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a b s t r a c t

Hybrid particle–mesh methods provide a versatile framework for simulating discrete and
continuous systems. A key component is the forward and backward interpolation of parti-
cle data to mesh nodes. These interpolations typically account for a significant portion of
the computational cost of a simulation. Due to its regular compute structure, interpolation
admits SIMD parallelism, and several GPU-accelerated implementations have been pre-
sented in the literature. We build on these works to develop a streaming-parallel algorithm
for interpolation in hybrid particle–mesh methods that works in both 2D and 3D and is free
of assumptions about the particle density, the number of particle properties to be interpo-
lated, and the particle indexing scheme. We provide a portable OpenCL implementation of
the algorithm and benchmark its accuracy and performance. We show that with such a
generic algorithm speedups of up to 15! over an 8-core multi-thread CPU implementation
are possible if the data are already available on the GPU. The maximum speedup reduces to
about 7! if the data first have to be transferred to the GPU. The benchmarks also expose
several limitations of GPU acceleration, in particular for low-order and 2D interpolation
schemes. The present algorithm is integrated and available in the open-source Parallel Par-
ticle Mesh (PPM) library as a hybrid MPI-OpenCL implementation.

! 2012 Elsevier B.V. All rights reserved.

1. Introduction

Particle methods provide a versatile framework for the simulation of continuous and discrete systems. When simulating
continuous systems, the particles are the collocation points on which the governing equations are discretized, leading to a set
of coupled ODEs for the particle positions and properties. The dynamics of N particles is determined by particle–particle
interactions. Interactions that only involve a local neighborhood can efficiently be computed in O(N) time using fast neighbor
lists, such as cell lists [1] or Verlet lists [2]. Recently, these have also been extended to the case where the interaction radius
is a function of space [3]. Long-range interactions, where every particle has to interact with all other particles, however, incur
a computational cost of O(N2), rendering their direct computation infeasible for practical simulations. At the expense of
computing an approximate solution, this computational cost can be reduced to O(N logN) or even O(N) using fast N-body
solvers such as the Barnes–Hut algorithm [4] or Fast Multipole Methods [5], respectively. Hybrid particle–mesh methods re-
duce the computational cost of long-range interactions by computing them on a Cartesian mesh via the associated PDE [1].
On M mesh nodes, this can be done in O(M logM) or O(M) time using fast Fourier transforms or multi-grid solvers, respec-
tively. Hybrid particle–mesh methods are in practice often more efficient than fast N-body solvers. A large part of the
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computational cost of a hybrid particle–mesh method is accounted for by interpolating the particle properties to the mesh
nodes (‘‘particle–mesh interpolation’’) and interpolating the result of the mesh solver back to the particles (‘‘mesh–particle
interpolation’’). In plasma physics Particle-In-Cell (PIC) codes, for example, interpolation accounts for 85–98% of the overall
computer time, in vortex methods for incompressible fluid dynamics the fraction is 20–40%. Accelerating the computation of
this part is hence expected to provide a significant speedup to the entire simulation.

Due to their regular computational structure and fine granularity, particle–mesh and mesh–particle interpolations admit
SIMD (Single Instruction Multiple Data [6]) parallelism on streaming multiprocessors, such as Graphics Processing Units
(GPU). Different approaches to particle–mesh interpolation on GPUs were discussed and compared by Stantchev et al. in
the context of a 2D plasma physics PIC code using CUDA [7]. A very efficient implementation of 2D particle–mesh interpo-
lation on a GPU was presented by Rossinelli and Koumoutsakos [8]. Using OpenGL, they reported real-time incompressible
fluid mechanics simulations using vortex methods [9,10] at 25 frames per second on a 1024 ! 1024 mesh, representing a 26-
fold speedup over the highly optimized reference CPU code. The same authors later extended their work to simulate flows in
bounded, complex geometries in 2D [11] and reported a 100-fold speedup of OpenGL over CUDA when using the OpenGL
point-sprite primitives and blending techniques. A GPU implementation of 2D mesh–particle interpolation has also been
provided by Rossinelli et al. [12] in both OpenCL and CUDA. For double-precision arithmetics, they reported 2 to 3-fold
speedups of the GPU implementation over a 16-threaded CPU implementation and a 20 to 45-fold speedup over a single-
thread CPU implementation. Madduri et al. presented another 2D implementation of particle–mesh interpolation in a PIC
code [14]. Their implementation uses CUDA, particle binning, grid replication, and texture memory, but barely provides
any speedup over an optimized multi-threaded CPU Implementation, demonstrating the limitations of GPU-accelerated
interpolation. Recently, Conti et al. presented a complete OpenCL implementation of a 2D finite-time Lyapunov exponent
computation with an up to 30-fold speedup over their single-thread CPU reference code; they also compared the perfor-
mance of a GPU and an APU (Accelerated Processing Unit) [15].

While purpose-made GPU implementations can offer impressive speedups, they typically suffer from low programmer
productivity and poor performance portability. Libraries and generic algorithms are hence a recent trend in the field
[16,17], even though they normally entail a performance toll when compared with specialized solutions. Here we follow this
trend and build on the above-mentioned prior works in GPU-accelerated particle–mesh interpolation in order to present a
portable OpenCL [13,17] implementation of a generic algorithm for particle–mesh and mesh–particle interpolation in both
2D and 3D. Our algorithm is generic in the following ways, without implying superior performance in all cases: (1) It is free
of assumptions about the (typical or maximal) number of particles per mesh cell. (2) It does not expect the input data to be
stored or sorted in any particular way. (3) It works with arbitrary numbers of particle properties and vector-valued fields. (4)
It works in 2D and 3D, single precision and double precision. (5) It works with arbitrary mesh sizes that do not have to be
powers of two. Moreover, the OpenCL implementation is portable across hardware platforms (multi-core CPUs and GPUs
from different vendors). Parallelism is achieved by first reordering the particle data according to access patterns of threads
in workgroups. Moreover, particle and mesh values are stored so as to distribute particles in the same mesh cell among dif-
ferent buffer frames. Together with a mesh-padding technique, this avoids race conditions and provides coalesced global
memory access in strides. The mesh is additionally decomposed into blocks to achieve data locality for high cache hit rates.
Our approach avoids atomic operations, which have been reported to harm performance on the GPU [14]. We show that a
common parallelization strategy can be used for both particle–mesh and mesh–particle interpolation, albeit not matching
the performances of the respective specialized implementations by Rossinelli et al. [11,12]. Our approach, however, naturally
extends to 3D and we present and benchmark a full 3D implementation of particle–mesh and mesh–particle interpolation on
the GPU. The present implementation is integrated and available in the open-source Parallel Particle Mesh (PPM) library
[18,19].

