
Latin American Applied Research 37:11-16 (2007) 

11 

FORWARD AND INVERSE 2-D DCT ARCHITECTURES TARGETING 
HDTV FOR H.264/AVC VIDEO COMPRESSION STANDARD 

 

L. AGOSTINI†‡, R. PORTO†, M. PORTO†, T. SILVA†, L. ROSA†, J. GÜNTZEL†, 
I. SILVA§, and S. BAMPI‡ 

† Group of Architectures and Integrated Circuits (GACI), UFPel, Pelotas, Brazil 
{agostini, rogerecp, porto, thleal, lrosa.ifm, guntzel} @ufpel.edu.br 

‡ Microelectronics Group (GME), UFRGS, Porto Alegre, Brazil 
{agostini, bampi}@inf.ufrgs.br 
§ DIMAp, UFRN, Natal, Brazil 

ivan@dimap.ufrn.br 
 

Abstract −− This paper presents the architecture 
and the VHDL design of the integer Two-
Dimensional Discrete Cosine Transform (2-D DCT) 
used in the H.264/AVC codecs. The forward and 
inverse 2-D DCT architectures were designed and 
their synthesis results mapped to Altera FPGAs are 
presented. The 2-D DCT calculation is performed by 
exploring the separability property, in such way, 
each 2-D DCT architecture is divided in two 1-D 
DCT calculations that are joined through a trans-
pose buffer. The 1-D DCT transforms implemented 
and herein described are multiplierless, hence opti-
mized shift-add operations are used. The architec-
tures have a dedicated pipeline, optimized to process 
one input data per clock cycle. These architectures 
are able to cope with H.264/AVC encoder or decoder 
requirements targeting High Definition Digital Tele-
vision (HDTV), with 1920x1080 pixel/frame at 30 
frames per second. 

Keywords −− H.264/AVC video compression, 
dedicated hardware for video compression,  
2-D FDCT, 2-D IDCT, integer transforms. 

I. INTRODUCTION 
The H.264/AVC is the new international standard for 
video compression (Joint Video Team, 2003). The main 
characteristic of the H.264/AVC is to provide 
significantly higher compression rates than the previous 
standards as MPEG-2, MPEG-4 and H.263 (Wiegand et 
al., 2003; Sullivan et al., 2004; Sullivan and Wiegand, 
2005). The H.264, also known as MPEG4 part 10 or 
AVC, was developed to supply the processing rates 
demanded by video applications in high definition. 

An important factor that differentiates the 
H.264/AVC from other video compression standards is 
the use of integer transforms (Richardson, 2003; Malvar 
et al., 2003). The integer transforms have a final result 
that is an approximation of the real transforms result. 
The H.264/AVC standard defines the use of two 
different integer transforms: 2-D DCT and Hadamard. 
These integer transforms are multiplierless and all 

operations could be realized using just additions, 
subtractions and shift-adds.  

Differently from other standards, the H.264/AVC 
defines a minimum image partition matrix (called 
block) with 4 x 4 samples. This option reduces the 
block and borders artifacts in the compressed image.  

With the use of integer coefficients and 4x4 input 
blocks, the complexity of the transforms in the 
H.264/AVC is significantly reduced in relation to other 
image and video compression standards. 

This paper will present the architectural design of a 
2-D FDCT and a 2-D IDCT targeting the H.264/AVC 
compression standard. The 2-D DCT separability 
property was used in these architectures: the 2-D 
transforms are calculated by applying twice the 
transforms in one dimension which are joined by a 
transpose buffer. The designed architectures were 
described in VHDL (Airan et al., 1994) and synthesized 
to Altera FPGAs (Altera, 2006). The synthesis results 
are also presented. 

This paper is organized as follows. Section 2 
presented an introduction to the H.264/AVC standard. 
Section 3 details the integer transform used in this 
standard. Section 4 presents the designed architectures. 
The synthesis results for the designed architectures are 
showed in section 5. Section 6 presets a comparison 
with related works. Conclusions and future works are 
presented in section 7. 

II. THE H.264/AVC STANDARD 
An increasing number of services and the growing 
popularity of high definition TV are creating greater 
needs for higher coding efficiency. As a result of the 
ongoing demand for better compression performance 
the latest video coding standard, the H.264/AVC 
(Advanced Video Coding) (Joint Video Team, 2003) 
was developed. The H.264/AVC is also known as 
MPEG-4 Part 10 (Wiegand et al., 2003; Sullivan et al., 
2004; Richardson, 2003).  

