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ABSTRACT
We present a technique for automatically detecting secu-
rity vulnerabilities in client-side self-contained components,
called web widgets, that can co-exist independently on a
single web page. In this paper we focus on two security
scenarios, namely the case in which (1) a malicious widget
changes the content (DOM) of another widget, and (2) a
widget steals data from another widget and sends it to the
server via an HTTP request. We propose a dynamic analy-
sis approach for automatically executing the web application
and analyzing the runtime changes in the user interface, as
well as the outgoing HTTP calls, to detect inter-widget in-
teraction violations.

Our approach, implemented in a number of open source
Atusa plugins, called Diva, requires no modification of ap-
plication code, and has few false positives. We discuss the re-
sults of an empirical evaluation of the violation revealing ca-
pabilities, performance, and scalability of our approach, by
means of two case studies, on the Exact Widget Framework
and Pageflakes, a commercial, widely used widget frame-
work.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Security, Verification

Keywords
Web applications, security testing

1. INTRODUCTION
Web applications increasingly rely on client-side process-

ing to enable a user experience comparable to that of desktop
applications. Using Ajax [2], the classic sequence of static
HTML pages is replaced by a single page, which is dynam-
ically adjusted at the client side by JavaScript code that
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directly manipulates the browser’s DOM tree. Communica-
tion with the server is asynchronous, and typically affects
small parts of the DOM tree only [13].

Furthermore, Ajax pages can be composed from indepen-
dent user interface components, often called web widgets.
These widgets are mini-applications composed of a chunk
of code that can be embedded in an HTML page, and run
independently and next to each other, providing dynamic
content and functionality for a wide variety of tasks such as
showing the latest news headlines, weather predictions, or a
list of new email messages. Highly visible examples include
Mashup sites such as iGoogle,1 Netvibes,2 and Pageflakes,3

which allow users to select widgets from a catalog, and cus-
tomize and host them on their own start page. They also
provide APIs for external developers to build and include
new widgets in the widget catalogs.

As any program code, widgets can be used for malicious
purposes. Security becomes an important aspect when third-
parties are allowed to include new widgets in public catalogs.
Example scenarios include when a malicious widget changes
the content of another widget to trick the user into releasing
sensitive information, or even worse, listens to the account
details a user enters in another widget (e.g., PayPal or Email
widgets) and sends the data to a malicious site.

Current protection-based solutions aim at avoiding the
problem by disallowing inter-widget interactions, at the cost
of limiting functionality. Traditional detection-based ap-
proaches are generally static analysis-based, which has lim-
itations in revealing faults and violations in the distributed
runtime behavior of modern rich web applications.

Testing modern web applications for security vulnerabili-
ties is far from trivial. In this paper, we propose a new dy-
namic analysis approach that automatically detects and re-
ports inter-widget interaction violations. We have extended
and used our Ajax testing tool Atusa [14], to implement the
approach in a number of security plugins, called Diva. In
addition, we present the results of an evaluation, performed
to assess the effectiveness and performance of our approach.
The results of our case studies performed on two external
widget frameworks are positive; We believe the applicability
of our approach is not limited to Ajax-based widgets, and
can be used to test the security of any web application in
which inter-widget interactions pose security threats.

This paper is further organized as follows. In the next
section, we discuss two types of security vulnerabilities that

1
http://www.igoogle.com

2
http://www.netvibes.com

3
http://www.pageflakes.com
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we focus on in this paper. In Section 3, we present our over-
all approach to automatically detect inter-widget security
violations. In Sections 4 and 5 we describe the details of
the automated detection methods. Section 6 covers the im-
plementation of the methods and Section 7 reports on the
results of our evaluation with two case studies. We conclude
our paper with a discussion, related work, and concluding
remarks.

2. BACKGROUND
Placing interactive applications from multiple external ven-

dors on a single web page requires a framework and a collec-
tion of widgets. The framework offers APIs and guidelines
for developers to create new widgets. Each implemented
widget must adhere to the framework guidelines, and can
be hooked into a framework web page as a subtree, and exe-
cuted without requiring additional compilation, in a mobile
code style [1].

The traditional way of placing content from multiple ex-
ternal vendors on one page is by using IFrames. The advan-
tage of IFrames is that they provide an isolated environment
for the widgets because the Same Origin Policy (SOP) [15]
constrains them from accessing other parts of the page. The
main problem with using IFrames is, however, that they do
not provide real integration on the page. IFrames impose
undesired limitations, for instance on, the page layout, use
of CSS style sheets of the framework, and rich widget inter-
actions such as resizing.

An alternative for overcoming such limitations is to place
each widget inside a DIV container [18]. The trade-off of
using DIV containers is the lack of SOP support. Hence,
widgets that are placed in DIV containers run in the same
execution environment and are, therefore, capable of ac-
cessing and manipulating other widgets’ properties. This
leaves the developers with the difficult choice between secu-
rity and functionality. Existing widget frameworks appear
to be avoiding the security problems by either completely
disallowing inter-widget interaction, or putting the respon-
sibility of possible risks of using external widgets on the
shoulders of the end users.

Inter-widget interactions are desirable because they can
provide highly interactive functionality, by for instance al-
lowing to update a shopping basket widget, when an item is
selected in a product items widget. Therefore, placement in
DIV containers is preferred over IFrames.

Various violation scenarios in DIV-based malicious widgets
can be sketched. In this paper, we focus on the following two
generalized types:

V1 A malicious widget (MAL) changes the DOM subtree of
another innocent widget (VIC), e.g., MAL changes the
action URL of a form in VIC so that when the user
submits the form, the content is sent to a malicious
site.

