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Background: Given the characteristics of health care expenditure/
cost data–a mass of observations at zero, and skewed positive
expenditures, various alternative estimators have been developed
that can address the analytical issues these characteristics raise. The
field continues to develop new approaches and to evaluate the
performance of the existing ones.
Objectives: We discuss the strengths and limitations in existing
methods for estimation and for model specification and checking.
We suggest some areas that need fuller development or a better
understanding of how the estimation approach performs when the
outcome exhibits the skewness and heavy right tails that are typical
of health care data. We also address various other aspects of cost
analysis that include dealing with induced censoring, estimating
casual effects, and generating reliable predictions that may apply to
many studies.
Results: No current method is optimal or dominant for all cost
applications. Many of the diagnostics used in choosing among
alternatives have limitations that need more careful study. Several
avenues in modeling cost data remain unexplored.
Conclusions: Taken together, we hope that this essay would serve
as a guide to the choice among methods and to the next generation
of methodological research in this field.
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There has been a substantial literature written since the 1970s
that addresses the statistical issues in dealing with health care

costs and other outcomes, with much of the focus on the issue of
skewness in the outcome data and its implications for the choice
of an appropriate nonlinear method for covariate adjustment.1–5

The fundamental problems for empirical analysis lie with the
distributional nature of the cost data–limited dependent variables
with a substantial fraction of zeroes; skewed to the right; re-
sponses that may vary over the range of costs or other inherent
nonlinearities (eg, the role of comorbidities). Therefore, standard
methods (such as, simple linear models with dollars as the
dependent variable) that are widely used to answer questions
involving other economic outcomes need to be modified to
account for these common characteristics of health care cost or
expenditure data.

Historically, this line of work has had some unintended
consequences, because addressing one statistical issue has
created additional statistical problems. In the discussion, we
mention 2 of these cases. Some of the issues that we raise are
included because of concerns that current proposals for esti-
mators may have hidden consequences that need to be dis-
covered. We will forgo a full review of the current state of the
econometrics of cost analysis; the articles by Huang6 and
Mullahy7 in this volume and their references provide a much
more detailed view of the relevant literature for models that
examine either survival-based or conditional mean models.
We devote most of our attention to identifying issues in cost
analyses that we think have not received adequate attention
thus far and those that could lead to important research topics
in the near future in the area of cost analyses. Although much
of our discussion on issues associated with nonlinear adjust-
ments models cuts across all types of analyses, we will also
give separate attention to issues related to estimation of
causal effects and predictions.

BACKGROUND
The predominant goal of cost modeling has been to

draw inferences based on the mean costs �ie, E (Y x) � � (X)�
and how different covariates affect mean costs primarily due
to its direct relation to either total or incremental budgetary
impacts. Such impacts motivated the cost analysis in the first
place in so many cases. Although, other moments of the cost
distribution can also be of interests,8 we will mainly focus of
issues that arise in the context of mean-based analyses.
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Traditional Single-Equation Models
Traditional linear regression usually fails to model

consistently and reliably the mean of a skewed distribution
with a heavy right tail because of the nonlinearity in the
response, the instability caused by skewness and kurtosis,
and/or the inefficiency due to the common failure to deal with
the heteroscedasticity (variance increases with the mean).
The field has considered 2 major classes of alternatives to
least squares to address these issues with one based on
transformation of the outcome and the other based on gener-
alized linear models (GLM). Ordinary least squares (OLS)
regression of logarithmic or MLE for Box-Cox transforma-
tions of Y on covariates X can overcome the skewness and
may reduce problems of heteroscedasticity and kurtosis,9 but
does not result in a model for the mean � (X) on the original
dollar scale, a scale that in most applications is the scale of
interest.10,11 To draw consistent inferences about the mean �
(X) or any functional thereof in the natural scale of Y,
complicated retransformations may be necessary, especially
if the variances (or higher order moments) differ by clinical
subgroup, treatment group, or by policy status.1,11 To avoid
the potential bias problems in retransformation, the use of
GLM is increasingly becoming popular,12 where a link func-
tion directly relates � (x) to a linear specification x�� of
covariates, including possible polynomials in covariates and
interactions as needed. The retransformation problem is elim-
inated by transforming � (x) instead of transforming the
outcome variable Y. For example, if the response is propor-
tional to the covariates, then the mean of Y given x is � (x)x��.
The link is the natural log, because log � (x) � x��. Although
the log link is ubiquitous, there is often no theoretical guid-
ance as to what should be the appropriate link function or the
variance function for the data at hand. The most common
approach has been to rely on a series of diagnostic tests for
candidate link and variance function models.5,13

