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Abstract—We consider nonparametric or universal sequential
hypothesis testing when the distribution under the null hypothesis
is fully known but the alternate hypothesis corresponds to some
other unknown distribution. These algorithms are primarily
motivated from spectrum sensing in Cognitive Radios and
intruder detection in wireless sensor networks. We use easily
implementable universal lossless source codes to propose simple
algorithms for such a setup. The algorithms are first proposed for
discrete alphabet. Their performance and asymptotic properties
are studied theoretically. Later these are extended to continuous
alphabets. Their performance with two well known universal
source codes, Lempel-Ziv code and KT-estimator with Arithmetic
Encoder are compared. These algorithms are also compared with
the tests using various other nonparametric estimators. Finally a
decentralized version utilizing spatial diversity is also proposed
and analysed.

Index Terms—Sequential Hypothesis Testing, Universal Test-
ing, Universal Source Codes, Distributed Detection.

I. INTRODUCTION

Distributed detection ([21]) has been quite popular recently
due to its relevance to distributed radar, sensor networks, dis-
tributed databases and cooperative spectrum sensing in Cogni-
tive radios. It can be either decentralized or centralized. Unlike
the centralized framework, where the information received
by the sensors are transmitted directly to the fusion center
(FC) to decide upon the hypothesis, in decentralized detection
each sensor sends a summarized or quantized information.
Thus decentralized detection although suboptimal, is more
bandwidth and energy efficient.

Two of the important formulations of distributed detection
problem are based on the number of samples required for
making a decision: fixed sample size and sequential detection
([23]). In the sequential case, the observations are sampled
sequentially at the local nodes until a stopping rule is satisfied.
The decision and stopping rules are designed with the aim
of reducing the number of samples for decision making with
reliability constraints. More precisely, sequential detectors
can detect change in the underlying hypothesis or test the
hypothesis ([16]). In this paper we focus on decentralized
sequential hypothesis testing. It is well known that in case
of a single node, Sequential Probability Ratio Test (SPRT)
outperforms other sequential or fixed sample size detectors
([16]). But optimal solutions for the decentralized setup are
not available ([22]). In the parametric case, when there is a

full knowledge about the distributions, [4] and [18] propose
asymptotically optimal decentralized sequential tests when the
communication channel between local nodes and the FC is
perfect and noisy MAC respectively.

The sequential methods in case of uncertainties are surveyed
in [13] for a parametric family of distributions. For nonpara-
metric sequential methods, [14] provides separate algorithms
for different setups like changes in mean, changes in variance
etc. In this paper we propose a unified simple universal sequen-
tial hypothesis testing algorithm where the unknown alternate
distribution can be anything which satisfies a constraint on the
Kullback-Leibler divergence ([2]) with the null distribution.

An optimal fixed sample size universal test for finite al-
phabets is derived in [7]. Statistical inference with universal
source codes, started in [15] when classification of finite
alphabet sources is studied in the fixed sample size setup.
[8] considers the universal hypothesis testing problem in
the sequential framework using universal source coding. It
derives asymptotically optimal one sided sequential hypothesis
tests and sequential change detection algorithms for countable
alphabet. In one sided tests one assumes null hypothesis as
the default hypothesis and has to wait a long time to confirm
whether it is the true hypothesis (it is the true hypothesis
only when the test never stops). In many practical applications
where it is important to make a quick decision.

In this paper, we consider universal source coding frame-
work for binary hypothesis sequential testing with continuous
alphabets. Section II describes the model. Section III provides
our algorithm for a single node with the finite alphabet. We
prove almost sure finiteness of the stopping time. Asymptotic
properties of probability of error and moment convergence
of expected stopping times are also studied. Section IV ex-
tends the test to continuous alphabet. Algorithms based on
two easily implementable universal codes, Lempel-Ziv tree-
structured (LZ78) ([26]) codes and Krichevsky-Tofimov (KT)
estimator with Arithmetic Encoder ([3]) are studied in Section
V. Performance of these tests are compared in Section VI.
In Section VII we extend our algorithm to the decentralized
scenario. In our distributed algorithm each local node sends
a local decision to the FC at asynchronous times leading
to considerable saving in communication cost. Section VIII
concludes the chapter.