V2 MAL reads data from VIC and sends it to a server using
an HTTP request, e.g., user logs into an email account
using VIC, MAL logs the entered username and pass-
word and sends it to a remote server.

Although security testing is a broad term, current web
application security research is mainly focused on prevent-
ing and detecting Cross-site Scripting (XSS) and SQL in-
jections. However, we believe that V1 and V2 cover a wide

range of security violation scenarios that are increasingly
becoming important as they threaten the safety of modern
interactive web applications, in which widgets are DIV-based
rather than IFrame-based and require dedicated attention.

3. OUR APPROACH
Web widgets are generally placed on a single-page web

interface [13] using Ajax technology. The goal of our ap-
proach is to automatically identify security vulnerabilities in
web widgets. To achieve this goal, our approach performs
a dynamic analysis of the Ajax web application, by crawl-
ing through the various states and analyzing the widgets’
behavior.

In our previous work [12], we proposed a new type of
web crawler, called Crawljax, capable of exercising client-
side code, detecting and executing doorways (clickables) to
various dynamic states of Ajax-based applications within
browser’s dynamically built DOM. While crawling, Crawl-
jax infers a state-flow graph capturing the states of the
user interface, and the possible event-based transitions be-
tween them, by analyzing the DOM before and after firing
an event.

More recently, we proposed an approach for automatic
testing of Ajax user interfaces, called Atusa [14]. Atusa
is based on the crawling capabilities of Crawljax and pro-
vides data-entry point detection and (pre-, in-, and post-
crawling) plugin hooks for testing Ajax applications through
generic and application-specific invariants that serve as or-
acle to detect faults.

In this paper we propose to extend and use Atusa for
automatically spotting security problems in widget interact-
ions. For each generalized violation scenario (V1, V2), we
first present our method for detecting the violation and then
discuss the plugin that implements the approach.

In order to find DOM change violations (V1), we first
need to automatically detect each widget’s boundary in the
DOM tree. Once the boundaries are defined, we can analyze
the elements receiving events and the actual changes taking
place on the DOM tree to decide whether a state change is
a violation.

For HTTP request violations (V2), the main challenge is
in coupling each outgoing request with the corresponding
DOM element, from which it originated. Once we know
which element is causing the request, we can analyze the
behavior and decide whether a violation has occurred.

To detect the widget in which the violation was initiated,
we need to consider ways in which the state of a web page can
be changed. In Ajax-based applications, the web page usu-
ally changes as a result of an event fired on an element with
an event listener. Note that performing a full page refresh
updates the page as well but is rarely required in current
single-page web interfaces. In our approach, we assume a
violation is initiated by an event (e.g., click, mouseover,

dblclick) fired on a DOM element.
In the next two sections, our methods for detecting V1

and V2 are presented respectively.

4. DETECTING INTER-WIDGET CHANGE
VIOLATIONS

The first violation scenario that we address involves a ma-
licious widget MAL trying to make a change to the DOM
subtree belonging to an innocent widget VIC. Below, we
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Figure 1: Example DOM tree of a widget framework
(# = id, . = class).

first discuss the nature of widget boundaries, after which we
explain how we can reverse engineer them, and how these
boundaries can be used to detect illegal DOM changes.

4.1 Widget Boundaries
A widget is a subtree of the DOM. Widgets cannot be

nested, and do not share DOM elements. The top (root)
element of a widget comprises its boundary with the top
level framework DOM elements.

An example is shown in Figure 1: Two widgets are dis-
played, with root elements having id’s #widget1 and #wid-

get2. The framework element is the parent of these two
widgets, having id #wi_container.

In many frameworks, it is straightforward to identify the
boundary between a widget and the framework part of a
DOM tree, often by means of the class=widget attribute.
With the goal of defining a standard for automated widget
testing, we are an advocate of this policy. For example,
in Figure 1, the root of each widget holds a class attribute
.widget.

Not all frameworks, however, require this explicit identi-
fication. In those cases, a number of heuristics can be used
to determine if a particular DOM node constitutes a widget
boundary. First, some elements are certain not to belong
to any boundary. Typical examples include HTML or BODY

elements, or nodes that are known to belong to the given
framework (the #wi_container in the example).

In addition to that, some elements can be given a certain
probability that they constitute a boundary. An example is a
DIV element, which can, but need not be a widget boundary.
These probabilities are defined by the tester after manual
inspection of the DOM.

4.2 Reverse Engineering Boundaries
In order to identify widget boundaries automatically, we

propose the use of boundary rules. Each rule provides a
pattern as well as a rating. Example rules for Figure 1 are
displayed in Figure 2.

The pattern syntax is equal to the pattern used to con-
figure the elements to crawl in Crawljax [14], resulting in
rules of the form tag :{attr =value }|rating .

The rating is an indicator for the likelihood that a given
pattern will match a boundary. Possible values include LOW,

html :{}| EXCLUDE; body :{}| EXCLUDE; div :{}| LOW;
div:{class=widget }| VERY_HIGH; threshold = MEDIUM

Figure 2: Widget boundary rules for the example
widget (separated by ;).

Algorithm 1 IdentifyWidgetBoundary(fingerNode)

1: rules ← getIdentificationRules()
2: node ← fingerNode
3: bestMatchedNode ← null
4: highestRating ← null
5: while node 6= null do
6: r ← node.match(rules)
7: if r 6= EXCLUDE && r > highestRating then
8: bestMatchedNode ← node
9: highestRating ← r

10: end if
11: if r = VERY_HIGH then
12: break
13: end if
14: node ← node.getParent()
15: end while
16: if highestRating ≥ getThreshold() then
17: bestMatchedNode.annotate()
18: return bestMatchedNode
19: end if
20: return null

MEDIUM, HIGH and VERY_HIGH, as well as EXCLUDE. The latter
option indicates that a node mating a given pattern cannot
be a widget boundary.