But one of the overwhelming issues that often arises in
this literature is that the analyst faces a dilemma in the choice
between a potentially asymptotically biased (inconsistent)
model based on transformation of Y or a consistent but
potentially much less efficient method based on GLM ap-
proaches.4 Even in the class of GLMs, the usual specification
search may not necessarily generate efficient choices.

Advanced Single-Equation Models
Several new models have been proposed that overcome

some of these specification problems for the GLM formula-
tion. We proposed regression using a generalized gamma
distribution that encompasses several other distributions as
special cases.14 Although the implicit link function is still a
log link, the generalized gamma regression offers a flexible
way to model a variety of shapes for the cost distribution, and
therefore provides robustness to the mean estimates, as well
as a test of whether the data are better approximated by some
GLM versus log-based least squares formulations. Basu and
Rathouz developed an extension of the traditional GLM
where they use a Box-Cox style power link function that is
directly estimated from the data so as to offer a more flexible
functional form to the mean estimator.15 Their model esti-
mates the mean-variance parameters, jointly with those for

the mean function, to capture the underlying heteroscedastic-
ity and to overcome some of the efficiency limitation of tradi-
tional GLMs.3,4 By allowing for link functions and variance
functions other than the canonical ones, the Basu-Rathouz ap-
proach is less prone to misspecification and is potentially much
more efficient than the usual approach. Other semi-parametric
approaches have also been proposed in the literature based on
modeling the hazard of cost accumulation.16–18

Going Beyond Single-Equation Models
All of the earlier estimators that we discussed thus far

relate a central tendency of the response variable to covariates
using a single, often highly nonlinear, functional form. The
covariate effect is not formally (or directly) allowed to vary
by the levels of the response, although different parts of the
distribution of cost can have differential responses to a
covariate that are brought about indirectly via other covari-
ates in the model. Estimators which relax this assumption
have also been proposed. They allow for different parts of the
cost distribution to have different responses to covariates by
using different parameters or functional forms for each part.
That is, these estimators allow for the relationship between
the response and the covariates to vary directly with the levels
of the response.

The most common way to achieve this type of hetero-
geneity in effect is via 2-part models where the probability of
incurring any costs is modeled separately from the level of
costs given any health care utilization.1,5,19 Duan et al1

proposed an extension of 2-part models that allows inpatient
and outpatient care to have different responses to covariates.
A generalized version of multipart models was specified by
Gilleskie and Mroz,20 who have suggested that one can use a
series of conditional models to address the skewed nature of
health care expenditures. Building on the work by Efron21

and Donald et al,22 they suggest breaking up the dependent
variable into different segments, modeling the probability p
of being in a specific segment as a function of the covariates
x’s, and then using means conditional on being in each
segment.