II. MODEL FOR SINGLE NODE

We consider the following hypothesis testing problem:
Given i.i.d. observations X1, X2, . . . , we want to know
whether these observations came from the distribution P0

(hypothesis H0) or from another distribution P1 (hypothesis
H1). We will assume that P0 is known but P1 is unknown.

Our problem is motivated from the Cognitive Radio spec-
trum sensing ([6]) and wireless sensor networks intruder
detection scenario ([19]). Then usually P0 is fully known (e.g.,
when licensed user is not transmitting in Cognitive Radios).
However, under H1, P1 will usually not be completely known
to the local node (e.g., with unknown licensed user transmis-
sion parameters).

We first discuss the problem for a single node and then
generalize to decentralized setting. Initially we study the case
when Xk take values in a finite alphabet. We will be mainly
concerned with continuous alphabet observations because re-
ceiver almost always has Gaussian noise. This will be taken
up in Section IV

III. FINITE ALPHABET

In this section, we consider finite alphabet for the distri-
butions P0 and P1. A sequential test is usually defined by a
stopping time N and a decision rule δ. For SPRT ([16]),

N
∆
= inf{n : Wn /∈ (−γ0, γ1)}, γ0 > 0, γ1 > 0 (1)

where,

Wn =

n∑
k=1

log
P1(Xk)

P0(Xk)
. (2)

At time N , the decision rule δ decides H1 if WN ≥ γ1 and
H0 if WN ≤ −γ0.

SPRT requires full knowledge of P1. Now we propose our
test when P1 is unknown by replacing the log likelihood ratio
process Wn in (2) by

Ŵn = −Ln(Xn
1 )− logP0(Xn

1 )− nλ
2
, λ > 0, (3)

where λ > 0 is an appropriately chosen constant and Ln(Xn
1 )

is the length of the source code for the data Xn
1

∆
= X1, . . . , Xn

when source coding is done via a universal lossless source
code which does not require the distribution of Xk.

The following discussion provides motivation for our test.
1) By Shannon-Macmillan Theorem ([2]) for any station-

ary, ergodic source limn→∞ n−1 logP (Xn
1 ) = −H(X)

a.s. where H(X) is the entropy rate. We consider
universal lossless codes whose codelength function Ln
satisfies limn→∞ n−1Ln = H(X) a.s., at least for
i.i.d sources. Algorithms like LZ78 ([26]) satisfy this
convergence even for stationary, ergodic sources. Thus,
for such universal codes,

1

n
(Ln(Xn

1 ) + logP (Xn
1 ))→ 0 w.p.1. (4)

2) Under hypothesis H1, E1[− logP0(Xn
1 )] is approxi-

mately nH1(X) + nD(P1||P0) and for large n, L(Xn
1 )

is approximately nH1(X) where H1(X) is the entropy
under H1 and D(P1||P0) is the Kullback-Leibler di-
vergence. This gives the average drift under H1 as
D(P1||P0)− λ/2 and under H0 as −λ/2. To get some
performance guarantees (average drift under H1 greater
than λ/2), we limit P1 to a class of distributions,

C = {P1 : D(P1||P0) ≥ λ}. (5)

Thus our test is to use Ŵn in (1) when P0 is known and
P1 can be any distribution in class C defined in (5). Our test
is useful for stationary and ergodic sources also.

The following proposition proves the almost sure finiteness
of the stopping time of the proposed test. This proposition
holds if {Xk} are stationary, ergodic and the universal code
satisfies a weak pointwise universality. Let Hi be the entropy
rate of {X1, X2, . . .} under Hi, i = 0, 1. The proof of this
proposition as well as of Theorems 1 and 2 are available in
[9]

Proposition 1. Let Ln(Xn
1 )/n → Hi in probability for i =

0, 1. Then
(a) P0(N <∞) = 1, and
(b) P1(N <∞) = 1.

Remark 1. The assumption Ln(Xn
1 )/n→ Hi in probability,

which is equivalent to the pointwise universality of the univer-
sal code in (4), has been shown to be true for i.i.d. sequences
for the two universal source codes LZ78 ([11]) and KT-
estimator with Arithmetic encoder ([25] with the redundancy
property of Arithmetic Encoder [2]) considered later in this
paper.