H.264/AVC uses the state-of-the-art coding tools 
and provides enhanced coding efficiency for a wide 
range of applications (Wiegand et al., 2003; Sullivan et 



Latin American Applied Research 37:11-16 (2007) 

12 

al., 2004, Richardson, 2003). This standard was created 
to improve the coding efficiency by a factor of, at least, 
two (on average) over MPEG-2 – the nowadays most 
widely used video coding standard (Sullivan et al., 
2004; Kamaci and Altunbasak, 2003). In that way, it 
provides significantly higher compression rates than the 
previous standards and the most interesting balance 
between the coding efficiency, implementation 
complexity and cost, besides of to introducing many 
new features. But as might be expected, the increase in 
coding efficiency and coding flexibility comes with an 
increase in global compressor complexity with respect 
to earlier standards (Puri et al., 2004).  

Two distinct layers are used in the H.264/AVC 
standard: a video coding layer (VCL) and a network 
adaptation layer (NAL) (Joint Video Team, 2003; 
Sullivan and Wiegand, 2005; Richardson, 2003). The 
standard also specifies the use of an improved de-
blocking filter within the motion compensation loop in 
order to reduce visual artifacts and improve prediction. 
The standard also features a more complex and efficient 
context-based arithmetic coding (CABAC) for entropy 
coding. With the exception of the de-blocking filter, 
most of the basic functional elements (prediction, 
transform, quantization, entropy coding) are present in 
previous standards (MPEG-1, MPEG-2, MPEG-4, 
H.261, H.263) but the important changes in H.264/AVC 
occur in the internal construction of each functional 
block (Richardson, 2003).  

A block diagram of the H.264/AVC encoder is 
presented in Fig. 1. The main blocks of the encoder 
(Richardson, 2003), as shown in Fig. 1, are motion 
estimation (ME), motion compensation (MC), intra 
prediction, forward (T) and inverse (T-1) transforms, 
forward (Q) and inverse (Q-1) quantization, entropy 
coder and de-blocking filter.  

The decoder blocks, presented in Fig. 2, are a sub-
group of the coder blocks (Richardson, 2003), including 
entropy decoder, inverse quantization (Q-1) inverse 
transforms (T-1), motion compensation (MC), intra 
prediction and the de-blocking filter. 

This work focuses just on the design of a part of the 
forward and the inverse transforms (T and T-1 in Fig. 1 
and T-1 in Fig. 2).  

 

Figure 1. Block diagram of a H.264/AVC coder 

 
Figure 2. Block diagram of a H.264/AVC decoder 

 
The forward transform block (T) uses three different 

two dimensional transforms, depending on the type of 
input data. These transforms are 4x4 2-D FDCT, 4x4 2-
D forward Hadamard and 2x2 2-D forward Hadamard 
(Richardson, 2003). The inverse transform block (T-1) 
uses also three different two dimensional transforms: 
4x4 2-D IDCT, 4x4 2-D inverse Hadamard and 2x2 2-D 
inverse Hadamard (Richardson, 2003). T and T-1 blocks 
must synchronize the operation of their three transforms 
to generate a correct data flow in their outputs.  

This work presents the architecture design of the 
forward and inverse 2-D DCT to be used in H.264/AVC 
coders and decoders. 

An advantage of the H.264/AVC is the simplicity of 
its transform (Malvar et al., 2003; Wien, 2003; Wang et 
al., 2003). The standard adopts integer transforms. 
Since the coefficients are integer, there will be no 
mismatch between encoder and decoder. Integer 
coefficients also imply in a simpler hardware 
implementation. This transform also reduces the 
occurrence of blocking and ringing artifacts (Kamaci 
and Altunbasak, 2003).  

III. THE H.264/AVC INTEGER 2-D DCT 
The two dimensional DCT (2-D DCT) is a mathema-
tical tool that is used to transform the information from 
the space domain to the frequency domain. In image 
and video compression, many standards like JPEG, 
MPEG and H.264/AVC use the 2-D DCT to transform 
the input data to the frequency domain. The information 
represented in the frequency domain could be handled 
to discard the frequencies that are less important to the 
human visual system perception. This operation reduces 
the amount of information used to represent the image 
or video, allowing higher compres-sion rates with little 
impact in the image quality.  