The PPM library is a state-of-the-art middleware for distributed-memory parallel particle–mesh simulations. It is based
on a set of abstract data types and operators for hybrid particle–mesh methods [20], providing an abstraction layer that hides
message passing between distributed-memory nodes from the application programmer. PPM is based on adaptive geometric
domain decomposition, communication through ghost (halo) layers, and approximate graph coloring for communication
scheduling [18]. This has enabled transparently parallelized particle–mesh simulations that frequently outperformed
hand-parallelized reference codes [20]. The present GPU implementation of particle–mesh/mesh–particle interpolation runs
independently on each sub-domain of a distributed-memory PPM simulation, provided the corresponding node has a GPU.
This extends GPU acceleration of particle–mesh simulations to distributed-memory settings, potentially enabling very large
simulations in multi-GPU environments.

We benchmark the present OpenCL implementation against the highly optimized reference CPU implementation already
existing in the PPM library, as well as a shared-memory parallel OpenMP version of the reference implementation. The re-
sults show that significant speedups on the GPU can only be achieved for higher-order interpolation schemes (here, we use
the third-order M0

4 scheme [21]), especially in 3D and when using single-precision arithmetic. For mesh–particle interpola-
tion in this case, we observe an at most 7-fold speedup of the GPU over the 8-thread CPU reference implementation in PPM
(case with 863k particles, including data transfer times). The speedup with respect to a single-thread CPU is about 22-fold. A
convergence analysis shows that when using single precision, numerical truncation errors around 10"6 to 10"5 are to be
tolerated.

Our results indicate that higher-order interpolation schemes benefit more from GPU acceleration. For linear interpolation,
the GPU implementation is in all cases slower than the 8-thread CPU implementation when accounting for communication
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overhead. Interpolation schemes with a higher compute intensity (FLOP/byte ratio) generally show larger speedups. This
confirms previous reports [14] and illustrates the limitations of GPU-accelerated interpolation.

2. Interpolation schemes

Hybrid particle–mesh methods rely on accurate and efficient interpolation of particle properties or strengths to the nodes
of a (block-wise) uniform Cartesian mesh1 and back [1]. We refer to the former as ‘‘particle–mesh interpolation’’ and the latter as
‘‘mesh–particle interpolation’’. In particle–mesh interpolation, one aims at exact conservation of the first few moments of the
interpolated function. This ensures conservation of mass, momentum, angular momentum, etc., depending on the order of the
interpolation scheme. In mesh–particle interpolation, conservation of moments is generally not possible due to non-uniform
spacing of the target particles. In both cases, the interpolation error decreases as a power of the mesh spacing h. This power
is called the order of convergence of the interpolation scheme.

We consider moment-conserving interpolation schemes in two and three dimensions that are Cartesian products of one-
dimensional interpolants. The weights W of the one-dimensional interpolants are computed independently for each dimen-
sion i using the mesh distance s between the mesh node m and the particle p, s(m,p):

Wiðm;pÞ ¼ f ðsiðm;pÞÞ ð1Þ

¼ f
jxiðmÞ $ xiðpÞj

hi

! "
; ð2Þ

where f is the one-dimensional interpolation function, xi(m) is the ith component of the position of mesh node m, and xi(p)
the ith component of the position of particle p.

The final interpolation weight in d dimensions is computed as:

Wðm; pÞ ¼
Yd

i¼1

Wiðm;pÞ: ð3Þ

Particle–mesh interpolation is then formulated as follows:

xðmÞ ¼
X

p2PðmÞ
Wðm;pÞxðpÞ; ð4Þ

where PðmÞ is the set of particles that contribute to mesh node m, i.e., are within the support of the interpolation weights W
from the mesh node m (see Fig. 1(a)), and x is the function (property) that is being interpolated.

Likewise, mesh–particle interpolation is formulated as:

xðpÞ ¼
X

m2MðpÞ
Wðm;pÞxðmÞ; ð5Þ

where MðpÞ is the set of mesh nodes that contribute to particle p (see Fig. 1(b)).

(a) (b)
Fig. 1. Schematic of (a) particle–mesh and (b) mesh–particle interpolation in 2D using the M0

4 interpolation function, which leads to a support of ±2h
(support region is shaded in yellow). Blue particles and mesh nodes are within the support region of the center node/particle and hence assign onto it. Green
particles and nodes lie outside the support and are not considered. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

1 Non-uniform and unstructured meshes are not considered in hybrid particle–mesh methods, as sub-grid scales can be represented on the particles.
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The choice of interpolation function f determines the order of convergence and the number of conserved moments. Here,
we consider the M0

4 (introduced by Monaghan as the W4 function [21]) and the linear interpolation schemes:

fM04
ðsÞ ¼

3
2 s3 $ 5

2 s2 þ 1; 0 6 s 6 1;
$ 1

2 s3 þ 5
2 s2 $ 4sþ 2; 1 < s 6 2;

0; else:

8
><

>:
ð6Þ

flinearðsÞ ¼
1$ s; 0 6 s 6 1:
0; else:

!
ð7Þ

The order of convergence is 3 for M0
4 and 2 for linear interpolation. M0

4 conserves moments up to and including the second
moment, whereas the linear interpolation scheme conserves moments up to and including the first moment. Linear interpo-
lation is sometimes also termed ‘‘Cloud-in-Cell’’ (CIC) interpolation [1]. In addition to its lower numerical accuracy, it also
has a lower compute intensity (FLOP/byte). SIMD-efficient evaluation of the interpolation polynomials is done using the
Horner scheme.

3. GPU programming with OpenCL

We provide a portable OpenCL implementation of particle–mesh and mesh–particle interpolation in 2D and 3D. The
implementation is integrated and available in the open-source PPM library [18] for parallel hybrid particle–mesh simula-
tions. The Open Computing Language (OpenCL) is a programming framework for heterogeneous multi-core computing de-
vices, including GPUs, APUs, and CPUs [13]. It provides a higher level of hardware abstraction than OpenGL, while still
providing enough hardware control to allow for efficient implementations. OpenCL does not expose low-level graphics prim-
itives, but instead provides data structures and operations suitable for general-purpose programs. OpenCL can be used on a
wide variety of operating systems and hardware platforms, also extending beyond GPUs. OpenCL achieves portability
through a hierarchy of abstraction layers: the platform model, the execution model, the programming model, and the mem-
ory model. The execution model describes the computing platform as a host and a collection of devices. In our case, the host
is the CPU and the devices are the streaming multiprocessors of the GPU. The host executes the host program, which creates a
context for the devices and manages the execution of kernels on the devices. When a kernel is launched by the host program,
the OpenCL devices execute many instances of this kernel, called work items. Each work item performs a set of instructions
specified by the kernel at one point in index space, thus processing different data items in parallel. Work items that execute
on the same set of processing elements, the compute unit, form a workgroup. The work items of a workgroup share resources,
such as the on-chip memory of the compute unit.

