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ABSTRACT

Full-waveform inversion �FWI� is a challenging data-fitting
procedure based on full-wavefield modeling to extract quantita-
tive information from seismograms. High-resolution imaging at
half the propagated wavelength is expected. Recent advances in
high-performance computing and multifold/multicomponent
wide-aperture and wide-azimuth acquisitions make 3D acoustic
FWI feasible today. Key ingredients of FWI are an efficient for-
ward-modeling engine and a local differential approach, in
which the gradient and the Hessian operators are efficiently esti-
mated. Local optimization does not, however, prevent conver-
gence of the misfit function toward local minima because of the
limited accuracy of the starting model, the lack of low frequen-
cies, the presence of noise, and the approximate modeling of the
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ave-physics complexity. Different hierarchical multiscale
trategies are designed to mitigate the nonlinearity and ill-posed-
ess of FWI by incorporating progressively shorter wavelengths
n the parameter space. Synthetic and real-data case studies ad-
ress reconstructing various parameters, from VP and VS veloci-
ies to density, anisotropy, and attenuation. This review attempts
o illuminate the state of the art of FWI. Crucial jumps, however,
emain necessary to make it as popular as migration techniques.
he challenges can be categorized as �1� building accurate start-

ng models with automatic procedures and/or recording low fre-
uencies, �2� defining new minimization criteria to mitigate the
ensitivity of FWI to amplitude errors and increasing the robust-
ess of FWI when multiple parameter classes are estimated, and
3� improving computational efficiency by data-compression
echniques to make 3D elastic FWI feasible.
INTRODUCTION

Seismic waves bring to the surface information gathered on the
hysical properties of the earth. Since the discovery of modern seis-
ology at the end of the 19th century, the main discoveries have aris-

n from using traveltime information �Oldham, 1906; Gutenberg,
914; Lehmann, 1936�. Then there was a hiatus until the 1980s for
mplitude interpretation, when global seismic networks could pro-
ide enough calibrated seismograms to compute accurate synthetic
eismograms using normal-mode summation. Differential seismo-
rams estimated through the Born approximation have been used
s perturbations for matching long-period seismograms, which can
rovide high-resolution upper-mantle tomography �Gilbert and Dz-
ewonski, 1975; Woodhouse and Dziewonski, 1984�. The sensitivity
r Fréchet derivative matrix, i.e., the partial derivative of seismic
ata with respect to the model parameters, is explicitly estimated be-
ore proceeding to inversion of the linearized system. The normal-
ode description allows a limited number of parameters to be in-
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erted �a few hundred parameters�, which makes the optimization
rocedure feasible through explicit sensitivity matrix estimation in
pite of the high number of seismograms.

Meanwhile, exploration seismology has taken up the challenge of
igh-resolution imaging of the subsurface by designing dense, mul-
ifold acquisition systems. Construction of the sensitivity matrix is
oo prohibitive because the number of parameters exceed 10,000. In-
tead, another road has been taken to perform high-resolution imag-
ng. Using the exploding-reflector concept, and after some kinemat-
c corrections, amplitude summation has provided detailed images
f the subsurface for reservoir determination and characterization
Claerbout, 1971, 1976�. The sum of the traveltimes from a specific
oint of the interface toward the source and the receiver should coin-
ide with the time of large amplitudes in the seismogram. The reflec-
ivity as an amplitude attribute of related seismic traces at the select-
d point of the reflector provides the migrated image needed for seis-
ic stratigraphic interpretation. Although migration is more a con-

ept for converting seismic data recorded in the time-space domain
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WCC128 Virieux and Operto
nto images of physical properties, we often refer to it as the geomet-
ic description of the short wavelengths of the subsurface.Avelocity
acromodel or background model provides the kinematic informa-

ion required to focus waves inside the medium.
The limited offsets recorded by seismic reflection surveys and the

imited-frequency bandwidth of seismic sources make seismic im-
ging poorly sensitive to intermediate wavelengths �Jannane et al.,
989�. This is the motivation behind a two-step workflow: construct
he macromodel using kinematic information, and then the ampli-
ude projection using different types of migrations �Claerbout and
oherty, 1972; Gazdag, 1978; Stolt, 1978; Baysal et al., 1983; Yil-
az, 2001; Biondi and Symes, 2004�. This procedure is efficient for

elatively simple geologic targets in shallow-water environments,
lthough more limited performances have been achieved for imag-
ng complex structures such as salt domes, subbasalt targets, thrust
elts, and foothills. In complex geologic environments, building an
ccurate velocity background model for migration is challenging.
arious approaches for iterative updating of the macromodel recon-
truction have been proposed �Snieder et al., 1989; Docherty et al.,
003�, but they remain limited by the poor sensitivity of the reflec-
ion seismic data to the large and intermediate wavelengths of the
ubsurface.

Simultaneous with the global seismology inversion scheme,
ailly �1983� and Tarantola �1984� recast the migration imaging
rinciple of Claerbout �1971, 1976� as a local optimization problem,
he aim of which is least-squares minimization of the misfit between
ecorded and modeled data. They show that the gradient of the misfit
unction along which the perturbation model is searched can be built
y crosscorrelating the incident wavefield emitted from the source
nd the back-propagated residual wavefields. The perturbation mod-
l obtained after the first iteration of the local optimization looks like
migrated image obtained by reverse-time migration. One differ-

nce is that the seismic wavefield recorded at the receiver is back
ropagated in reverse time migration, whereas the data misfit is back
ropagated in the waveform inversion of Lailly �1983� and Tarantola
1984�. When added to the initial velocity, the velocity perturbations
ead to an updated velocity model, which is used as a starting model
or the next iteration of minimizing the misfit function. The impres-
ive amount of data included in seismograms �each sample of a time
eries must be considered� is involved in gradient estimation. This
stimation is performed by summation over sources, receivers, and
ime.

Waveform-fitting imaging was quite computer demanding at that
ime, even for 2D geometries �Gauthier et al., 1986�. However, it has
een applied successfully in various studies using forward-model-
ng techniques such as reflectivity techniques in layered media �Kor-
endi and Dietrich, 1991�, finite-difference techniques �Kolb et al.,
986; Ikelle et al., 1988; Crase et al., 1990; Pica et al., 1990; Djik-
éssé and Tarantola, 1999�, finite-element methods �Choi et al.,
008�, and extended ray theory �Cary and Chapman, 1988; Koren et
l., 1991; Sambridge and Drijkoningen, 1992�. A less computation-
lly intensive approach is achieved by Jin et al. �1992� and Lambaré
t al. �1992�, who establish the theoretical connection between ray-
ased generalized Radon reconstruction techniques �Beylkin, 1985;
leistein, 1987; Beylkin and Burridge, 1990� and least-squares opti-
ization �Tarantola, 1987�. By defining a specific norm in the data

pace, which varies from one focusing point to the next, they were
ble to recast the asymptotic Radon transform as an iterative least-
quares optimization after diagonalizing the Hessian operator. Ap-
lications on 2D synthetic data and real data are provided �Thierry et
Downloaded 04 Dec 2009 to 193.50.85.151. Redistribution subject to 
l., 1999b; Operto et al., 2000� and 3D extension is possible �Thierry
t al., 1999a; Operto et al., 2003� because of efficient asymptotic for-
ard modeling �Lucio et al., 1996�. Because the Green’s functions

re computed in smoothed media with the ray theory, the forward
roblem is linearized with the Born approximation, and the optimi-
ation is iterated linearly, which means the background model re-
ains the same over the iterations. These imaging methods are gen-

rally called migration/inversion or true-amplitude prestack depth
igration �PSDM�. The main difference with the waveform-inver-

ion methods we describe is that the smooth background model does
ot change over iterations and only the single scattered wavefield is
odeled by linearizing the forward problem.
Alternatively, the full information content in the seismogram can

e considered in the optimization. This leads us to full-waveform in-
ersion �FWI�, where full-wave equation modeling is performed at
ach iteration of the optimization in the final model of the previous
teration.All types of waves are involved in the optimization, includ-
ng diving waves, supercritical reflections, and multiscattered waves
uch as multiples. The techniques used for the forward modeling
ary and include volumetric methods such as finite-element meth-
ds �Marfurt, 1984; Min et al., 2003�, finite-difference methods
Virieux, 1986�, finite-volume methods �Brossier et al., 2008�, and
seudospectral methods �Danecek and Seriani, 2008�; boundary in-
egral methods such as reflectivity methods �Kennett, 1983�; gener-
lized screen methods �Wu, 2003�; discrete wavenumber methods
Bouchon et al., 1989�; generalized ray methods such as WKBJ and
aslov seismograms �Chapman, 1985�; full-wave theory �de Hoop,

960�; and diffraction theory �Klem-Musatov andAizenberg, 1985�.
FWI has not been recognized as an efficient seismic imaging tech-

ique because pioneering applications were restricted to seismic re-
ection data. For short-offset acquisition, the seismic wavefield is
ather insensitive to intermediate wavelengths; therefore, the opti-
ization cannot adequately reconstruct the true velocity structure

hrough iterative updates. Only when a sufficiently accurate initial
odel is provided can waveform-fitting converge to the velocity

tructure through such updates. For sampling the initial model, so-
histicated investigations with global and semiglobal techniques
Koren et al., 1991; Jin and Madariaga, 1993, 1994; Mosegaard and
arantola, 1995; Sambridge and Mosegaard, 2002� have been per-
ormed. The rather poor performance of these investigations that
rises from insensitivity to intermediate wavelengths has led many
esearchers to believe that this optimization technique is not particu-
arly efficient.

Only with the benefit of long-offset and transmission data to re-
onstruct the large and intermediate wavelengths of the structure has
WI reached its maturity as highlighted by Mora �1987, 1988�, Pratt
ndWorthington �1990�, Pratt et al. �1996�, and Pratt �1999�. FWI at-
empts to characterize a broad and continuous wavenumber spec-
rum at each point of the model, reunifying macromodel building
nd migration tasks into a single procedure. Historical crosshole and
ide-angle surface data examples illustrate the capacity of simulta-
eous reconstruction of the entire spatial spectrum �e.g., Pratt, 1999;
avaut et al., 2004; Brenders and Pratt, 2007a�. However, robust ap-
lication of FWI to long-offset data remains challenging because of
ncreasing nonlinearities introduced by wavefields propagated over
everal tens of wavelengths and various incidence angles �Sirgue,
006�.
Here, we consider the main aspects of FWI. First, we review the

orward-modeling problem that underlies FWI. Efficient numerical
SEG license or copyright; see Terms of Use at http://segdl.org/
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Full-waveform inversion WCC129
odeling of the full seismic wavefield is a central issue in FWI, es-
ecially for 3D problems.
In the second part, we review the main theoretical aspects of FWI

ased on a least-squares local optimization approach. We follow the
ompact matrix formalism for its simplicity �Pratt et al., 1998; Pratt,
999�, which leads to a clear interpretation of the gradient and the
essian of the objective function. Once the gradient is estimated, we

eview different optimization algorithms used to compute the pertur-
ation model. We conclude the methodology section by the source
stimation problem in FWI.

In the third part, we review some key features of FWI. First, we
ighlight the relationships between the experimental setup �source
andwidth, acquisition geometry� and the spatial resolution of FWI.
he resolution analysis provides the necessary guidelines to design

he multiscale FWI algorithms required to mitigate the nonlinearity
f FWI. We discuss the pros and cons of the time and frequency do-
ains for efficient multiscale algorithms. We provide a few words

oncerning the parallel implementation of FWI techniques because
hese are computer demanding. Then we review some alternatives to
he least-squares criterion and the Born linearization. A key issue of
WI is the initial model from which the local optimization is started.
e also discuss several tomographic approaches to building a start-

ng model.
In the fourth part, we review the main case studies of FWI subdi-

ided into three categories of case studies: acoustic, multiparameter,
nd three dimensional. Finally, we discuss the future challenges
aised by the revival of interest in FWI that has been shown by the
xploration and the earthquake-seismology communities.