There are many image and video compression 
standards that apply the 2-D DCT over 8x8 input 
blocks. However the DCT used in the H.264/AVC is 
applied over 4x4 input blocks, reducing the 
computational complexity of this calculation.  

The H.264/AVC is the first video standard that uses 
an integer transform (Sullivan and Wiegand, 2005; 
Malvar et al., 2003). The previous standards use 
floating point transforms. The final results of the integer 
transform are an approximation of the real DCT results, 
but this integer conversion causes a minimal loss of 
accuracy in this calculation (Richardson, 2003). The 

Reference 
Frames 

Q-1 T-1 
Current 
Frame 

(reconstructed) 

MC 

Entropy 
Decoder

INTRA 
Prediction

Filter

INTER Prediction

+ 

INTRA 
Prediction 

ME 

Q Entropy
Coding 

Current 
Frame 

(original) 

Reference 
Frames 

T 

Q-1 + T-1 
Current 
Frame 

(reconstructed) 

Filter 

INTER Prediction 

MC 



L. AGOSTINI, R. PORTO, M. PORTO, T. SILVA, L. ROSA, J. GÜNTZEL, I. SILVA, S. BAMPI 

13 

implementation of an integer transform generates some 
important advantages. The first one is that this is a 
multiplierless transform and just additions and shifts are 
needed to perform its calculations. The second 
advantage is that this integer solution reduces the 
computational complexity of the 2-D DCT calculations, 
thus simplifying the task of the hardware implement-
ation. The third advantage is that the use of integer 
numbers makes the transformation faster than those that 
use floating point numbers and can reduce signifi-cantly 
the power consumption, allowing a wide use of the 
H.264/AVC in mobile applications (Richardson, 2003). 

The forward 2-D DCT adopted in this paper uses the 
matrix operation presented in (1). This is an integer and 
scaled formula to calculate the 2-D DCT. This 
alternative was proposed by Malvar (2003) and reduces 
the 2-D DCT calculation complexity, once the scalar 
multiplication (⊗ E) is joined with the quantization 
process without increase the complexity of this 
compression step (Richardson, 2003). Then, the 
hardware design makes just the CXCT calculation that 
is a matrix multiplication. C is the 1-D DCT integer and 
scaled matrix, X is the 4x4 input matrixes and CT is the 
transposed of the 1-D DCT integer and scaled matrix. 

 Y= C X CT ⊗ E =  

= 

2 2

2 2

2 2

2 2

ab aba a
2 2

1 1 1 1 1 2 1 1 ab b ab b
2 1 1 2 1 1 1 2 2 4 2 4X
1 1 1 1 1 1 1 2 ab aba a

2 21 2 2 1 1 2 1 1
ab b ab b
2 4 2 4

⎡ ⎤
⎢ ⎥
⎢ ⎥⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎜ ⎟⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ⊗ ⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥− − − − ⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎜ ⎟− − − −⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(1)

The inverse transform is given by the equation 
showed in (2). Note that just additions and shifts are 
also needed to implement the inverse 2-D DCT 
calculation. 

 Y= CT (Y ⊗ E) C =  

= 

2 2

2 2

2 2

2 2

11 1 1 1 1 1 12
a ab a ab1 1 11 1 1 1 1ab b ab b2 2 2X

1 1 1 1 1a ab a ab1 1 1
2 1 1ab b ab b 1 11 2 21 1 1

2

⎡ ⎤
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎛ ⎞⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎜ ⎟− − − −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⊗⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ − −⎢ ⎥− − ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎝ ⎠ − −⎢ ⎥ ⎢ ⎥⎣ ⎦− −⎢ ⎥
⎣ ⎦

(2)

The scale factors in (1) and (2) are constants, where 
a is 21  and b is 52 . 

IV. DESIGNED ARCHITECTURES 
In this work, the 2-D FDCT and the 2-D IDCT 
architectures were designed using the separability 
property of this transform: each 2-D transform (forward 
or inverse) is divided in two 1-D transforms that are 
joined through a transpose buffer. Thus, the output data 
from the first transform is reorganized by a transpose 
buffer and used by the second transform. This division 
is generically presented in Fig. 3 (a) for the 2-D FDCT 
and Fig. 3 (b) for the 2-D IDCT. This solution allows a 
significant reduction in the 2-D FDCT and in the 2-D 
IDCT calculation complexity. 