In order to determine the widget boundary for a given
node n, we traverse the tree upwards from n to the root of
the full DOM tree. Every ancestor we encounter on our way
up we match with the given rules. The node with the highest
ranking is marked as widget boundary, provided the rank-
ing is higher than a minimal threshold. The corresponding
algorithm is displayed in Algorithm 1.

4.3 Detecting Violations
The final step is using the widget boundaries to identify

DOM Change Violations. To that end, we need to identify
elements triggering a change, and elements affected by a
change. We define an active element as the element on which
the last event was fired.

The widget boundary of the widget that initiated the
DOM change can be automatically detected using Algorithm
1 with the active element as input.

To detect the widget in which the DOM change took place,
first any changed node(s) must be determined by comparing
the DOM tree before firing the event with the DOM tree
after firing the event. After detecting the node(s) in which
the DOM change took place, an analysis of the DOM change
can be carried out. Assuming the DOM is successfully an-
notated during the detection of the widget boundary of the
active element, Algorithm 2 can be used to automatically
analyze the DOM changes.

5. DETECTING REQUEST VIOLATIONS
Our second violation scenario describes the generalized

situation in which a widget reads data from another wid-
get, and sends it to a remote server using HTTP requests.
We first offer some examples illustrating this violation (Sec-
tion 5.1). Then, we explain how we can capture the widget
from which a request originates (Section 5.2), and how we
can use that to compare the request to a list of trusted re-
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Algorithm 2 IsDomChangeViolation(changedNode)

Require: The DOM tree is annotated successfully during the widget
boundary detection of the active element.

1: node ← changedNode
2: while node 6= null do
3: if node.isAnnotated() then
4: return false
5: end if
6: node ← node.getParent()
7: end while
8: return true

quests for the given widget (Section 5.3). In addition, we
explain how these lists can be generated automatically.

5.1 Request Violation Examples
A simplified example of JavaScript code that causes an

HTTP request violation is given in Figure 3.

// code in MAL
url = "http ://www.domain.com/mal_script.aspx";
vic = document.getElementById("VIC.inputField");
vic.onkeydown = sendData(url , event.getKey ());

Figure 3: MAL attaches an event listener to VIC,
sending every user input in VIC to a remote server.

It is important to realize that the attachment of the on-

keydown event handler does not affect the DOM tree of VIC
and, therefore, can not be detected using Algorithm 2. In
this example, VIC makes an HTTP request every time a
key is pressed in its input field, which, based on VIC’s orig-
inal functionality, could be a violation. A second example
is given in Figure 4, in which the event which triggers the
request is attached to MAL itself. Because MAL reads data
from VIC, this is also a violation.

// code in MAL
function getValue () {
return document.
getElementById("VIC.inputField").value;

}

url = "http ://www.domain.com/mal_script.aspx";
mal = document.getElementById("MAL.button");
mal.onclick = sendData(url , getValue ());

Figure 4: MAL reads data in VIC and sends it to a
remote server through an HTTP request.

This type of violation is very difficult to detect by static
analysis, because an event handler can be generated and at-
tached to an element at runtime in JavaScript. In addition,
it is difficult to detect by which widget an event handler was
attached to an element. Our approach uses dynamic analy-
sis and assumes that MAL has to send the data read from
VIC to a remote server. Otherwise, the data never leaves
the client and hence no real violation can occur. We detect
HTTP request violations by analyzing all outgoing HTTP
requests.

5.2 HTTP Request Origin Identification
The main challenge of detecting the origin widget of a

request is to couple the request to the DOM element from
which it originated. This is not a trivial task, since HTTP
requests do not carry information about the element that

// before annotation
<script src="javascript.js"></script >
// after annotation
<script src="javascript.js?requestForProxyId =123"

requestForProxyId="123"></script >

Figure 5: Example annotation of the unique at-
tribute annotation proxy plugin.

triggered the request. To be able to analyze HTTP requests,
all requests must be intercepted. For this purpose, we pro-
pose to place an HTTP proxy between the client browser
and the server, which buffers all outgoing HTTP requests.

The only way to attach information about DOM elements
to an HTTP request, without affecting the behavior of the
web server handling the request, is by adding data to the re-
quest query string (e.g., ?wid=w23&requestForProxyId=123).
This data should be selected carefully, to ensure it does not
interfere with other parameters being sent to the server. If
the request parameters contain the value of a unique at-
tribute, such as the element’s ID, it can be extracted and
used to identify the element in the DOM. Enforcing all
HTTP requests to contain a value with which the origin
widget can be detected requires having mechanisms for the
enforcement of a unique attribute in each DOM element,
and the attachment of the unique attribute of the originat-
ing element to outgoing requests.

First we need to consider ways HTTP requests can be
triggered in Ajax-based web applications.

Static Elements. HTTP requests triggered by the src

attribute of an static element, for instance in a SCRIPT or
IMG element in the source code of the HTML page, are sent
immediately when the browser parses them. This leaves us
no time to dynamically annotate a unique value on these
elements, as the requests are sent before we can access the
DOM. The solution we propose is to use the proxy for inter-
cepting responses as well. The responses can be adjusted by
the proxy to ensure that each element with a src attribute
is given a unique identifying attribute.

Figure 5 shows an example of annotating a requestFor-

ProxyId attribute on a SCRIPT element. Note that the at-
tribute is annotated twice: in the URL so that it reaches
the proxy, and as an attribute for easy identification on the
DOM tree using XPath when the violation validation pro-
cess is carried out.