THE FORWARD PROBLEM

Let us first introduce the notations for the forward problem, name-
y, modeling the full seismic wavefield. The reader is referred to
obertsson et al. �2007� for an up-to-date series of publications on
odern seismic-modeling methods.
We use matrix notations to denote the partial-differential opera-

ors of the wave equation �Marfurt, 1984; Carcione et al., 2002�. The
ost popular direct method to discretize the wave equation in the

ime and frequency domains is the finite-difference method
Virieux, 1986; Levander, 1988; Graves, 1996; Operto et al., 2007�,
lthough more sophisticated finite-element or finite-volume ap-
roaches can be considered. This is especially true when accurate
oundary conditions through unstructured meshes must be imple-
ented �e.g., Komatitsch and Vilotte, 1998; Dumbser and Kaser,

006�.
In the time domain, we have

M�x�
d2u�x,t�

dt2
�A�x�u�x,t��s�x,t�, �1�

here M and A are the mass and the stiffness matrices, respectively
Marfurt, 1984�. The source term is denoted by s and the seismic
avefield by u. In the acoustic approximation, u generally repre-

ents pressure, although in the elastic case u generally represents
orizontal and vertical particle velocities. The time is denoted by t
nd the spatial coordinates by x. Equation 1 generally is solved with
n explicit time-marching algorithm: The value of the wavefield at a
ime step �n�1� at a spatial position is inferred from the value of the
avefields at previous time steps. Implicit time-marching algo-

ithms are avoided because they require solving a linear system
Marfurt, 1984�. If both velocity and stress wavefields are helpful,
Downloaded 04 Dec 2009 to 193.50.85.151. Redistribution subject to 
he system of second-order equations can be recast as a first-order
yperbolic velocity-stress system by incorporating the necessary
uxiliary variables �Virieux, 1986�.

In the frequency domain, the wave equation reduces to a system of
inear equations; the right-hand side is the source and the solution is
he seismic wavefield. This system can be written compactly as

B�x,��u�x,���s�x,��, �2�

here B is the impedance matrix �Marfurt, 1984�. The sparse com-
lex-valued matrix B has a symmetric pattern, although it is not sym-
etric because of absorbing boundary conditions �Hustedt et al.,

004; Operto et al., 2007�.
Equation 2 can be solved by a decomposition of B such as lower

nd upper �LU� triangular decomposition, leading to direct-solver
echniques. The advantage of the direct-solver approach is that once
he decomposition is performed, equation 2 is efficiently solved for
ultiple sources using forward and backward substitutions �Mar-

urt, 1984�. The direct-solver approach is efficient for 2D forward
roblems �Jo et al., 1996; Stekl and Pratt, 1998; Hustedt et al., 2004�.
owever, the time and memory complexities of LU factorization

nd its limited scalability on large-scale distributed memory plat-
orms prevent use of the approach for large-scale 3D problems �i.e.,
roblems involving more than 10 million unknowns; Operto et al.,
007�.
Iterative solvers provide an alternative approach for solving the

ime-harmonic wave equation �Riyanti et al., 2006, 2007; Plessix,
007; Erlangga and Herrmann, 2008�. Iterative solvers currently are
mplemented with Krylov subspace methods �Saad, 2003� that are
reconditioned by solving the dampened time-harmonic wave equa-
ion. The solution of the dampened wave equation is computed with
ne cycle of a multigrid. The main advantage of the iterative ap-
roach is the low memory requirement, although the main drawback
esults from a difficulty to design an efficient preconditioner because
he impedance matrix is indefinite. To our knowledge, the extension
o elastic wave equations still needs to be investigated. As for the
ime-domain approach, the time complexity of the iterative ap-
roach increases linearly with the number of sources in contrast to
he direct-solver approach.

An intermediate approach between the direct and iterative meth-
ds consists of a hybrid direct-iterative approach based on a domain
ecomposition method and the Schur complement system �Saad,
003; Sourbier et al., 2008�. The iterative solver is used to solve the
educed Schur complement system, the solution of which is the
avefield at interface nodes between subdomains. The direct solver

s used to factorize local impedance matrices that are assembled on
ach subdomain. Briefly, the hybrid approach provides a compro-
ise in terms of memory savings and multisource-simulation effi-

iency between the direct and the iterative approaches.
The last possible approach to compute monochromatic wave-

elds is to perform the modeling in the time domain and extract the
requency-domain solution either by discrete Fourier transform in
he loop over the time steps �Sirgue et al., 2008� or by phase-sensitiv-
ty detection once the steady-state regime is reached �Nihei and Li,
007�. One advantage of the approach based on the discrete Fourier
ransform is that an arbitrary number of frequencies can be extracted
ithin the loop over time steps at minimal extra cost. Second, time
indowing can be easily applied, which is not the case when the
odeling is performed in the frequency domain. Time windowing

llows the extraction of specific arrivals for FWI �early arrivals, re-
ections, PS converted waves�, which is often useful to mitigate the
SEG license or copyright; see Terms of Use at http://segdl.org/
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WCC130 Virieux and Operto
onlinearity of the inversion by judicious data preconditioning
Sears et al., 2008; Brossier et al., 2009a�.

Among all of these possible approaches, the iterative-solver ap-
roach theoretically has the best time complexity �here, “complexi-
y” denotes how the computational cost of an algorithm grows with
he size of the computational domain� if the number of iterations is
ndependent of the frequency �Erlangga and Herrmann, 2008�. In
ractice, the number of iterations generally increases linearly with
requency. In this case, the time complexities of the time-domain and
he iterative-solver approach are equivalent �Plessix, 2007�.

The reader is referred to Plessix �2007, 2009� and Virieux et al.
2009� for more detailed complexity analyses of seismic modeling
ased on different numerical approaches. A discussion on the pros
nd cons of time-domain versus frequency-domain seismic model-
ng with application to FWI is also provided in Vigh and Starr
2008b� and Warner et al. �2008�.

Source implementation is an important issue in FWI. The spatial
eciprocity of Green’s functions can be exploited in FWI to mitigate
he number of forward problems if the number of receivers is signifi-
antly smaller than the number of sources �Aki and Richards, 1980�.
he reciprocity of Green’s functions also allows matching data emit-

ed by explosions and recorded by directional sensors, with pressure
ynthetics computed for directional forces �Operto et al., 2006�. Of
ote, the spatial reciprocity is satisfied theoretically for the unidirec-
ional sensor and the unidirectional impulse source. However, the
patial reciprocity of the Green’s functions can also be used for ex-
losive sources by virtue of the superposition principle. Indeed, ex-
losions can be represented by double dipoles or, in other words, by
our unidirectional impulse sources.

Afinal comment concerns the relationship between the discretiza-
ion required to solve the forward problem and that required to re-
onstruct the physical parameters. Often during FWI, these two dis-
retizations are identical, although it is recommended that the fin-
erprint of the forward problem be kept minimal in FWI.
The properties of the subsurface that we want to quantify are em-

edded in the coefficients of matrices M, A, or B of equations 1 and
. The relationship between the seismic wavefield and the parame-
ers is nonlinear and can be written compactly through the operator
, defined as

u�G�m� �3�

n the time domain or in the frequency domain.

FWI AS A LEAST-SQUARES LOCAL
OPTIMIZATION

We follow the simplest view of FWI based on the so-called length
ethod �Menke, 1984�. For information on probabilistic maximum

ikelihood or generalized inverse formulations, the reader is referred
o Menke �1984�, Tarantola �1987�, Scales and Smith �1994�, and
en and Stoffa �1995�.
We define the misfit vector �d�dobs�dcal�m� of dimension N

y the differences at the receiver positions between the recorded
eismic data dobs and the modeled seismic data dcal�m� for each
ource-receiver pair of the seismic survey. Here, dcal can be related to
he modeled seismic wavefield u by a detection operator R, which
xtracts the values of the wavefields computed in the full computa-
ional domain at the receiver positions for each source: dcal�Ru.
he model m represents some physical parameters of the subsurface
iscretized over the computational domain.
Downloaded 04 Dec 2009 to 193.50.85.151. Redistribution subject to 
In the simplest case corresponding to the monoparameter acoustic
pproximation, the model parameters are the P-wave velocities de-
ned at each node of the numerical mesh used to discretize the in-
erse problem. In the extreme case, the model parameters corre-
pond to the 21 elastic moduli that characterize linear triclinic elastic
edia, the density, and some memory variables that characterize the

nelastic behavior of the subsurface �Toksöz and Johnston, 1981�.
he most common discretization consists of projection of the con-

inuous model of the subsurface on a multidimensional Dirac comb,
lthough a more complex basis can be considered �see Appendix A
n Pratt et al. �1998� for a discussion on alternative parameteriza-
ions�. We define a norm C�m� of this misfit vector �d, which is re-
erred to as the misfit function or the objective function.We focus be-
ow on the least-squares norm, which is easier to manipulate mathe-
atically �Tarantola, 1987�. Other norms are discussed later.

he Born approximation and the linearization of the
nverse problem

The least-squares norm is given by

C�m��
1

2
�d†�d, �4�

here † denotes the adjoint operator �transpose conjugate�.
In the time domain, the implicit summation in equation 4 is per-

ormed over the number of source-channel pairs and the number of
ime samples in the seismograms, where a channel is one component
f a multicomponent sensor. In the frequency domain, the summa-
ion over frequencies replaces that over time. In the time domain, the
isfit vector is real valued; in the frequency domain, it is complex

alued.
The minimum of the misfit function C�m� is sought in the vicinity

f the starting model m0. The FWI is essentially a local optimization.
n the framework of the Born approximation, we assume that the up-
ated model m of dimension M can be written as the sum of the start-
ng model m0 plus a perturbation model �m:m�m0��m. In the
ollowing, we assume that m is real valued.

A second-order Taylor-Lagrange development of the misfit func-
ion in the vicinity of m0 gives the expression

C�m0��m��C�m0�� �
j�1

M
�C�m0�

�mj
�mj

�
1

2 �
j�1

M

�
k�1

M
� 2C�m0�
�mj�mk

�mj�mk�O�m3� .

�5�

aking the derivative with respect to the model parameter ml results
n

�C�m�
�ml

�
�C�m0�

�ml
� �

j�1

M
� 2C�m0�
�mj�ml

�mj . �6�

he minimum of the misfit function in the vicinity of point m0 is
eached when the first derivative of the misfit function vanishes.This
ives the perturbation model vector:

�m��� � 2C�m0�
�m2 ��1�C�m0�

�m
. �7�
SEG license or copyright; see Terms of Use at http://segdl.org/
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Full-waveform inversion WCC131
The perturbation model is searched in the opposite direction of the
teepest ascent �i.e., the gradient� of the misfit function at point m0.
he second derivative of the misfit function is the Hessian; it defines

he curvature of the misfit function at m0. Of note, the error term
�m3� in equation 5 is zero when the misfit function is a quadratic

unction of m. This is the case for linear forward problems such as u
G.m. In this case, the expression of the perturbation model of

quation 7 gives the minimum of the misfit function in one iteration.
n FWI, the relationship between the data and the model is nonlinear
nd the inversion needs to be iterated several times to converge to-
ard the minimum of the misfit function.

ormal equations: The Newton, Gauss-Newton, and
teepest-descent methods

asic equations

The derivative of C�m� with respect to the model parameter ml

ives

�C�m�
�ml

��
1

2 �
i�1

N �� �dcali

�ml
��dobsi

�dcali
�*

� �dobsi
�dcali

�
�dcali

*

�ml
�

���
i�1

N

R�� �dcali

�ml
�*

�dobsi
�dcali

��, �8�

here the real part and the conjugate of a complex number are denot-
d by R and *, respectively. In matrix form, equation 8 translates to

�Cm�
�C�m�

�m
��R�� �dcal�m�

�m
�†

�dobs�dcal�m���
��R�J†�d	, �9�

here J is the sensitivity or the Fréchet derivative matrix. In equa-
ion 9, �Cm is a vector of dimension M. Taking m�m0 in equation 9
rovides the descent direction along which the perturbation model is
earched in equation 7.

Differentiation of the gradient expression 8, with respect to the
odel parameters gives the following expression in matrix form for

he Hessian �see Pratt et al. �1998� for details�:

� 2C�m0�
�m2 �R�J0

†J0	�R� �J0
t

�mt ��d0
* . . .�d0

*�� . �10�

nserting the expression of the gradient �equation 9� and the Hessian
equation 10� into equation 7 gives the following for the perturbation
odel:

�m��
R�J0
†J0�

�J0
t

�mt ��d0
* . . .�d0

*����1

R�J0
†�d0	 .

