from local interactions between

individual robots [2].

Many studies in the area of swarm robotics address a

collective navigation problem, where robots need to move

back and forth between two locations, e.g. to transport items

from one place to another [3], [4], [5], [6], [7], [8]. Most

of this work is inspired by the foraging behavior of certain

types of ants, which relies on stigmergic communication

through pheromone trails: each ant moving between the nest

and a food source leaves pheromone in the environment,

which attracts other ants and guides them to the food. The

interesting aspect is that the collective process of pheromone

laying and following reinforces the most efficient paths, so
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that eventually the shortest path emerges as a consequence

of the swarm’s collective actions.

In this paper, we take a different approach to this swarm

navigation task, based on network communication. We show

that also this new approach gives rise to emergent behavior

that lets the swarm navigate over efficient paths. We first

focus on the navigation of a single robot to a target location,

guided by the other robots of the swarm, and after that study

the collective navigation of all robots between two targets.

The problem setup for the navigation of a single robot

is as follows. The swarm is deployed in a confined area.

A robot T of the swarm is assumed to have found a target

location (e.g., a location where an event needs to be served,

or from where food needs to be transported). It remains static

at that location, and announces its presence through periodic

messages. We refer to T as a target robot. A robot S needs to

navigate to T (e.g., it has specific skills to service the event).

All other robots of the swarm are assumed to be involved in

tasks of their own, and they do not alter their movements to

help S in its navigation task. They do, however, offer support

through communication, by forwarding the messages from T

over the network formed between the robots. S makes use of

these messages to navigate to T , by using network routing

information for robot navigation.

For the collective navigation task, two robots T and T ′

indicate two different target locations (e.g., a nest and a

food source), and all other robots navigate back and forth

between T and T ′. They use the same communication based

navigation algorithm described above. We show how the

concurrent execution of this behavior by all robots lets the

swarm self-organize, and how a collective dynamic structure

emerges that supports swarm navigation.

Throughout the paper, we show that our approach leads to

efficient navigation and finds shortest paths in cluttered en-

vironments. Moreover, it is robust, e.g. with respect to robot

failures. Compared to existing pheromone based navigation

systems, it avoids the practical problem of how to implement

stigmergic communication (see also section VII).

Our navigation system relies on message communication

between robots to detect obstacle free paths. To make this

possible, we need a wireless communication device that

provides only line-of-sight communication, so that commu-

nication links can be related to navigable paths. Moreover,

we need a device that can link received messages to relative

position information (angle and distance) about their sender,

so that robots can follow paths detected through communica-

tion. We found such device in the form of an infrared range-

and-bearing (IrRB) communication system [9], of which im-
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plementations exist for various robots [10], [11], [12]. While

most results presented in this paper were obtained through

simulation, we present in section VI an implementation of

our algorithm on real robots, using the IrRB system.

The rest of this paper is organized as follows. In Section II,

we describe the communication aided navigation algorithm.

In section III, we evaluate the performance of this algorithm

in a scenario where a single robot navigates to a single target.

After that, we study the behavior of the system when all

robots of the swarm navigate back and forth between two

target locations: in section IV we show how the swarm self-

organizes and cooperates to get more efficient navigation, and

in section V we show that the swarm is able to find shortest

paths in cluttered environments. After that, in section VI we

describe the implementation of our system on real robots,

and in section VII we discuss related work.

II. COMMUNICATION AIDED NAVIGATION

The navigation system we propose is loosely based

on routing algorithms used in mobile ad hoc networks

(MANETs). The general idea is that all robots in the swarm

maintain a table with navigation information about all known

target robots in the environment, similar to how nodes in

a MANET maintain routing tables. Each robot periodically

broadcasts the content of this table to its neighbors, so that

the information spreads throughout the swarm. To navigate

to a given target robot T , a searching robot S follows

received navigation information, similar to how data packets

follow routing information. In what follows, we describe

different aspects of this system in detail. We also point out

that an older version of this algorithm together with some

preliminary results for the navigation of a single robot to a

target were described in [13].

