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Abstract. We study self-organized cooperation in a heterogeneous robotic
swarm consisting of two sub-swarms. The robots of each sub-swarm play
distinct roles based on their different characteristics. We investigate how
the swarm as a whole can solve complex tasks through a self-organized
process based on local interactions between the sub-swarms. We focus on
an indoor navigation task, in which we use a swarm of wheeled robots,
called foot-bots, and a swarm of flying robots that can attach to the
ceiling, called eye-bots. Foot-bots have to move back and forth between
a source and a target location. Eye-bots are deployed in stationary po-
sitions against the ceiling, with the goal of guiding foot-bots. We study
how the combined system can find efficient paths through a cluttered
environment in a distributed way. The key component of our approach
is a process of mutual adaptation, in which foot-bots execute instruc-
tions given by eye-bots, and eye-bots observe the behavior of foot-bots
to adapt the instructions they give. The system is based on pheromone
mediated navigation of ant colonies, as eye-bots function as stigmergic
markers for foot-bots. Through simulation, we show that the system finds
feasible paths in cluttered environments, converges onto the shortest of
two paths, and spreads over different paths in case of congestion.

1 Introduction

We study self-organized cooperation in a heterogeneous robotic swarm consisting
of two sub-swarms. The robots of each sub-swarm play distinct roles based on
their different characteristics. We investigate how the swarm as a whole can solve
complex tasks through a process based on local interactions between sub-swarms.
We focus on an indoor navigation task. Our solution is based on stigmergic
foraging in ant colonies [1]: we let one sub-swarm serve as active stigmergic
markers for the other, so that the system as a whole learns efficient paths.

We consider the following problem setup. A swarm of wheeled robots, called
foot-bots, is deployed in an indoor environment to solve a navigation task: they
need to go back and forth between a source and a target location (e.g., to trans-
port objects). They are assisted by a swarm of flying robots that can attach to the
ceiling, called eye-bots. These are deployed beforehand to cover the area between
source and target and take fixed positions at the ceiling. From these positions,



they give directional instructions to the foot-bots, to guide them towards the
source or the target. The use of a heterogeneous swarm provides flexibility. The
flying eye-bots can quickly explore and cover an unknown indoor environment.
Their ability to attach to the ceiling allows them to interact with the foot-bots,
guide and observe them, without physically interfering with their movements.

We investigate how the combined system of foot-bots and eye-bots can find
navigable and efficient paths in a cluttered environment. We focus on a fully
distributed solution, which relies only on local communication between eye-bots
and nearby foot-bots (using infrared and visual communication), without any
interaction among eye-bots or foot-bots. We do not study how eye-bots are
deployed. Given the limited communication requirements of our approach, we do
not need the eye-bots to be in communication range or in a specific arrangement:
we can use any algorithm that provides sufficient coverage of an area (e.g., [2]).

We propose a distributed learning algorithm, in which eye-bots start from a
random decision policy to give instructions to foot-bots, and observe foot-bot
behavior in order to adapt the instructions they give and learn a good policy. This
way, eye-bots use foot-bots as sampling agents to learn about the environment.
From a different point of view, the eye-bots form a set of discrete locations
in the environment storing and updating a distributed navigation policy that
is based on observed foot-bot behavior and in turn influences future foot-bot
movements. In this sense, they form stigmergic markers for foot-bot navigation.
The heterogeneous system of eye-bots and foot-bots is able to cooperatively find
feasible paths for foot-bots through the environment. Moreover, it is capable of
finding shortest paths and of spreading over multiple paths in case of congestion.

2 Robot characteristics and problem setup

The foot-bot and eye-bot are under development in the Swarmanoid project
(http://www.swarmanoid.org). The foot-bot (Fig. 1(a)) moves on the ground.
It has two cameras, one omnidirectional and one pointing up. Foot-bots can
communicate with each other and with eye-bots via visual signals (in this paper,
we use only communication between foot-bots and eye-bots), using the 256 color
LED ring that is placed around their body and the LED beacon they have
on top. Moreover, they can exchange wireless messages locally (up to 3 m) at
low bandwidth using an infrared range and bearing (IrRB) system.The eye-bot
(Fig. 1(b)) is a flying robot, which can attach to the ceiling using a magnet (the
design assumes ferromagnetic ceilings). It has a pan-and-tilt camera which it
can point in any direction below. Like the foot-bot, it can communicate using a
multi-color LED ring placed around its body, or using the IrRB system. Details
for both robots can be found on the Swarmanoid website.