�11�

he method solving the normal equations, e.g., equation 11, general-
y is referred to as the Newton method, which is locally quadratically
onvergent.

For linear problems �d�G.m�, the second term in the Hessian is
ero because the second-order derivative of the data with respect to
Downloaded 04 Dec 2009 to 193.50.85.151. Redistribution subject to 
odel parameters is zero. Most of the time, this second-order term is
eglected for nonlinear inverse problems. In the following, the re-
aining term in the Hessian, i.e., Ha�J0

†J0, is referred to as the ap-
roximate Hessian.The method which solves equation 11 when only

a is estimated is referred to as the Gauss-Newton method.
Alternatively, the inverse of the Hessian in equation 11 can be re-

laced by a scalar �, the so-called step length, leading to the gradient
r steepest-descent method. The step length can be estimated by a
ine-search method, for which a linear approximation of the forward
roblem is used �Gauthier et al., 1986; Tarantola, 1987�. In the linear
pproximation framework, the second-order Taylor-Lagrange de-
elopment of the misfit function gives

C�m�� �C�m0���C�m�����C�m��C�m0��

�
1

2
�2Ha�m���C�m0��C�m0��,

�12�
here we assume a model perturbation of the form �m
� �C�m0�. In equation 12, we replace the second-order deriva-

ive of the misfit function by the approximate Hessian in the second
erm on the right-hand side. Inserting the expression of the approxi-
ate Hessian Ha into the previous expression, zeroing the partial de-

ivative of the misfit function with respect to �, and using m�m0

ives

� �
��C�m0��C�m0��

��Jt�m0��C�m0�Jt�m0��C�m0���
. �13�

he term Jt�m0��C�m0� is computed conventionally using a first-
rder-accurate finite-difference approximation of the partial deriva-
ive of G,

�G�m0�
�m

�C�m0��
1

�
�G�m0���C�m0���G�m0��,

�14�

ith a small parameter �. Estimation of � requires solving an extra
orward problem per shot for the perturbed model m0���C�m0�.
his line-search technique is extended to multiple-parameter classes
y Sambridge et al. �1991� using a subspace approach. In this case,
ne forward problem must be solved per parameter class, which can
e computationally expensive. Alternatively, the step length can be
stimated by parabolic interpolation through three points, ��,C�m0

� �C�m0���. The minimum of the parabola provides the desired
. In this case, two extra forward problems per shot must be solved
ecause we already have a third point corresponding to �0,C�m0��
see Figure 1 in Vigh et al. �2009� for an illustration�.

Pratt et al. �1998� illustrate how quality and rate of convergence of
he inversion depend significantly on the Newton, Gauss-Newton, or
radient method used. Importantly, they show how the gradient
ethod can fail to converge toward an acceptable model, however
any iterations, unlike the Newton and Gauss-Newton methods.
hey interpret this failure as the result of the difficulty of estimating
reliable step length. However, gradient methods can be significant-

y improved by scaling �i.e., dividing� the gradient by the diagonal
erms of H or of the pseudo-Hessian �Shin et al., 2001a�.
a
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WCC132 Virieux and Operto
umerical algorithms: The conjugate-gradient method

Over the last decade, the most popular local optimization algo-
ithm for solving FWI problems was based on the conjugate-gradi-
nt method �Mora, 1987; Tarantola, 1987; Crase et al., 1990�. Here,
he model is updated at the iteration n in the direction of p�n�, which is
linear combination of the gradient at iteration n, �C�n�, and the di-

ection p�n�1�:

p�n�� �Cn�� �n�p�n�1�. �15�

The scalar � �n� is designed to guarantee that p�n� and p�n�1� are con-
ugate.Among the different variants of the conjugate-gradient meth-
d to derive the expression of � �n�, the Polak-Ribière formula �Polak
nd Ribière, 1969� is generally used for FWI:

� �n��
��C�n���C�n�1��C�n��

��C�n��2 . �16�

n FWI, the preconditioned gradient Wm
�1�C�n� is used for p�n�, where

m is a weighting operator that is introduced in the next section
Mora, 1987�. Only three vectors of dimension M, i.e., �C�n�,
C�n�1�, and p�n�1�, are required to implement the conjugate-gradi-

nt method.

umerical algorithms: Quasi-Newton algorithms

Finite approximations of the Hessian and its inverse can be com-
uted using quasi-Newton methods such as the BFGS algorithm
named after its discoverers Broyden, Fletcher, Goldfarb, and Sh-
nno; see Nocedal �1980� for a review�. The main idea is to update
he approximation of the Hessian or its inverse H�n� at each iteration
f the inversion, taking into account the additional knowledge pro-
ided by �C�n� at iteration n. In these approaches, the approximation
f the Hessian or its inverse is explicitly formed.
For large-scale problems such as FWI in which the cost of storing

nd working with the approximation of the Hessian matrix is prohib-
tive, a limited-memory variant of the quasi-Newton BFGS method
nown as the L-BFGS algorithm allows computing in a recursive
anner H�n��C�n� without explicitly forming H�n�. Only a few gradi-

nts of the previous nonlinear iterations �typically, 3–20 iterations�
eed to be stored in L-BFGS, which represents a negligible storage
nd computational cost compared to the conjugate-gradient algo-
ithm �see Nocedal, 1980; p. 177–180�. The L-BFGS algorithm re-
uires an initial guess H�0�, which can be provided by the inverse of
he diagonal Hessian �Brossier et al., 2009a�. For multiparameter
WI, the L-BFGS algorithm provides a suitable scaling of the gradi-
nts computed for each parameter class and hence provides a com-
utationally efficient alternative to the subspace method of Sam-
ridge et al. �1991�. A comparison between the conjugate-gradient
ethod and the L-BFGS method for a realistic onshore application

f multiparameter elastic FWI is shown in Brossier et al. �2009a�.

ewton and Gauss-Newton algorithms

The more accurate, although more computationally intensive,
auss-Newton and Newton algorithms are described in Akcelik

2002�, Askan et al. �2007�, Askan and Bielak �2008�, and Epano-
eritakis et al. �2008�, with an application to a 2D synthetic model
f the San Fernando Valley using the SH-wave equation. At each
onlinear FWI iteration, a matrix-free conjugate-gradient method is
sed to solve the reduced Karush-Kuhn-Tucker �KKT� optimal sys-
em, which turns out to be similar to the normal equation system
Downloaded 04 Dec 2009 to 193.50.85.151. Redistribution subject to 
equation 11�. Neither the full Hessian nor the sensitivity matrix is
ormed explicitly; only the application of the Hessian to a vector
eeds to be performed at each iteration of the conjugate-gradient al-
orithm.
Application of the Hessian to a vector requires performing two

orward problems per shot for the incident and the adjoint wavefields
Akcelik, 2002�. Because these two simulations are performed at
ach iteration of the conjugate-gradient algorithm, an efficient pre-
onditioner must be used to mitigate the number of iterations of the
onjugate-gradient algorithm. Epanomeritakis et al. �2008� use a

variant of the L-BFGS method for the preconditioner of the conju-
gate gradient, in which the curvature of the objective function is up-
dated at each iteration of the conjugate gradient using the Hessian-
vector products collected over the iterations.

egularization and preconditioning of inversion

As widely stressed, FWI is an ill-posed problem, meaning that an
nfinite number of models matches the data. Some regularizations
re conventionally applied to the inversion to make it better posed
Menke, 1984; Tarantola, 1987; Scales et al., 1990�. The misfit func-
ion can be augmented as follows:

C�m��
1

2
�d†Wd�d�

1

2
��m�mprior�†Wm�m�mprior�,

�17�

here Wd�Sd
t Sd and Wm�Sm

t Sm. Weighting operators are Wd and
m, the inverse of the data and model covariance operators in the

rame of the Bayesian formulation of FWI �Tarantola, 1987�. The
perator Sd can be implemented as a diagonal weighting operator
hat controls the respective weight of each element of the data-misfit
ector. For example, Operto et al. �2006� use Sd as a power of the
ource-receiver offset to strengthen the contribution of large-offset
ata for crustal-scale imaging. In geophysical applications where the
moothest model that fits the data is often sought, the aim of the
east-squares regularization term in the augmented misfit function
equation 17� is to penalize the roughness of the model m, hence de-
ning the so-called Tikhonov regularization �see Hansen �1998� for
review on regularization methods�. The operator Sm is generally a

oughness operator, such as the first- or second-difference matrices
Press et al., 1986, 1007�.

For linear problems �assuming the second term of the Hessian is
eglected�, the minimization of the weighted misfit function gives
he perturbation model:

�m���R�J0
†WdJ0���Wm��1R�J0

†Wd�d0	, �18�

here we use mprior�m0. Of note, equation 18 is equivalent to
arantola �1987, p. 70� and Menke �1984, p. 55�:

�m��Wm
�1�R�J0Wm

�1J0
†���Wd

�1��1R�J0
†�d0	 .

�19�

quation 19 can be more tractable from a computational viewpoint
hen N � M. Because Wm is a roughness operator, Wm

�1 is a
moothing operator. It can be implemented, for example, with a mul-
idimensional adaptive Gaussian smoother �Ravaut et al., 2004; Op-
rto et al., 2006� or with a low-pass filter in the wavenumber domain
Sirgue, 2003�.

For the steepest-descent algorithm, the regularized solution for
he perturbation model is given by
SEG license or copyright; see Terms of Use at http://segdl.org/
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Full-waveform inversion WCC133
�m���Wm
�1

R�J0
†Wd�d0	, �20�

here the scaling performed by the diagonal terms of the approxi-
ate Hessian can be embedded in the operator Wm

�1 in addition to the
moothing operator.

A more complete and rigorous mathematical derivation of these
quations is presented in Tarantola �1987�.

Alternative regularizations based on minimizing the total varia-
ion of the model have been developed mainly by the image-process-
ng and electromagnetic communities. The aim of the total variation
r edge-preserving regularization is to preserve both the blocky and
he smooth characteristics of the model �Vogel and Oman, 1996; Vo-
el, 2002�. Total variation �TV� regularization is conventionally im-
lemented by minimizing the L1-norm of the model-misfit function
TV� ��mWm�m�1/2. Alternatively, van den Berg and Abubakar

2001� implement TV regularization as a multiplicative constraint in
he original misfit function. In this framework, the original misfit
unction can be seen as the weighting factor of the regularization
erm, which is automatically updated by the optimization process
ithout the need for heuristic tuning. TV regularization is applied to
WI in Askan and Bielak �2008�. The weighted L2-norm regulariza-
ion applied to frequency-domain FWI is shown in Hu et al. �2009�
nd Abubakar et al. �2009�.

he gradient and Hessian in FWI: Interpretation and
omputation

Aclear interpretation of the gradient and Hessian is given by Pratt
t al. �1998� using the compact matrix formalism of frequency-do-
ain FWI.Areview is given here. Let us consider the forward-prob-

em equation given by equation 2 for one source and one frequency.
n the following, we assume that the model is discretized in a finite-
ifference sense using a uniform grid of nodes.
Differentiation of equation 2 with respect to the model parameter

l gives the expression of the partial derivative wavefield �u /�m�

y solving the following system:

B
�u

�m�

� f���, �21�

here

f�����
�B

�m�

u . �22�

An analogy between the forward-problem equation 2 and equa-
ion 21 shows that the partial-derivative wavefield can be computed
y solving one forward problem, the source of which is given by f���.
his so-called virtual secondary source is formed by the product of
B /�m� and the incident wavefield u. The matrix �B /�m� is built by
ifferentiating each coefficient of the forward-problem operator B
ith respect to m�. Because the discretized differential operators in B
enerally have local support, the matrix �B /�m� is extremely
parse.