Like most parallel computing environments, OpenCL provides synchronization support in the form of barriers. There are
two types of barriers: the command-queue barrier and the workgroup barrier. Here, we only use workgroup barriers in order
to synchronize the work items within a workgroup. A workgroup barrier dictates that no work item must leave the barrier
before all work items have entered it. Synchronization of work items belonging to different workgroups is not possible using
workgroup barriers. This global synchronization of work items can be achieved by atomic operations or semaphores, or by
orchestration of the workgroups from the host code. Such global synchronization, however, usually leads to significant per-
formance losses.

GPUs are many-core architectures consisting of collections of identical Streaming Multi-Processors (SMP) that execute
many instances of the same kernel in a Single Instruction Multiple Data (SIMD) control structure [6]. They are massively par-
allel, but with limited resources per core [22]. Mapping the OpenCL execution model onto a GPU, each work item is executed
in a separate thread, and all threads hosting work items from the same workgroup execute on the same SMP. Therefore, work
items must perform simple tasks on small amounts of data in order to provide sufficient granularity. Threads are executed in
warps (called wave fronts for ATI GPUs), which are collections of threads that are executed simultaneously. Control flow
divergence among threads within a warp results in serialization [23] and ideally should be avoided. Hence, work items
should be homogeneous, i.e., perform the same tasks. Homogeneous, fine-grained work items enable the GPU to apply fast
context switching. GPUs with hardware support for context switching change between threads in a single clock cycle in order
to hide data-access latency of a thread by computation of another. One of the most important performance determinants on
GPUs is the memory access pattern of the threads within a warp. A memory transaction to or from the global device memory
is a multi-word burst transaction. Offsets and non-unit stride access of a warp result in additional transactions and degrade
the memory bandwidth. Thus, work items and the data they access must be aligned and coalesced.

4. Method

In order for an algorithm to perform well on a GPU, it has to meet a number of requirements. First, it should rely on fine-
grained kernels that can be parallelized over a large number of small work items. Second, it has to avoid race conditions that
would require synchronization. Third, it has to avoid conditional statements that lead to control flow divergence. Fourth, the
algorithm and the data structures must guarantee coalesced and aligned global memory access and use local memory for
frequent read/write operations within the same memory region.
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In the following, we outline the design of a generic streaming-parallel particle–mesh/mesh–particle interpolation algo-
rithm in 2D and 3D as guided by these design principles. Particles are assigned to work items that loop over mesh nodes
within the support of the interpolation function. In particle–mesh interpolation, work items scatter the particles’ contribu-
tions onto the mesh nodes, whereas in mesh–particle interpolation they gather contributions from the mesh nodes. As work
items iterate over mesh nodes, the interpolation weights are only recomputed along dimensions that do change. Different
parallelization strategies are discussed in the following subsection.

4.1. Strategies for interpolation on the GPU

Stantchev et al. distinguish two strategies for particle–mesh interpolation on the GPU: the particle-push and particle-pull
strategies [7]. In the particle-push strategy, particles are assigned to work items that scatter the particle contributions onto
the mesh nodes. In the particle-pull strategy, mesh nodes are assigned to work items that gather particle contributions. Both
strategies have advantages and disadvantages: Particle-push allows the work item assigned to a particle p, to compute
dynamicallyMðpÞ from the particle’s coordinates. The setMðpÞ has fixed length for all p. Moreover, the work item can reuse
some interpolation weights that were already computed earlier when traversing mesh nodes along the same dimension.
However, the particle-push strategy causes memory collisions as concurrent work items may attempt to write to the same
mesh node simultaneously. This is avoided in the particle-pull strategy, where each mesh node can be updated by only one
work item. The disadvantage of the particle-pull strategy is that it is costly to compute PðmÞ unless the particles are arranged
in a regular spatial pattern (e.g., on a grid). Furthermore, the interpolation weights always have to be recomputed for each
particle.

Similar trade-offs also exist in mesh–particle interpolation. This can be seen by analogously defining mesh-push and mesh-
pull strategies: In the mesh-push strategy, each work item scatters the contributions of mesh nodes onto the particles within
the support of the interpolation weights. A clear disadvantage of this strategy is the high cost of computing PðmÞ if particles
are not organized in a regular spatial pattern. More importantly, a particle p might simultaneously be updated by concurrent
work items from m and ~m if p resides both in PðmÞ and Pð ~mÞ. In the mesh-pull strategy, all work items are launched over
particles and visit the mesh nodes inMðpÞ, which is easily computed thanks to the regular geometry of the mesh. Each work
item then accumulates the contributions of the mesh nodes in MðpÞ to x(p), which is free of memory collisions.

The advantages and disadvantages of these four parallelization strategies are qualitatively summarized in Table 1. From
this, we conclude that the particle-push and mesh-pull strategies are preferable for particle–mesh and mesh–particle inter-
polation, respectively. A common feature of both strategies is that work items are defined over particles. This allows using
the same algorithm for both interpolations by storing the particle positions and properties in the private memories of the
work items, reserving the shared memory for the mesh data. Since mesh node positions do not need to be stored, this is
an additional advantage given the limited size of the shared memory. In the following, we present data structures and algo-
rithms for generic particle-push/mesh-pull interpolation on the GPU in 2D and 3D.

4.2. Data structures

The main goal in designing the data structures is to guarantee coalesced and aligned global memory access and data local-
ity. At the same time, race conditions and atomic operations are to be avoided.

4.2.1. Particle data
The particle positions and strengths are stored in two linear buffers, named particle_pos and particle_str, respec-

tively. Particles in the same mesh cell are distributed across different frames of these buffers, which we call domain copies
(see Fig. 2). We then decompose each domain copy into blocks (red lines in Fig. 2) and store the particle data of each block
consecutively with an ordering as indicated by the dashed arrows in Fig. 2. Taking this decomposition approach one step
further, we also store the particle data along different dimensions in separate segments of the buffer, called main segments.
This renders our strategy dimension-oblivious and guarantees memory access in unit stride.

The buffers are constructed as follows: We first count the number of particles in each mesh cell and store it in an np_cell
buffer. Counting is done by atomically incrementing the elements of np_cell using the atom_inc instruction of OpenCL,
which ensures sequential access to np_cell. This is the only time we use atomic operations in the whole workflow, and
it enables us to directly assign indices to the particles according to the new ordering. Using these indices, we calculate

Table 1
Qualitative comparison of parallelization strategies for particle–mesh (columns 2 and 3) and mesh–particle (columns 4 and 5) interpolation.

