



Abstract—Formal methods are widely used for studying and

verifying characteristics of concurrency control mechanisms

(CCMs) and protocols in distributed databases. Colored Petri

net (CPN) has high modeling capabilities and is one of the best

methods for formal analysis and verification of CCMs. In this

paper, a novel model of CCM based on two phase locking (2PL)

using CPN has presented. State space analysis of model permits

us to prove that all schedules of concurrent execution of

transactions using 2PL in a case study is deadlock free nor not.

Then a simple case study along with its state space analysis has

presented. Results show that CPN is proper method for

modeling CCM using 2PL and proving deadlock freeness

property of all schedules of transactions.

Index Terms—Colored Petri net, concurrency control

mechanism, verification, two phase locking, state space analysis

I. INTRODUCTION

Concurrent execution of transactions in distributed

databases faces with a lot of problems. Serializable schedules

of transactions are correct and equivalence with serial

execution of them and preserves databases consistency. CCM

is used for isolation and noninterference execution among

conflicting transactions to preserve database consistency

through consistency preserving execution of transactions.

Locking is one of the mechanisms of concurrency control. But

simple locking and unlocking of shared data do not guarantee

the serializability of transactions [1]. 2PL protocol is one of

the well known locking protocols that enforce conflict

serializabilty. 2PL has two phases, locking and unlocking

phases. In 2PL scheduling all locking operations of

transactions must precede their first unlock operation. But

2PL may cause the deadlock. Conservative 2PL is one of the

extensions of 2PL which prevents deadlock but greatly

decrease the concurrency level [2]. Formal modeling of

CCMs is useful in studying different characteristics of them.

II. RELATED WORKS

Petri nets are formal methods that benefits from easy

graphical user interface. Analyzing the performance of

transaction database systems with continuous deadlock

detection is studied using stochastic Petri net model [3].

Using Extended Place/Transition nets for formal modeling

Manuscript received March 9, 2012; revised April 18, 2012.

Saeid Pashazadeh is with the Department at Faculty of Electrical and

Computer Engineering in University of Tabriz in Iran (e-mail:

s_pashazadeh@yahoo.com).

and performance analysis purposes is done for performance

evaluation study on distributed database CCMs [4]. Modeling

two phase commit protocol for transaction management in

distributed environment is studied using time Petri net [5].

Formal specification for concurrency control of database

transactions using conventional Petri net based on 2PL

protocol which can ensure the serialization of concurrency

scheduling is also studied [6]. Quantitative performance study

of 2PL in parallel database systems is performed using a novel

simulation-based methodology [7]. This methodology

employs a Petri net model for captures the characteristics of

parallelism and synchronization at the workload level in the

higher level and a queuing network model for captures

queuing aspects of the system at the physical resource level at

the lower level. Standard 2PL and the primary-copy methods

are modeled using high level Petri net (colored Petri net) too

[8]. In this paper, a new model of concurrency control based

on the 2PL is introduced using colored Petri net.

III. COLOUR SETS, INITIAL MARKINGS AND MODELS OF THE

SYSTEM

Fig. 1 shows the top level model of the system and Fig. 2

shows the model of each transaction. Colour sets that are used

in the models are as follows:

colset RESOURCE = string;

colset SEQUENCE = int;

colset ACCESS = string;

colset LOCK = string;

val TransactionsNO = 3;

colset TRANSACTION = index

 Trans with 1.. TransactionsNO;

colset BOOLEAN = bool

colset SEQxACCESSxRES = product SEQUENCE *

 ACCESS *RESOURCE;

colset TRANSLIST = list TRANSACTION;

colset TRANSLISTxLOCKxRES = product TRANSLIST*

 LOCK*RESOURCE;

The colour set RESOURCE defined to represent the name

of resources, and its type is the set of all text strings. Colour

set SEQUENCE is defined to be equal to the set of all integers

and is used for representing sequence number of transaction's

instructions (starting from 1). The colour set ACCESS is

defined of type text string and is used to model the type of

access that each process wants to have on a resource. “LX” is

abbreviation for exclusive lock, “LS” for shared lock, “R” for

read, “W” for write, and “UL” for unlock access in the model.