The navigation information about a target T present in a

robot A’s navigation table consists of a sequence number

s(T ), indicating the relative age of the information, and

a distance d(A, T ), indicating the distance traveled by the

information between T and A. The total size of a robot’s

navigation table is thus a linear function of the number of

targets it knows about. At the start of swarm deployment, all

robots have an empty table. When a robot T becomes a target

robot (i.e., it discovers a target location and starts announcing

it), it puts an entry about itself in its table. In this entry, both

the sequence number s(T ) and the distance d(T, T ) are set to

0. At periodic intervals, robots broadcast the content of their

table to neighbors. The size of a robot’s broadcast messages

equals the size of its navigation table; if bandwidth is limited,

robots send updates for a subset of known targets, in a round-

robin fashion. When T broadcasts the information about

itself, it first increases sequence number s(T ) in its table by

1. The distance d(T, T ) is broadcast without modification.

Another robot A broadcasting information about T does not

modify s(T ), so that the sequence number marks the relative

time when the information left T .

A robot B receiving a broadcast from A processes the

entries for all targets T in the message, reading the received

sequence number s′(T ) and distance d′(A, T ). On the basis

of d′(A, T ), it calculates a new estimate for its own distance

to T, d′(B, T ), by adding the distance d(B, A) between

itself and A (as measured at message reception with the

IrRB communication system). Like this, d′(B, T ) reflects the

distance traveled by the information from T to B. This is

an upper bound of the shortest obstacle free path for robot

navigation from B to T , since the communication works only

in line-of-sight. Then, B compares the new values, s′(T ) and

d′(B, T ), to the information about T in its own table, s(T )
and d(B, T ). The new information is considered better if

either s′(T ) > s(T ) (the new information is more recent), or

s′(T ) = s(T ) and d′(B, T ) < d(B, T ) (the new information

indicates a shorter path). In that case, the information in the

table is replaced by the new information.

If B moves around without receiving new updates about

T for a while, the distance d(B, T ) in its table can quickly

loose its value as an estimate of the shortest obstacle free path

between B and T . Therefore, as B is moving, it measures its

moved distance through odometry, and adds this to d(B, T ).
This way, d(B, T ) grows and remains a measure of the

distance traveled by the navigation information. Note that

the direction of B’s movement is not taken into account, so

that d(B, T ) is not necessarily the shortest distance to T . But

it is an upper bound of the shortest obstacle-free path (since

B per definition moved over an obstacle-free path). Using

this mechanism, the navigation system can work in sparsely

connected swarms: navigation information can bridge gaps in

network connectivity by traveling on board of moving robots

(as is common in the area of delay tolerant networks).

When a searching robot S receives information about

its target T from a robot A, it stores s(T ) and d(A, T ),
as well as the relative position of A at the moment the

information was received (as measured through the IrRB

system). Using odometry, it goes to this position. If S

receives new information about T from a robot B, s′(T )
and d′(B, T ), it compares this to the old information from A,

and it starts to move towards B’s location if s′(T ) > s(T )
(the new information is more recent), or if s′(T ) = s(T )
and d′(B, T ) < d(A, T ) (B is closer to T than A). If S

reaches the position it is moving to without getting new

information about T , it can either wait there, or start doing

random movements until new information is received. We

refer to the former strategy as “navigation with stopping”,

and to the latter as “navigation with random”; we investigate

both strategies in section III. These strategies also define the

behavior of S in case it gets disconnected from the swarm.

When S receives a message directly from T , it goes straight

to T . Finally, we point out that we let searchers approach

locations they move to from the right, so that two searchers

moving towards each other do not collide.

III. NAVIGATION OF A SINGLE ROBOT

In this section, we investigate the working of the naviga-

tion algorithm when a single robot needs to find a single

target. The other robots of the swarm perform random

movements. The goal is to show to what extent the robots
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of the swarm can give support for each other’s navigation

without adapting their movements for this.