A potentially more parsimonious model that can be
used to partition the distribution based on latent characteris-
tics of patients is proposed by Deb and Trivedi.23 Using latent
class models, they model the distribution of health care cost
as a mixture of 2 distributions–one for infrequent users and
the other for frequent users. This is in contrast to the multipart
models from the Health Insurance Experiment, where the
classes are observed, not latent.19

In parallel to the burgeoning of new estimators for cost
data, there were also a host of studies that compared many of
these alternative models head-to-head using simulations and
also real application data.1,4,13,18,24,25

Despite the variation in the sources of data analyzed in
these works, one consensus always seems to reaffirm itself–
there is not one universally optimal estimator for costs data.
Instead, one must pay close attention to the nature and the
distribution of the specific cost data that the analyst has at
hand to select a handful of alternatives and then apply
rigorous goodness-of-fit tests to select the most appropriate
model for that data set. It is with this notion that we look
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forward to highlight some areas in this field that could benefit
substantially with further research.

ISSUES IN THE ANALYSES OF COST DATA
THAT CUT ACROSS ALL PURPOSES OF

ANALYSIS

The Longevity of OLS Regressions
Despite a large literature now suggesting the utility of

nonlinear models for cost data, OLS regression is still a
popular choice for many applied researchers. For some cost
data, and depending on the specification for the covariates
used, the identity link (untransformed y) could very well be
the optimal link function.26 However, the use of OLS seems
to flourish mostly due to statistical philosophy (eg, works by
the developers of the Diagnostic Cost Group �DxCG group�,
where patients were categorized into finely defined diagnostic
bins to enhance predictive power27–29). In a number of these
studies, the models are inherently nonlinear in the covariates
because of the inclusion of interaction terms. In such con-
texts, there are a few questions that are still open.

1. When is OLS, with a variety of interactions and polyno-
mials of covariates (to deal with nonlinearities in the
response to covariates) adequate, in terms of robustness or
reducing the risk of overfitting, to use with cost data?

2. What sample sizes are necessary to no longer be concerned
about the robustness of key parameter estimates–to be able to
employ the DxCG or similar approaches without worrying
about the frailty of estimates for small- to moderate-sized
subgroups/categories in the data? Does robustness depend on
the rareness of important characteristics (eg, rare diseases or
subgroups), degree of skewness, fraction of zeroes, etc.?
Clearly, samples of the order of 30 million Medicare enroll-
ees would be well behaved using least square if one was
careful about checking the model’s linearity or are not con-
cerned about a few very thin cells, such as the one that
occurred with Version 6 of the DxCG approach for a rela-
tively rare but very expensive population to treat (ESRD/
diabetes/complications). Is a sample of 500 to 1000 too
small? Where in between does concerns about robustness
(insensitivity to deviant cases) versus the risk of overfitting
influential outliers (that may occur in a subsample) drive
modeling decisions?

3. What standards should be used for assessing the goodness
of fit for very large data sets, compared with those for
more modest sample sizes?

Issues With GLMs and Their Extensions
Over the last 10 years, quite a lot of attention has been

paid to the estimation of conditional mean models based on a
class broadly referred to as GLM (McCullagh and Nelder,
1989). Many of the questions earlier also apply to the GLM
approaches. In addition, other questions still remain about the
performance of these models.

1. Given that some GLM models can deal internally with zeroes
(as can happen with some Box-Cox transforms, such as the
1⁄2 power, 1⁄4 power, and 1/�an even integer �0�), when do
one need a 2-part GLM versus a 1-part GLM? Mullahy3,7

considers such modeling unnecessary relative to single-equa-
tion methods, but there are applications where the fraction of
zeroes are substantial enough to suggest either a 2-part model
or substantial attention to a highly nonlinear specification of
the covariates to deal with the likely failure of a single-
equation model with a simpler index function, x�.

2. Because estimates based on some GLMs can be consistent
but very imprecise for certain data generating mechanisms
(especially for either high log-scale error variances, or heavy
log-scale tails, which is typical of inpatient costs),4 there
needs to be more robust, consistent, and efficient methods
developed for this subclass of data generating processes.
Alternatives beyond our modification of the generalized
gamma distribution14 or dealing with alternative links than its
implied choice of the log in the generalized gamma model
can prove to be quite valuable.