A stronger version of pointwise universality is

max
xn1∈Xn

(
Ln(xn1 ) + logP1(xn1 )

)
∼ o(n), (6)

X being the source alphabet. This property is satisfied by the
two universal codes used in this paper for i.i.d. sources: KT-
estimator with Arithmetic encoder ([3, Chapter 6]) and LZ78
([11], [26]).

The following theorem gives a bound for PFA and an
asymptotic result for PMD.

Theorem 1. (1) PFA
∆
= P0(ŴN ≥ γ1) ≤ exp(−γ1).

(2) If the observations X1, X2, . . . , Xn are i.i.d. and (6) is
satisfied then

PMD
∆
= P1(ŴN ≤ −γ0) = O(exp(−γ0s)),

where s is the solution of E1

[
e
−s

(
log

P1(X1)

P0(X1)
−λ2−ε

)]
= 1 for

0 < ε < λ/2 and s > 0.

We also have the following.

Theorem 2. (a) Under H0, lim
γ1,γ0→∞

N

γ0
=

2

λ
a.s. If (6) is

satisfied and E0[(logP0(X1))
p+1

] <∞ for some p ≥ 1, then
also,

lim
γ1,γ0→∞

E0[Nq]

γ0
q

= lim
γ1,γ0→∞

E0[(N0)q]

γ0
q

=

(
2

λ

)q
,



for all 0 < q ≤ p.

(b) Under H1, lim
γ1,γ0→∞

N

γ1
=

1

D(P1||P0)− λ/2
a.s.

If (6) is satisfied, E1[(logP1(X1))
p+1

] < ∞ and
E1[(logP0(X1))

p+1
] <∞ for some p ≥ 1, then also,

lim
γ1,γ0→∞

E1[Nq]

γ1
q

= lim
γ1,γ0→∞

E1[(N1)q]

γ1
q

=

(
1

D(P1||P0)− λ
2

)q
,

for all 0 < q ≤ p.

IV. CONTINUOUS ALPHABET

The above test can be extended to continuous alphabet
sources. Let fi be density of Pi, i = 0, 1 with respect to a
common probability measure. Now, in (2) Pi is replaced by fi,
i = 0, 1. Since we do not know f1, we would need an estimate
of Zn

∆
=
∑n
k=1 log f1(Xk). If E[log f1(X1)] < ∞, then by

strong law of large numbers, Zn/n is close to E[log f1(X1)]
for all large n with a high probability. Thus, if we have
an estimate of E[log f1(X1)] we will be able to replace Zn
as in (2). In the following we get a universal estimate of
E[log f1(X1)]

∆
= −h(X1), where h(X1) is the differential

entropy of X1, via the universal data compression algorithms.
First we quantize Xi via a uniform quantizer with a quanti-

zation step ∆ > 0. Let the quantized observations be X∆
i

and the quantized vector X∆
1 , . . . , X

∆
n be X∆

1:n. We know
that H(X∆

1 ) + log ∆ → h(X1) as ∆ → 0 ([2]). Given i.i.d.
observations X∆

1 , X
∆
2 , . . . , X

∆
n , its code length for a good

universal lossless coding algorithm approximates nH(X∆
1 ) as

n increases. This idea gives rise to the following modification
to (3),

W̃n = −Ln(X∆
1:n)− n log ∆−

n∑
k=1

log f0(Xk)− nλ
2

(7)

and as for the finite alphabet case, to get some performance
guarantee, we restrict f1 to a class of densities,

C = {f1 : D(f1||f0) ≥ λ}. (8)

Let the divergence after quantization be D(f∆
1 ||f∆

0 ), f∆
i

being the probability mass function after quantizing fi. Then
by data-processing inequality ([2]) D(f1||f0) ≥ D(f∆

1 ||f∆
0 ).

When ∆→ 0 the lower bound is asymptotically tight and this
suggests choosing the class (8)

V. UNIVERSAL SOURCE CODES

In this section we present two universal source codes which
we will use in our algorithms.

A. LZSLRT (Lempel-Ziv Sequential Likelihood Ratio Test)

In the following in (7) we use Lempel-Ziv incremental
parsing technique LZ78 ([26]), which is a well known efficient
universal source coding algorithm. We call this algorithm
LZSLRT.