The spatial support of the virtual secondary source is centered on
he position of m�, whereas the temporal support of f��� is centered
round the arrival time of the incident wavefield at the position of m�.
herefore, the partial-derivative wavefield with respect to the model
arameter m� can be interpreted as the wavefield emitted by the seis-
ic source s and scattered by a point diffractor located at m�. The ra-

iation pattern of the virtual secondary source is controlled by the
perator �B /�m . Analysis of this radiation pattern for different pa-
�

Downloaded 04 Dec 2009 to 193.50.85.151. Redistribution subject to 
ameter classes allows us to assess to what extent parameters of dif-
erent natures are uncoupled in the tomographic reconstruction as a
unction of the diffraction angle and to what extent they can be reli-
bly reconstructed during FWI. Radiation patterns for the isotropic
coustic, elastic, and viscoelastic wave equations are shown in Wu
ndAki �1985�, Tarantola �1986�, Ribodetti and Virieux �1996�, and
orgues and Lambaré �1997�.
Because the gradient is formed by the zero-lag correlation be-

ween the partial-derivative wavefield and the data residual, these
ave the same meaning: They represent perturbation wavefields
cattered by the missing heterogeneities in the starting model m0

Tarantola, 1984; Pratt et al., 1998�. This interpretation draws some
onnections between FWI and diffraction tomography; the perturba-
ion model can be represented by a series of closely spaced diffrac-
ors. By virtue of Huygens’principle, the image of the model pertur-
ations is built by the superposition of the elementary image of each
iffractor, and the seismic wavefield perturbation is built by super-
osition of the wavefields scattered by each point diffractor �Mc-
echan and Fuis, 1987�.
The approximate Hessian is formed by the zero-lag correlation

etween the partial-derivative wavefields, e.g., equation 10. The di-
gonal terms of the approximate Hessian contain the zero-lag auto-
orrelation and therefore represent the square of the amplitude of the
artial-derivative wavefield. Scaling the gradient by these diagonal
erms removes from the gradient the geometric amplitude of the par-
ial-derivative wavefields and the residuals. In the framework of sur-
ace seismic experiments, the effects of the scaling performed by the
iagonal Hessian provide a good balance between shallow and deep
erturbations. A diagonal Hessian is shown in Ravaut et al. �2004,
heir Figure 12�. The off-diagonal terms of the Hessian are computed
y correlation between partial-derivative wavefields associated with
ifferent model parameters. For 1D media, the approximate Hessian
s a band-diagonal matrix, and the numerical bandwidth decreases as
he frequency increases. The off-diagonal elements of the approxi-
ate Hessian account for the limited-bandwidth effects that result

rom the experimental setup.Applying its inverse to the gradient can
e interpreted as a deconvolution of the gradient from these limited-
andwidth effects.
An illustration of the scaling and deconvolution effects performed

y the diagonal Hessian on one hand and the approximate Hessian
n the other hand is provided in Figure 1. A single inclusion in a ho-
ogeneous background model �Figure 1a� is reconstructed by one

teration of FWI using a gradient method preconditioned by the diag-
nal terms of the approximate Hessian �Figure 1b� and by a Gauss-
ewton method �Figure 1c�. The image of the inclusion is sharper
hen the Gauss-Newton algorithm is used. The corresponding ap-
roximate Hessian and its diagonal elements are shown in Figure 2.
n interpretation of the second term of the Hessian �equation 10� is
iven in Pratt et al. �1998�. This term accounts for multiscattering
vents such as multiples in the reconstruction procedure. Through it-
rations, we might correct effects caused by this missing term as
ong as convergence is achieved.

Although equation 21 gives some clear insight into the physical
ense of the gradient of the misfit function, it is impractical from a
omputer-implementation point of view; with the computer explicit-
y forming the sensitivity matrix with equation 21, it would require
erforming as many forward problems as the number of model pa-
ameters m����1,M� for each source of the survey. To mitigate this
omputational burden, the spatial reciprocity of Green’s functions
an be exploited as shown below.
SEG license or copyright; see Terms of Use at http://segdl.org/
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WCC134 Virieux and Operto
Inserting the expression of the partial derivative of the wavefield
equation 21� in the expression of the gradient of equation 9 gives the
ollowing expression of the gradient:

�C��R�ut� �B

�m�
�t

B�1t
�P�d�*�, �23�

here P denotes an operator that augments the residual data vector
ith zeroes in the full computational domain so that the dimension
f the augmented vector matches the dimension of the matrix B�1t

Pratt et al., 1998�. The column of B�1 corresponds to the Green’s
unctions for unit impulse sources located at each node of the model.
y virtue of the spatial reciprocity of the Green’s functions, B�1 is
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igure 1. Reconstruction of an inclusion by frequency-domain FWI.
a� True model and FWI models built �b� by a preconditioned gradi-
nt method and �c� by a Gauss-Newton method. Four frequencies �4,
, 7, and 10 Hz� were inverted. One iteration per frequency was com-
uted. Fourteen shots were deployed along the top and left edges of
he model. Shots along the top edge were recorded by 14 receivers
long the bottom edge; shots along the left edges were recorded by
4 receivers along the right edge. The P-wave velocities in the back-
round and in the inclusion are 4.0 and 4.2 km/s, respectively. Verti-
al velocity profiles are extracted from the true model �gray line� and
he FWI models �black line� for �d� the gradient and �e� the Gauss-
ewton inversions.
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ymmetric. Therefore, B�1t
can be substituted by B�1 in equation 23,

hich gives

�C��R�ut� �B

�m�
�t

B�1�P�d*���R�ut� �B

�m�
�t

rb� .

�24�

he wavefield rb corresponds to the back-propagated residual wave-
eld. All of the residuals associated with one seismic source are as-
embled to form one residual source. The back propagation in time is
ndicated by the conjugate operator in the frequency domain. The
umber of forward seismic problems for computing the gradient is
educed to two: one to compute the incident wavefield u and one to
ack propagate the corresponding residuals. The underlying imag-
ng principle is reverse-time migration, which relies on the corre-
pondence of the arrival times of the incident wavefield and the
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igure 2. Hessian operator. �a� Approximate Hessian corresponding
o the 31 � 31 model of Figure 1 for a frequency of 4 Hz.Aclose-up
f the area delineated by the yellow square highlights the band-diag-
nal structure of the Hessian. �b� Corresponding diagonal terms of
he Hessian plotted in the distance-depth domain. The high-ampli-
ude coefficients indicate source and receiver positions. Scaling the
radient by this map removes the geometric amplitude effects from
he wavefields.
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Full-waveform inversion WCC135
ack-propagated wavefield at the position of heterogeneity �Claer-
out, 1971; Lailly, 1983; Tarantola, 1984�.
The approach that consists of computing the gradient of the misfit

unction without explicitly building the sensitivity matrix is often re-
erred to as the adjoint-wavefield approach by the geophysical com-
unity. The underlying mathematical theory is the adjoint-state
ethod of the optimization theory �Lions, 1972; Chavent, 1974�. In-

eresting links exist between optimization techniques used in FWI
nd assimilation methods, widely used in fluid mechanics �Tala-
rand and Courtier, 1987�. A detailed review of the adjoint-state
ethod with illustrations from several seismic problems is given in
romp et al. �2005�, Askan �2006�, Plessix �2006�, and Epanomer-

takis et al. �2008�. The expression of the gradient of the frequency-
omain FWI misfit function �equation 24� is derived from the ad-
oint-state method and the method of the Lagrange multiplier in Ap-
endix A.
For multiple sources and multiple frequencies, the gradient is

ormed by the summation over these sources and frequencies:

�C�� �
i�1

N�

�
s�1

Ns

R��Bi
�1ss	t� �Bi

�m�
�t

�Bi
�1�P�d

i,s
* �	� .

�25�

e also need to note that matrices Bi
�1�i�1,N�� do not depend on

hots; therefore, any speedup toward resolving systems that involve
hese matrices with multiple sources should be considered �Marfurt,
984; Jo et al., 1996; Stekl and Pratt, 1998�.
By comparing the expressions of the gradient in equations 9 and

4, we can conclude that one element of the sensitivity matrix is giv-
n by

Jk�s,r�,��us
t� �Bt

�m�
�B�1� r, �26�

here k�s,r� denotes a source-receiver couple of the acquisition ge-
metry, with s and r denoting a shot and a receiver position, respec-
ively. An impulse source � r is located at receiver position r. If the
ensitivity matrix must be built, one forward problem for the inci-
ent wavefield and one forward problem per receiver position must
e computed. Therefore, the number of simulations to build the sen-
itivity matrix can be higher than that required by gradient estima-
ion if the number of nonredundant receiver positions significantly
xceeds the number of nonredundant shots, or vice versa. Comput-
ng each term of the sensitivity matrix is also required to compute the
iagonal terms of the approximate Hessian Ha �Shin et al., 2001b�.
o mitigate the resulting computational burden for coarse OBS sur-
eys, Operto et al. �2006� suggest computing the diagonal terms of
a for a decimated shot acquisition. Alternatively, Shin et al.

2001a� propose using an approximation of the diagonal Hessian,
hich can be computed at the same cost as the gradient.
Although the matrix-free adjoint approach is widely used in ex-

loration seismology, the earthquake-seismology community tends
o favor the scattering-integral method, which is based on the explic-
t building of the sensitivity matrix �Chen et al., 2007�. The linear
ystem relating the model perturbation to the data perturbation is
ormed and solved with a conjugate-gradient algorithm such as
SQR �Paige and Saunders, 1982a�. A comparative complexity
nalysis of the adjoint approach and the scattering-integral approach
s presented in Chen et al. �2007�, who conclude that the scattering-
ntegral approach outperforms the adjoint approach for a regional to-
Downloaded 04 Dec 2009 to 193.50.85.151. Redistribution subject to 
ographic problem. Indeed, the superiority of one approach over the
ther is highly dependent on the acquisition geometry �the relative
umber of sources and receivers� and the number of model parame-
ers.

The formalism in equation 25 has been kept as general as possible
nd can relate to the acoustic or the elastic wave equation. In the
coustic case, the wavefield is the pressure scalar wavefield; in the
lastic case, the wavefield ideally is formed by the components of the
article velocity and the pressure if the sensors have four compo-
ents. Equation 25 can be translated in the time domain using Parse-
al’s relation. The expression of the gradient in equation 25 can be
eveloped equivalently using a functional analysis �Tarantola,
984�. The partial derivatives of the wavefield with respect to the
odel parameters are provided by the kernel of the Born integral that

elates the model perturbations to the wavefield perturbations. Mul-
iplying the transpose of the resulting operator by the conjugate of
he data residuals provides the expression of the gradient. The two
ormalisms �matrix and functional� give the same expression, pro-
ided the discretization of the partial differential operators are per-
ormed consistently in the two approaches. The derivation in the fre-
uency domain of the gradient of the misfit function using the two
ormalisms is explicitly illustrated by Gelis et al. �2007�.

ource estimation

Source excitation is generally unknown and must be considered
s an unknown of the problem �Pratt, 1999�. The source wavelet can
e estimated by solving a linear inverse problem because the rela-
ionship between the seismic wavefield and the source is linear
equation 2�. The solution for the source is given by the expression

s�
�gcal�m0�dobs�

�gcal�m0�gcal�m0��
, �27�

here gcal�m0� denotes the Green’s functions computed in the start-
ng model m0. The source function can be estimated directly in the
WI algorithm once the incident wavefields have been modeled.
he source and the medium are updated alternatively over iterations
f the FWI. Note that it is possible to take advantage of source esti-
ation to design alternative misfit functions based on the differential

emblance optimization �Pratt and Symes, 2002� or to define more
euristic criteria to stop the iteration of the inversion �Jaiswal et al.,
009�.
Alternatively, new misfit functions have been designed so the in-

ersion becomes independent of the source function �Lee and Kim,
003; Zhou and Greenhalgh, 2003�. The governing idea of the meth-
d is to normalize each seismogram of a shot gather by the sum of all
f the seismograms. This removes the dependency of the normalized
ata with respect to the source and modifies the misfit function. The
rawback is that this approach requires an explicit estimate of the
ensitivity matrix; the normalized residuals cannot be back propa-
ated because they do not satisfy the wave equation.