Dynamic Elements. The src attribute of an element
that is dynamically created on the client through JavaScr-
ipt and added to the DOM tree, can also trigger an HTTP
request. Annotating attributes through the proxy has limi-
tations for this type of request, since elements that are added
dynamically on the client-side are missed. During dynamic
annotation these elements are missed as well, because the
request is triggered before the element can be annotated.
Because we assume every element has a unique attribute in
our approach, requests triggered from dynamically gener-
ated elements can be detected easily as they do not contain
a unique attribute. We believe dynamically generated ele-
ments with a src attribute are rare in modern web applica-
tions, and since this attribute should point to, for instance,
a JavaScript file or image, the HTTP request they trigger
should be easy to verify manually by a tester. Therefore,
all requests made from elements which are not annotated,
should be flagged as suspicious and inspected by the tester.
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Algorithm 3 IsHttpRequestViolation(request)

Require: Access to the DOM history list.
Require: Elements in the DOM are annotated with a unique at-

tribute.
Require: Request contains the annotated attribute of the DOM el-

ement.
1: id ← request.getQueryString().getElementId()
2: activeNode ← domHistory.findElement(id)
3: widget ← IdentifyWidgetBoundary(activeNode)
4: list ← widget.getAllowedUrlList()
5: url ← request.getUrl()
6: return !list.contains(url) || isSuspicious(url)

Ajax Calls. HTTP requests sent through an Ajax call,
via the XMLHttpRequest object, are the most essential form
of sending HTTP requests in modern single-page web appli-
cations [2]. These requests are often triggered by an event,
e.g., click, mouseover, on an element with the corresponding
event listener. Note that this type of elements could also be
created dynamically, and therefore proxy annotation is not
desirable. Hence, we propose to dynamically annotate such
elements. To that end, we annotate a unique attribute on
the element right before an event is fired. Note that this
annotation is easiest to implement by means of aspects, as
explained in Section 6.

After the annotation, the attribute (and its value) must
be appended to all HTTP requests that the event triggers.
To that end, we take advantage of a technique known as
Prototype Hijacking [17], in which the Ajax call responsible
for client/server communication can be subverted using a
wrapper function around the XMLHttpRequest object. Dur-
ing the subversion, we can use the annotated attribute of
the element, on which the event initiating the call was fired,
to add a parameter to the query string of the Ajax HTTP
call.

It is possible that the annotated origin element is removed
from the DOM by the time the request is validated. To
avoid this problem, we keep track of the DOM history. Af-
ter an event is fired, and a DOM change is occurred, the
state is saved in the history list. Assuming the history size
is large enough, a request can always be coupled to its ori-
gin element, and the state from which it was triggered, by
searching the DOM history.

5.3 Trusted Requests
After detecting the origin widget of a request, the request

must be validated to verify whether the widget was allowed
to send this request. To this end, a method must be defined
for specifying which requests a widget is allowed to make.

Our approach uses an idea often applied in firewall tech-
nology, in which each application has an allowed list of URLs
[10]. For each widget, we can automatically create a list of
allowed URLs by crawling it in an isolated environment.

This way, every request intercepted by the proxy can be
assigned to that specific widget. At the end of the crawling
process, the proxy buffer contains all the requests the widget
has triggered. This list can be saved, edited by the tester,
and retrieved during the validation phase of a request. In
addition, it is possible for a tester to manually flag URLs
in the list as suspicious. If during the validation process
a request URL does not exist in the allowed URL list of
its origin widget, or if the URL is flagged as suspicious, we
assume the widget does not have permission to trigger the
request and thus an HTTP request violation has occurred.

Assuming a request contains the annotated attribute of
the origin element, Algorithm 3 can be used to automatically
detect the origin widget of the request and report HTTP
request violations.

Note that this approach also works for requests that do
not originate from a widget, but from a non-widget element
instead. By crawling the framework with only an empty
widget, an allowed URL list can be created for the frame-
work. A request which originates from an element that does
not have a widget boundary will be validated against the
allowed URL list of the overall framework.

6. IMPLEMENTATION
We have implemented our methods for detecting DOM

change violations and HTTP request violations as two sepa-
rate plugins, called Diva (Detecting Inter-widget Violations
with Atusa), for our Atusa Ajax testing and crawling in-
frastructure. Diva is available through our web site4 as an
open source project.

The full architectural processing view, of the crawler as
well as the security plugins, is shown in Figure 6. Two in-
Crawling plugins are shown in particular: DOM Violations,
and HTTP violations. Furthermore, it shows the integrated
proxy between the embedded browser and the web server.
The implementation details of Atusa and the underlying
Ajax crawler, Crawljax, and the role of the remaining
components such as the robot, state machine, controller,
and DOM analyzer are explained in [14, 12].

The first issue to consider for the implementation of Diva
is the way Atusa handles the DOM. Atusa uses three DOM
objects:

• The realDom - The runtime internal browser DOM,

• The domBeforeEvent - A copy of the realDom before
the event is fired,

• The domAfterEvent - A copy of the realDom after the
event is fired.

The DOM change violation detection plugin compares the
domBeforeEvent and the domAfterEvent using the Diff func-
tion of XmlUnit5 to find the changed nodes. XmlUnit re-
turns a list of references to nodes in the domAfterEvent
object, while the crawler returns a reference to the active
element in the domBeforeEvent object. As mentioned ear-
lier, our approach requires both references to be in the same
object. Therefore, we extended Atusa using AspectJ to an-
notate the widget boundary of the active element in the real-
Dom with a unique attribute, right before it fires an event on
it. We have chosen to annotate the widget boundary rather
than the active element itself, because we assume widgets
cannot be removed during the crawling session. This im-
plies that the widget boundary is available in every DOM
state, while the active element may be removed or changed.
When realDom is copied into domAfterEvent, the annota-
tion is copied along and the active element can be retrieved
using an XPath query for the annotated unique attribute.
Using this approach, references to the widget boundary of
the active element and the changed nodes can be found in
the same DOM object.