Modeling and Verification of Deadlock Potentials of a

Concurrency Control Mechanism in Distributed Databases

Using Hierarchical Colored Petri Net

Saeid Pashazadeh, Senior Member, IACSIT

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

77

Fig. 1. Top-level module of the hierarchical resource management model.

Colour set LOCK is of type text string and is used for

representing the type of lock that currently exists on a

resource. “LX” and “LS” is as mentioned before and “F”

represents that resource is free and no lock exists on it.

Constant NoTransactions determines the number of

model's transactions. This constant is used in the definition of

the colour set TRANSACTION such that the colours in this

colour set match the number of transactions. The index colour

set TRANSACTION is used for modeling the identity of the

transactions. This colour set contains three colours: Trans(1),

Trans(2), and Trans(3) which identifies the three transactions

of the model.

The colour set SEQxACCESSxRES is used to model the

instructions of each transaction. Instructions have sequence

number, type of operation, and a resource name. The colour

set TRANSLIST is defined to model the list of transactions.

This list will be used when few processes has shared lock on a

resource. Colour set TRANSLISTxLOCKxRES is defined to

model the existing locks on a resource. Colour set BOOLEAN

is defined of type bool. Defined constants in the model are as

follows:

val InsInit = 1`1;

val ETL = [] : TRANSLIST;

val InitialStatus =1`(ETL,”F”,”A”)++1`([],”F”,”B”);

val T1Ins = 1`(1, “LS”,”A”)++1`(2, “R”,”A”)++

 1`(3,”LX”,”B”)++1`(4,”W”,”B”)++

 1`(5,”R”,”A”)++1`(6,”UL”,”A”)++

 1`(7,”UL”,”B”)

val T1ID = 1`Trans(1)

Constant InsInit represents the initial marking of place

NextInstrcution that is shown in the Fig. 2. It represents the

next instruction of each transaction that will be executed.

Constant ETL is defined of colour set TRANSLIST,

represents an empty list of transactions, and is used in the

definition of constant InitalStatus. Constant InitialStatus

represents that two existing resources of the system are free.

Constant T1Ins represents the instructions of transaction

number one. Constant T1ID represents identifier of

transaction one (Trans(1)). Variables that are used in the

model are as follows:

var S : SEQUENCE;

var A: ACCESS;

var OA,NA: LOCK;

var C: BOOLEAN;

var R : RESOURCE;

var CT: TRANSACTION;

var TL,NTL: TRANSLIST;

Varible OA represents the old lock type on a resource and

NA represents the new lock type of it. Variable CT represents

the current transaction that model runs its instruction.

Variable TL represents the list of transactions that have

specific lock on a resource and NTL represent the new list of

transactions on a resource after executing current instruction.

IV. DESCRIPTION OF MODEL'S FUNCTIONS

Most of the functionality of the CPN's models is based on

the user written functions in functional ML language [9].

Model's functions and their operation are as described follows.

In this part, all of the model's functions and their operation are

described.

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

78

Fig. 2. CPN model of transaction module instance corresponding to transaction T1.

Function getTransIndex takes a transaction identity of

colset TRANSACTIAON as first parameter and a list of

transcations with colset TRANSLIST as second parameter

and returns the index of transaction's position in the list

(counting from 0). If list do not contains this transaction, then

function returns -1 as result.

fun getTransIndex(t , h::L) : int =

 let val i =0

 in if (h=t) then i

 else

 if (getTransIndex(t, L) <> ~1) then

 getTransIndex(t, L) +1

 else ~1

 end

| getTransIndex(_,[]) = ~1;

Function eliminateTrans takes a transaction identity t of

colset TRANSACTION as first parameter and a list of

transactions' identities h::L of colset TRANSLIST as second

parameter. If the transaction in first parameter exists in the list

of transactions in the second parameter, then function returns

a list that occurs from eliminating transaction t from the list. In

otherwise returns the unchanged list of transactions.