Thus the test statistic W̃LZ
n , is

W̃LZ
n = −

t∑
i=1

dlog i|A|e−C
(

1

log n
+

log log n

n
+

log log n

log n

)
− n log ∆−

n∑
k=1

log f0(Xk)− nλ
2
.

The the second term corresponds to the correction to take
care of the low redundancy rate of LZ78 ([10]). Here C is a
constant which depends on the size of the quantized alphabet
and t is the number of phrases after parsing X∆

1 , . . . , X
∆
n in

LZ78 encoder and |A| is the alphabet size of the quantized
alphabet.

B. KTSLRT (Krichevsky-Trofimov Sequential Likelihood Ratio
Test)

In this section we propose KTSLRT for i.i.d. sources. The
codelength function Ln in (7) now comes from the combined
use of KT (Krichevsky-Trofimov [12]) estimator of the distri-
bution of quantized source and the Arithmetic Encoder ([2]).
We will denote this combined encoder by KT+AE.

KT-estimator for a finite alphabet source is defined as,

Pc(x
n
1 ) =

n∏
t=1

v(xt/x
t−1
1 ) + 1

2

t− 1 + |A|
2

, (9)

where v(i/xt−1
1 ) denotes the number of occurrences of the

symbol i in xt−1
1 . It is known ([2]) that the coding redundancy

of the Arithmetic Encoder is smaller than 2 bits, i.e., if Pc(xn1 )
is the coding distribution used in the Arithmetic Encoder then
Ln(xn1 ) < − logPc(x

n
1 ) + 2. In our test we actually use

− logPc(x
n
1 ) + 2 as the code length function and do not need

to implement the Arithmetic Encoder. This is an advantage
over the scheme LZSLRT presented above.

It is proved in [3] that universal code defined by the KT+AE
is nearly optimal for i.i.d. finite alphabet sources.

Writing (9) recursively, (7) can be modified as

W̃KT
n = W̃KT

n−1 + log

(
v(X∆

n /X
∆n−1
1 ) + 1

2 + S

t− 1 + |A|
2

)
− log ∆− log f0(Xn)− λ

2
,

where f∆
0 is the probability mass function after quantizing f0

and S is a scalar constant whose value greatly influences the
performance. The default value of S is zero.

VI. PERFORMANCE COMPARISON

In this section, we compare the performance of LZSLRT
and KTSLRT with some other estimators available in literature
via simulations. Due to the difference in the expected drift of
likelihood ratio process under H1 and H0, some algorithms
perform better under one hypothesis and worse under the other
hypothesis. Hence instead of plotting E1[N ] versus PMD and
E0[N ] versus PFA separately, we plot EDD

∆
= 0.5E1[N ] +

0.5E0[N ] versus PE
∆
= 0.5PFA + 0.5PMD. We use an eight

bit uniform quantizer.
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Fig. 1. Comparison between KTSLRT and LZSLRT for Gaussian Distribu-
tion.

We compare the performance of LZSLRT to that of SPRT
and GLR-Lai ([13]), which is nearly optimal for exponential
families, in Table I. We use f0 ∼ P(10, 2) and f1 ∼ P(3, 2),
where P(K,Xm) is the Pareto density function with K and
Xm as the shape and scale parameter of the distribution and
∆ = 0.3125. We observe that LZSLRT performs better than
GLR-Lai for the Pareto Distribution.

EDD PE = 0.05 PE = 0.01 PE = 0.005
SPRT 7.45 10.86 18.23

GLR-Lai 18.21 29.65 33.42
LZSLRT 16.96 28.31 31.48

TABLE I
COMPARISON AMONG SPRT, GLR-LAI AND LZSLRT FOR PARETO

DISTRBUTION.

Performance of KTSLRT is compared with LZSLRT in Fig-
ure 1. We take f1 ∼ N (0, 5) and f0 ∼ N (0, 1) where N (a, b)
denotes Gaussian distribution with mean a and variance b.
We observe that LZSLRT and KTSLRT with S = 0 (the
default case) are not able to provide PE less than 0.3 and
0.23 respectively, although KTSLRT with S = 1 provides
much better performance. We have found in our simulations
with other data also that KTSLRT with S = 0 performs much
worse than with S = 1. Thus in the following we will take
KTSLRT with S = 1.