SOME KEY FEATURES OF FWI

esolution power of FWI and relationship to the
xperimental setup

The interpretation of the partial-derivative wavefield as the wave-
eld scattered by the missing heterogeneities provides some connec-

ions between FWI and generalized diffraction tomography �Dev-
ney and Zhang, 1991; Gelius et al., 1991�. Diffraction tomography
SEG license or copyright; see Terms of Use at http://segdl.org/
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WCC136 Virieux and Operto
ecasts the imaging as an inverse Fourier transform �Devaney, 1982;
u and Toksoz, 1987; Sirgue and Pratt, 2004; Lecomte et al., 2005�.

et us consider a homogeneous background model of velocity c0, an
ncident monochromatic plane wave propagating in the direction ŝ
nd a scattered monochromatic plane wave in the far-field approxi-
ation propagating in the direction r̂ �Figure 3�. If amplitude effects

re not taken into account, the incident and scattered Green’s func-
ions can be written compactly as

G0�x,s��exp�ik0ŝ .x�,

G0�x,r��exp�ik0r̂ .x�, �28�

ith the relation k0�� /c0. Inserting the expression of the incident
nd scattered plane waves into the gradient of the misfit function of
quation 24 gives the expression �Sirgue and Pratt, 2004�

�C�m����2�
�

�
s

�
r

R�exp�� ik0�ŝ� r̂� .x��d� .

�29�

Equation 29 has the form of a truncated Fourier series where the
ntegration variable is the scattering wavenumber vector given by k

k0� ŝ� r̂�. The coefficients of the series are the data residuals. The
ummation is performed over sources, receivers, and frequencies
hat control the truncation and sampling of the Fourier series.

We can express the scattering wavenumber vector k0� ŝ� r̂� as a
unction of frequency, diffraction angle, or aperture to highlight the
elationship between the experimental setup and the spatial resolu-
ion of the reconstruction �Figure 4�:

k�
2f

c0
cos�	

2
�n, �30�

here n is a unit vector in the direction of the slowness vector � ŝ
r̂�. Equation 30 was also derived in the framework of the ray 


orn migration/inversion, recast as the inverse of a generalized Ra-
on transform �Miller et al., 1987� or as a least-squares inverse prob-
em �Lambaré et al., 2003�.

Several key conclusions can be derived from equation 30. First,
ne frequency and one aperture in the data space map one wavenum-
er in the model space. Therefore, frequency and aperture have re-
undant control of the wavenumber coverage. This redundancy in-
reases with aperture bandwidth. Pratt and Worthington �1990�, Sir-
ue and Pratt �2004�, and Brenders and Pratt �2007a� propose deci-
ating this wavenumber-coverage redundancy in frequency-do-
ain FWI by limiting the inversion to a few discrete frequencies.
his data reduction leads to computationally efficient frequency-do-
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ŝ r̂

a) b) c)

igure 3. Resolution analysis of FWI. �a� Incident monochromatic
lane wave �real part�. �b� Scattered monochromatic plane wave
real part�. �c� Gradient of FWI describing one wavenumber compo-
ent �real part� built from the plane waves shown in �a� and �b�.
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ain FWI and allows managing a compact volume of data, two clear
dvantages with respect to time-domain FWI. The guideline for se-
ecting the frequencies to be used in the FWI is that the maximum
avenumber imaged by a frequency matches the minimum vertical
avenumber imaged by the next frequency �Sirgue and Pratt, 2004,

heir Figure 3�. According to this guideline, the frequency interval
ncreases with the frequency.

Second, the low frequencies of the data and the wide apertures
elp resolve the intermediate and large wavelengths of the medium.
t the other end of the spectrum, the maximum wavenumber, con-

trained by 	 � 0 and the highest frequency, leads to a maximum res-
lution of half a wavelength if normal-incidence reflections are re-
orded. Third, for surface acquisitions, long offsets are helpful for
ampling the small horizontal wavenumbers of dipping structures
uch as flanks of salt domes.

A frequency-domain sensitivity kernel for point sources, referred
o as the wavepath by Woodward �1992�, is shown in Figure 5. The
nterference picture shows zones of equiphase over which the resid-
als are back projected during FWI. The central zone of elliptical
hape is the first Fresnel zone of width ��osr, where osr is the source-
eceiver offset. Residuals that match the first arrival with an error
ower than half a period will be back projected constructively over
he first Fresnel zone, updating the large wavelengths of the struc-
ure. The outer fringes are isochrones on which residuals associated
ith later-arriving reflection phases will be back projected, provid-

ng an update of the shorter wavelengths of the medium, just like
SDM �Lecomte, 2008�. The width of the isochrones, which gives
ome insight into the vertical resolution in Figure 4, is given by the
odulus of the wavenumber of equation 30.
To illustrate the relationship between FWI resolution and the ex-

erimental setup, we show the FWI reconstruction of an inclusion in
homogeneous background for three acquisition geometries �Figure
�. In the crosshole experiment �Figure 6a�, FWI has reconstructed a
ow-pass-filtered �smoothed� version of the vertical section of the in-
lusion and a band-pass-filtered version of the horizontal section of
he inclusion. This anisotropy of the imaging results from the trans-
ission-like reconstruction of the vertical wavenumbers and the re-
ection-like reconstruction of the horizontal wavenumbers of the in-
lusion. In the case of the double crosshole experiment �Figure 6b�,
he vertical and horizontal wavenumber spectra of the inclusion have

S R

ps
pr

x

q

θ

k = f q

λ = c/f

q = ps + pr
ps = pr = 1/c

igure 4. Illustration of the main parameters in diffraction tomogra-
hy and their relationships. Key: �, wavelength; 	 , diffraction or ap-
rture angle; c, P-wave velocity; f , frequency; pS, pR, q, slowness
ectors; k, wavenumber vector; x, diffractor point; S and R, source
nd receiver positions.
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Full-waveform inversion WCC137
een partly filled because of the combined use of transmission and
eflection wavepaths. Of note, the vertical section shows a lack of
ow wavenumbers, whereas the horizontal section exhibits a deficit
f low wavenumbers because the maximum horizontal source-re-
eiver offset is two times higher than the vertical one �Figure 6b�.
herefore, the aperture illuminations of the horizontal and vertical
avenumbers differ. For the surface acquisition �Figure 6c�, the ver-

ical section exhibits a strong deficit of low wavenumbers because of
he lack of large-aperture illumination. Of note, the pick-to-pick am-
litude of the perturbation is fully recovered in Figure 6c. The hori-
ontal section of the inclusion is poorly recovered because of the
oor illumination of the horizontal wavenumbers from the surface.
The ability of the wide apertures to resolve the large wavelengths

f the medium has prompted some studies to consider long-offset ac-
uisitions as a promising approach to design well-posed FWI prob-
ems �Pratt et al., 1996; Ravaut et al., 2004�. For example, equation
0 can suggest that the long wavelengths of the medium can be re-
olved whatever the source bandwidth, provided that wide-aperture
ata are recorded by the acquisition geometry. However, all of the
onclusions derived so far rely on the Born approximation.The Born
pproximation requires that the starting model allows matching the
bserved traveltimes with an error less than half the period �Bey-
oun and Tarantola, 1988�. If not, the so-called cycle-skipping arti-
acts will lead to convergence toward a local minimum �Figure 7�.

Pratt et al. �2008� translates this condition in terms of relative time
rror �t /TL as a function of the number of propagated wavelengths
�, expressed as

�t

TL
�

1

N�

, �31�

here TL denotes the duration of the simulation. Condition 31 shows
hat the traveltime error must be less than 1% for an offset involving
0 propagated wavelengths, a condition unlikely to be satisfied if
WI is applied without data preconditioning. Therefore, some stud-

es consider that recording low frequencies ��1 Hz� is the best strat-
gy to design well-posed FWI �Sirgue, 2006�. Unfortunately, such
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igure 5. Wavepath. �a� Monochromatic Green’s function for a point
ource. �b� Wavepath for a receiver located at a horizontal distance
f 70 km from the source. The frequency is 5 Hz and the velocity in
he homogeneous background is 6 km/s. The dashed red lines delin-
ate the first Fresnel zone and an isochrone surface. The yellow line
s a vertical section across the wavepath.The blue lines represent dif-
raction paths within the first Fresnel zone and from the isochrone.
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ow frequencies cannot be recorded during controlled-source exper-
ments. As an alternative to low frequencies, multiscale layer-strip-
ing approaches where longer offsets, shorter apertures, and longer
ecording times are progressively introduced in the inversion, have
een designed to mitigate the nonlinearity of the inversion.

ultiscale FWI: Time domain versus frequency domain
FWI can be implemented in the time domain or in the frequency

omain. FWI was originally developed in the time domain �Taran-
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igure 6. Imaging an inclusion by FWI. �a� Crosshole experiment.
ource and receiver lines are in red and blue, respectively. The con-

our of the inclusion with a diameter of 400 m is delineated by the
lue circle. The true velocity in the inclusion is 4.2 km/s, whereas the
elocity in the background is 4 km/s. Six frequencies �4, 7, 9, 11, 12,
nd 15 Hz� were inverted successively, and 20 iterations per frequen-
y were computed. The black and gray curves along the right and
ottom sides of the model are velocity profiles across the center of
he inclusion extracted from the exact model and the reconstructed
odel, respectively. �b� Same as �a� for a vertical and horizontal

rosshole experiment �the shots along the red dashed line are record-
d by only the receivers along the vertical blue dashed line�. �c�
ame as �a� for a surface experiment.
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WCC138 Virieux and Operto
ola, 1984; Gauthier et al., 1986; Mora, 1987; Crase et al., 1990�
hereas the frequency-domain approach was proposed mainly in

he 1990s by Pratt and collaborators �Pratt, 1990; Pratt and Wor-
hington, 1990; Pratt and Goulty, 1991�, first with application to
rosshole data and later with application to wide-aperture surface
eismic data �Pratt et al., 1996�.

The nonlinearity of FWI has prompted many studies to develop
ome hierarchical multiscale strategies to mitigate this nonlinearity.
part from computational efficiency, the flexibility offered by the

ime domain or the frequency domain to implement efficient multi-
cale strategies is one of the main criteria that favors one domain
ather than the other. The multiscale strategy successively processes
ata subsets of increasing resolution power to incorporate smaller
avenumbers in the tomographic models. In the time domain,
unks et al. �1995� propose successive inversion of subdata sets of

ncreasing high-frequency content because low frequencies are less
ensitive to cycle-skipping artifacts.The frequency domain provides
more natural framework for this multiscale approach by perform-

ng successive inversions of increasing frequencies. In the frequency
omain, single or multiple frequencies �i.e., frequency group� can be
nverted at a time.

Although a few discrete frequencies theoretically are sufficient to
ll the wavenumber spectrum for wide-aperture acquisitions, simul-

aneous inversion of multiple frequencies improves the signal-to-
oise ratio and the robustness of FWI when complex wave phenom-
na are observed �i.e., guide waves, surface waves, dispersive
aves�. Therefore, a trade-off between computational efficiency and
uality of imaging must be found. When simultaneous multifre-
uency inversion is performed, the bandwidth of the frequency
roup ideally must be as large as possible to mitigate the nonlinearity
f FWI in terms of the nonunicity of the solution, whereas the maxi-
um frequency of the group must be sufficiently low to prevent cy-

le-skipping artifacts. An illustration of this tuning of FWI is given
n Brossier et al. �2009a� in the framework of elastic seismic imaging
f complex onshore models from the joint inversion of surface
aves and body waves.

n n + 1n – 1

n

Time (s)

n + 1nn – 1

T/2 T/2

n + 1n – 1

igure 7. Schematic of cycle-skipping artifacts in FWI. The solid
lack line represents a monochromatic seismogram of period T as a
unction of time. The upper dashed line represents the modeled
onochromatic seismograms with a time delay greater than T /2. In

his case, FWI will update the model such that the n�1th cycle of
he modeled seismograms will match the nth cycle of the observed
eismogram, leading to an erroneous model. In the bottom example,
WI will update the model such that the modeled and recorded nth
ycle are in-phase because the time delay is less than T /2.
Downloaded 04 Dec 2009 to 193.50.85.151. Redistribution subject to 
The regularization effects introduced by hierarchical inversion of
ncreasing frequencies might not be sufficient to provide reliable
WI results for realistic frequencies and realistic starting models in

he case of complex structures. This has prompted some studies to
esign additional regularization levels in FWI. One of these is to se-
ect a subset of arrivals as a function of time.An aim of this time win-
owing is to remove arrivals that are not predicted by the physics of
he wave equation implemented in FWI �for example, PS-converted
aves in the frame of acoustic FWI�. A second aim is to perform a
euristic selection of aperture angles in the data. Considering a nar-
ow time window centered on the first arrival leads to so-called ear-
y-arrival waveform tomography �Sheng et al., 2006�. Time win-
owing the data around the first arrivals is equivalent to selecting the
arge-aperture components of the data to image the large and inter-
ediate wavelengths of the medium.Alternatively, time windowing

an be applied to isolate later-arriving reflections or PS-converted
hases to focus on imaging a specific reflector or a specific parame-
er class, such as the S-wave velocity �Shipp and Singh, 2002; Sears
t al., 2008; Brossier et al., 2009a�.