Particle- Mesh-

pull push pull push

No memory collisions
p

#
p

#
Fast computation of PðmÞ and MðpÞ #

p p
#

Re-using interpolation weights #
p p

#
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and store the index of the mesh cell within which each particle resides in the cell list p_cell. Then, the np_cell buffer is
reduced in parallel to find the maximum number of particles in any mesh cell, pmax. The required size of the particle data
buffers is then given by pmax ! d ! ncell where d is the number of dimensions and ncell is the total number of mesh cells
in the domain. The buffers then contain d main segments, each holding the particle data along one dimension. Each main
segment further contains pmax domain copies (see Fig. 3), which are in turn decomposed into blocks. Each mesh cell corre-
sponds to one memory location in the buffer; empty mesh cells are represented as ‘‘dummy particles’’ of zero strength, as
shown in Fig. 3. This guarantees coalesced memory access in unit strides since the particles within each block are consec-
utively numbered. In this scheme, inhomogeneities in the particle distribution lead to memory and compute overhead. In
our experience, however, this overhead is amortized by the performance gain from the resulting regular, coalesced memory
access pattern. Moreover, adaptive meshes, along with dynamic remeshing, are used in practical simulations to limit particle
inhomogeneity [24].

4.2.2. Mesh data
Mesh data are stored in a linear buffer mesh_prop, which is again decomposed into main segments by dimension and

mesh cell blocks, as described above. In order to avoid the memory collisions that are possible in a particle-push strategy,
and in order not to introduce sequential parts into the algorithm, we replicate mesh nodes that are closer to any block
boundary than the support radius of the interpolation function. This is illustrated in 2D in Fig. 4. A block including its ghost

Fig. 3. Illustration of the use of domain copies and dummy particles in order to avoid conditional statements and guarantee coalesced memory access. See
main text for details.

Fig. 2. Particle data are stored in buffer segments, blocks, and domain copies according to their dimension, mesh cell index, and number of fellow particles
within the mesh cell. Particles within the same mesh cell are stored in different domain copies as highlighted by color. Each domain copy is subdivided into
blocks (red dashed lines) that are stored consecutively in the buffer. Within each block, particles are numbered in the order shown by the dashed arrows.
Data along different space dimensions are stored in separate main segments of the buffer. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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layer of replicated nodes is called an extended block. Mesh nodes are traversed in the same order as mesh cells, as shown by
the red arrow in the green block in Fig. 4. After a completed particle–mesh interpolation, the contributions on replicated
mesh nodes are aggregated by stitching the mesh back together in a post-processing step.

The total numbers of mesh cells in the computational domain without, and with, ghost layers, are termed cell_si-
ze_int and cell_size_ext, respectively. The total problem size is given by cell_size_ext. This size can be arbitrary,
as it depends on the domain decomposition done by the PPM library. OpenCL, however, requires that the domain size be
an integer multiple of the extended block size. We hence pad the domain as illustrated in Fig. 5.

4.3. Mapping of the data structures into OpenCL

The above-defined data structures are mapped onto the OpenCL execution model by assigning one mesh cell per work
item. The data of all pmax particles (some of them being possibly dummy) inside that mesh cell are stored in the private mem-
ory of the work item; the mesh data are kept in shared memory. A workgroup is then defined as the collection of all work

Fig. 4. Mesh nodes close to the boundary of a block are replicated in order to avoid concurrent writes and race conditions. Left: the dashed squares indicate
the areas within which mesh nodes are influenced by particles in the block of the same color. Right: extended blocks are defined by replicating mesh nodes
in overlapping influence regions. The red dashed arrow shows the storage order of the mesh nodes inside the green extended block. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Sizes of the computational domain (cell_size_int), including ghost layers (cell_size_ext), and after padding with extra cells
(cell_size_ext_padded) as necessary for consecutive memory access. Extended blocks as defined in the main text are shown by black lines.

100 F. Büyükkeçeci et al. / Parallel Computing 39 (2013) 94–111



items having mesh cells that belong to the same block. The data structure and storage order introduced in Fig. 2 then guar-
antee that work items always access the global memory in a coalesced fashion. The mesh padding shown in Fig. 4 avoids race
conditions across workgroups and dispenses with the need for inter-workgroup synchronization and atomic operations.

The block size is chosen according to the GPU hardware. It depends on the number of shared memory banks and SMPs the
GPU has, and it represents a memory trade-off. On the one hand, the blocks should be small enough for the data to fit into the
shared memory of each workgroup. On the other hand, they should not be too small in order to limit the memory overhead
stemming from the ghost layers around the extended blocks (see Fig. 4). To avoid shared memory bank conflicts, the blocks
should moreover contain at least as many cells along the x-direction (i.e., the leading dimension of the loop) as the GPU has
shared memory banks. The specific settings for the hardware used here are described in Section 6.

4.4. Interpolation algorithms for the GPU

In particle–mesh interpolation, each workgroup is assigned a block of mesh cells with one work item per cell. Every work
item then loops over the pmax particles (i.e., the domain copies) in its cell and scatters their strength onto the mesh nodes
within the support radius of the interpolation function, i.e., within the extended block. The redundant computation of dum-
my particles turns out to be more efficient than conditional statements on the GPU. Mesh–particle interpolation uses an
analogous parallelization strategy, where dummy particles are purged from the particle_str buffer before reading the
data back from the device.

4.4.1. Particle–mesh interpolation
In particle–mesh interpolation, each work item loops over the particles in one mesh cell and scatters their strengths onto

the mesh nodes around in a nested loop over dimensions. Since domain copies and main segments are stored in different
frames of the buffer, memory conflicts are avoided. The number of inner-loop iterations required is given by the size of
the support of the interpolation weights W, supp(W), i.e., the number of mesh nodes where W – 0. With each iteration,
all work items within a workgroup assign particle contributions onto mesh nodes along the same direction. A workgroup
barrier is then used to synchronize all work items before assigning into the next direction. This synchronization ensures that
no concurrent writes onto the same mesh node occur. Fig. 6 illustrates this ‘‘synchronized swimming’’ of work items for the
example of a linear interpolation function (with local support of 4 mesh nodes). This is repeated pmax times until all particles
have been assigned. The general kernel is given in Algorithm 1, the complete workflow for particle–mesh interpolation in
Algorithm 2.

Algorithm 1. Particle–mesh interpolation kernel

1: w work item ID
2: v indices of mesh cells assigned to w
3: for i from 1 to pmax

(a) p index of the ith particle in v
(b) x coordinates of the ith particle in v
(c) for j 2 supp(W)

i. l v + j (shift of mesh node in target)
ii. M index of the mesh node pointed to by l
iii. for each particle property xi

A. xi(M) xi(M) + W(l, x)xi(p)
iv. workgroup barrier

1 2 3 4

Fig. 6. Particle–mesh interpolation example in 2D with a linear interpolation function (support size 4). In each of the four iterations, the work items in the
same workgroup (block) update the mesh nodes along the same direction in order to avoid concurrent writes. Dummy particles (dashed circles) avoid
conditional statements. The four stages are repeated pmax times until all particles have been assigned.
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4.4.2. Mesh–particle interpolation
Mesh–particle interpolation follows an analogous parallelization strategy with workgroup being assigned mesh cell

blocks, and work items particles within single mesh cells. The work items then gather in parallel the contributions from
the mesh nodes within the support of the interpolation weights W. Unlike in particle–mesh interpolation, however, we
do not need to synchronize the work items since particle strengths are stored in the private memory of the respective work
item, and mesh nodes have been replicated as outlined in Section 4.2.2. Algorithm 3 shows the mesh–particle interpolation
kernel. With each iteration, the particles receive contributions from mesh nodes along the same direction. This is illustrated
in Fig. 7 for the example of a linear interpolation function with four mesh nodes in its support. It is repeated pmax times until
all particles have been considered. The complete workflow of the mesh–particle interpolation is given in Algorithm 4.