fun eliminateTrans (T, L)=

 let val index = getTransIndex(T, L)

 in if (index <> ~1) then

 List.take(L,index)^^List.drop(L,index+1)

 else L

 end

 | eliminateTrans (T,[]) = [];

Function isExists takes a transaction identity of colset

TRANSACTION as first parameter and a list of transactions'

identities of colset TRANSLIST as second parameter. This

function returns true if the first parameter is exists in the list of

second parameter. In otherwise this function returns false.

fun isExists(T , TL) =

 let val n = getTransIndex(T,TL)

 in if n <> ~1 then

 true

 else

 false

 end

 | isExists (_ , []) = false;

Function checkLock is the most important function of the

model that is shown in Fig. 2. First formal parameter of it,

RAcc is of colset ACCESS and represents the required access

on a resource by current instruction. Second parameter ELock

is of colset LOCK and represents the current existing lock on

the resource that current instruction wants to have RAcc

access on it. Third parameter CurT is of colset

TRANSACTION and represents the identity of transaction

that current instruction of under study belongs to it. Fourth

parameter TList is of colset TRANSLIST and represents the

list of transactions that have lock of type ELock on the

resource that will be used by current instruction.

This function returns a record (with three fields) as the

result. Third field of the result is of colset BOOLEAN.

Function returns true for the third parameter when the current

instruction can execute based on the locks compatibility rules.

Function return false in two different cases. First case is when

the current instruction is not permitted to execute based on the

existing locks on the resource and lock compatibility rules.

After execution of some other instructions may be this

instruction can be executed. In this case, second filed of

output result which is of colset LOCK, will represent the final

lock type on the resource after executing the current

instruction. Second case occurs when the instruction has

conflict based on the 2PL algorithm. E.x. if a transaction

wants to have write operation on a resource before applying

an exclusive lock on it. In latter case, the second field of

output record contains the error message for better identifying

the errors of transactions' instructions for easier trace of the

model in execution time. First field of the result is of colset

TRANSLIST and represents the list of transactions that have

lock on the resource after successful execution of current

instruction.

fun checkLock(RAcc, ELock , CurT, TList) =

 if RAcc = “LX” then

 if ELock = “LX” then

 if isExists(CurT , TList) then

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

79

 (TList,”Duplicate LX Error”,false)

 else

 (TList,ELock,false)

 else if ELock = “LS” then

 if isExists(CurT , TList) then

 if List.length(TList) > 1 then

 (TList,ELock,false)

 else

 (TList,RAcc,true)

 else

 (TList,ELock,false)

 else if ELock = “F” then

 (CurT::TList,RAcc,true)

 else

 (TList,”Unknown Old Access Error”,false)

 else if RAcc = “LS” then

 if ELock= “LX” then

 if isExists(CurT , TList) then

 (TList, “LX to LS Error”,false)

 else

 (TList,ELock,false)

 else if ELock = “LS” then

 if isExists(CurT , TList) then

 (TList,”Duplicate LS Error”,false)

 else

 (CurT::TList,ELock,true)

 else if ELock = “F” then

 (CurT::TList,RAcc,true)

 else

 (TList,”Unknown Old Access Error”,false)

 else if RAcc =“UL” then

 if isExists(CurT , TList) then

 let val NewTList =eliminateTrans(CurT,TList)

 in

 if List.null NewTList then

 (NewTList,”F”,true)

 else

 (NewTList, ELock,true)

 end

 else

 (TList,”Unlocks No Lock Error”,false)

 else if RAcc =“R” then

 if isExists(CurT , TList) then

 (TList,ELock,true)

 else

 (TList,”No Lock Error”,false)

 else if RAcc=“W” then

 if isExists(CurT , TList) then

 if ELock = “LX” then

 (TList,ELock,true)

 else

 (TList, “No X Lock Error”,false)

 else

 (TList,”No Lock Error”,false)

 else (TList,”unknown Access”,false);

TABLE I: OPERATION OF SYSTEM WHEN CURRENT REQUESTING TRANSACTION EXISTS IN THE LIST OF TRANSACTIONS THAT HAVE LOCK ON THE RESOURCE.