 

  
(a) 

 
(b) 

Figure 3. (a) 2-D FDCT blocks and  
(b) 2-D IDCT blocks 

 
The 2-D transforms architectures consume one input 

value at each clock cycle. The global latency of the 2-D 
DCT and 2-D IDCT are equal, once these architectures 
are organized in a similar structure. This latency is of 32 
clock cycles and, when the pipeline is full, a new output 
data is available at each clock cycle.  

The input dynamic range of 2-D FDCT is from -256 
to +255, i.e. 9 bits. The first 1-D FDCT inputs are the 
same 2-D FDCT inputs. The dynamic range of the first 
1-D FDCT is increased in 3 bits and its outputs will 
have 12 bits. The bit width input and output of the 
transpose buffer are the same and it is determined for 
the first 1-D FDCT output that is 12 bits. The dynamic 
range of the second 1-D FDCT also is increased in 3 
bits, and then its 12 input bits are transformed in 15 
output bits. The second 1-D FDCT outputs are the 2-D 
FDCT outputs, then the 2-D FDCT dynamic range is 
increased in 6 bits, from 9 input bits to 15 output bits. 

The input of the 2-D IDCT is 15 bits wide. The first 
and second 1-D IDCT dynamic ranges are increased in 
2 bits and the transpose buffer does not increase its the 
dynamic range. The first 1-D IDCT inputs are of 15 bits 
and the outputs are 17 bits wide. The second 1-D IDCT 
inputs are 17 bits wide and the outputs are 19 bits wide. 
The second 1-D DCT outputs pass trough a shift right 
of 6 bits (Wang et al., 2003) and this shifted value, with 
13 bits, is sent to the 2- D IDCT outputs.  

Four different 1-D transforms were designed in this 
work, two for the 2-D FDCT and two for the 2-D IDCT. 
The two 1-D FDCT architectures are similar and only 
the bit widths of their inputs and outputs are different. 
The second 1-D FDCT architecture could be used also 
to realize the first 1-D FDCT calculation, but the first  
1-D FDCT was optimized to save logic elements. The 
two 1-D IDCT are also similar and just the bit width is 
different between these architectures.  

The designed architectures for 1-D FDCT and 1-D 
IDCT calculations are composed of two pipeline stages, 
to increase the calculation performance. The latency of 
these 1-D FDCT and 1-D IDCT architectures is of eight 
clock cycles. Figure 4 (a) shows the 1-D FDCT 
architecture and Fig. 4 (b) shows the 1-D IDCT 
architecture.  



Latin American Applied Research 37:11-16 (2007) 

14 

 
(a) 

 
(b) 

Figure 4. Designed architecture for (a) 1-D FDCT and (b) 1-
D IDCT 

 
Each 1-D DCT employs two ping-pong buffers, four 

multiplexers, two shifters and two adders. The ping-
pong buffers are necessary to maintain the four input 
data stable for each adder during four clock cycles, 
allowing the use of pipeline and the use of just one 
operator in each pipeline stage. These buffers allow 
maintaining the input rate of one data per clock cycle, 
storing the values in the gray registers, when the data 
are stable in the white registers to be used in each 
calculation step. The multiplexers are used to select the 
correct adder inputs at each clock cycle. The shifters are 
used to make the multiplications or divisions by two 
presented in formulas (1) and (2). A finite state machine 
is used to control the 1-D DCT block producing all the 
control signals. 

Figure 5 shows the transpose buffer architecture that 
was designed to connect the two 1-D FDCTs into the  
2-D FDCT architecture. The transpose buffer used into 
the 2-D IDCT architecture is similar to that presented in 
Fig. 5. The transpose buffers are composed of two 16-
word RAMs and three multiplexers besides various 
control signals. The RAM memories operate in an 
intercalated way: while one of them is used for writing, 
the other is used for reading. Thus, the first 1-D FDCT 
or 1-D IDCT architecture writes the results line by line 
in one memory (RAM1 or RAM2) and the second 1-D 
FDCT or 1-D IDCT architecture reads the input values 
column by column from the other memory (RAM2 or 
RAM1). 