The eye-bots and foot-bots are placed in an indoor arena like the one shown
in Fig. 1(c). The task of foot-bots is to find paths to go back and forth be-
tween a source (top right in the figure) and a target location (bottom left in
the figure) (e.g., to transport objects). Eye-bots are attached to the ceiling in
a formation that covers the area between source and target (we show a grid,
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Fig. 1. (a) Foot-bot (CAD draw), (b) eye-bot (prototype), and (c) example scenario.

but any formation that lets eye-bots approximately cover the area with their
visual range could be used). They support the foot-bots in their task, by giving
directional instructions to foot-bots that are within their visual range (the disk
under selected eye-bots in the figure). The task is made difficult by the presence
of obstacles that block the way for foot-bots. We study how the heterogeneous
swarm of foot-bots and eye-bots can solve this task in a distributed way.

3 Related work

We know of no other work that studies stigmergic cooperation between sub-
swarms. However, given the ant colony inspiration, our work is related to re-
search on pheromone based stigmergic foraging in swarm robotics [3–6]. A dif-
ficult issue in such systems is how to implement pheromone. Some authors use
practically infeasible solutions, such as light encoding of pheromone using an
overhead projector [3, 5] or a map in a shared memory [6], assuming that the
issue of pheromone implementation will be solved somehow in the future. Other
authors experiment with chemical traces, e.g. using alcohol [4]. We use stigmergic
communication points to store pheromone, which can be considered a practical
alternative. A similar approach was followed in [7], where pheromone is stored
in RFID tags embedded in the environment. Compared to that work, our ap-
proach has the advantage that communication points are mobile robots, so that
the system also works in environments that have not been fitted with embedded
tags. Moreover, that work was not concerned with adaptive path finding. One
other work that employs robots to store pheromone is [8]. Also they do not study
adaptive path learning. Moreover, they do not use distinct robot swarms to store
pheromone and to solve a task. We believe our approach gives more flexibility.
Finally, we point out that our work is to our knowledge the first that considers
automatic traffic spreading in addition to shortest path finding.



In terms of problem setup, our work is related to research on the use of
embedded sensor networks for robot navigation [9–11]. In such systems, sensor
nodes spread in the environment are used to guide a mobile robot to a target.
The sensor nodes play a role similar to that of our eye-bots. An important dif-
ference is the central role of network communication in those systems. Sensor
nodes calculate the shortest path through the network formed among them, and
use this to guide the robot. This requires all nodes to be connected in a net-
work. Moreover, it assumes a one-to-one relation between communication links
and navigable path segments: all communication links are expected to indicate
navigable paths, and all navigable paths should be covered by communication
links. Since our approach relies on local communication and foot-bot observation,
rather than on network communication, none of these restrictions are present.

4 Cooperative stigmergic navigation

4.1 General description

The main idea behind our approach is that eye-bots maintain stochastic policies,
which they use to choose navigation instructions to broadcast to foot-bots, and
that they update these policies based on visual observations of foot-bot behavior.

We limit the possible navigation instructions to 12 discrete directions, so
one direction every π/6 radians. Each eye-bot maintains two different policies:
policy Pt for the target and policy Ps for the source. Each policy consists of
an array of 12 positive real valued numbers, expressing the preference for the
discrete navigation directions. Periodically, at discrete time steps, the eye-bot
selects two directions from the policies, θt for the target and θs for the source.
These directions are broadcast locally to guide nearby foot-bots.

Foot-bots move towards the directions they receive from eye-bots. As they
move, they use light signals to make their behavior visible for eye-bots. A foot-
bot simultaneously switches on its LED beacon on top and one LED in front,
to show eye-bots its movement direction. The color of the front LED is used to
indicate whether the foot-bot’s goal is the source or the target, whereas the color
of the LED beacon shows whether it is doing obstacle avoidance.

Eye-bots use their camera to observe the behavior of foot-bots in their field
of view, and based on this information they update Pt and Ps. They consider
three aspects of foot-bot behavior: the foot-bot’s current goal (whether it is going
to the target or the source), the direction θf it is coming from (relative to the
eye-bot’s orientation), and whether it is performing obstacle avoidance.

Using this algorithm, eye-bots use foot-bots as sampling agents to explore the
effect of different actions in the environment and learn efficient policies. From
a different point of view, foot-bots use eye-bots as stigmergic communication
points which store previous foot-bot experiences and influence future foot-bot
movements. Seen in this way, eye-bots fulfill a similar role as pheromone in
stigmergic foraging by ant colonies. Therefore, they could be seen as a practical
way to physically implement pheromone in swarm robotic systems.