All tests presented here and in the next two sections

are executed using a simulated model of the foot-bot, a

small ground robot developed within the project Swarmanoid

(http://www.swarmanoid.org) on the basis of the

marXbot platform [12]. It has a diameter of 15 cm and is

20 cm high. Its IrRB system has a capacity of one message

of 10 bytes per robot at each timestep of 0.1 s (so robots

can broadcast an update every 0.1 s). Its maximum range

is limited to 3 m here. We use the ARGoS simulator [14],

which contains a reliable physics model of the foot-bot.

In a first set of tests we use an uncluttered closed arena

of 20x20 m2. The robots are placed in the arena according

to a uniform random distribution. One of the robots is a

target and remains static. A second robot searches this target.

The remaining robots move according to a random direction

model: choose a direction θ uniformly from ]−π, π], turn

towards θ, choose a time t from an exponential distribution

with fixed average (set to 10 s here), move forward for this

time t, and then repeat this process. We use a forward speed

of 0.15 m/s, both for the searching and the randomly moving

robots. All robots have an obstacle avoidance mechanism,

based on short range infrared proximity sensors, which

makes them turn away from each other and from walls. We

vary the number of robots in the swarm, from 2 (0 randomly

moving robots) up to 92 (90 randomly moving). For each

data point, we make 500 independent test runs (this high

number is needed because the random initial positions of

searcher and target induce a high variance). We measure

the time between the start of each test and the moment the

searching robot comes in range of the target.

The results are shown in figure 1. We compare the two

variations of the navigation system presented in section II,

“navigation with stopping” and “navigation with random”,

which differ in the strategy used by the searching robot when

it does not have any navigation information. The results show

a large difference in performance between both strategies for

low numbers of robots. This is because the communication

network is sparse, and navigation information spreads slowly

from the target. In the extreme case with 0 randomly moving

robots, navigation with stopping can never reach the target.

Navigation with random, on the other hand, does find the

target, through random search. The expected time for a

randomly moving agent to find a static target is normally

referred to as the “hitting time” [15]. In the context of

DTNs, analytical models have been developed to calculate

the hitting time for various mobility models [15]. In our case,

those models can be used to calculate an upper bound for

the expected time needed to reach the target when using

navigation with random. For high numbers of robots, the

difference between both strategies decreases: the network

gets better connected, and the searcher rarely falls without

information. For the highest numbers of robots, performance

gets close to the time needed to cross the expected straight

line distance between the searcher’s initial position and the

target. This is indicated in figure 1 as “Delay navigation
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Fig. 1. Experimental results in an uncluttered environment. See main text
for explanation.

Fig. 2. Layout of the maze for our experiments. The area is 20x20 m2.

shortest path”. This gives a lower bound for the expected

navigation time. It is interesting to note the graceful degra-

dation of the system’s performance as the number of robots

goes down. This indicates that the navigation system is robust

with respect to failure or loss of robots in the swarm.

In a second set of experiments, we test the system in a

cluttered environment. Since the algorithm looks for obstacle

free paths (see section II), it should be able to deal with such

situations. We use again an arena of 20x20 m2, in which now

obstacles are placed to form a maze, as shown in figure 2.

Again, we deploy the swarm according to a uniform random

distribution, and we measure the time needed for the searcher

to reach the target. The results are shown in figure 3. The

searcher needs a lot more time to reach the target. Also, a

larger swarm is needed to bring this delay down, and the

system has more difficulties to reach the time required to

travel over the shortest path. Nevertheless, we get the same

trends in performance, and with a large enough swarm, the

system guides a searching robot to its target efficiently.

Clearly, the performance of the system depends also on

the movement patterns of the robots of the swarm. We

4983



 0

 1000

 2000

 3000

 4000

 5000

 10  30  50  70  90

N
a

v
ig

a
ti
o

n
 d

e
la

y
 (

s
)

Number of robots

Navigation with stopping
Navigation with random

Navigation shortest path

Fig. 3. Experimental results in the maze environment of figure 2. See main
text for explanation.