3. There needs to be more work on less parametric alternatives
and when to choose them, beyond the initial work by
Gilleskie and Mroz.20 Their proposal shows great promise
but has seen very little systematic evaluation beyond their
initial article. Their model is based on: (1) dividing the range
of the dependent variable into segments for ranges of costs
(0, 1–100, 101, . . .); (2) modeling how the choice of seg-
ments depends on covariates using a discrete hazard model;
(3) estimating the mean expenditure per segment; and (4)
estimating the overall response as the sum of the probabilities
for each segment multiplied by its conditional mean. What
are the trade offs in the number of segments (bins, in their
original terminology) used? Within segment, would there be
any gains to adjusting for covariates, x, especially in the
upper bin where the largest fraction of spending occurs?

Issues With Diagnostic Tests for Determining
Optimal Model

To date, most researchers have employed a set of diag-
nostics that were developed either for the least squares model or
some of the GLM (such as the logit model). There needs to be
a far more systematic critical review of diagnostics focusing on
when the diagnostics work reliably, or efficiently, or not for data
such as health care costs. Using diagnostics that work from
raw-scale residuals is potentially quite problematic for data sets
with small to moderate sample sizes (N�s �5 digits?) because
these tests may not be very robust to the distributional charac-
teristics (skewness, heavy right tail) that lead so many analysts to
abandon simple least squares as our main analytical approach.

We note 3 examples from our own experience that can be
generically applied to all the estimators we have discussed as
they are based on raw-scale residuals. First, the modified Hos-
mer-Lemeshow test,30 which identifies systematic patterns in
mean raw-scale residuals across deciles of the linear predictor, is
particularly prone to influential outliers and is imprecise because
of the number of degrees of freedom involved in the test,
typically 5 or 10. Second, the Link and RESET tests,31 which
aims to identify misspecification in functional forms, are more
parsimonious tests but can provide both false positives and false
negatives as a result of mildly influential observations for the
original analysis; the RESET is particularly susceptible. Third,
some of the split-sample cross-validation approaches, which try
to identify degrees of overfitting, can be poorly behaved when
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dealing with data as skewed and heavy-tailed as health care cost.
There is a robustness issue when using the cross-validation
Copas32 tests when there is extreme skewness and potentially
influential outliers. One version of the test involves estimating
the model on a random half of the data, forecasting the results to
a second half of the data or test sample, and testing if response
of y to the forecast has a slope significantly different from one.
Any significant or appreciable departure from one indicates that
the estimator overfitted the original data and cannot forecast well
to random samples from the same population. The high-end or
catastrophic cases are potentially problematic for this approach.
In data such as health expenditures, a highly influential “cata-
strophic” case(s) is always in one sample or the other, estimation
versus test subsamples. Either the initial estimate is subject to
overfitting, or the forecast to the test sample will be subject to
overfitting, or both.

One could consider a robust alternative to such a
model, such as an alternative to the Davidson and McKinnon
test on some appropriate scale to compare between nonnested
models.33 But doing so on the raw-scale raises the same
concerns about the robustness of the test results in the
presence of zeroes, skewness, and heavy right tails of the
distribution. Specifically, should we use raw-scale versions or
scale-of-estimation versions of the Copas Tests?

Issues With Censoring in Longitudinal Costs
Data

Many observational databases and some clinical trials
data suffer from censoring issues. In some of the earlier work,
the analysis was limited to fixed width periods of observation.
In others, the analysis was reduced to a per-member per-
month calculation with weights equal to the number of
months under observation. Some of the more recent work has
highlighted the dependent nature of censoring in costs data34–

38; See the articles by Huang6 in this volume on survival-
based methods. It is our sense that there are several questions
that remain unanswered in dealing with censored costs.

1. Under the assumptions of random censoring, regression
estimators that are weighted with inverse of the probabil-
ity for surviving censoring can provide consistent esti-
mates of treatment costs. Do such methods remain con-
sistent if treatment has a direct effect on survival? If so,
then what conditions have to apply?