Algorithm 2. Overall particle–mesh interpolation workflow

1: Copy particle positions and strengths from host to device
2: Initialize np_cell
3: Determine cell indices of particles and store them in the cell list p_cell
4: Reduce np_cell to compute pmax

5: Store particle coordinates in particle_pos
6: Store particle strengths in particle_str
7: Allocate and initialize extended mesh with replicated mesh nodes
8: Launch particle–mesh interpolation kernel
9: Stitch duplicated mesh nodes
10: Read back mesh nodes from device

Algorithm 3. Mesh–particle interpolation kernel

1: w work item ID
2: v indices of mesh cells assigned to w
3: for i from 1 to pmax

(a) p index of the ith particle in v
(b) x coordinates of the ith particle in v
(c) for j 2 supp(W)

i. l v + j (shift of mesh node in target)
ii. M index of the mesh node pointed to by l
iii. for each particle property xi

A. xi(p) xi(p) + W(l, x)xi(M)

1 2 3 4

Fig. 7. Mesh–particle interpolation example in 2D with a linear interpolation function (support size 4). In each of the four iterations, the work items in the
same workgroup (block) accumulate on their particles the contributions from the mesh nodes along the same direction. Dummy particles (dashed circles)
avoid conditional statements. The four stages are repeated pmax times until all particles have been considered.
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5. Integration in the PPM library

The above generic algorithms for GPU-accelerated interpolation are implemented in the PPM library [18,19]. PPM is a pro-
cessor-independent programming middleware for parallel hybrid particle–mesh methods on distributed-memory
computers. It implements a set of data and operation abstractions on an intermediate level of granularity, such as to expose
network communication overhead, but hide the distribution of particle and mesh data across compute nodes (i.e., the data
topology) [20]. Distributed-memory parallelism in PPM is based on adaptive geometric domain decomposition and ghost
(halo) layers around the sub-domains, as shown in Fig. 8. After distributing the sub-domains onto the compute nodes, such
that each node receives one or several sub-domains and good load balance is achieved, MPI (Message Passing Interface) com-
munication is used to populate the ghost layers of all sub-domains with copies of the mesh nodes and particles from the
respective neighboring processes. All solvers and numerical routines, including the present interpolation algorithms, are
then applied locally per sub-domain, without requiring any further network communication.

Algorithm 4. Overall mesh–particle interpolation workflow

1: Copy particle positions and mesh node values from host to device
2: Initialize np_cell
3: Determine cell indices of particles and store them in the cell list p_cell
4: Reduce np_cell to compute pmax

5: Store particle coordinates in particle_pos
6: Construct extended mesh with replicated mesh nodes (for memory stride and coalesced access)
7: Launch mesh–particle interpolation kernel
8: Collect strengths of actual (non-dummy) particles
9: Read back particle strengths from device

Using the present OpenCL implementation of particle–mesh and mesh–particle interpolation, we extend the PPM library
to multiple levels of parallelism. On the coarsest level, sub-domains are assigned to MPI processes that operate in separate
memory address spaces. On the finest level, the light-weight GPU threads parallelize over the individual mesh cells within a
sub-domain. Due to the presence of ghost particles (red circles in Fig. 8), all information is locally available and no additional
MPI communication is incurred by using the present OpenCL implementation. This extends the present implementation to
multi-GPU settings.

Since PPM is a general-purpose library, the particle data cannot be assumed to be sorted or arranged in any specific way
when entering the interpolation routines. Also, PPM internally uses object-oriented data structures [19] that do not directly
map onto the OpenCL memory model. This requires a number of ‘‘wrapper’’ or routines, as illustrated in Figs. 9 and 10 in
yellow,2 and several pre-and post-processing kernels (blue boxes other than the actual interpolation kernels in Figs. 9 and 10).

Particle–mesh interpolation (Fig. 9) starts by re-numbering the particles such that consecutively indexed particles are lo-
cated in the same sub-domain. This is necessary because a process can be assigned multiple sub-domains. The re-numbering
allows applying the GPU kernels locally per sub-domain on contiguous chunks of memory. The second step consists of allo-
cating and populating the particle and mesh data buffers as described in Section 4.2. For each sub-domain in an MPI process,
the OpenCL kernels are then run (potentially in parallel if multiple sub-domains and multiple GPUs are available on a com-

Fig. 8. In PPM, the computational domain (left) is adaptively subdivided and each sub-domain (right) is extended by a ghost layer (shaded red). The ghost
layer is populated with ghost particles (red circles) that are copies of ‘‘real’’ particles (black dots) from neighboring processors. The present algorithm is
applied locally per sub-domain and does not incur any additional inter-processor communication overhead. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

2 For interpretation of color in Figs. 9 and 10, the reader is referred to the web version of this article.
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pute node). This entails first copying the buffer data from the host memory to the device memory. Once on the GPU, the par-
ticles are sorted into mesh cells as described in Section 4.2.1. Then, Algorithm 1 is used before the replicated mesh nodes are
stitched back together and the results copied back to the host memory. Finally, the results are copied from the flat buffers
into the PPM mesh objects.

Mesh–particle interpolation (Fig. 10) proceeds analogously. The main difference is that the duplicated mesh nodes do not
need to be stitched together after interpolation. Instead, the dummy particles need to be removed from the GPU buffer before
the results are transferred back to the host memory.

6. Benchmarks

We benchmark the accuracy and runtime of the presented algorithms in 2D and 3D using both single and double-preci-
sion floating-point numbers. For the benchmarks we initialize one particle on each mesh node in the unit square and perturb
the particle positions by uniform random numbers in [!2h,2h]. This leads to a quasi-random particle distribution with 0 to
16 particles per mesh cell. For particle–mesh interpolation we sample the function gðxÞ ¼ exp !kx! 1=2k2

2=15
! "

at the par-
ticle positions and interpolate the resulting particle strengths to the mesh nodes. The error is defined at each mesh node as
the difference between the interpolation result and the exact value of g at the location of that mesh node. For mesh–particle

Fig. 9. Workflow scheme for GPU-accelerated particle–mesh interpolation in the PPM library.

Fig. 10. Workflow scheme for GPU-accelerated mesh–particle interpolation in the PPM library.
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interpolation the same function is sampled at the mesh nodes and the error after interpolation is analogously defined on the
particles.