Fig. 4. Setup for swarm navigation experiments. The area is 20x20 m2. The
target robots are located in the top-right and bottom-left corner (indicated
with large orange and blue disks).

have tested other random mobility patterns, such as random

waypoint [16], with similar results (not shown here for lack

of space) as those with random direction. In future work, we

plan to use also other movement patterns, e.g., to simulate

the movement of robots in a warehouse or along production

lines. We do not investigate this further here though, as we

want to concentrate on the effects of self-organization and

cooperation, presented in the remaining of this paper.

IV. SWARM NAVIGATION

We study how a swarm of robots can use the communi-

cation based navigation algorithm to move back and forth

between two target locations. As pointed out in section I,

this is a common task in swarm robotics. To follow swarm

terminology, we refer to the two target locations as nest

and food source. We use only the “navigation with random”

strategy, as this gives the best performance. We show how

local behavior based on our navigation algorithm lets the

swarm self-organize and show coordinated global behavior.

 0

 200

 400

 600

 800

 1000

 1200

 2  10  20  30  40  50  60

N
a

v
ig

a
ti
o

n
 d

e
la

y
 (

s
)

Number of robots

Single robot navigation
Swarm navigation

Fig. 5. Experimental results for swarm navigation. See main text for details.

We first investigate the swarm’s behavior in an uncluttered

arena, as shown in figure 4. Two robots, indicating nest and

food source, are placed in opposite corners, at about 20 m

from each other. All other robots are placed according to a

uniform random distribution. Half of these robots initially go

to the food source, the other half to the nest. A robot that

has reached its target (i.e., food source or nest) starts moving

towards the other target. A robot is said to have reached a

target when it comes within 0.5 m of it. We vary the total

number of searching robots in the swarm from 2 up to 60.

We perform 50 independent tests of 5000 s for each setup.

We measure the average time needed by robots to move from

one target to the other. We compare to experiments with the

same numbers of robots, but where only one robot is going

back and forth between nest and food source, while the other

robots are moving according to the random direction mobility

model (as in the experiments of section III).

The results are shown in figure 5. The scenario where

all robots navigate back and forth is referred to as “swarm

navigation”, and the other as “single robot navigation”. In

both scenarios, performance improves as the number of

robots increases, since navigation information spreads more

easily in densely connected swarms However, for the swarm

navigation scenario, the performance improves faster (with

30 robots, navigation delay of swarm navigation is about half

of that of single robot navigation). This is due to cooperation.

When a robot moving towards the food source meets a robot

navigating towards the nest, they can give each other navi-

gation information about their respective targets. Moreover,

if a group of robots moving towards the same target are

in communication range from each other, new information

received by any of them spreads throughout the group,

and they simultaneously move in the same direction. These

two effects make robots form clusters moving in opposite

directions. When there are enough robots, such clusters can

become large enough to cover the whole distance between

nest and food source. At that point, the swarm organizes into

a stable structure, which we refer to as a dynamic chain.

Figure 6 shows a snapshot after 300 s of a typical run of
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Fig. 6. Swarm navigation after 300 s of simulation: a self-organized
dynamic structure has formed.

swarm navigation with 40 robots, illustrating this behavior.

It is this behavior which causes the strong improvement in

performance between 20 and 30 robots in figure 5. For larger

swarms (50 and 60 robots), congestion of robots near target

locations leads to a decrease in performance.