Existing Lock

Shared Lock Exclusive Lock

If length(TList) > 1 then

(TList, ELock, false)

else (TList, RAcc, true)

(TList, “Duplicate LX Error”,

false)

Exclusive

Lock

R
e
q

u
ir

e
d

 A
c
c
e
ss

 (TList, “Duplicate LS Error”, false) (TList, “LX to LS Error”, false) Shared

Lock

Let val NewTList = eliminateTrans(CurT,TList)

in

 if List.null NewTList then

 (NewTList, “F”, true)

 else (NewTList, ELock, true)

end

Unlock

(TList, ELock, true) Read

(TList, “No X Lock Error”, false) (TList, ELock, true) Write

TABLE II: OPERATION OF SYSTEM WHEN CURRENT REQUESTING TRANSACTION DOES NOT EXISTS IN THE LIST OF TRANSACTIONS THAT HAVE ANY LOCK ON

THE RESOURCE

Existing Lock

Shared Lock Exclusive Lock

(TList, ELock, false) (TList, ELock, false) Exclusive Lock

R
e
q

u
ir

e
d

A
c
c
e
ss

 (CurT::TList, ELock, true) (TList, ELock, false) Shared Lock

(TList,”Unlocks No Lock Error”,false) Unlock

(TList, “No Lock Error”, false) Read

(TList, “No Lock Error”, false) Write

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

80

Operation of model by means of function checkLock is

summarized in Table I, Table II and Table III. Table I

represents the operation of the model when transaction CurT

requires access RAcc on a resource which transactions of list

TList have lock ELock on it and transaction CurT exists in the

list of TList. Table II summerises the cases which transaction

CurT do not exists in the list TList.

Table III sumerrises the cases which no lock exists on the

resource or any unknown lock is presented by mistake on the

resource. If RAcc is beyond the range of predefined accesses

the function returns record (TList,”unknown Access”,false)

as result. Fig. 3shows the structure chart of models' functions.

Our model contains three transaction and two types of

resources as a simple case study. Instructions of each

transaction and resources of the system are as shown in Fig. 1.

TABLE III. OPERATION OF SYSTEM WHEN NO LOCK EXISTS ON THE RESOURCE OR IN APPEARANCE OF UNKNOWN LOCK.

Existing Lock

else No Lock

(TList,”Unknown Old Access Error”,false) (CurT::TList, RAcc, true) Exclusive Lock

R
e
q

u
ir

e
d

A
c
c
e
ss

 (TList,”Unknown Old Access Error”,false) (CurT::TList, RAcc, true) Shared Lock

- (TList,”Unlocks No Lock Error”,false) Unlock

- (TList, ELock, true) Read

- (TList, “No X Lock Error”, false) Write

Fig. 3. Structure chart of model's functions.

V. STATE SPACE ANALYSIS

My proposed model presents a simple case study that

contains three transaction and two types of resources. Fig. 4

shows the state space of the system's model. Summary report

of state space analysis is as follows.
Statistics

 --

 State Space

 Nodes: 102

 Arcs: 174

 Secs: 0

 Status: Full

 Scc Graph

 Nodes: 102

 Arcs: 174

 Secs: 0

 Home Properties

 --

 Home Markings

 [102]

 Liveness Properties

 --

 Dead Markings

 [102]

 Dead Transition Instances

 None

 Live Transition Instances

 None

 Fairness Properties

 --

 No infinite occurrence sequences.

State space of model has 102 nodes and 174 arcs. Deadlock

of Petri net appears as a node with no outgoing arc. State

space analysis shows that the Perti net have a single deadlock

state. This state is the deadlock state of the Petri net and is not

deadlock state of the system. This state is shown with node

102 in the Fig. 4. This deadlock is desirable and represents a

system state that instructions of all transactions executed

completely and no lock exists on the resources. This deadlock

state of Petri net represents the desirable final state of model's

run. However, appearing of a deadlock state which some of

instructions of any transactions do not executed represent a

deadlock state of the system. This condition shows that some

of the transactions felled in the deadlock state and never can

finish. Automatic analysis of the system state did by using

appropriate computational tree logic (CTL) formulas [10].