2. How do we model cost-trajectories for different death
cohorts? One of the empirical regularities across countries
and across disease groups is that costs accelerate in the last
6 months or so of life.39,40 See Brown et al for an
illustration of this in breast cancer patients.41 Lipscomb et
al address this heterogeneity to some extent using a strat-
ified Cox model with each month being a different stra-
tum, to infer the “time shape” of costs post the incident
disease event.18 These approaches need to be more widely
tested. We would encourage explorations of alternatives
that are specifically designed to deal with the possibility
that a case may be censored but still on a high cost death
trajectory. The conjunction of acceleration in expenses
toward the end of life and censoring is a difficult analytical
problem.

Specific Issues in Cost Analyses Used for
Evaluation

Under strong ignorability conditions (ie, the unobserv-
able differences across observations are not correlated with
the “treatment” or policy variable being studied and there are
no issues of adverse selection), such as that which occurs in
randomized trials and in natural experiments, there are a
number of issues that need to be more fully examined.

1. Sample sizes in clinical trials are often powered to look at
efficacy on clinical outcomes and not costs. Yet, there is a
growing popularity of doing cost analysis alongside clin-
ical trials. One example of this is the recently completed
CATIE study that was powered to compare time to dis-
continuation between antipsychotic drugs.42 Unfortu-
nately, ex-post calculation reveal that the sample sizes
employed had only a 10% power to look at cost-effective-
ness outcome.

Generally, it is hard to find any discriminatory power
across alternative estimators of health care costs when sample
sizes are small. One alternative may be to consider doing
utilization-based analysis instead of a full cost analysis. Are
we better off in terms of precision to model utilizations in
these setting rather than costs or by a weighted utilization
measure? The latter could be generated by multiplying utili-
zations with a constant unit cost estimates for all utilization
(price per average visit) instead by prices for each type of
utilization? This would reduce the overall variance by elim-
inating the patient-to-patient and visit-to-visit variation in the
cost per encounter. Bayesian modeling may be an interesting
approach to explore in this area, especially whether model
averaging across alternative estimators can be done. As long
as the treatment does not change the cost or content of an
encounter or the mix of different types of encounters, there is
no risk of bias in this approach. If either occurs, then a fuller
analysis may be required, including microcosting.

2. How does this common unit cost approach affect variability
in total costs or the estimates of the incremental/marginal cost
of an intervention? How should differences across research
sites, cities, or countries be addressed? If such an approach is
to be employed, how should we establish standard unit cost
estimates that can be used to weight utilizations?

3. Propensity scores (PS) are often used as an alternative to
regression techniques for risk adjustments. In such methods,
one estimates how various characteristics affect the proba-
bility of treatment receipt, creates a score based on this
estimation and then compares observed outcomes between
treated and untreated subjects conditional on this score
(Rosenbaum and Rubin, 1983). The theory of PS suggests
that, conditional on this scalar PS, all of the selection bias
generated by differences in observed covariate values
between the treatment and control group can be re-
moved.43 However, much of the existing work document-
ing the robustness of these methods is based on linear
models. Whether these features of PS carry over to out-
comes generated via nonlinear model are not obvious and
require further investigations.44
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When strong ignorability conditions are absent, as is the
case in most observational data, there are a number of
issues that require more examination.

4. All types of 2-stage methods for instrumental variables do
not readily extend to nonlinear models. The 2-stage residual
inclusion (2SRI) method seems to be a consistent alternative
under some general assumptions. Consistent 2SRI methods
for specific nonlinear models have been developed.45–50

Wooldridge suggests the use of the 2SRI method for count
data models.51,52 Recently, Terza et al have shown the
consistency of this methods for a broad class of nonlinear
models.53 In this method, the residuals from the first stage,
where the endogenous variable is regressed on a vector of
exogenous variables (X’s) and instrumental variables (Z), are
computed and then included as an additional covariate in the
second-stage nonlinear regression of outcomes on the endog-
enous variable. More research on the robustness issues with
2SRI are needed with respect to the underlying assumptions.
Further, there are a series of questions about which measure
of residuals or deviances to use, what are the implications for
model selection and specification searches? Furthermore, the
comparisons between residual inclusion methods and control
functions approaches proposed by Heckman and others need
more investigation.