The minimum rating an element must match, to be in-
cluded in the detection process, can be configured. It is also

4
http://spci.st.ewi.tudelft.nl

5
http://xmlunit.sourceforge.net
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Figure 6: Processing view of our security violation
detection approach.

possible to use wildcards in the value specification of a rule,
e.g. div:{id=widget%}.

For dynamic injections as described in Section 5.2, Atusa
was adapted, through aspects, to inject a unique attribute
into the element on which the next event will be fired, right
before the event is fired.

For our request violation detection approach, we have in-
tegrated an HTTP proxy into Atusa. We use the proxy
functionality of WebScarab,6 which is an open source Java
proxy. Our integration allows initializing and accessing the
proxy through the Crawljax controller.

Di Paola and Fedon [17] have proposed a method for sub-
verting Ajax calls by diverting the XmlHttpRequest, called
Prototype Hijacking. Unfortunately, this approach does not
work in Internet Explorer since the browser does not al-
low prototype manipulation of the XmlHttpRequest object.
To overcome this limitation, we subvert an instance of the
object instead of the prototype itself. This solution is, how-
ever, not generic, i.e., depending on the underlying Ajax
framework and the way the calls are made, different subver-
sion code is required. We have currently implemented diver-
sion code for the ASP.NET and jQuery Ajax frameworks.
The JavaScript wrapper code is automatically added to
the page trough the proxy.

The output of Diva consists of a description of the vio-
lation and the event sequence which has caused it. The de-
scription of a DOM change violation contains a textual rep-
resentation of the DOM change found, generated by XmlU-
nit. The description of an HTTP request violation contains
information about the origin widget, the requested URL,
and the name of the list against which it was checked. In
addition, a Selenium7 test case is generated for each detected
violation automatically. These test cases can be used by the
tester to replay and investigate the detected violations man-
ually.

6
http://www.owasp.org/index.php/Category:OWASP_WebScarab_

Project
7
http://seleniumhq.org

Widget pair DOM change in VIC Description

D1 Form action URL
D2 Link description An event fired in MAL
D3 Link destination changes the specified
D4 Background colour element in VIC
D5 Image source
D6 Framework element An event fired in MAL

changes a framework element,
e.g. the href of a menu item

Widget pair Event attached to VIC Description

H1 Key press MAL attaches an event
H2 Focus handler, which sends an
H3 Submit HTTP request, for the
H4 Click specified event to an
H5 Mouse movement element in VIC

Widget pairs Description

D* All DOM violations on one page
H* All HTTP violations on one page

DH* All DOM and HTTP violations on one page

Table 1: Widget pairs causing DOM change and
HTTP request violations by MAL.

7. EMPIRICAL EVALUATION
To assess the the usefulness and effectiveness of our ap-

proach and the corresponding implemented plugins, we con-
ducted two case studies following Yin’s guidelines [21]. Our
evaluation addresses the following research questions:

RQ1 What are the violation revealing capabilities of the
two approaches for DOM change and HTTP request
violation detection?

RQ2 How well does our analysis perform, with respect to
crawling time and the number of states?

RQ3 How scalable is our approach, with respect to the
number of widgets that can be verified at the same
time?

7.1 Subject Systems
Our experimental subject systems consist of EWF (Exact

Widget Framework) and Pageflakes.
EWF. Exact Software8 is currently researching the pos-

sibilities of building software solutions using widgets. As a
proof of concept, a widget framework is being prototyped,
which is referred to as EWF throughout this paper. One
of the key components of the EWF will be the personalized
start page for each user, on which widgets from a catalog
can be placed using a drag and drop mechanism. The pro-
totype Ajax-based widget framework is implemented by the
Research and Innovation (R&I) team of Exact Software in
ASP.NET and runs on IIS 7.

Pageflakes. Pageflakes is a commercial Ajax-based
start page, which allows its users to place widgets on their
personalized pages. Pageflakes is a closed source framework,
which means we are not able to inspect or adapt the frame-
work code. In Pageflakes, widgets are called flakes and at
the time of writing over 240,000 flakes were available. Page-
flakes also provides APIs for external developers to create
their own widgets.

Note that both EWF and Pageflakes use DIV-based con-
tainers for their widgets.

7.2 Setup
We designed a number of scenarios, each consisting of

two widgets, a malicious widget (MAL) and a victim widget
(VIC). Two groups of widget pairs were designed, as shown
in Table 1. The first group contained six cases (D1-D6),

8
http://www.exactsoftware.com
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each causing a DOM change violation in VIC by MAL, e.g.,
an event fired on MAL changes the action URL of a form,
or the background color of an element in VIC. The second
group contained five cases (H1-H5), each causing an HTTP
request violation, e.g., MAL attaches an event listener to
VIC so that the contents of a form field in VIC are sent to
the server by MAL after a keypress event.

Both studies were performed on an Intel Core 2 6400 2.13
Ghz CPU with 2 GB RAM running Windows XP. We config-
ured Atusa properties to use Internet Explorer 7 as the in-
ternal browser, included the A, Input, Img, Button, La-

bel tags for crawling, and the click, mouseover, mouse-

down, mousemove, mouseup, blur, focus, keydown, key-

press, keyup, and select as the possible events for the
robot.