The dynamic chain is an example of emergent self-

organized behavior: the swarm shows organization at the

global level that emerges from local interactions between

individual robots. In what follows, we investigate when this

self-organization arises and how stable it is. To do this, we

first need a measure for self-organization. Several authors

use entropy to measure self-organization in the context of

swarm robotics [17], [18]. If X is a random variable which

can take M different states, its entropy H(X) is defined as

H(X) = −

M∑
i=1

pi log
2
(pi), (1)

where pi is the probability that X is in state i (here,

we refer to Shannon’s information entropy [19]). Strictly

speaking, this is a measure for order (or disorder), rather

than self-organization: the more a system is ordered, the more

you can find it in a limited subset of its possible states, and

the lower the entropy. Some authors criticize measuring self-

organization as a mere increase in order, and propose other

measures [20]. For us, however, it is sufficient to measure

whether there is increased order in the behavior of the robots,

so we stick with entropy.

To calculate the entropy H(X), we need a discrete vari-

able X that characterizes the swarm’s behavior. In [21], [18]

the authors use the orientation of the robots, discretized into

four bins; the entropy based on this variable indicates to what

extent the robots face the same direction. In our case, this

measure can be used (once the chain is formed, robots face

in similar directions), but it is quite noisy, especially when

there is congestion (robots turn to avoid each other). What

we really want to measure is whether the robots move in a

low number of connected clusters; whether there is order in
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Fig. 7. Evolution of S(R) over the course of an example test run for 20,
30 and 40 robots

their physical locations. To do this, we turn to hierarchic

social entropy [22], which proposes an entropy measure

for a group of robots characterized by a multi-dimensional

variable. In our case, this multi-dimensional variable will

be the location coordinates of each robot. The idea behind

hierarchic social entropy is to first cluster the robots using

hierarchic clustering based on a distance threshold h: a robot

is added to a cluster if it is within distance h from all

robots in the cluster. The division of robots into clusters

gives a discrete variable X on the basis of which entropy

is calculated (the clusters form the M different states for X ,

and the probabilities pi are defined by the number of robots

in each cluster). Obviously, X depends on the threshold h:

if h = 0, each robot is in a cluster of its own, and entropy

is maximal, while if h = ∞, all robots fall in a single

cluster, and entropy is 0. Therefore, the notation H(R, h)
is used to refer to the entropy of a group of robots R using

clustering distance h. The hierarchic social entropy S(R) is

then defined by integrating H(R, h) over all values of h:

S(R) =

∞∫

0

H(R, h)dh. (2)

We use S(R) based on the location coordinates of the

robots to analyze the behavior of the swarm. Compared to the

definition of S(R) in [22], we introduce one change, related to

the clustering: we use single linkage clustering, which means

that a robot is added to a cluster if it is within distance h

from any robot of that cluster. Single linkage clustering can

find long stretched clusters [23], which enables it to detect

the chaining behavior of the swarm. In figure 7, we show the

evolution of S(R) over the course of example test runs with

20, 30 and 40 robots; we calculate S(R) at every timestep

of 0.1 s, and average it per 100 s of simulation. When the
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robots of the swarm move close together, there is a drop in

entropy. When the dynamic chain forms, entropy stays low

for an extended amount of time. All runs with 20 and 40

robots display patterns similar to the ones shown here: for

20 robots, the chain never forms, while for 40 robots it forms

quickly and remains for the whole duration of the simulation.

With 30 robots, varying patterns have been observed. In some

runs, including the example here, the chain forms after a

while. In other runs, it does not form. Interestingly, when it

does form, it usually stays for the whole test duration. This

suggests that the chain is stable with respect to perturbations.

In figure 8, we study the stability of the chain. For

increasing numbers of robots, we perform each time 50 test

runs, and measure in which fraction of those runs a stable

dynamic chain appears. We consider the chain stable if for

the last 1000 s of the test S(R) remains below 0.2. The graph

shows a clear phase transition around 30 robots: with less

robots, the system never self-organizes, with more it always

does. Such phase transitions are typical for self-organizing

systems in physics, and have also been observed in swarm

robotics [21]. They indicate that within a given range of a

control parameter, the self-organizing behavior is robust and

takes place independently from perturbations in the system.