 

 
Figure 5. 2-D FDCT Transpose Buffer Architecture 

The memories used to implement the transpose 
buffers are the internal RAM macroblocks available in 
the target FPGA. The memories used into the transpose 
buffer of the 2-D FDCT implementation have 12-bit 
words because this is the bit width of the first 1-D 
FDCT output. The memories used into the 2-D IDCT 
have 17-bit words and this is the difference between the 
two transpose buffer architectures. The bit width of the 
first 1-D IDCT output is 17 bits and hence, the 
transpose buffer memories must have the same bit 
width. The transpose buffer latency is of 16 clock 
cycles, which are necessary to complete the first write 
operation and to start the first read operation. 

V. SYNTHESIS RESULTS 
Table 1 presents the synthesis results of the 2-D FDCT 
architectures. The 2-D FDCT architecture is composed 
of two 1-D DCT calculations and a transpose buffer. 
These architectures, which were presented in previous 
sections, were described in VHDL and synthesized to 
Altera FPGAs (Altera, 2006). These three architectures 
were joined to construct the 2-D FDCT and were 
synthesized again. Table 2 shows the synthesis results 
for the 2-D IDCT and its internal blocks. 

 
Table 1. 2-D FDCT synthesis results 

Hardware Block LEs Period 
(ns) 

Memory 
Bits 

Throughput 
(Msamples/s)

1st 1-D FDCT 168 4.23 0 236.52 

Transpose Buffer 33 3.15 384 317.86 

2nd 1-D FDCT 216 4.86 0 205.97 

2-D FDCT 395 5.92 384 169.03 

Altera device: Stratix EP1S10F484C5
 

The syntheses of all architectures were mapped to 
EP1S10F484C5 Altera Stratix device (Altera, 2006). 
From Tab. 1 and Tab. 2 it is possible to notice that in 
both 2-D FDCT and 2-D IDCT architectures the 
transpose buffers are the blocks that use the lowest 
amount of logic elements and are the blocks that are 
able to operate at the highest throughput. On the other 
hand, just the transpose buffers use memory bits. 

Table 2. 2-D IDCT synthesis results 

Hardware Block LEs Period 
(ns) 

Memory 
Bits 

Throughput 
(Msamples/s)

1st 1-D IDCT 248 5.19 0 192.64 

Transpose Buffer 38 3.13 544 319.18 

2nd 1-D IDCT 278 5.19 0 192.57 

2-D IDCT 465 6.09 544 164.10 

Altera device: Stratix EP1S10F484C5

 



L. AGOSTINI, R. PORTO, M. PORTO, T. SILVA, L. ROSA, J. GÜNTZEL, I. SILVA, S. BAMPI 

15 

Comparing the results presented in Tab. 1 and  
Tab. 2 it is possible to notice that the 2-D FDCT 
architecture uses 395 logic elements of the target device 
and reaches a period of 5.92ns. On the other hand the  
2-D IDCT uses 465 logic elements and reaches a 
minimum period of 6.09ns.  

According to the results presented in Tab. 1 and 
Tab. 2, the 2-D FDCT integer transform is able to 
process 169.03 million of samples at each second, and 
the 2-D IDCT integer transform is able to process 164.1 
million of samples per second. These processing rates 
are higher than that defined to HDTV (High Definition 
Digital Television), which must process 1920x1080 
pixels per frame at 30 frames per second with a color 
relation of 4:2:2. Hence, the 2-D DCT designed 
architectures are able to be used in a complete 
H.264/AVC codec targeting HDTV. 

VI. RELATED WORKS 
There are a few papers in the literature about dedicated 
hardware architectures for H.264/AVC transforms. We 
do not find any similar solution for the 2-D FDCT and 
2-D IDCT transforms that realizes the calculations in a 
serial fashion like the solution presented in this paper. 
This section will compare our design with the 
previously published solutions. The literature papers are 
based on standard-cells implementations and the 
comparisons are not easy. We will compare just the 
architecture design strategy and the performance. The 
used hardware resources will not be compared, once we 
just have results for FPGAs. 

The solution presented in (Kordasiewicz and Shirani 
2004) realizes just the 2-D FDCT calculation. The 
solutions proposed in (Agostini et al., 2006; Cheng et 
al., 2004; Chen et al., 2005; Wang et al., 2003) are 
multitransform architectures that are able to process the 
calculations related to the four 4x4 forward and inverse 
transforms (FDCT, IDCT, forward Hadamard and 
inverse Hadamard). The solution (Agostini et al., 2006) 
process also the 2x2 forward Hadamard and is able to 
select the level of parallelism desired in its calculations. 
The designs presented in (Wang et al., 2003) grouped 
individually each 4x4 transform (FDCT and forward 
Hadamard) with their specific quantization. The 
quantization calculation is a multiplication by constants 
and it has a low level of complexity. 