In order to test the violation revealing capabilities of our
approach (RQ1), we measure the number of violations seeded
and detected. We also measure the number of false positives
to test the reliability of the output of our plugins. To test
the performance of our approach (RQ2), we measure the
crawling time for each case, and the number of clickables
and DOM states found by Crawljax. The set of clickables
contains all elements which were not explicitly excluded by
configuration and on which firing an event resulted in a new
DOM state [12]. Finally, to test the scalability of our ap-
proach (RQ3), we place multiple widget pairs on the page
at the same time (case D*, H* and DH* in Table 1).

We have configured the maximum crawling time for each
case at 60 minutes. If the crawling process was not finished
by that time, the execution was stopped and the output was
analyzed.

7.3 Execution
EWF. To prevent bias, 11 EWF widget pairs, including

their malicious behaviour, were implemented by a member
of the Exact R&I team, following the requirements in Ta-
ble 1. Because our focus was on inter-widget interactions,
all elements in the menu section and elements which may
remove or hide a widget were excluded from the crawling
process. We have manually determined the items to ex-
clude by inspecting the DOM, which could be done within
30 minutes. We defined the rules for EWF widget boundary
identification (e.g., div:{class=ex widget}|VERY_HIGH).

For each test run, a widget pair was manually placed on
the page, after which, we ran Atusa on the personalized
page. Different events were then fired on the widgets auto-
matically and every time a change was detected, our plugins
analyzed the DOM tree and the HTTP requests to detect
security violations. To test our approach with multiple wid-
gets on a page, we also carried out the test with all widget
pairs (DH*) on the same page.

Pageflakes. For the second subject, we implemented
the same scenarios, D1-H5, using the Pageflakes API, which
provides convenience JavaScript methods for event man-
agement and DOM manipulation for creating flakes. Af-
ter defining the widget boundary identification rules (e.g.,
div:{class=flake}|VERY_HIGH), the tests were run using
the same setup as for EWF. Flake pairs were manually
placed on the page, after which they were automatically
tested through Atusa.

In both cases, for widget pairs D1 to D6, the DOM change
violation detection plugin was enabled, and for widget pairs
H1 to H5, the HTTP request violation detection plugin.
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D1 3 3 0 122 110 -9.8 3 4
D2 3 3 0 106 90 -15.0 3 4
D3 3 3 0 107 93 -13.0 3 4
D4 3 3 0 106 90 -15.0 3 4
D5 3 3 0 175 159 -9.1 3 4
D6 4 4 0 126 110 -12.7 4 5
D* 19 19 0 552 538 -2.5 19 20

H1 1 2 1 74 75 1.4 3 4
H2 1 2 1 55 55 0.0 2 3
H3 - - - - - - - -
H4 1 2 1 51 51 0.0 1 2
H5 1 2 1 62 61 -1.6 4 5
H* 4 8 4 156 158 1.3 10 11

DH* 23 43 10 703 760 8.1 29 30

Table 2: Results of the EWF case study.

During the execution of all widget pairs (DH*) both plu-
gins were enabled.

7.4 Results
Tables 2 and 3 show our measurements for the EWF and

Pageflakes case studies, respectively. The scenario with all
widgets on the page (DH*) required more crawling time on
Pageflakes than the maximum time allowed (annotated with
* in Table 3).

The first run on the EWF case reported a large number
of false positives. After inspection, we found that the used
jQuery UI9 library in EWF, attaches onmousedown event
handlers to many elements on the page that cause DOM
changes for each fired event. To avoid these unnecessary
false positives, Atusa was adapted to filter DOM changes of
this type. During the second run, we found that widget pair
H3 could not be validated due to invalid HTML code, which
caused a problem after the JavaScript subversion code in-
jection. During this process, the HTML is parsed, the code
is added, and serialized. Therefore, a requirement of Diva
is that widgets contain valid HTML. Our proposal is to run
the regular HTML validity checker plugins in Atusa first
[14], and reject widgets that contain invalid HTML code.

Since Pageflakes does not allow the use of <form> ele-
ments, widget pair D1 could not be implemented for that
subject system. This is also the reason that one violation
less was seeded in widget pair D6.

RQ1. Going back to our first research question, RQ1,
the measurements from the two tables show that our ap-
proach can successfully detect DOM change violations, D1
through D6, without any false positives, on both EWF and
Pageflakes.

The results of widget pairs H1 to H5 (excluding H3) show
a false positive for each widget pair in the EWF case study.
Closer inspection reveals that all these false positives were
caused by an implementation characteristic of the EWF. In
EWF, JavaScript code for each widget is loaded in the
BODY section of the page rather than inside the correspond-
ing widget. Therefore, although the JavaScript request
will appear in a widget’s allowed URL list, the request is cou-
pled with the framework page rather than the widget. This
framework behaviour violates the boundary of a widget and
makes it impossible to decide whether a violation was intro-

9
http://jqueryui.com
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D1 - - - - - - - -
D2 3 3 0 263 230 -12.5 29 30
D3 3 3 0 107 223 118 29 30
D4 3 3 0 289 387 34 29 30
D5 3 3 0 358 368 2.8 29 30
D6 3 3 0 289 279 -3.5 30 31
D* 15 15 0 1676 2031 21.2 149 150

H1 1 1 0 161 158 -1.9 16 17
H2 1 1 0 179 178 -0.6 20 21
H3 - - - - - - - -
H4 1 1 0 177 177 0.0 20 21
H5 1 1 0 175 179 2.3 20 21
H* 4 4 0 908 920 1.3 80 81

DH* 19 19 0 3600* 3600* 0.0* 161 162

Table 3: Results of the Pageflakes case study.

duced by a widget or framework action. Our proposal is to
adjust the framework so that it respects the widget bound-
ary. The same type of false positives are being recognized in
the case with all widget pairs (DH*). The Pageflakes frame-
work adds the code of a widget within the widget boundary.
Hence, no such false positives for the Pageflakes case study
were found. Based on these observations, we can conclude
our approach is successful in detecting inter-widget inter-
action violations (V1, V2). In addition, for EWF, it was
interesting to see that more violations were detected by our
plugins than deliberately seeded in the test with all widgets
on the page (DH*). This was because widget pairs H1 to H5
displayed a message after an HTTP request was successfully
sent in EWF, which caused a DOM change violation. These
violations were not detected sooner, because H1 to H5 were
ran only with the HTTP request violation detection plugin
enabled until then.