4.2 Updating and using eye-bot stochastic policies

When an eye-bot observes a foot-bot that is going towards the target, it assumes
that the foot-bot is coming from the source, so it increases the policy Ps for the
direction θf that the foot-bot is coming from, and decreases the policy Pt for
that same direction (equivalent updates are made for foot-bots going towards
the source). The idea is that θf is a local sample of a feasible direction towards
the source. The frequency with which a direction is observed is also expected
to be related to its quality, as this effect has been observed in experiments with
ant colonies [12]. When the eye-bot observes a foot-bot performing obstacle
avoidance, it decreases both policies Ps and Pt for the direction in which it sees
the foot-bot, assuming that direction is blocked by obstacles.

To update a policy P in a given direction θ, the eye-bot first associates θ with
the closest of its 12 discrete policy directions, and derives the corresponding
index i. Then, policy increases are performed using an additive constant ca,
while policy decreases are performed using a multiplicative constant cm ∈ ]0, 1[,
as shown in (1). The multiplicative rule allows the system to learn fast about
the presence of obstacles. All policy entries are initialized to P [i] = 1/12.

P [i] =

{
P [i] + ca in case of a policy increase

P [i] · cm in case of a policy decrease
(1)

Eye-bots draw directions from the policies using a stochastic rule balancing
exploitation and exploration: with a constant probability q, the direction with
highest preference is chosen. Otherwise, a direction is chosen randomly, from a
distribution proportional to the relative preferences of directions in the policy.

4.3 Directional instructions from eye-bots to foot-bots

Eye-bots give instructions to foot-bots using a combination of visual signals
with LEDs and wireless communication with the IrRB system. Periodically, they
sample the directions θs and θt from their policies, and broadcast them over the
IrRB system so foot-bots can locally receive them. To show foot-bots a reference
direction θ0, they switch on a red LED in front and a blue LED in the back.
This communication scheme is scalable for the number of foot-bots and eye-bots,
since wireless communication is limited to one periodic, local broadcast by each
eye-bot. All other communication is via light signals.

IrRB communication from eye-bots to foot-bots is focused in a cone, so a
foot-bot needs to move under an eye-bot to receive its messages. The foot-bot
uses its upward camera to read θ0, and extracts direction θs or θt (depending on
whether its goal is the source or the target) from the received wireless message. It
interprets θs or θt relative to θ0, to derive a new travel direction θn. It turns into
direction θn, and then moves forward for a distance d (enough to get out of view
of the eye-bot it received the message from), or until it arrives under a different
eye-bot. If after d no eye-bot is reached, the foot-bot moves towards the closest
eye-bot in its camera view. If no eye-bot is seen, it starts a random movement:
repeatedly make a random turn and move forward for a random distance.



4.4 Foot-bot navigation behavior

Foot-bot movements are guided by the instructions of eye-bots, as outlined in
Sect. 4.3. However, foot-bots have a preference not to return where they come
from, so exploration is directed away from where they come from. This preference
is implemented as follows. When a foot-bot receives from an eye-bot e a travel
direction θn that is forward (i.e., between −π/2 and π/2) with respect to the
travel direction received from the previous eye-bot, the foot-bot follows θn and
does not consider other directions received in subsequent time steps from e.
If, however, the received travel direction θn is backward, the foot-bot follows θn

but simultaneously keeps listening for other instructions from e. If e has a strong
preference for the backward direction θn, it will send θn to the foot-bot again in
the next time steps, so that the foot-bot keeps going in that direction. However,
if in one of the subsequent time steps e sends a forward direction θ′

n, the foot-
bot will use that without listening to other directions, and will not turn back.
Besides this, foot-bots have an obstacle avoidance behavior, which makes them
turn away reactively from obstacles detected using infrared proximity sensors.

Foot-bots use LED signals to show eye-bots their status and behavior. Besides
changing the colors, as described in Sect. 4.1, they also switch off the front
LED in certain occasions. This way, eye-bots can see where they are (through
the LED beacon, which is not switched off), but not the direction they are
coming from, θf . As a consequence, eye-bots cannot update their policy for
θf . Foot-bots do this whenever their movement direction is not representative
for the general direction they are following from source to target: when they
are performing obstacle avoidance, when they are following an instruction that
sends them backward, or when they are not following an eye-bot instruction (e.g.,
performing random movement). The goal is to reduce noise in eye-bot policies.