The superior performance of KTSLRT over LZSLRT at-
tributes to the pointwise redundancy rate n−1(Ln(Xn

1 ) +
logP (Xn

1 )) = O(log n/n) of KT+AE ([25]) as compared to
O(1/ log n) of LZ78 ([11]).

In Figure 2 we compare KTSLRT with sequential tests
in which −nĥn replaces

∑n
k=1 log f1(Xk) where ĥn is an

estimate of the differential entropy and with a test defined by
replacing f1 by a density estimator f̂n.

It is shown in [24] that 1NN (1st Nearest Neighbourhood)
differential entropy estimator performs better than other dif-
ferential entropy estimators where 1-NN differential entropy
estimator is

ĥn =
1

n

n∑
i=1

log ρ(i) + log(n− 1) + γ + 1,

and ρ(i)
∆
= minj:1≤j≤n,j 6=i ||Xi − Xj || and γ is the Euler-

Mascheroni constant (=0.5772...).
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Fig. 2. Comparison among KTSLRT, universal sequential tests using 1NN
differential entropy estimator and that using Kernel density estimator.

There are many density estimators available ([17]). We
use the Gaussian example in Figure 1 for comparison. For
Gaussian distributions, a Kernel density estimator is a good
choice as optimal expressions are available for the parameters
in the Kernel density estimators ([17]). The Kernel density
estimator at a point z is

f̂n(z) =
1

nh

n∑
i=1

K

(
z −Xi

h

)
,

where K is the kernel and h > 0 is a smoothing parameter
called the bandwidth. If Gaussian kernel is used and the
underlying density being estimated is Gaussian then it can
be shown that the optimal choice for h is ([17])

(
4σ̂5/3n

)1/5
,

where σ̂ is the standard deviation of the samples.
We provide the comparison of KTSLRT with the above

two schemes in Figure 2. We find that KTSLRT with S = 1
performs the best.

Next we provide comparison with the asymptotically op-
timal (in terms of error exponents) universal fixed sample
size test for finite alphabet sources. This test is called Ho-
effding test ([7], [20]). The decision rule of Hoeffding test,
δFSS = I{D(Γn||P0) ≥ η}, where Γn(x) is the type of
X1, . . . , Xn, = { 1

n

∑N
i=1 I{Xi = x}, x ∈ X}, where N is the

cardinality of source alphabet X and η > 0 is an appropriate
threshold. From [20, Theorem III.2], under P0

nD(Γn||P0)
d−−−−→

n→∞

1

2
χ2
N−1,

under P1,
√
n
(
D(Γn||P0)−D(P1||P0)

) d−−−−→
n→∞

N (0, σ2
1).

where σ2
1 = V arP1

[
log P1(X1)

P0(X1)

]
and χ2

N−1 is the Chi-Squared
distribution with N − 1 degrees of freedom. From the above
two approximations, number of samples, n to achieve PFA
and PMD can be computed theoretically as a solution of

2nD(P1||P0) + 2
√
nF−1
N (PMD)− F−1

χ (1− PFA) = 0 ,

where F−1
N and F−1

χ denote inverse cdf’s of the above
Gaussian and Chi-Squared distributions.

Since this is a discrete alphabet case, we use (3) with
KT+AE as the universal code. Figure 3 provides the com-
parison when P0 ∼ B(8, 0.2) and P1 ∼ B(8, 0.5), where



B(n, p) represents the Binomial distribution with n trials and
p as the success probability in each trial. It can be seen that our
test outperforms Hoeffding test in terms of average number of
samples.
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Fig. 3. Comparison between Hoeffding test and our discrete alphabet test
(3) for Binomial distribution.

VII. DECENTRALIZED DETECTION

A. Algorithm

Motivated by the satisfactory performance of a single node
case, we extend LZSLRT and KTSLRT to the decentralized
setup in [18]. Let Xk,l be the observation made at node l at
time k. We assume that {Xk,l, k ≥ 1} are i.i.d. and that the
observations are independent across nodes. We will denote
by f1,l and f0,l the densities of Xk,l under H1 and H0

respectively. Using a detection algorithm on {Xn,l, n ≤ k}
the local node l transmits Yk,l to the fusion node at time k.
We assume a multiple-access channel (MAC) between nodes
and FC in which the FC receives Yk, a coherent superposition
of the node transmissions: Yk =

∑L
l=1 Yk,l+Zk, where {Zk}

is i.i.d., zero mean Gaussian receiver noise with variance σ2

(for our algorithms Gaussian assumption is not required, but
its distribution is assumed to be known). FC observes Yk, runs
a decision rule and decides upon the hypothesis.