RQ2. To be able to answer RQ2, we measured the
crawling time of widget pairs with and without plugins. In
some cases, running Atusa on widget pairs without plugins
requires more crawling time than with plugins. One possi-
ble explanation could be that crawling involves firing events
on the web application in the browser, and waiting for the
response from the server. Possible variations in network and
server processing latency could result in the observed oscil-
lations. Therefore, the performance times should be seen
as an indication only. Note that the results also indicate
that our analysis of the DOM changes and HTTP request
does not introduce much overhead and the whole process of
crawling and analyzing the widgets can be carried out within
a couple of minutes, on average.

RQ3. As far as RQ3 is concerned, we tested our ap-
proach with more than twenty widgets placed on the page,
at the same time, and measured the number of detected vi-
olations and the required crawling time. The results show
that all the seeded violations could be detected in a reason-
able amount of time. However, it is important to consider
that not all types of elements were included in the crawling
process. Including all elements in the crawling process may
add considerably to the crawling time.

8. DISCUSSION
Completeness. A security testing approach that is not

complete, may have limited applicability, as it may miss

many security violations while testing. The first fact to
consider is that our approach uses a crawler. Therefore, if
Crawljax is not able to find a certain state, our approach
is not able to test that state either. This problem is inherent
to dynamic analysis approaches that use a crawler.

Our current implementation is capable of testing widgets
which contain valid (X)HTML only. From a security per-
spective, this is a sound requirement. In our case it is im-
posed by the HTML serializer used during the JavaScript
injection process, as explained in Section 7.4.

JavaScript timers can delay the effect of an event. Be-
cause we use the element on which the last event was fired
to analyze a violation, it is important that effects of that
event are applied before the next event is fired. If this is not
the case, an effect may be coupled to another event than it
was caused by, resulting in invalid analysis.

When a content proxy is used to make a request, i.e., a
proxy on the server makes a request for a widget and for-
wards the response, it is difficult to detect an HTTP request
violation when both widgets have the content proxy in their
allowed URL lists.

Security. In addition to the completeness, it is im-
portant that a security approach itself cannot be bypassed
easily. The first observation is that widgets execute mostly
on the client-side of an application using JavaScript. Test-
ing the client-side of Ajax applications is a challenging and
new research area [14]. This is especially the case for testing
client-side security of widgets. A possible security threat in
our approach could be that a malicious user creates a widget,
which contains code to attach a node to another widget, with
the goal of bypassing our widget boundary identification al-
gorithm. Since this requires a DOM change in the other wid-
get, our DOM change violation detection algorithm should
be able to recognize it. Another possible security issue could
be that a widget subverts Ajax calls again, after our sub-
version code. An example of this is a subversion, in which
the requestForProxyId of another element than the active
one is added to the HTTP request. Another possibility is
that a widget tries to steal and move the requestForProx-

yId attribute, with the goal of bypassing the origin widget
detection algorithm. A possible solution could be to imple-
ment a verification mechanism, which generates a different
(random) attribute name each time, and verifies that the
node is correctly annotated before and after firing an event.

A malicious widget may attach an event handler to a wid-
get VIC, which sends a request to a URL in the allowed
URL list of VIC. This may lead to a vulnerability similar to
cross-site request forgery [7]. This is a problem that should
be handled by the widget developer rather than by our ap-
proach, as this is more of a server-side than a client-side
issue. Widget developers should make sure that appropriate
security measures are taken when a widget performs a criti-
cal action on the server, such as deleting an account, to make
sure other widgets cannot easily counterfeit this action.

Scalability. We have shown our approach is capable
of analyzing more than twenty widgets on the same page.
In an industrial framework, many more widgets may require
testing. Our approach requires the widgets to be analyzed
to be on the same page. An expectation is that the max-
imum number of widgets on the page is limited by either
the framework or browser memory. A solution to this prob-
lem may be the creation of subsets of widgets to test, for
example by grouping them based on their functionality.
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Another aspect of scalability is the number of testers which
can use our approach at the same time. It is important to
realize that each tester should use his own framework ac-
count, and place the widgets under test on his own personal
test page. Because Atusa and our plugins require client-side
installation only, our approach does not limit the number of
concurrent testers. Therefore, this number is only limited
by the number of allowed concurrent users in the framework,
or by the web server.

Different Applications. Our approach requires no
modification of web application code and, therefore, is very
generic and works on any DOM-based web setting. The only
framework-specific aspect of our implementation is currently
the part that the Ajax calls have to be subverted as ex-
plained in Section 5. The applicability of our approach is
not limited to Ajax-based widgets, and can be used to test
the security of any web application in which inter-element
interactions pose security threats. In fact, inter-element in-
teractions between any type of web elements can be tested
by changing the configuration settings and rules for widget
boundary detection.

Our DOM change violation detection method has proved
to be useful in other areas as well. One example is that
many developers working with complex Ajax libraries such
as jQuery, make mistakes, in which their actions may affect
the whole page instead of one element or widget. Our plugin
can help developers to detect such errors automatically.