We benchmark the OpenCL implementation on a NVIDIA Tesla C2050 GPU consisting of 448 CUDA cores organized into
14 SMPs with 1030 GFLOP/s single-precision and 515 GFLOP/s double-precision peak performance and 3 GB GDDR5 memory
with ECC disabled for the benchmarks. The peak memory bandwidth of this GPGPU card is 144 GB/s. For comparison, and to
demonstrate the portability of the OpenCL implementation, we also benchmark it on an ATI ‘‘Cayman’’ Radeon HD 6970 GPU
featuring 1536 stream processors with 2.7 TFLOP/s single-precision and 683 GFLOP/s double-precision peak performance
and 1 GB GDDR5 memory with a peak bandwidth of 176 GB/s. As a baseline we use both the highly optimized sequential
Fortran 90 implementation available in the PPM library [18], as well as an OpenMP-parallelized version of the same PPM
routines. All CPU code is compiled with the GCC Fortran compiler version 4.6.2 using the -O3 optimization flag. Both CPU
versions (sequential and multi-threaded) are run on an 8-core AMD FX 8150 at 4.2 GHz with 16 GB DDR3 SDRAM.

In order to minimize bank conflicts in the GPU’s shared memory, and hence maximize the effective bandwidth, the block
sizes (cf. Section 4.2) are set according to the number of shared memory banks and the maximum number of work items per
compute unit. Both GPU devices tested have 32 shared memory banks. We hence always use 32 mesh cells along the x-
direction.

The NVIDIA Tesla C2050 GPU can process up to 1024 work items in a workgroup, but can launch 1536 threads per com-
pute unit. We hence choose 512 work items per workgroup, in order to launch three workgroups with 100% thread utiliza-
tion. Thus, the block size is set to 32 ! 16 in 2D and 32 ! 4 ! 4 in 3D. The maximum workgroup size for the ATI ‘‘Cayman’’
Radeon HD 6970 GPU is 256 and we can launch 1536 threads per compute unit. Since 256 is a divisor of 1536, 100% occu-
pancy is always guaranteed. Setting the number of work items in the x-direction to 32, we use block sizes of 32 ! 8 in 2D and
32 ! 4 ! 2 in 3D.

For the timings, we measure the runtime of GPU-based interpolation, consisting of all GPU (blue) stages of the workflows
shown in Figs. 9 and 10. Additionally we measure the time to copy the data to the device memory (red). The sum of these
times is compared with the runtime of the sequential and multi-threaded PPM implementations running on the CPU, where
sorting of particles and re-ordering of data is not necessary. The speedup is defined as the ratio between the CPU wall-clock
time and the GPU wall-clock time. For each interpolation kernel and GPU platform we also measure the sustained perfor-
mance in GFLOP/s, only counting floating-point multiply and add operations, and use this to evaluate the efficiency of the
implementations, defined as the fraction of the theoretical peak performance of the respective GPU that is actually sustained
by the interpolation kernel. We only provide GFLOP/s rates for the actual interpolation kernels (i.e., Algorithms 1 and 3), but

Fig. 11. Convergence plots for M0
4 and linear interpolation in single precision (a/b) and double precision (c/d). We plot the ‘2 (dashed lines) and ‘1 (dotted

lines) norms of the relative interpolation errors for both the GPU (crosses) and CPU (gray squares) implementations in 2D (blue) and 3D (red). The solid
black lines indicate the slopes of orders 2 and 3, respectively. (For interpretation of reference to color in this figure legend, the reader is referred to the web
version of this article.)
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not for the other modules run on the GPU (i.e., the pre-and post-processing kernels). The reason is that the latter perform
virtually no floating-point multiply or add operations.

6.1. Accuracy

We benchmark the accuracy and correctness of the OpenCL implementations using both the M0
4 and the linear interpo-

lation functions on the above-described test case on the NVIDIA Tesla C2050 GPGPU. Fig. 11 shows the convergence plots for
the 2D (blue) and 3D (red) case. When using single precision, the implementations do not converge below machine precision
of 10!6 (Fig. 11(a) and (b)). The convergence plots also show the expected third-order convergence when using the M0

4
scheme and second-order convergence for the linear interpolation scheme, in both the ‘2 and the ‘1 norms of the error.
In all cases, the errors on the CPU (gray squares) and on the GPU (crosses) are identical, demonstrating the correctness of
the GPU implementations.

Table 2
Summary of the overall speedups (with and without the time required for data transfer to the device memory) measured for the OpenCL implementation on the
NVIDIA Tesla C2050 over the OpenMP reference implementation in the PPM library on the 8-core AMD FX 8150 CPU. The last column reports the sustained
GFLOP/s rate for the interpolation kernels alone, i.e. Algorithms 1 and 3, and in parentheses the efficiency as the fraction of the theoretical peak performance
(1030 GFLOP/s) sustained. Only the efficiency results for single precision are shown. For the double-precision kernels the GFLOP/s rates are half of those for the
single-precision kernels, but the efficiencies remain the same (double-precision peak performance is 515 GFLOP/s). We only show the largest problems tested.
Notice that speedups mentioned in the main text may correspond to other problem sizes.

Type f Dim. Prec. #Part. Speedup GFLOP/s

w/o comm. w/comm.

P ? M Linear 2D 32 bit 4096k 3.0 0.6 124.2 (12.1%)
64 bit 4096k 1.8 0.3

3D 32 bit 2048k 2.3 0.6 112.6 (10.9%)
64 bit 2048k 1.8 0.4

M04 2D 32 bit 4096k 4.3 1.7 180.8 (17.6%)
64 bit 4096k 2.9 0.6

3D 32 bit 2048k 4.8 1.7 432.6 (42.0%)
64 bit 2048k 3.1 1.0

M ? P Linear 2D 32 bit 4096k 1.8 0.4 64.3 (6.2%)
64 bit 4096k 1.8 0.3

3D 32 bit 2048k 1.9 0.6 199.9 (19.4%)
64 bit 2048k 1.5 0.4

M04 2D 32 bit 4096k 4.8 1.3 273.1 (26.5%)
64 bit 4096k 3.6 0.8

3D 32 bit 2048k 13.0 5.1 648.1 (62.9%)
64 bit 2048k 8.5 2.8

Table 3
Summary of the overall speedups (with and without the time required for data transfer to the device memory) measured for the OpenCL implementation on the
ATI Cayman Radeon HD 6970 over the OpenMP reference implementation in the PPM library on the 8-core AMD FX 8150 CPU. We only show the largest
problems tested. Notice that speedups mentioned in the main text may correspond to other problem sizes.

Type f Dim. Prec. #Part. Speedup GFLOP/s

w/o comm. w/comm.