The number of samples processed in each clock 
cycle varies form 4 to 16 in the related designs. Four 
solutions process 8 samples per clock cycle. This 
parallelism allows a very high processing rate from 273 
(Lin et al., 2005) to 3,499 (Agostini et al., 2006) 
millions of samples per seconds. These processing rates 
surpass the high resolutions application requirements. A  
HDTV resolution video with frames of 1920x1080 
pixels, at 30 frames per second, need a processing rate 
near to 95 millions of samples per second.  

The very high performance obtained in the literature 
solutions, if used, implies in several difficulties to use 

these architectures in a complete T or T-1 block and in a 
H.264/AVC codec. In this case, the memory overhead 
will be an important challenge to be solved. Other 
important question is that the connection of these blocks 
with the other H.264/AVC blocks will use a lot of 
routing resources, once the I/O interface will use a lot of 
wires. Finally, it is really very difficult to design 
parallel H.264/AVC inter and intra prediction blocks 
with the necessary throughput required by the parallel 
transforms. Then, it is probable that these parallel 
transforms will be underutilized when integrated in a 
H.264/AVC codec. For these reasons we decided to 
design an architecture that process just one sample per 
clock cycle. 

In the literature was not found a solution that 
process just one sample per clock cycle and, then, our 
throughput is lower than that obtained in the parallel 
solutions. But is important to notice that our solution 
reaches the performance requirements for HDTV and a 
higher throughput was not necessary in this case. The 
hardware consumption of our transforms is lower, once 
we process just one sample per clock cycle. A complete 
comparison in relation with the hardware resources 
consumption will be available when we finished a 
standard-cell version of our architectures. 

VII. CONCLUSIONS AND FUTURE WORK 
This paper presented an architectural design of two 
serial 2-D DCT transforms (forward and inverse) for the 
H.264/AVC standard. The architectures were described 
in VHDL and were synthesized for Altera FPGAs. The 
synthesis results were presented. 

The forward 2-D DCT transform architecture uses 
395 logic elements of the device and reaches a 
throughput of 169.03 millions of samples per second. 
On the other hand, the inverse 2-D DCT transform uses 
465 logic elements and reaches a maximum throughput 
of 164.10 millions of samples per second. With these 
results it is possible to notice that the designed 2-D 
DCT architectures are able to be used in a H.264/AVC 
encoder and/or decoder hardware targeting HDTV, with 
frames of 1920x1080 pixels at 30 frames per second. 

Our 2-D FDCT and 2-D IDCT designed architec-
tures are serial and pipelined. These architectures were 
designed targeting FPGAs, but they can be synthesized 
in a standard-cell version. The DCT architectures are 
simple and goals to minimize the resources 
consumption trough a serial implementation. This 
reduced consumption of resources is very important, 
once that a complete H.264/AVC encoder or decoder is 
formed by various complex blocks that will consume a 
lot of hardware resources. Then, the implementation of 
all blocks must minimize its resources consumption to 
allow a complete coder or encoder mapping in FPGAs 
that is the main goal of the project that supports this 
work. But it is very important to emphasize that all this 
H.264/AVC blocks must reach the performance 
requirements that are defined to the complete 



Latin American Applied Research 37:11-16 (2007) 

16 

H.264/AVC encoder or decoder. The 2-D FDCT and 2-
D IDCT architectures designed in this paper are able to 
operate at a processing rate higher than 160 millions of 
samples per second, considering the target FPGA. This 
processing rate is enough to respect the HDTV 
requirements and, for consequence this design is able to 
be used in all other video transmission standards with 
resolutions lower than HDTV. 

As future work we plain to design a standard-cell 
version of our 2-D FDCT and 2-D IDCT architectures. 
With the synthesis results will be possible a comparison 
in terms of use of hardware resources between our 
solution and the literature solutions. Other work that are 
being developed is the design of architectures for the 
two Hadamard transforms. Other H.264/AVC blocks, 
like quantization and entropy coding are planned to be 
designed as next activities. 