Now our assumptions are that at local nodes, f0,l is known
but f1,l is not known. The variance σ2 of Zk is known to
the FC. Thus we use LZSLRT at each local node and Wald’s
SPRT at FC (we call it LZSLRT-SPRT). Similarly we can use
KTSLRT at each node and SPRT at FC and call it KTSLRT-
SPRT. In both the cases whenever at a local node, the stopping
time is reached, it transmits b1 if its decision is H1 and
transmits b0 if the decision is H0. At the FC we have SPRT
for the binary hypothesis testing of two densities g1 (density
of Zk + µ1) and g0 (density of Zk − µ0), where µ0 and µ1

are design parameters. At the FC, the Log Likelihood Ratio
Process (LLR) crosses the upper threshold under H1 with
a high probability when a sufficient number of local nodes
(denoted by I , to be specified appropriately) transmit b1. Thus
µ1 = b1I and similarly µ0 = b0I .

In the following we compare the performance of LZSLRT-
SPRT, KTSLRT-SPRT and DualSPRT developed in [18] which
requires knowledge of f1,l at CR l. Asymptotically, DualSPRT
is shown to achieve the performance of the optimal centralized

test, which does not consider fusion center noise. We choose
b1 = 1, b0 = −1, I = 2, L = 5 and Zk ∼ N (0, 1). We use an
eight bit quantizer in all these experiments. In Figure 4 f0,l ∼
N (0, 1) and f1,l ∼ N (0, 5), for 1 ≤ l ≤ L. We observe that
KTSLRT-SPRT performs much better than LZSLRT-SPRT. It
also performs better than DualSPRT for higher values of PE .
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Fig. 4. Comparison among DualSPRT, KTSLRT-SPRT and LZSLRT-SPRT
for Gaussian Distribution.

B. Performance Analysis

Definition 1 ([5]). A process {Zn, n ≥ 1}, such that Zn =
Sn+ξn, n ≥ 1, is called a perturbed random walk if {Sn, n ≥
1} is a random walk whose increments have positive finite
mean, and {ξn, n ≥ 1} is a sequence of random variables
with ξn/n→ 0 a.s. as n→∞.

Ŵn in (3) can be written as

Ŵn = ξn + Sn, (10)

where

ξn = −Ln(Xn
1 )−logP1(Xn

1 ) and Sn =

n∑
k=1

log
P1(Xk)

P0(Xk)
−λ

2
.

Observe that {Sn, n ≥ 1} as a random walk and ξn/n→ 0 a.s.
due to the pointwise convergence of universal source codes.
Thus Ŵn is a perturbed random walk.

Since the analysis is almost same under H1 and H0 with
necessary modifications, we provide only under H1.

At node l, let P0,l and P1,l denote the distribution under
H0 and H1 at local node l, and

δl = E1

[
log

P1,l(Xk,l)

P0,l(Xk,l)
− λ

2

]
,

ρ2
l = V arH1

[
log

P1,l(Xk,l)

P0,l(Xk,l)
− λ

2

]
.

We will assume δl finite throughout this paper. By Jensen’s
Inequality and (8), δl > 0. Let Ŵk,l be the test static at local
node l, time k, equivalent to (7). Also let Fk be the FC SPRT
test static at time k. {Ŵk,l, k ≥ 0} is a perturbed random walk
with expected drift of the random walk given by δl. We use
γ0 and γ1 as log β and − logα in Section III. Let

Nl = inf{k : Ŵk,l /∈ (−γ0, γ1)},



N1
l = inf{k : Ŵk,l > γ1}, N0

l = inf{k : Ŵk,l < −γ0}.