P ? M Linear 2D 32 bit 4096k 0.7 0.3 95.9 (3.5%)
64 bit 4096k 0.5 0.2

3D 32 bit 2048k 0.5 0.3 83.8 (3.1%)
64 bit 2048k 0.5 0.2

M04 2D 32 bit 4096k 1.7 0.8 154.1 (5.7%)
64 bit 4096k 1.3 0.5

3D 32 bit 2048k 2.1 1.1 184.2 (6.8%)
64 bit 2048k 1.5 0.8

M ? P Linear 2D 32 bit 4096k 0.4 0.2 57.0 (2.1%)
64 bit 4096k 0.4 0.2

3D 32 bit 2048k 0.4 0.2 242.8 (9.0%)
64 bit 2048k 0.4 0.2

M04 2D 32 bit 4096k 2.0 0.8 414.5 (15.3%)
64 bit 4096k 1.6 0.7

3D 32 bit 2048k 5.7 2.8 889.0 (32.9%)
64 bit 2048k 3.9 1.8
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6.2. Runtime

We compare the runtimes of the OpenCL implementations on the NVIDIA and ATI GPUs with the baselines provided by
the sequential and multi-threaded OpenMP codes in the PPM library [18] run on the 8-core AMD CPU. For the OpenCL
implementations we also take into account the time needed to sort the particles into the data structures outlined in Sec-
tion 4.2.1 and to transfer the data to and from the device memory. Running both implementations for various problem sizes
(i.e., numbers of particles and mesh nodes), we check how the implementations scale with problem size and how the speed-
ups evolve. All OpenMP benchmarks were performed using eight threads distributed over the eight cores of the benchmark
CPU. The speedups (OpenCL GPU vs. multi-threaded CPU) and sustained performances (interpolation kernels only) are mea-
sured in all cases. The values obtained for the NVIDIA Tesla are summarized in Table 2, those for the ATI Cayman in Table 3.

Fig. 12 shows the wall-clock times for particle–mesh interpolation on all four benchmark platforms. Bars for single-pre-
cision arithmetic point downward, for double-precision arithmetics upward. The numbers above the bars give the speedups
with respect to the single-thread CPU implementation when taking communication overhead into account. The speedup of
the GPU over the CPU grows with increasing problem size. The speedups obtained with single-precision arithmetic are about
twice as large as those obtained with double-precision arithmetic. This is due to the fact that the GPUs used in our bench-
marks require several clock cycles per double-precision instruction. On the CPU, however, single and double precision oper-
ations require approximately the same amount of time. The speedup increases with dimensionality of the space and with
order (FLOP/byte) of the interpolation scheme, which can be ascribed to the increasing number of operations per particle.
While the speedup of the GPU over the sequential CPU code, excluding transfer times, reaches up to 23, the speedups over

Fig. 12. Timings for particle–mesh interpolation. We compare the wall-clock times of the OpenCL implementation run on the NVIDIA Tesla GPU (light-blue
bars) and on the ATI Cayman GPU (dark-blue bars) with those of the Fortran90-OpenMP implementation running on an 8-core AMD FX 8150 CPU at 4.2 GHz
(8-thread: green bars, sequential: gray bars). The times needed to transfer the data to and from the GPU device memory are added in red. Bars pointing
downwards refer to single-precision runs, bars pointing upwards to double-precision runs. The speedups with respect to the sequential CPU
implementation are given above/below the bars. Speedups 1/x < 1 are given as !x in red. Notice the different time axes for the two parts of each plot. (For
interpretation of reference to color in this figure legend, the reader is referred to the web version of this article.)
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the OpenMP-parallel CPU code show mixed results. The largest speedup over the parallel CPU code is observed when using
M0

4 interpolation in 3D with single-precision arithmetic and 256k particles. In this case, the NVIDIA Tesla C2050 solves the
problem up to seven times faster than the CPU employing all 8 cores. This speedup reduces to 3-fold when also accounting
for the data-transfer time. The OpenCL code on the ATI Cayman only outperformed the parallel CPU code when using M0

4
interpolation. In all other cases, the 8-thread CPU code was faster. In the worst case (linear interpolation, 2D, double preci-
sion), both GPUs perform significantly worse than the 8-core CPU. This suggests that the most efficient implementation
should be chosen based on the order of the interpolation scheme (support size and compute intensity), problem dimension-
ality, and problem size. The efficiency on the NVIDIA Tesla ranges from 10% for 3D linear interpolation to 42% for M0

4 inter-
polation in 3D. As expected, computationally more intense kernels (3D and M0

4) lead to higher efficiencies. Comparing the
sustained performance on the GPU to the sustained performance on the CPU reveals the overhead imparted by building
the auxiliary data structures and sorting the particles.

Fig. 14 shows the results for mesh–particle interpolation. On the GPU, mesh–particle interpolation is faster than particle–
mesh interpolation, since the former does not use any synchronization barriers and also has a higher compute intensity
(FLOP/byte). This is also reflected in the generally higher efficiencies in this case. As in the particle–mesh case, the speedups
become smaller with decreasing dimensionality, decreasing problem size, increasing numerical precision, and decreasing or-
der of accuracy of the interpolation scheme. The largest observed speedup over the parallel CPU code is 15-fold (7-fold when
accounting for data-transfer time) when using M0

4 interpolation in 3D with single precision on the NVIDIA Tesla. On the same
device, the speedups with respect to the sequential CPU code are 57-fold and 22-fold without and with data-transfer time,
respectively. A breakdown of the computational time by kernels for this case is shown in Fig. 13(a). The actual interpolation
(Algorithm 3) only amounts to 14% of the total time; the rest is consumed by pre-and post-processing kernels and by data
transfer. The case that delivered the smallest speedup is shown in Fig. 13(b). There, the actual interpolation kernel only ac-
counts for 8% of the computer time, and 80% of the time are used for data transfer. The ATI Cayman only marginally outper-

Fig. 13. Breakdown of the computational time on the NVIDIA Tesla C2050 GPU by kernel. We show the case (a) that delivered the largest speedup, i.e., 3D
mesh–particle interpolation using the M0

4 scheme in single precision and (b) the case that delivered the smallest speedup, i.e., 2D particle–mesh
interpolation using the linear scheme in double precision.
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forms the 8-core CPU when using M0
4 interpolation. Its best case, M0

4 interpolation in 3D with single precision, shows a 6-fold
speedup (4-fold when account for data-transfer time). In the worst case (linear interpolation, 2D, double precision) both
GPUs perform significantly worse than the 8-core CPU (the NVIDIA Tesla is 3.2 times slower than the 8-thread CPU, the
ATI Cayman 5.8 times). The efficiency again grows for more compute-intense kernels and reaches 63% for M0

4 interpolation
in 3D on the NVIDIA Tesla. The fact that the speedup in the same case is not very large can again be attributed to the over-
head of building the auxiliary data structures and parallel-reducing the results. The linear kernels are memory limited, and in
3D 70% of the theoretical peak memory bandwidth are sustainably utilized.