The frequency domain is the most appropriate to select one or a
ew frequencies for FWI, but the time domain is the most appropriate
o select one type of arrival for FWI. Indeed, time windowing cannot
e applied in frequency-domain modeling, in which only one or few
requencies are modeled at a time.Alast resort is the use of complex-
alued frequencies, which is equivalent to the exponential damping
f a signal p�t� in time from an arbitrary traveltime t0 �Sirgue, 2003;
renders and Pratt, 2007b�:

P�� �
i

�
�et0/� ��

�

�

p�t�e��t�t0�/�ei�tdt, �32�

here P��� denotes the Fourier transform of p�t� and � is the damp-
ng factor.

A last regularization level can be implemented by layer stripping,
n which the imaging proceeds hierarchically from the shallow part
o the deep part. Layer stripping in FWI can be applied by combined
ffset and temporal windowing �Shipp and Singh, 2002; Wang and
ao, 2009�.
These three levels of regularization — frequency dependent, time

ependent, and offset dependent — can be combined in one integrat-
d multiloop FWI workflow.An example is provided in Shin and Ha
2009� and Brossier et al. �2009a�, in which the frequency- and time-
ependent regularizations are implemented into two nested loops
ver frequency groups and time-damping factors. In this approach,
he frequencies increase in the outer loop and the damping factors
ecrease in the inner loop. In Figure 8, the VP and VS models of the
verthrust model are inferred from the successive inversion of two
roups of five frequencies �Brossier et al., 2009a�. The frequencies
f the first group range from 1.7 to 3.5 Hz, whereas those of the sec-
nd group range from 3.5 to 7.2 Hz. Five damping factors of � be-
ween 0.67 and 30.0 s were applied hierarchically for data precondi-
ioning during the inversion of each frequency group. Without these
wo regularization levels associated with frequency and aperture se-
ections, FWI fails to converge toward acceptable models.

In summary, the implementation of FWI in the frequency domain
llows the easy implementation of multiscale FWI based on the hier-
rchical inversion of groups of frequencies of arbitrary bandwidth
nd sampling intervals. Time-domain modeling provides the most
exible framework to apply time windowing of arbitrary geometry.
SEG license or copyright; see Terms of Use at http://segdl.org/
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Full-waveform inversion WCC139
his makes frequency-domain FWI based on time-domain model-
ng an attractive strategy to design robust FWI algorithms. This is es-
ecially true for 3D problems, for which time-domain modeling has
everal advantages with respect to frequency-domain modeling �Sir-
ue et al., 2008�.

n the parallel implementation of FWI

FWI algorithms must be implemented in parallel to address large-
cale 3D problems. Depending on the numerical technique for solv-
ng the forward problem, different parallel strategies can be consid-
red for FWI. If the forward problem is based on numerical methods
uch as time-domain modeling or iterative solvers, which are not de-
anding in terms of memory, a coarse-grained parallelism that con-

ists of distributing sources over processors is generally used and the
orward problem is performed sequentially on each processor for
ach source �Plessix, 2009�. If the number of processors significant-
y exceeds the number of shots, which can be the case if source en-
oding techniques are used �Krebs et al., 2009�, a second level of
arallelism can be viewed by domain decomposition of the physical
omputational domain. A comprehensive review of different algo-
ithms to efficiently compute the forward and the adjoint wavefields
n time-domain FWI is presented by Akcelik �2002�.

In contract, if the forward problem is based on a method that em-
eds a memory-expensive preprocessing step, such as LU factoriza-
ion in the frequency-domain direct-solver approach, parallelism
ust be based on a domain decomposition of the computational do-
ain. Each processor computes a subdomain of the wavefields for

ll sources. Examples of such algorithms are described in Ben Hadj
li et al. �2008a�, Brossier et al. �2009a�, and Sourbier et al. �2009a,
009b�. A contrast source inversion �CSI� method is described by
bubakar et al. �2009�, which allows a decrease in the number of LU

actorization in frequency-domain FWI at the expense of the number
f iterations.

ariants of classic least-squares and
orn-approximation FWI

Although the most popular approach of FWI is based on minimiz-
ng the least-squares norm of the data misfit on the one hand and on
he Born approximation for estimating partial-derivative wavefields
n the other, several variants of FWI have been proposed over the
ast decade. These variants relate to the definition of the minimiza-
ion criteria, the representation of the data �amplitude, phase, loga-
ithm of the complex-valued data, envelope� in the misfit, or the lin-
arization procedure of the inverse problem.

he choice of the minimization criterion

The least-squares norm approach assumes a Gaussian distribution
f the misfit �Tarantola, 1987�. Poor results can be obtained when
his assumption is violated, for example, when large-amplitude out-
iers affect the data. Therefore, careful quality control of the data
ust be carried out before least-squares inversion. Crase et al.

1990� investigate several norms such as the least-squares norm L2,
he least-absolute-values norm L1, the Cauchy criterion norm, and
he hyperbolic secant �sech� criterion in FWI �Figure 9�. The

1-norm specifically ignores the amplitude of the residuals during
ack propagation of the residuals when gradient building, making
his criterion less sensitive to large errors in the data.The Cauchy and
ech criteria can be considered a combination of the L - and the
1

Downloaded 04 Dec 2009 to 193.50.85.151. Redistribution subject to 
2-norms with different transitions between the norms. Crase et al.
1990� conclude that the most reliable FWI results have been ob-
ained with the Cauchy and the sech criteria.

The L2 and Cauchy criteria are also compared by Amundsen
1991� in the framework of frequency-wavenumber-domain FWI
or stratified media described by velocity, density, and layer thick-
esses �Amundsen and Ursin, 1991�. They consider random noise
nd weather noise and conclude in both cases that the Cauchy criteri-
n leads to the more robust results.
The Huber norm also combines the L1- and the L2-norms; it is

ombined with quasi-Newton L-BFGS by Guitton and Symes
2003� and Bube and Nemeth �2007�. The Huber norm is also used in
he framework of frequency-domain FWI by Ha et al. �2009� and
hows an overall more robust behavior than the L2-norm.

he choice of the linearization method

The sensitivity matrix is generally computed with the Born ap-
roximation, which assumes a linear tangent relationship between
he model and wavefield perturbations �Woodward, 1992�. This lin-
ar relationship between the perturbations can be inferred from the
ssumption that the wavefield computed in the updated model is the
avefield computed in the starting model plus the perturbation
avefield.
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igure 8. Multiscale strategy for elastic FWI with application to the
verthrust model. �a� FWI velocity models VP �top� and VS �bottom�.
b� Comparison between the logs from the true model �black�, the
tarting model �dashed gray�, and the final FWI model �solid gray�.
c� Synthetic seismograms computed in the final FWI models for the
orizontal �left� and vertical �right� components of particle velocity.
he bottom panels are the final residuals between seismograms
omputed in the true and in the final FWI models �image courtesy R.
rossier�.
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WCC140 Virieux and Operto
The Rytov approach considers the generalized phase as the wave-
eld �Woodward, 1992�. The Rytov approximation provides a linear
elationship between the complex-phase perturbation and the model
erturbation by assuming that the wavefield computed in the updat-
d model is related to the wavefield computed in the starting model
hrough u�x,���u0�x,��exp����x,���, where ∆��x,�� denotes
he complex-phase perturbation. The sensitivity of the Rytov kernel
s zero on the Fermat raypath because the traveltime is stationary
long this path. A linear relationship between the model perturba-
ions and the logarithm of the amplitude ratio Ln�A��� /A0���	 is
lso provided by the Rytov approximation by taking the real part of
he sensitivity kernel of the Rytov integral instead of the imaginary
art that provides the phase perturbation.
The Born approximation is valid in the case of weak and small

erturbations, but the Rytov approximation is supposed to be valid
or large-aperture angles and a small amount of scattering per wave-
ength, i.e., smooth perturbations or smooth variation in the phase-
erturbation gradient �Beydoun and Tarantola, 1988�.Although sev-
ral analyses of the Rytov approximation have been carried out, it re-
ains unclear to what extent its domain of validity differs signifi-

antly from that of the Born approximation. A comparison between
he Born approximation and the Rytov approximation in the frame-
ork of elastic frequency-domain FWI is presented in Gelis et al.

2007�. The main advantage of the Rytov approximation might be to
rovide a natural separation between phase and amplitude �e.g.,
oodward, 1992�. This separation allows the implementation of

hase and amplitude inversions �Bednar et al., 2007; Pyun et al.,
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avefield for the different functionals shown in �a�. Note that the
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007� from a frequency-domain FWI code using a logarithmic norm
Shin and Min, 2006; Shin et al., 2007�, the use of which leads to the
ytov approximation in the framework of local optimization
roblems.
Another approach in the time-frequency domain is developed by

ichtner et al. �2008� for continental- and global-scale FWI, in
hich the misfit of the phase and the misfit of the envelopes are min-

mized in a least-squares sense. The expected benefit from this ap-
roach is to mitigate the nonlinearity of FWI by separating the phase
nd amplitude in the inversion and by inverting the envelope instead
f the amplitudes, the former being more linearly related to the data.

uilding starting models for FWI

The ultimate goal in seismic imaging is to be able to apply FWI re-
iably from scratch, i.e., without the need for sophisticated a priori
nformation. Unfortunately, because multidimensional FWI at
resent can only be attacked through local optimization approaches,
uilding an accurate starting model for FWI remains one of the most
opical issues because very low frequencies ��1 Hz� still cannot be
ecorded in the framework of controlled-source experiments.

A starting model for FWI can be built by reflection tomography
nd migration-based velocity analysis such as those used in oil and
as exploration. A review of the tomographic workflow is given in
oodward et al. �2008�. Other possible approaches for building ac-

urate starting models, which should tend toward a more automatic
rocedure and might be more closely related to FWI, are first-arrival
raveltime tomography �FATT�, stereotomography, and Laplace-do-
ain inversion.
FATT performs nonlinear inversions of first-arrival traveltimes to

roduce smooth models of the subsurface �e.g., Nolet, 1987; Hole,
992; Zelt and Barton, 1998�. Traveltime residuals are back project-
d along the raypaths to compute the sensitivity matrix. The tomog-
aphic system, augmented with smoothing regularization, generally
s solved with a conjugate-gradient algorithm such as LSQR �Paige
nd Saunders, 1982b�.Alternatively, the adjoint-state method can be
pplied to FATT, which avoids the explicit building of the sensitivity
atrix, just as in FWI �Taillandier et al., 2009�. The spatial resolu-

ion of FATT is estimated to be the width of the first Fresnel zone
Williamson, 1991; Figure 5�.

Examples of applications of FWI to real data using a starting mod-
l built by FATT are shown, for example, in Ravaut et al. �2004�, Op-
rto et al. �2006�, Jaiswal et al. �2008, 2009�, and Malinowsky and

Operto �2008� for surface acquisitions; in Dessa and Pascal �2003� in
the framework of ultrasonic experimental data; in Pratt and Goulty
�1991� for crosshole data; and in Gao et al. �2006b� for VSPdata.