Finally, in figure 9, we show how frequently the targets are

reached by robots. This indicates how many items the swarm

could transport between the two locations. Increasing the

swarm size, one could expect a sub-linear performance im-

provement, because more robots can transport proportionally

more items (linear improvement), but there is also increased

congestion. In our system, increased swarm size also gives

Fig. 10. Test setup for multi-path environment. The area is 14x14 m2.
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more cooperation, which leads to a super-linear increase

in performance between 10 and 40 robots (dotted lines in

the figure illustrate for each swarm size the extrapolated

performance in case of linear improvement). For more robots,

congestion makes the performance growth decrease.

V. SHORTEST PATH FINDING

An interesting question is what happens when there are

multiple paths between the targets, e.g. due to the presence

of obstacles. We study the setup of figure 10, where there

is a short path of length ds = 15 and a long path of length

dl = 27. We vary the swarm size from 5 to 70 robots, and

perform 25 tests of 5000 s for each size. We measure the

average time needed for a robot to navigate between the

targets. We also observe at each time step how many robots

are located on the short path versus on the long path, and

combine this per test to calculate the percentage of robots

using the short path, ps. If ps > 66%, we say the swarm

uses the short path, if ps < 33% it uses the long path, and

otherwise it uses both.

Figure 11 shows the result of each individual test, as well

as the average per swarm size. For swarm size 5, the robots
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use both paths, with a slight perference for the long path.

This is because navigation information is scarce, and robots

mainly move randomly, leading to a uniform distribution;

since there is more space on the long path, we find more

robots there. Starting from 10 robots, there is a preference

for the short path, which becomes very strong from 15 robots.

In general, using the short path leads to lower delay, except

for 70 robots, where congestion plays a major role.

The preference for the short path is explained as fol-

lows. Robots go towards navigation information with high

sequence number and short distance (see section II). If

we assume a homogeneous initial distribution of robots,

information travels equally fast around both sides of the

obstacle, and the same number of robots are attracted towards

the left and right of the obstacle: 0.5(ds + dl)ρ, where ρ is

the robot density in robots/m. Both paths receive the same

number of robots, but on the short path this leads to a higher

density. This means that information can spread faster there,

giving more chances to attract robots.

Starting from 15 robots, also the dynamic chain plays

a role. It makes the swarm navigation lock onto one of

the paths, so that we rarely observe the use of both paths.

Between 15 and 30 robots, there are enough robots to form

the chain over the short path, but not over the long path.

This makes the swarm always choose the short path. Starting

from 35 robots, the chain can also be formed over the

long path (verified in separate tests not shown here). While

the robots’ general preference for the short path normally

makes the chain form there, fluctuations in the robots’ initial

distribution lets the chain occasionally choose the long path.

Such amplification of fluctuations is a typical phenomenon

in self-organizing systems in nature [24]. We also conducted

tests moving the targets so as to reduce the difference

between ds and dl (swarm size 50). This led to proportional

changes in the number of runs choosing the short path.

We also mention that also in uncluttered environments

the chain tends to choose short (i.e., straight) paths. This

is because any bend in the chain is worked away by robots

trying to move directly to the best navigation information.

Therefore, we can expect that the communication based

navigation algorithm lets a robot swarm move efficiently in

a wide variety of different environments. However, one issue

is congestion: in all tests we found that very large swarms

have reduced performance due to increased congestion.

VI. IMPLEMENTATION ON REAL ROBOTS

We implemented the communication based navigation

system on real foot-bots [12]. Since this is the robot used as

model in the simulation experiments, the robot characteristics

(IrRB capacity, robot speed, etc.) are the same as described

in section III. We have not yet performed extensive tests

like the ones we did in simulation, but we made some long

experiments with varying conditions, in order to qualitatively

confirm results of this paper. Videos can be seen in on-line

supporting material at www.idsia.ch/˜frederick/

swarm_navigation/online_material.html.