REFERENCES 
Agostini, L.V., R.C. Porto, J.A. Güntzel, I.S. Silva and 

S. Bampi, “High Throughput Multitransform and 
Multiparallelism IP for H.264/AVC Video 
Compression Standard”, ISCAS 2006 – IEEE 
International Symposium on Circuits and Systems, 
Kos, Greece, 5419 - 5422 (2006).  

Airan, R., J. Berge and V. Olive, Circuit Synthesis with 
VHDL, Kluwer, Boston (1994). 

Altera Corporation, “Home Site of the Altera 
Corporation”, <www.altera.com> (2006). 

Chen, K., J. Guo and J. Wang, “An Efficient Direct 2-D 
Transform Coding IP Design for MPEG-4 
AVC/H.264”, ISCAS 2005 – IEEE International 
Symposium on Circuits and Systems, Kobe, Japan, 
4517-4520 (2005). 

Cheng, Z., C. Chen, B. Liu and L. Yang, “High 
Throughput 2-D Transform Architectures for 
H.264 Advanced Video Coders”, IEEE Asia-
Pacific Conference on Circuits and Systems, 
Fukuoka, Japan, 1141-1144 (2004). 

Joint Video Team of ITU-T and ISO/IEC JTC 1, “Draft 
ITU-T Recommendation and Final Draft 
International Standard of Joint Video Specification 
(ITU-T Rec. H.264 or ISO/IEC 14496-10 AVC)” 
(2003). 

Kamaci, N. and Y. Altunbasak, “Performance Compari-
son of the Emerging H.264 Video Coding Standard 
with the Existing Standards,” ICME 2003 - IEEE 

International Conf. on Multimedia and Expo, 
Baltimore, USA, 345-348 (2003). 

Kordasiewicz, R. and S. Shirani, “Hardware 
Implementation of the Optimized Transform and 
Quantization Blocks of H.264”, Canadian 
Conference on Electrical and Computer 
Engineering, Ontario, Canada, 943-946, (2004). 

Lin, H., Y. Chao, C. Chen, B. Liu and L. Yang, 
“Combined 2-D Transform and Quantization 
Architectures for H.264 Video Coders”, ISCAS 
2005 – IEEE International Symposium on Circuits 
and Systems, Kobe, Japan, 1802-1805 (2005). 

Malvar, H., A. Hallapuro, M. Karczewicz and L. 
Kerofsky, “Low-Complexity Transform and 
Quantization in H.264/AVC,” IEEE Transactions 
on Circuits and Systems for Video Technology, 13, 
598-603, (2003).  

Puri, A., X. Chen and A. Luthra, “Video coding using 
the H.264/MPEG-4 AVC compression standard,” 
Signal Processing: Image Communication, 19, 
793-849 (2004).  

Richardson, I., H.264 and MPEG-4 Video Compression 
– Video Coding for Next-Generation Multimedia, 
John Wiley and Sons, Chichester (2003). 

Sullivan, G. and T. Wiegand, “Video Compression – 
From Concepts to the H.264/AVC Standard,” 
Proceedings of the IEEE, 93, 18-31 (2005).  

Sullivan, G., P. Topiwala and A. Luthra, “The 
H.264/AVC Advanced Video Coding Standard: 
Overview and Introduction to the Fidelity Range 
Extensions”, XXVII SPIE Conference on 
Applications of Digital Image Processing, San 
Diego, USA, 454-474 (2004).  

Wang, T., Y. Huang, H. Fang and L. Chen, “Parallel 
4x4 2D Transform and Inverse Transform 
Architecture for MPEG-4 AVC/H.264”, ISCAS 
2003 - IEEE International Symposium on Circuits 
and Systems, Bangkok, Thailand, 800-803 (2003).  

Wiegand, T., G. Sullivan, G. Bjontegaard and A. 
Luthra, “Overview of the H.264/AVC Video 
Coding Standard,” IEEE Transactions on Circuits 
and Systems for Video Technology, 13, 560-576 
(2003).  

Wien, M., “Variable Block-Size Transforms for 
H.264/AVC,” IEEE Transactions on Circuits and 
Systems for Video Technology, 13, 604-613 
(2003).  

 
 

Received: April 14, 2006. 
Accepted: September 8, 2006. 
Recommended by Special Issue Editors Hilda Larrondo, 
Gustavo Sutter. 