Then Nl = min{N0
l , N

1
l }. Let Nd denote the stopping time

of FC SPRT: Nd = inf{k : Fk /∈ (−β0, β1)}. Let N0
d =

inf{k : Fk ≤ −β0} and N1
d = inf{k : Fk ≥ β1}. Then

Nd = min{N1
d , N

0
d}.

We choose γ1 = γ0 = γ, β1 = β0 = β, b1 = −b0 = b and
µ1 = µ0 = µ for simplicity of notation.

From the perturbed random walk results, by Central Limit
Theorem for the first passage time N1

l ([5, Theorem 2.3 in
Chapter 6]), when

ξn/
√
n→ 0 a.s., (11)

N1
l ∼ N (

γ

δl
,
ρ2
l γ

δ3
l

). (12)

Remark 2. From the redundancy rates given in Section VI,
it can be seen that KT+AE satisfies (11), but not LZ78. The
following decentralized analysis is applicable for any universal
source code which satisfies (11).

1) E[Nd|H1] Analysis: At the fusion node Fk crosses β
first under H1 with a high probability when a sufficient number
of local nodes transmit b1. The dominant event occurs when
the number of local nodes transmitting are such that the mean
drift of the random walk Fk will just have turned positive. In
the following we find the mean time to this event and then the
time to cross β after this.

The following lemmas provide justification for considering
only the events {N1

l } and {N1
d} for analysis of E[Nd|H1].

Lemma 1. P1(Nl = N1
l ) → 1 as γ → ∞ and P1(Nd =

N1
d )→ 1 as γ →∞ and β →∞.

Proof: From (10), Ŵn/n → D(f1||f0) − λ/2 a.s. since
ξn/n → 0 and Sn/n → D(f1||f0) − λ/2 a.s. Thus by (8),
Ŵn → ∞ a.s. This in turn implies that Ŵn never crosses
some finite negative threshold a.s. This implies that P1(N0

l <
∞) → 0 as γ → ∞ but P1(N1

l < ∞) = 1 for any γ < ∞.
Thus P1(Nl = N1

l ) → 1 as γ → ∞. This also implies that
for large γ, the drift of Fk is positive for H1 with a high
probability and P1(Nd = N1

d ) → 1 as γ → ∞ and β → ∞.

From Lemma 1 we also get that |Nl − N1
l | → 0 a.s. as

γ → ∞ and |Nd − N1
d | → 0 a.s. as γ → ∞ and β → ∞.

From this fact, along with Theorem 2, we can use the result
in (12) for Nl also. The following lemma also holds.

Lemma 2. Let tk be the time when k local nodes have made
the decision. As γ →∞,

P1(Decision at time tk is H1 and

tk is the kth order statistics of N1
1 , N

1
2 , . . . , N

1
L)→ 1.

Proof: From Lemma 1,
P1(Decision at time tk is H1 and

tk is the kth order statistics of N1
1 , N

1
2 , . . . , N

1
L)

≥ P1(N1
l < N0

l , l = 1, . . . , L)→ 1, as γ →∞.

We use Lemma 1-2, Theorem 2 and equation (12) in the
following to obtain an approximation for E[Nd|H1] when γ
and β are large. Large γ and β are needed for small probability
of error. Then we can assume that the local nodes are making
correct decisions. Let δjFC be the mean drift of the fusion
center SPRT Fk, when j local nodes are transmitting. Then
tj is the point at which the drift of Fk changes from δj−1

FC to
δjFC and let F̄j = E1[Ftj−1], the mean value of Fk just before
transition epoch tj .

Let

l∗ = min{j : δjFC > 0 and
β − F̄j
δjFC

< E[tj+1]− E[tj ]}.

F̄j can be iteratively calculated as

F̄j = F̄j−1 + δjFC (E[tj ]− E[tj−1]), F̄0 = 0. (13)

Note that δjFC 0 ≤ j ≤ L is assumed to be jb and tj is
the jth order statistics of {N1

l , 0 ≤ l ≤ L}. The Gaussian
approximation (12) can be used to calculate the expected value
of the order statistics using the method given in [1]. This
implies that E[tj ]s and hence F̄js are available offline. By
using these values E1[Nd] (≈ E1[N1

d ]) can be approximated
as

E1[Nd] ≈ E[tl∗ ] +
β − F̄l∗
δl

∗
FC

, (14)

where the first term on R.H.S. is the mean time till the drift
becomes positive at the fusion node while the second term
indicates the mean time for Fk to cross β from tl∗ onward.