Fig. 12. Foot-bots moving in a dynamic chain between two targets

We performed four different tests. In the first two, robots

were deployed in a room of 12.7 x 3.4 m2. Two robots

were placed on either end of the room to serve as tar-

gets. One robot moved back and forth between the targets

while all other robots moved randomly. We started with

14 randomly moving robots, and gradually reduced this

number by removing robots during the experiment. In the

first experiment, we used “navigation with stopping”, and

in the second “navigation with random” (see section II). The

experiments show how both strategies let the searching robot

move smoothly between the targets. For low swarm sizes,

navigation with stopping performs worse than navigation

with random, as in simulation. In the third experiment, we

used navigation with random in a more complex setup, where

one target was placed outside the room, and the robot needed

to navigate through a door. This added complexity did not

give problems for the system. In the fourth experiment, we

let a swarm of 15 robots move back and forth between two

targets in the room. As in section IV, a dynamic chain forms.

A snapshot is shown in figure 12. We gradually reduced the

swarm size, and observed that the chain was stable until

about 6 robots. When we increased the swarm size again,

the chain restored itself. We also moved the targets around

to see the chain adapt, and observed how it always focused

on a straight path. We point out that during all tests there

were robot failures. This never affected the swarm’s behavior

noticeably, showing its robustness. Unfortunately, we have

not yet had the opportunity to perform real robot experiments

for the shortest path behavior.

VII. RELATED WORK

Several works address communication aided navigation

of a single robot to a target. Many of these use a static

network of communicating sensor nodes to guide a mobile

robot [25], [26]. Some use mobile robots to deploy the static

nodes [27], or to fill gaps in the sensor network [28]. The

approach closest to ours is [29], where a navigating robot

gets support to move around obstacles from a few dedicated

explorer robots, using line-of-sight communication.

For the task of navigating a swarm of robots between

two targets, most work is based on indirect stigmergic

communication, inspired by ant behavior [3], [5], [6], [7],
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[8]. An important problem for such approaches is how to

physically implement the pheromone used by ants to mark

the navigation trail. A common solution is to mark the trail

with a chain of robots [3], [6]. Compared to our system, this

has the disadvantage that some of the robots remain static

and cannot take part in navigation. Moreover, the system

is vulnerable to failures of robots in the chain, making it

less robust. In [4], a method based on direct (rather than

indirect) communication is proposed: robots exchange land-

mark trails to help each other navigate. Finally, in [18], the

authors address the swarm navigation problem with neuro-

evolution. Interestingly, they find a swarm level behavior

that is similar to our dynamic chain, though based on very

different individual robot behavior (using visual feedback,

robots turn around in local dynamic chains; these chains

merge and grow and may eventually include the targets).

However, this behaviour was not designed to generalize to

environments that are radically different from the uncluttered

scenario in which it was developed.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a navigation system for robotic swarms.

It is a simple and flexible algorithm that can be used in

different contexts. We have first shown how it allows robots

of a swarm to guide a single robot to a target, without

the need to adapt their own movements. Then, we have

investigated how the system can be used for collective

swarm navigation between two targets, a common task in

swarm robotics. We have shown that cooperation improves

navigation performance, and that when enough robots are

present, the swarm self-organizes into a dynamic structure

that supports efficient navigation and is robust to pertur-

bances and robot failures. Moreover, we have shown that

swarm navigation has a preference for short paths, similar to

pheromone mediated navigation in ant colonies. In tests with

real robots, we have shown the feasibility of the approach.

In future work, we will first investigate more complex sce-

narios. We will study single robot navigation with different,

realistic robot movement patterns, and test the dynamic chain

behavior in complex cluttered environments. Also, we will

perform extensive tests with real robots to confirm all results

from simulation. After that, we will integrate this system in

other scenarios of swarm deployment, e.g., where the swarm

performs tasks in service of humans. Many such scenarios

require navigation. Moreover, the swarm communication we

use for navigation can be extended to carry more information,

e.g. for task allocation, planning, etc.
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