7. Conclusions and disussion

We have presented a portable OpenCL implementation of generic algorithms for SIMD-parallel particle–mesh and mesh–
particle interpolation on GPUs. The same parallelization strategy has been used for both mesh–particle and particle–mesh
interpolation, and it also readily generalized to 3D. Our algorithm is generic with respect to the mesh size, the input repre-
sentation, the number of particles per mesh cell, and the number of particle properties that are to be interpolated. Large
inhomogeneities in the particle density, however, lead to load imbalance and lower performance. In these cases, Adaptive
Mesh Refinement (AMR) strategies are available to restore a more uniform particle distribution across mesh cells [24].
AMR codes have been parallelized on GPUs with about 10-fold speedup [25].

The present parallelization strategy uses threads (work items) over mesh cells and a particle-push, mesh-pull paradigm
[7]. Particle data are reordered according to the memory access patterns of the work items in a workgroup. Additionally dis-
tributing multiple particles in a mesh cell across domain copies, and decomposing domain copies into blocks, leads to effi-
cient use of the global memory bandwidth. Particle reordering also allows us to benefit from local memory and high cache
hit rates. We avoid race conditions in particle–mesh interpolation by workgroup barriers and by replicating mesh nodes in
ghost layers between neighboring blocks (workgroups).

We benchmarked both the accuracy and the computational cost of the presented OpenCL implementation on two GPU
platforms against the existing, highly optimized single-thread CPU implementation in the PPM library [18] and a shared-
memory-parallel OpenMP version respectively. The benchmarks have shown that speedups of up to 7-fold over an 8-thread
CPU code and 22-fold over a sequential CPU code are possible with a generic OpenCL algorithm running on a GPU. This, how-
ever, depends on using an interpolation kernel with a high computation-to-memory ratio and rapidly diminishes when using
double-precision arithmetics (due to the emulated double-precision support on the GPUs used). Also, the speedups observed
for the present general-purpose implementation are below those reported for specialized codes in 2D [11,12]. This is mainly
due to the time needed in the present implementation to sort the particle data into GPU-suited data structures. Without
these pre-and post-processing kernels, i.e., if the calling program would already store the particle and mesh data in a
GPU-friendly ordering, higher overall speedups could be realized, as can be extrapolated from the pie charts in Fig. 13. Ros-
sinelli et al. reported a 35-fold speedup of their OpenCL implementation over their single-thread CPU implementation of
mesh–particle interpolation using the M0

4 function in 2D with double precision [12]. For the same case, the present OpenCL

Fig. 14. Timings for mesh–particle interpolation. We compare the wall-clock times of the OpenCL implementation run on the NVIDIA Tesla GPU (light-blue
bars) and on the ATI Cayman GPU (dark-blue bars) with those of the Fortran90-OpenMP implementation running on an 8-core AMD FX 8150 CPU at 4.2 GHz
(8-thread: green bars, sequential: gray bars). The times needed to transfer the data to and from the GPU device memory are added in red. Bars pointing
downwards refer to single-precision runs, bars pointing upwards to double-precision runs. The speedups with respect to the sequential CPU
implementation are given above/below the bars. Speedups 1/x < 1 are given as !x in red. Notice the different time axes for the two parts of each plot. (For
interpretation of reference to color in this figure legend, the reader is referred to the web version of this article.)
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implementation shows a 19-fold speedup over the single-thread CPU implementation of the PPM library. Rossinelli et al.’s
OpenGL implementation of 2D particle–mesh interpolation displayed a 26-fold speedup [8]. In single precision, Rossinelli
et al.’s mesh–particle interpolation showed a 145-fold speedup [12], which is significantly larger than the 24-fold speedup
of the present implementation in the same case.

From our efficiency measurements we also see that more compute-intense kernels with a larger number of floating-point
operations per load-store operation allow higher efficiencies (up to 63% for M0

4 interpolation in 3D). Hence, 3D interpolation
kernels use the hardware more efficiently than 2D ones, and M0

4 kernels have a higher efficiency than linear ones. The linear
kernels were memory-limited in all cases.

Our results also confirm previous reports that linear interpolation schemes achieve smaller speedups on a GPU than high-
er-order schemes [14,12]. We believe that this is due to the lower FLOP/byte ratio of the linear kernels. The present results
also show that on the hardware used, double-precision computations take about twice longer than single-precision ones.
When using higher-order interpolation schemes, such as M0

4, this could be an issue since the interpolation error quickly
drops below the single-precision machine epsilon. However, if solution accuracies around 10!5 to 10!6 are sufficient, sin-
gle-precision arithmetic provides better speedups, especially for higher-order interpolation schemes with more compute-in-
tense kernels. With the advent of APUs and better double-precision support on GPUs, this could be a temporary limitation.

Compared with the multi-threaded OpenMP reference implementation running on an 8-core CPU, the OpenCL code was
in most cases slower (always slower when using linear interpolation). This is in agreement with previous reports [12,14] and
illustrates the limitations of GPU acceleration, in particular when accounting for code development times (several weeks for
the OpenCL implementation, less than a day for the OpenMP implementation). For particle–mesh interpolation, the OpenMP
implementation does not incur any thread synchronization and hence does not require atomic operations. This leads to an
almost perfect scaling of the OpenMP-Fortran90 code with the number of CPU cores. When taking data transfer times into
account, significant speedups over the 8-core CPU could only be achieved for 3D mesh–particle interpolation using the M0

4
scheme in single precision.

Despite the modest speedups of the GPU implementation, however, outsourcing interpolation to the GPU may free CPU
resources to work simultaneously on other tasks. Furthermore, GPUs may provide interesting options for real-time in-situ
visualization of running simulations [26–28]. A bit more speed could probably be gained on the NVIDIA GPU when using
CUDA instead of OpenCL [17,12], albeit at the expense of reduced portability. Aiming at a generic, portable code that could
be integrated into the general-purpose PPM library [18], we chose not to do so.

OpenCL is a portable parallel computing language, and OpenCL code can also run on multi-core CPUs. For the present
implementation, however, running the OpenCL code on the 8-core AMD CPU was slower than using the OpenMP code on
the same CPU. We hence chose the OpenMP code as the baseline for the benchmarks presented here.

The presented particle–mesh and mesh–particle interpolations are available in the PPM library both in 2D and 3D. This
extends the PPM library with OpenMP parallelism and transparent GPU support on distributed-memory parallel computers.
In PPM, the presented algorithms are applied locally per sub-domain (i.e., per processor) of a domain decomposition. They
thus have no influence on the network communication overhead of a distributed parallel simulation, assuming that the ghost
(halo) layers are populated beforehand. If several nodes of a compute cluster are equipped with GPUs, this enables distrib-
uted-memory multi-GPU interpolation, offering a simple hybrid MPI-OpenCL platform for large hybrid particle–mesh sim-
ulations. The PPM library provides an application-independent middleware and is available free of charge and as open source
from http://www.ppm-library.org.
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