Several blind tests that correspond to surface acquisitions have
been tackled by joint FATT and FWI. Results at the oil-exploration
scale and at the lithospheric scale are presented in Brenders and Pratt
�2007a, 2007b, 2007c� and suggest that very low frequencies and
very large offsets are required to obtain reliable FWI results when
he starting model is built by FATT. For example, only the upper part
f the BP benchmark model was imaged successfully by Brenders
nd Pratt �2007c� using a starting frequency as small as 0.5 Hz and a
aximum offset of 16 km. Another drawback of FATT is that the
ethod is not suitable when low-velocity zones exist because these

ow-velocity zones create shadow zones.
Reliable picking of first-arrival times is also a difficult issue when

ow-velocity zones exist. Fitting first-arrival traveltimes does not
uarantee that computed traveltimes of later-arriving phases, such as
SEG license or copyright; see Terms of Use at http://segdl.org/
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Full-waveform inversion WCC141
eflections, will match the true reflection traveltimes with an error
hat does not exceed half a period, especially if anisotropy affects the
avefield. We should stress that FATT can be recast as a phase inver-

ion of the first arrival using a frequency-domain waveform-inver-
ion algorithm within which complex-valued frequencies are imple-
ented �Min and Shin, 2006; Ellefsen, 2009�. Compared to FATT

ased on the high-frequency approximation, this approach helps ac-
ount for the finite-frequency effect of the data in the sensitivity ker-
el of the tomography. Judicious selection of the real and imaginary
arts of the frequency allows extraction of the phase of the first arriv-
l. The principles and some applications of the method are presented
n Min and Shin �2006� and Ellefsen �2009� for near-surface applica-
ions. This is strongly related to finite-frequency tomography �Mon-
elli et al., 2004�.

Traveltime tomography methods that can manage refraction and
eflection traveltimes should provide more consistent starting mod-
ls for FWI. Among these methods, stereotomography is probably
ne of the most promising approaches because it exploits the slope
f locally coherent events and a reliable semiautomatic picking pro-
edure has been developed �Lambaré, 2008�. Applications of ste-
eotomography to synthetic and real data sets are presented in Bil-
ette and Lambaré �1998�, Alerini et al. �2002�, Billette et al. �2003�,
ambaré andAlérini �2005�, and Dummong et al. �2008�.
To illustrate the sensitivity of FWI to the accuracy of different

tarting models, Figure 10 shows FWI reconstructions of the syn-
hetic Valhall model when the starting model is built by FATT and re-
ection stereotomography �Prieux et al., 2009�. In the case of ste-
eotomography, the maximum offset is 9 km and only the reflection
raveltimes are used �Lambaré andAlérini, 2005�, whereas the maxi-
um offset is 32 km for FATT �Prieux et al., 2009�. Stereotomogra-

hy successfully reconstructs the large wavelength within the gas
loud down to a maximum depth of 2.5 km; FATTfails to reconstruct
he large wavelengths of the low-velocity zone associated with the
as cloud. However, the FWI model inferred from the FATT starting
odel shows an accurate reconstruction of the shallow part of the
odel. These results suggest that joint inversion of refraction and re-
ection traveltimes by stereotomography can provide a promising
ramework to build starting models for FWI.

A third approach to building a starting model for FWI can be pro-
ided by Laplace-domain and Laplace-Fourier-domain inversions
Shin and Cha, 2008, 2009; Shin and Ha, 2008�. The Laplace-do-
ain inversion can be viewed as a frequency-domain waveform in-

ersion using complex-valued frequencies �see equation 32�, the
eal part of which is zero and the imaginary part of which controls the
ime damping of the seismic wavefield. In other words, the principle
s the inversion of the DC component of damped seismograms where
he Laplace variable s corresponds to 1 /� in equation 32. The DC of
he undamped data is zero, but the DC of the damped data is not and
s exploited in Laplace-domain waveform inversion. The informa-
ion contained in the data can be similar to the amplitude of the wave-
eld �Shin and Cha, 2009�. Laplace-domain waveform inversion
rovides a smooth reconstruction of the velocity model, which can
e used as a starting model for Laplace-Fourier and classical fre-
uency-domain waveform inversions.
The Laplace-Fourier domain is equivalent to performing an inver-

ion of seismograms damped in time. The results shown in Shin and
ha �2009� suggest that this method can be applied to frequencies
maller than the minimum frequency of the source bandwidth. The
bility of the method to use frequencies smaller than the frequencies
ffectively propagated by the seismic source is called a mirage resur-
Downloaded 04 Dec 2009 to 193.50.85.151. Redistribution subject to 
ection of the low frequencies by Shin and Cha �2009�. An applica-
ion to real data from the Gulf of Mexico is shown in Shin and Cha
2009�. For the real-data application, frequencies between 0 and 2
z in combination with nine Laplace damping constants are used for

he Laplace-Fourier-domain inversion, the final model of which is
sed as the starting model for standard frequency-domain FWI.
Joint application of Laplace-domain, Laplace-Fourier-domain

nd Fourier-domain FWI to the BPbenchmark model is illustrated in
igure 11 �Shin and Cha, 2009�. The starting model is a simple ve-

ocity-gradient model �Figure 11b�. A first velocity model of the
arge wavelengths is obtained by Laplace-domain inversion �Figure
1c�, which is subsequently used as a starting model for inversion in
he Laplace-Fourier-domain inversion, the final model of which is
hown in Figure 11d. During this stage, the starting frequency used
n the inversion of the damped data is as low as 0.01 Hz. The final
odel obtained after frequency-domain FWI is shown in Figure 11e.
ll of the structures were successfully imaged, beginning with a
ery crude starting model.
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igure 10. �a� Close-up of the synthetic Valhall velocity model cen-
ered on the gas layer. �b� FWI model built from a starting model ob-
ained by smoothing the true model with a Gaussian filter with hori-
ontal and vertical correlation lengths of 500 m. �c� FWI model from
starting model built by FATT �Prieux et al., 2009�. �d� FWI model

rom a starting model built by stereotomography �Lambaré and
lérini, 2005�. �e� Velocity profiles at a distance of 7.5 km extracted

rom the true model �black line�, from the starting model built by
moothing the true model �blue line�, and from the FWI model of �b�
red line�. �f� Same as �e� for the starting model built by FATT and �c�
he corresponding FWI model. �g� Same as �e� for the starting model
uilt by stereotomography and �d� the corresponding FWI model.
he frequencies used in the inversion are between 4 and 15 Hz.
SEG license or copyright; see Terms of Use at http://segdl.org/



e
B
p
s

M

a

a
p
a
e
C
i
v
s
F
r

s
m
2
i
f
c
a
t
c
p
n
�
s
p
e

s
r
f
e
o
m
p
o
b
s
a
I

c
p
t
t
i
c
t
c
n
p

M

i
a
r
a
r
i
c

F
b
L
e
F
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CASE STUDIES

Applications of FWI have been applied essentially to synthetic
xamples for which high-resolution images have been constructed.
ecause FWI is an attractive approach, the number of real-data ap-
lications has increased quite rapidly, from monoparameter recon-
tructions of the VP parameter to multiparameter ones.

onoparameter acoustic FWI
Most of the recent real-data case studies of FWI at different scales

nd for different acquisition geometries have been performed in the
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igure 11. Laplace-Fourier-domain waveform inversion. �a� BP
enchmark model. �b� Starting model. �c� Velocity model after
aplace-domain inversion. �d� Velocity model after Laplace-Fouri-
r-domain inversion. �e� Velocity model after frequency-domain
WI �image courtesy C. Shin andY. H. Cha�.
Downloaded 04 Dec 2009 to 193.50.85.151. Redistribution subject to 
coustic isotropic approximation, considering only VP as the model
arameter �Dessa and Pascal, 2003; Ravaut et al., 2004; Chironi et
l., 2006; Gao et al., 2006a, 2006b; Operto et al., 2006; Bleibinhaus
t al., 2007; Ernst et al., 2007; Jaiswal et al., 2008, 2009; Shin and
ha, 2009�.Although the acoustic approximation can be questioned

n the framework of FWI because of unreliable amplitudes, one ad-
antage of acoustic FWI is dealing with less computationally expen-
ive forward modeling than in the elastic case. Moreover, acoustic
WI is better posed than elastic FWI because only the dominant pa-
ameter VP can be involved in the inversion.

Specific waveform-inversion data processing generally is de-
igned to account for the amplitude errors introduced by acoustic
odeling �Pratt, 1999; Ravaut et al., 2004; Brenders and Pratt,

007b�. The amplitude discrepancies in the P-wavefield result from
ncorrectly modeling the amplitude-variation-with-offset �AVO� ef-
ects and incorrectly modeling the directivity of the source and re-
eiver �Brenders and Pratt, 2007b�. Acoustic-wave modeling gener-
lly is based on resolving the acoustic-wave equation in pressure;
herefore, the particle-velocity synthetic wavefields might not be
omputed �Hustedt et al., 2004�. If the receivers are geophones, the
hysical measurements collected in the field �particle velocities� are
ot the same as those computed by the seismic modeling engine
pressure�.Amatch between the vertical geophone data and the pres-
ure synthetics can, however, be performed by exploiting the reci-
rocity of the Green’s functions if the sources are explosions �Operto
t al., 2006�.

In contrast, if the sources and receivers are directional, the pres-
ure wavefield cannot account for the directivity of the sources and
eceivers, and heuristic amplitude corrections must be applied be-
ore inversion. Brenders and Pratt �2007b� propose optimizing an
mpirical correction law for the decay of the rms amplitudes with
ffset.Applying this correction law to the modeled data matches the
ain AVO trend of the observed data before FWI. Using this data

reprocessing, Brenders and Pratt �2007b� successfully image the
nshore lithospheric model of the CCSS blind test �Zelt et al., 2005�
y acoustic FWI of synthetic elastic data. This strategy is also used
uccessfully by Jaiswal et al. �2008, 2009� in the framework of
coustic FWI of real onshore data in the Naga thrust and fold belt in
ndia.

Successful application of acoustic FWI to synthetic elastic data
omputed in the marine Valhall model from an OBC acquisition is
resented by Brossier et al. �2009b�.An application of acoustic FWI
o real onshore long-offset data recorded in the southern Apennines
hrust belt is illustrated in Figure 12 �Ravaut et al., 2004�. The veloc-
ty model is validated locally by comparison with a VSP log. Appli-
ation of PSDM using the final FWI model as a starting model con-
ributes to the validation of the relevance of the velocity structure re-
onstructed by FWI �Operto et al., 2004�. Some guidelines based on
umerical examples of the domain of validity of acoustic FWI ap-
lied to elastic data are also provided in Barnes and Charara �2008�.

ultiparameter FWI

Because FWI accounts for the full wavefield, the seismic model-
ng embedded in the FWI algorithm theoretically should honor as far
s possible all of the physics of wave propagation. This is especially
equired by FWI of wide-aperture data, in which significant AVO
nd azimuthal anisotropic effects should be observed in the data.The
equirement of realistic seismic modeling has prompted some stud-
es to extend monoparameter acoustic FWI to account for parameter
lasses other than the P-wave velocity, such as density, attenuation,
SEG license or copyright; see Terms of Use at http://segdl.org/
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Full-waveform inversion WCC143
hear-wave velocity or related parameters, and anisotropy. The fact
hat additional parameter classes are taken into account in FWI in-
reases in the ill-posedness of the inverse problem because more de-
rees of freedom are considered in the parameterization and because
he sensitivity of the inversion can change significantly from one pa-
ameter class to the next.