For our HTTP request violation detection plugin we have
added an HTTP proxy to Atusa. This proxy can be used in
a variety of ways. Some examples are the detection of exter-
nal JavaScript usage and links to external domains. Our
approach, can also be used to explicitly deny access to cer-
tain domains or URLs, for example because they are known
to contain phishing pages. A final application of the proxy
in combination with Atusa, is the possibility of checking
for dead links, or broken Ajax calls. Traditional dead links
checkers cannot handle Ajax applications because they can-
not crawl dynamic DOM-based content. Atusa can verify
the validity of links and Ajax calls by analyzing the HTTP
response code for each request on the proxy.

Threats to Validity. We have discussed some of the
issues concerning the external validity of our empirical eval-
uation in the above discussion on completeness, security,
and scalability. As far as the internal validity is concerned,
we included a JUnit test suite for our plugins, to minimize
coding errors. In addition, we have implemented a simple
widget framework for our test suite, to validate the behavior
and functionality of our plugins.

The requirements for widget pairs used in the cases were
designed based upon known exploits in web application se-
curity research, for example by analyzing the effects of XSS
or phishing attacks, e.g., many phishing attacks try to lure a
user into sending the contents of a form to a URL specified
by the malicious user, which corresponds with widget pair
D1 in Table 1, ‘Changing the action URL of a form’.

With respect to reliability, Atusa and the two plugins
are open source and we intend to make the Pageflakes case
available through our website, making the case fully repro-
ducible. As far as the EWF case is concerned, because of
the proprietary nature of the project, we are not allowed to
make it publically available.

A threat to the validity of our results is the simplicity of
the widget pairs implemented for the case studies. Although

the pairs exhibit realistic behavior and represent real secu-
rity vulnerabilities, the event sequences required to reach a
violated state in our case studies are short. More case stud-
ies with published and more complex widgets are needed.

A final validity threat is that we have explicitly excluded
some not-widget elements from the crawling process, such
as menu items. Although such elements were not part of
the widgets, excluding them may have led to considerably
shorter crawling times.

9. RELATED WORK
Related work can be largely divided into two groups: pre-

vention and detection approaches for web security analysis
and testing.

Prevention Techniques. A common approach in cur-
rent research is to place each widget in a sandbox to restrict
inter-widget interaction and functionality. Examples of such
approaches are SubSpace [6] and MashupOS [19], which in-
troduce new HTML elements for giving a widget more free-
dom than an IFrame, and less than a DIV. Our approach
places a virtual sandbox on the widget by disallowing in-
teraction outside its boundary, without the requirement for
changes to the HTML standard or browsers.

Using a proxy between the client and server is another
common approach. Noxes [10] is a client-side firewall, which
has access rules for browser connections, and for each page
a list of allowed domains is defined. Because Ajax-based
web widgets follow the single-page model, only one list can
be used for each application in this approach. Our approach
allows for the specification of such lists on widget level rather
than application level, which makes our approach better
applicable for Ajax-based applications, especially widget
frameworks.

Scott et al. [16] propose a proxy-based approach to define
security policies for validating or transforming HTTP re-
quest parameters. Their proxy embodies strong type check-
ing or input validation. This approach differs from ours in
that security policies must be defined manually for each pa-
rameter, while our approach does not require this, using a
generic detection mechanism instead.

Halfond et al. [3] propose a method for dynamic preven-
tion of SQL injection attacks by using positive tainting and
instrumenting code to analyze a SQL query, right before it
is sent to the database.

Detection Techniques. Finding security vulnerabili-
ties through static analysis is mainly focused on detecting
Cross-Site Scripting (XSS) and SQL injections [5, 20, 9].

Gatekeeper [11] is a static approach for verifying whether
a widget follows a certain security policy. The authors have
introduced a safely statically analyzable subset of JavaScr-
ipt, in which the widget must operate.

Static analysis techniques, however, have serious limita-
tions when applied to modern web applications, since the
runtime behavior cannot be understood merely by analyz-
ing the server-side code.

An important group of security tools are black-box secu-
rity scanners that dynamically access the web application
using public interfaces only. SecuBat [8] and WAVES [4] are
tools that aim at detecting SQL injection and XSS by using
a crawler. Most crawler-based tools are currently agnostic
to the runtime DOM tree changes, and cannot handle the
client side of the web spectrum. Our approach, which is
based on dynamic analysis, has access to the DOM at all
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times during crawling and, hence, can analyze the runtime
behavior of the application.

10. CONCLUDING REMARKS
This paper presents the first dynamic approach for au-

tomated security testing of Ajax web widgets. We have
proposed a method for automatic detection of two types of
inter-widget interaction violations. This paper makes the
following contributions:

• The definition of two types of security violations in
inter-widget interactions, namely DOM change and
HTTP request violations;

• An algorithm for finding DOM change violations by
connecting elements to DOM widget boundaries;

• An algorithm for finding HTTP request violations by
coupling requests to the triggering DOM element;

• Implementation of these algorithms in two open source
plugins (called Diva) for the Atusa crawling and test-
ing infrastructure for Ajax applications.

• An empirical evaluation of the violation revealing ca-
pabilities, performance, and scalability of the approach,
by means of two case studies.

Future work encompasses research on finding the best sub-
sets of widgets for testing, as it is not always desirable nor
possible to place all widgets on the same page, at the same
time. In addition, conducting further case studies, and de-
veloping methods and plugins for spotting other security
vulnerabilities, such as cross-site scripting and SQL injec-
tions, in Ajax applications, form part of our future research.
Finally, more research should be done on the effect of a con-
tent proxy on our approach, and on ways to automatically
analyze requests made through such a proxy.
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