In case of continuous alphabet sources which is assumed in
our decentralized algorithm, W̃n in (7) can be modified as,

= −Ln(X∆
1:n)−

n∑
k=1

log(f1(Xk)∆) +

n∑
k=1

log
f1(Xk)

f0(Xk)
− λ

2

(a)
≈ −Ln(X∆

1:n)− log(f∆
1 (X∆

1:n)) +

n∑
k=1

log
f1(Xk)

f0(Xk)
− λ

2
.

Here f∆
1 is the probability mass function after quantizing f1,

which is the distribution being learnt by Ln(X∆
1:n). (a) is due

to the approximation f1(x)∆ ≈ f∆
1 (x∆) at high rate uniform

quantization. By taking ξn = −Ln(X∆
1:n) − log(f∆

1 (X∆
1:n))

and Sn =
∑n
k=1 log f1(Xk)

f0(Xk) −
λ
2 , it is clear that W̃n can be

approximated as a perturbed random walk since {Sn, n ≥ 1}
is a random walk and ξn/n → 0 a.s. from the pointwise
convergence of universal source codes.

2) PMD Analysis: At reasonably larger local node thresh-
olds, according to Lemma 2, with a high probability local
nodes are making the right decisions and tk can be taken as
the order statistics assuming that all local nodes make the right
decisions. PMD at the fusion node is given by,

PMD = P1(accept H0) = P1(N0
d < N1

d ).

It can be easily shown that P1(N1
d < ∞) = 1 for any β >

0. Also P1(N0
d < ∞) → 0 as β → ∞. We should decide



the different thresholds such that P1(N1
d < t1) is small for

reasonable performance. Therefore

PMD = P1(N0
d < N1

d ) ≥ P1(N0
d < t1, N

1
d > t1)

≈ P1(N0
d < t1). (15)

Also,

P1(N0
d < N1

d ) ≤ P1(N0
d <∞)

= P1(N0
d < t1) + P1(t1 ≤ N0

d < t2)

+ P1(t2 ≤ N0
d < t3) + . . . (16)

The first term in the right hand side is expected to be the
dominant term. This is because, from Lemma 2, after t1, the
drift of Fk will be most likely more positive than before t1 (if
PMD at local nodes are reasonably small) and causes fewer
errors if the fusion center threshold is chosen appropriately. We
have verified this from simulations also. Hence we focus on the
first term. Combining this fact with (15), P1(N0

d < t1) will
be a good approximation for P1(reject H1). For calculating
P1(N0

d < t1), we use the bounding technique and approximate
expression given in [18, Section III-B2] with the distribution
of N1

l in (12).
Table II provides comparison between analysis and simu-

lations for continuous distributions. The simulation setup is
same as that in Figure 4. It shows that at low PMD, E1[Nd]
from theory approximates the simulated value reasonably well.

PMDSim. PMDAnal. E1[Nd]Sim. E1[Nd]Anal.
0.081 0.072 4.12 5.91
0.067 0.059 5.32 6.43
0.034 0.031 6.63 6.35

TABLE II
KTSLRT-SPRT:COMPARISON OF E1[Nd] AND PMD OBTAINED VIA

ANALYSIS AND SIMULATION.

VIII. CONLUSIONS

The problem of universal sequential hypothesis testing is
very relevant in practical applications, e.g., quickest detec-
tion with SNR uncertainty in Cognitive Radio systems. We
have used universal lossless source codes for learning the
underlying distribution. The algorithm is first proposed for
discrete alphabet and almost sure finiteness of the stopping
time is proved. Asymptotic properties of probability of error
and stopping times are also derived. Later on the algorithm
is extended to continuous alphabet with the use of uniform
quantization. We have used Lempel-Ziv code and KT-estimator
with Arithmetic Encoder as universal lossless codes. From the
performance comparisons, it is found that KT-estimator with
Arithmetic Encoder (KT+AE) always performs the best. We
have compared this algorithm with other universal hypothesis
testing schemes also and found that KT+AE performs the best.
Finally we have extended these algorithms to decentralized
setup.
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