5 Finding paths in a cluttered environment

We experimentally investigate whether our system can find paths in a cluttered
environment. All tests in this section and in the rest of this paper are done with
the ARGoS simulator, which was developed in the Swarmanoid project (see
http://www.swarmanoid.org/swarmanoid_simulation.php). All experiments
last 3000 s. We carry out 100 independent runs for each test. Some preliminary
results for the behavior presented in this paper appeared in [13] (with slightly
different settings for the behavior and the experimental setup). In all tests, we
use the following parameter settings, which were defined empirically: ca = 0.5,
cm = 0.99, q = 0.5, and d = 2 m.

We study the scenario of Fig. 1(c) and consider the effect of varying the
number of foot-bots. We measure the time from the start of the experiment
until the first foot-bot reaches the target, t1, the average time needed by foot-
bots to travel between source and target, ta, and the average time needed by
foot-bots in case we pre-program eye-bots to show the shortest path, ts. The
results are shown in Fig. 2. Error bars show one standard deviation.
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Fig. 2. Travel times for foot-bots in the scenario of Fig. 1(c).

At first, eye-bot policies are uniform, and foot-bots perform random explo-
ration. Once the first foot-bot has reached the target, it can for its way back
profit from updated policies. A comparison between ta and t1 shows that foot-
bots need much less time on average to travel between source and target than
during the first run. This shows that the system can learn a path from experi-
ence and guide foot-bots between source and target in a cluttered environment.
Moreover, ta is close to ts, showing that the system finds efficient paths. For
increasing numbers of foot-bots, t1 decreases. This is because multiple foot-bots
searching in parallel explore the environment more efficiently. The increase in
ta and ts for higher numbers of foot-bots is due to congestion. We come back
to this in Sect. 7. Finally, we point out that the theoretically best travel time
for a foot-bot going between source and destination at maximum speed while
passing under eye-bots is 73 s, which is very close to ts for 1 robot (76 s). This
time is dependent on the placement of eye-bots, which defines the possible paths
followed by foot-bots. If eye-bots were placed above the shortest path around ob-
stacles, this time could be reduced to 53 s, which indicates that optimal eye-bot
placement can be an interesting direction for future research.

6 Shortest path finding

In our navigation system, eye-bots play the role of active stigmergic markers for
foot-bots. We designed the system after pheromone-based stigmergic foraging in
ant colonies. By laying and following pheromone trails, ant colonies are able to
converge onto the shortest of multiple paths [12]. This is because the shortest
path can be completed faster and more frequently by ants, and therefore receives
more pheromone, which in turn attracts more ants. Given the similarities be-
tween the basic mechanisms in our system and in ant colonies, we investigate to
which extent our swarm exhibits similar shortest path finding abilities.

We used the scenarios of Fig. 3. The source and target locations are connected
by two corridors. We vary the ratio r = ll/lr, where ll is the length of the left
corridor and lr of the right corridor: we use r = 1, r = 1.5 and r = 2 (lr = 20 m
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Fig. 3. Double corridor experiments: (a) r = 1, (b) r = 1.5 and (c) r = 2.

in all scenarios). This setup is derived from the one used with ants in [12]. We
use 15 foot-bots, which we deploy one by one with an interval of 30 s.

We gather statistics in the last 1000 s of each experiment, when all foot-bots
have been deployed and the system has had time to explore the area. We count
over all remaining time steps how many foot-bots use the right corridor, cr, and
how many the left corridor, cl. We calculate the ratio ρ = cr/(cr + cl), which is
near 1 or near 0 if the foot-bots have converged onto respectively the right or
the left corridor, and near 0.5 if they use both corridors in similar proportions.
In Fig. 3, we show a histogram summarizing the values of ρ measured in 100 test
runs (on the x-axis the values of ρ discretized into 5 intervals, on the y-axis the
fraction of the 100 runs that falls into each interval).

In the case of equal corridors (lr = ll), the foot-bots converge on moving over
one of them, which can be either the left or the right. In some cases, both corri-
dors are used equally. This behavior is the same as for ants [12]. When corridors
are of different length, foot-bots converge more often onto the shortest corri-
dor, and this effect gets stronger as the difference between corridors increases,
showing that our system can find shortest paths.