Fig. 4. State space of the system with given sample data.

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

81

VI. CONCLUSION

CPN is flexible and powerful method for modeling and

formal analysis of the distributed nondeterministic systems. In

this paper a new novel, scalable and extendable model of 2PL

CCM using hierarchical CPN presented. State space analysis

of the model is done using CTL formulas. State space analysis

permits us to prove that all schedules of transactions are

deadlock free or not. State space calculation and analysis is

done fast and completed in few seconds. Model can easily

change for modeling and study of other CCMs like strict 2PL.

Model of CPN that used for formal verification, can easily

extend for performance analysis too.

REFERENCES

[1] C. J. Date, An Introduction to Database Systems, 8th ed. USA: Pearson
Education, 2004, pp. 465-494.

[2] G. Weikum and G. Vossen, Transactional Information Systems Theory,
Algorithms, and the Practice of Concurrency Control and Recovery,
The Morgan Kaufmann Series in Data Management Systems, J. Gray,
Ed. Academic Press, London, United Kingdom, E. W. Dijkstra,
“Co-operating Sequential Process,” in Programming Languages, F.
Genuys, Ed. London: Academic Press, pp. 125-166, 2002.

[3] I.-R. Chen and R. Betapudi, “A Petri net model for the performance
analysis of transaction database systems with continuous deadlock
detection,” in Proc. ACM symposium on Applied computing, Phoenix,
Arizona, USA, 1994, pp. 539-544.

[4] M. T. Ozsu, “Modeling and analysis of distributed database
concurrency control algorithms using an extended Petri net
formalism,” IEEE Transactions on Software Engineering, vol. SE-11,
no. 10, pp. 1225-1240, Oct. 1985.

[5] B. B. Sarkar and N. Chaki, “Modeling & analysis of transaction
management for distributed database environment using Petri nets,” in
Proc. World Congress on Nature & Biologically Inspired Computing
(NaBIC 2009), Dec. 9-11, 2009, pp. 918-923.

[6] H. Jie and L. Fengying and W. Huijiao, “Petri net based model for
concurrent control of database system,” in Proc. International
Conference on Intelligent Computing and Integrated Systems (ICISS),
Oct. 22-24, 2010, pp. 813-815.

[7] B.-C. Jenq, B. C. Twichell, and T. W. Keller, “Locking performance in
a shared nothing parallel database machine,” IEEE Transactions on
Knowledge and Data Engineering, vol.1, no.4, pp. 530-543, Dec.
1989.

[8] K. Voss, “Prototyping and verifying distributed database systems using
executable high-level Petri net models,” in Proc. IEEE International
Conference on Systems, Man, and Cybernetics, “Computational
Cybernetics and Simulation”, vol.4, Oct. 12-15, 1997, pp. 3395-3400.

[9] L. C. Paulson, ML for the Working Programmer, 2nd ed. NY, USA:
Cambridge university press, 1996.

[10] C. Baier and J. P. Katoen, Principles of Model Checking
(Representation and Mind Series), Cambridge, Massachusetts, USA:
The MIT Press, 2008, pp. 229-433.

Saeid Pashazadeh is Assistant Professor of Software

Engineering and chair of Information Technology

Department at Faculty of Electrical and Computer

Engineering in University of Tabriz in Iran. He

received his B.Sc. in Computer Engineering from

Sharif Technical University of Iran in 1995. He

obtained M.Sc. and Ph.D. in Computer Engineering

from Iran University of Science and Technology in

Iran in 1998, 2010 respectively. He was Lecturer in

Faculty of Electrical Engineering in Sahand

University of Technology in Iran from 1999 until 2004. His main interest is

in the development, modeling and formal verification of distributed systems,

and computer security. He is member of IEEE and senior member of

IACSIT.

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

82