5. Distinction between local average treatment effects54 (eg, the
average treatment effect for a portion of the population that is
induced to change treatment due to varying levels of an
instrumental variable) and policy relevant treatment effect
parameters such as the Average Treatment Effect, the Treat-
ment effect on the Treated, and the Treatment effect for the
Untreated are quite important for answering policy ques-
tions55 but are often not made in the cost literature. (The
exception to this seems to be the literature on the incremental
effects of insuring the uninsured). The local instrumental
variable (LIV) method is an attractive way to characterize
these distinctions among effects.56 More work is needed to
develop LIV methods in nonlinear settings with the charac-
teristics common to cost data.55,56

FUTURE DIRECTIONS IN METHODS USED FOR
PREDICTION

We find this aspect of the work in the field still in its
infancy. Several issues need attention.

1. To some researchers perhaps the most surprising aspect of
this work is that none of the models developed thus far
have been able to produce an R2 or pseodu-R2 of more
than 30% in either in-sample or out-of-sample situations.
The earlier work by Newhouse et al,57 on maximum
explainable variance suggests that time invariant factors
should account for about 10% of the variance in inpatient
expenditures and 30% in outpatient. How much of the
discrepancy between these estimates and those in the
literature are analytical methods? How much of this is
weak measures of either case mix or severity conditional
on case mix, weak in the sense of misclassification or
measurement error?

Investigators using concurrent measures of case mix
often achieve better explanatory power. This gain is

largely the result of regressing a variable on its compo-
nents, a dubious practice. Another equally dubious prac-
tice is to use current measures of health status, case mix, or
severity to explain, or postdict past costs.58 How much did
you spend on health care in 2008 and what is your health
today?

2. What are the criteria for assessing optimal predictions? Do
we need unbiased covariate estimates for prediction or are
we satisfied with lower mean square error in out-of-
sample data? How do we differentiate between noise and
heterogeneity (the work by DxCG group addresses this to
some extent). This raises important questions regarding
the right loss function with which we can trade-off sensi-
tivity and specificity of cost predictions.

3. When are multipart and higher dimensional nonlinear
models more suitable for prediction, despite larger number
of parameters estimated?

4. Risk prediction models in costs have been primarily de-
veloped for calibration (getting the mean correct). Less
attention has been paid to develop models that could
reliably predict the costliness of a particular individual.
(We thank an anonymous reviewer for pointing this out).

GENERAL COMMENTS
The field has often gone from one method to another,

only to find that the new method has serious limitations. To
deal with skewness, transformed models were widely
adopted. But estimation scale inferences were not sufficient,
which raised the retransformation issue10 and concern about
bias from ignoring nonconstant variability across covari-
ates.3,11 Modeling mean functions directly (as in the GLM
approach) was an alternative approach that avoided these 2
issues,5 but led to a loss of precision in some extremely
skewed data. In others, GLM performed better than transfor-
mation methods. Solving the retransformation bias problem
led to methods, which are consistent but sometimes ineffi-
cient, losing some of the robustness gains of the first gener-
ation of models.4

There are a number of newer alternatives that Profs.
Huang, Mullahy, and we have discussed. Their strengths and
weaknesses need greater scrutiny. It is only by conducting
such a statistical SWOT analysis that we can make more
informed decisions about which econometric approach might
best suit the analysis at hand.

Although the progress in addressing the statistical is-
sues in cost analysis has been substantial over the last 40
years, there are still important issues that need attention. We
hope that this set of directions for the near term will help to
set the agenda for some of this work.
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