The shortest path behavior of the system is influenced by the number of foot-
bots. When only one foot-bot is used, the system converges onto both corridors
equally likely. Increasing the number of foot-bots, the system selects the short-
est corridor with increasing preference. Finally, when the number of foot-bots
increases further, congestion starts to play a role. This is investigated in Sect. 7.

7 Robot congestion and self-organized spreading

In Sect. 5, we showed how the time ta needed by foot-bots to go between source
and target increases for increasing numbers of foot-bots, due to congestion (espe-
cially directly under the eye-bots, where foot-bots need to go to get directions).
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Fig. 4. Frequency histogram of the ratio ρ in the scenario of Fig. 3(a) for the number
of foot-bots ranging from 1 to 30. The y-axis scale of all plots ranges from 0 to 1.

A way to handle congestion is to spread robot traffic over multiple paths. Here
we investigate how spreading can be obtained in a distributed self-organized way.

Interestingly, ants are capable of traffic spreading. When two paths of equal
length are available, they converge onto one when ant traffic is low, and spread
over both when traffic is high [14]. This behavior is based on direct interactions
between ants: in crowded conditions, ants physically push each other onto differ-
ent paths. Since robots, like ants, are embodied agents, physical interactions play
an important role in their behavior. These interactions increase in case of con-
gestion. A mechanism of traffic spreading similar to that of ants could therefore
also be used for robots.

Experiments show that our behavior, without modifications, is capable of
traffic spreading. We use the scenario with equal corridors of Fig. 3(a), with
increased numbers of foot-bots. In Fig. 4, we show the distribution of the ratio
ρ for tests with 1 up to 30 foot-bots. For low numbers of foot-bots, all tests have
a ratio ρ of either 0 or 1, indicating that they focus on one of the corridors.
As the number of foot-bots grows, the number of tests with intermediate values
for ρ increases, indicating that the system increasingly spreads traffic over both
corridors. For high numbers of foot-bots, traffic is always spread. The sequence
of histograms in Fig. 4 shows how the system displays qualitatively different
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Fig. 5. The average foot-bot travel time (in seconds) vs. the ratio ρ in the scenario of
Fig. 3(a) for 10, 20, and 30 foot-bots.

behavior for increasing numbers of robots: the distribution of ρ evolves from
bimodal over uniform to unimodal.

Visual investigation revealed that traffic spreading is indeed caused by inter-
actions between foot-bots. The driving factor is the fact that foot-bots execute
obstacle avoidance when they bump into each other. As described in Sect. 4, eye-
bots observe where foot-bots do obstacle avoidance, and reduce their policies in
those directions. This directs foot-bots away from congested areas, so that traffic
spreading emerges from the self-organized path finding behavior.

In Fig. 5, we investigate the relation between the ratio ρ and the travel
time ta. We show graphs for 10, 20 and 30 foot-bots. For each of these, we plot
ta against ρ for all 100 test runs. As discussed before, ta grows for increasing
numbers of foot-bots. However, when traffic is spread over two corridors, ta is
lower than when traffic is focused on one corridor, confirming the usefulness of
traffic spreading. This difference grows for higher numbers of foot-bots, and the
system increasingly chooses intermediate values of ρ.

Traffic spreading also takes place in scenarios with unequal corridors. In the
scenario of Fig. 3(b), we observed that for high numbers of foot-bots (more than
15), traffic eventually spreads over both corridors. The system may even send
more traffic over the longest corridor, as this can accommodate more foot-bots
under less congestion. Reducing congestion this way, the system could reduce
foot-bot travel time. However, given the limited information exchange (observed
foot-bots form only an implicit feedback about path qualities for eye-bots), the
system is not able to choose the point of operation that minimizes foot-bot
travel time. In future work, we will improve this by including explicit travel time
feedback from foot-bots to eye-bots.

8 Conclusions

We have described a cooperative behavior for heterogeneous swarm robotics
to solve a navigation task in a distributed way. It is inspired by pheromone
based stigmergic foraging in ant colonies: we let the robots of one sub-swarm
function as active stigmergic markers for the other sub-swarm. We showed that
our approach can find paths in a cluttered environment, find shortest paths, and



spread robot traffic in case of congestion. The system also shows a practically
feasible approach to implement pheromone in swarm robotics.

We will develop this system in two directions. First, we want to let eye-bots
move and adapt their position based on foot-bot feedback. This lets them search
the best locations to give instructions, and reduces the need for full eye-bot
coverage of the area. Second, we want to let foot-bots give explicit feed-back
about the quality of the paths they follow, to make policy learning more precise.
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