Different parameter classes can be more or less coupled as a func-
ion of the aperture angle. This coupling can be assessed by plotting
he radiation pattern of each parameter class using some asymptotic
nalyses. Diffraction patterns of the different combination of param-
ters for the acoustic, elastic, and viscoelastic wave equation are
hown in Wu and Aki �1985�, Tarantola �1986�, Ribodetti and
irieux �1996�, and Forgues and Lambaré �1997�. An alternative is

o plot the sensitivity kernel, i.e., that obtained by summing all of the
ows of the sensitivity matrix for the full acquisition and for different
ombinations of parameters and to qualitatively assess which com-
ination provides the best image �Luo et al., 2009�. Hierarchical
trategies that successively operate on different parameter classes
hould be designed to mitigate the ill-posedness of FWI �Tarantola,
986; Kamei and Pratt, 2008; Sears et al., 2008; Brossier et al.,
009b�.

ensity

Density is difficult to reconstruct �Forgues and Lambaré, 1997�.
s an illustration, acoustic radiation patterns are shown in Figure 13

or different combinations of parameters �IP,��, �IP,VP�, and �VP,��,
here IP denotes P-wave impedance. The radiation pattern of VP is

sotropic because the operator �B /�ml reduces to a scalar for VP and
herefore represents an explosion. On the other hand, the density has
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igure 12. Two-dimensional seismic imaging of a thrust belt in the
outhern Apennines, Italy, from long-offset data by frequency-do-
ain FWI. Thirteen frequencies from 6 to 20 Hz were inverted suc-

essively. �a� Starting model for FWI developed by FATT �Improta
t al., 2002�. �b–d� FWI model after inversion of �b� the starting
-Hz, �c� 10-Hz, and �d� 20-Hz frequencies �Ravaut et al., 2004�.
Downloaded 04 Dec 2009 to 193.50.85.151. Redistribution subject to 
he same radiation pattern as VP at short apertures but does not scatter
nergy at wide apertures because the secondary source f� corre-
ponds to a vertical force for the density. Because VP and � have the
ame radiation pattern at short apertures, these two parameters are
ifficult to reconstruct from short-offset data. For such data, the
-wave impedance can be considered a reliable parameter for FWI.
f wide-aperture data are available, VP and IP might provide the most
udicious parameterization because they scatter energy for different
perture bands �wide and short apertures, respectively; Figure 13b�.

Asuccessful reconstruction of the density parameter in the case of
he Marmousi case study is presented by Choi et al. �2008�. Howev-
r, the use of an unrealistically low frequency �0.125 Hz� brings into
uestion the practical implication of these results.

ttenuation

The attenuation reconstruction can be implemented in frequency-
omain seismic-wave modeling using complex velocities �Toksöz
nd Johnston, 1981�. The most commonly applied attenuation/dis-
ersion model is referred to as the Kolsky-Futterman model �Kol-
ky, 1956; Futterman, 1962�. This model has linear frequency de-
endence of the attenuation coefficient, whereas the deviation from
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igure 13. Radiation pattern of different parameter classes in acous-
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WCC144 Virieux and Operto
onstant-phase velocity is accounted for through a term that varies as
he logarithm of the frequency. This model is obtained by imposing
ausality on the wave pulse and assuming the absorption coefficient
s strictly proportional to the frequency over a restricted range of fre-
uencies.
Using the Kolsky-Futterman model, the complex velocity c̄ is giv-

n by

c̄�c��1�
1

�Q
log�� /�r��� i

sgn���
2Q

��1

, �33�

here Q is the attenuation factor and �r is a reference frequency.
In frequency-domain FWI, the real and imaginary parts of the ve-

ocity can be processed as two independent real-model parameters
ithout any particular implementation difficulty. However, the re-

onstruction of attenuation is an ill-posed problem. Ribodetti et al.
2000� show that in the framework of the ray 
 Born inversion,
-wave velocity and Q are uncoupled �i.e., the Hessian is nonsingu-

ar� only if a reflector is illuminated from both sides �with circular
cquisition as in medical imaging; see Figure 5b of Ribodetti et al.,
000�. In contrast, the Hessian becomes singular for a surface acqui-
ition. Mulder and Hak �2009� also conclude that VP and Q cannot be
maged simultaneously from short-aperture data because the Hilbert
ransform with respect to depth of the complex-valued perturbation
odel for VP and Q produces the same wavefield perturbation in the

ramework of the Born approximation as the original perturbation
odel. Despite this theoretical limitation, preconditioning of the
essian is investigated by Hak and Mulder �2008� to improve the

onvergence of the joint inversion for VP and Q.
Assessment and application of viscoacoustic frequency-domain

WI is presented at various scales by Liao and McMechan �1995,
996�, Song et al. �1995�, Hicks and Pratt �2001�, Pratt et al. �2005�,
alinowsky et al. �2007�, and Smithyman et al. �2008�. Kamei and

ratt �2008� recommend inversion for VP only in a first step and then
oint inversion for VP and Q in a second step because the reliability of
he attenuation reconstruction strongly depends on the accuracy of
he starting VP model. Indeed, accurate VP models are required be-
ore reconstructing Q so that the inversion can discriminate the in-
rinsic attenuation from the extrinsic attenuation.

lastic parameters

A limited number of applications of elastic FWI have been pro-
osed. Because VP is the dominant parameter in elastic FWI, Taran-
ola �1986� recommends inversion first for VP and IP, second for VS

nd IS, and finally for density. This strategy might be suitable if the
ootprint of the S-wave velocity structure on the seismic wavefield is
ufficiently small. This hierarchical strategy over parameter classes
s illustrated by Sears et al. �2008�, who assess time-domain FWI of
ulticomponent OBC data with synthetic examples. They highlight

ow the behavior of FWI becomes ill-posed for S-wave velocity re-
onstruction when the S-wave velocity contrast at the sea bottom is
mall. In this case, the S-wave velocity structure has a minor foot-
rint on the seismic wavefield because the amount of PS conversion
s small at the sea bottom. In this configuration, they recommend in-
ersion first for VP, using only the vertical component; second for VP

nd VS from the vertical component; and finally for VS, using both
omponents. The aim of the second stage is to reconstruct the inter-
ediate wavelengths of the S-wave velocity structure by exploiting

heAVO behavior of the P-waves.
In contrast, Brossier et al. �2009a� conclude that joint inversion
Downloaded 04 Dec 2009 to 193.50.85.151. Redistribution subject to 
or VP and VS with judicious hierarchical data preconditioning by
ime damping is necessary for inversion of land data involving both
ody waves and surface waves. The strong sensitivity of the high-
mplitude surface waves to the near-surface S-wave velocity struc-
ure requires inversion for VS during the early stages of the inversion.
his makes the elastic inversion of onshore data highly nonlinear
hen the surface waves are preserved in the data.
A recent application of elastic FWI to a gas field in China is pre-

ented by Shi et al. �2007�. They invert for the Lamé parameters and
nambiguously image Poisson’s ratio anomalies associated with the
resence of gas. They accelerate the convergence of the inversion by
omputing an efficient step length using an adaptive controller based
n the theory of model-reference nonlinear control. Several logs
vailable along the profile confirm the reliability of this gas-layer
econstruction.

nisotropy

Reconstruction of anisotropic parameters by FWI is probably one
f the most undeveloped and challenging fields of investigation.Ver-
ically transverse isotropy �VTI� or tilted transversely isotropic
TTI� media are generally considered a realistic representation of
eologic media in oil and gas exploration, although fractured media
equire an orthorhombic description �Tsvankin, 2001�. The normal-
oveout �NMO� P-wave velocity inVTI media depends on only two
arameters: the NMO velocity for a horizontal reflector VNMO�0�

VP0
�1�2� and the � � ���� � / �1�2� � parameter �Alkhali-

ah and Tsvankin, 1995�, which is a combination of Thomsen’s pa-
ameters � and � �Thomsen, 1986�. The dependency of NMO veloc-
ty in VTI media on a limited subset of anisotropic parameters sug-
ests that defining the parameter classes to be involved in FWI will
e a key task.Another issue will be to assess to what extent FWI can
e performed in the acoustic approximation knowing that acoustic
edia are by definition isotropic �Grechka et al., 2004�. The kine-
atic and dynamic accuracy of an acoustic TTI wave equation for
WI is discussed in Operto et al. �2009�.
Afeasibility study of FWI in VTI media for crosswell acquisitions

s presented in Barnes et al. �2008�. They invert for five parameter
lasses — VP, VS, density, � , and � — and show reliable reconstruc-
ion of the classes, even with noisy data. Pratt et al. �2001, 2008� ap-
ly anisotropic FWI to crosshole real data. The results of Pratt et al.
2001� highlight the difficulty in discriminating layer-induced an-
sotropy from intrinsic anisotropy in FWI.

Further investigations of anisotropic FWI in the case of surface
eismic data are required. In particular, the benefit of wide apertures
n resolving as many anisotropic parameters as possible needs to be
nvestigated �Jones et al., 1999�.

hree-dimensional FWI

Because of the continuous increase in computational power and
he evolution of acquisition systems toward wide-aperture and wide-
zimuth acquisition, 3D acoustic FWI is feasible today. In three di-
ensions, the computational burden of multisource seismic model-

ng is one of the main issues. The pros and cons of time-domain ver-
us frequency-domain seismic modeling for FWI have been dis-
ussed.Another issue is assessing the impact of azimuth coverage on
WI. Sirgue et al. �2007� show the footprint of the azimuth coverage

n 3D surveys on the velocity model reconstructed by FWI.Their im-
ging confirms the importance of wide-azimuth surveys for FWI of
oarse acquisitions such as node surveys.
SEG license or copyright; see Terms of Use at http://segdl.org/
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Full-waveform inversion WCC145
Most 3D FWI applications have been limited to low frequencies
�7 Hz�. At these frequencies, FWI can be seen as a tool for veloci-
y-model-building rather than a self-contained seismic-imaging tool
hat continuously proceeds from the velocity-model-building task to
he migration task through the continuous sampling of wavenum-
ers �Ben HadjAli et al., 2008b�.
Ben Hadj Ali et al. �2008a� apply a frequency-domain FWI algo-

ithm to a series of synthetic data sets.The forward problem is solved
n the frequency domain with a massively parallel direct solver.
lessix �2009� presents an application to real ocean-bottom-seis-
ometer �OBS� data. Seismic modeling is performed in the frequen-

y domain with an iterative solver. The inverted frequencies range
etween 2 and 5 Hz. The inversion converges to a similar velocity
odel down to the top of a salt body using two different starting ve-

ocity models, with one a simple velocity-gradient model. An appli-
ation to a real 3D streamer data set is presented by Warner et al.
2008� for the imaging of a shallow channel. They perform seismic
odeling in the frequency domain using an iterative solver �Warner

t al., 2007�.
Three-dimensional time-domain FWI is developed by Vigh and

tarr �2008a�, in which the input data in FWI are plane-wave gathers
ather than shot gathers. The main motivation behind the use of
lane-wave shot gathers is to mitigate the computational burden by
ecimating the volume of data.The computational cost is reduced by
ne order of magnitude for 2D applications and by a factor 3 for 3D
pplications when the plane-wave-based approach is used instead of
he shot-based approach.
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igure 14. Imaging of the Valhall field by 3D FWI. Depth slices extra
hy. �b,d� Built by 3D FWI. �c,d� The shallow slice at 150 m depth sh
lice at 1050 m depth shows a much higher resolution of the top of th
P�.
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Sirgue et al. �2009� apply 3D frequency-domain FWI to the hy-
rophone component of OBC data from the shallow-water Valhall
eld. Frequencies between 3.5 and 7 Hz are inverted successively,
sing a starting model built by ray-based reflection tomography.
hey successfully image a complex network of shallow channels at
50 m depth and a gas cloud between 1000 and 2500 m depth. Al-
hough the spacing between the cables is as high as 300 m, a limited
ootprint of the acquisition is visible in the reconstructed models.
omparisons of depth-migrated sections computed from the reflec-

ion tomography model and the FWI velocity model show the im-
rovements provided by FWI, both in the shallow structure and at
he reservoir level below the gas cloud. The step-change improve-
ent in the quality of the depth-migrated image results from the

igh-resolution nature of the velocity model from FWI and the ac-
ounting of the intrabed multiples by the two-way wave-equation
odeling engine. Comparisons between depth slices across the

hannels and the gas cloud extracted from the reflection tomography
nd the FWI models highlight the significant resolution improve-
ent provided by FWI �Figure 14�.
Solving large-scale 3D elastic problems is probably beyond our

urrent tools because of the computational burden of 3D elastic
odeling for many sources. This has prompted several studies to de-

elop strategies to mitigate the number of forward simulations re-
uired during migration or FWI of large data sets. One of these ap-
roaches stacks the seismic sources before modeling �Capdeville et
l., 2005�. Because the relationship between the seismic wavefield
nd the source is linear, stacking sources is equivalent to emitting
ach source simultaneously instead of independently. This assem-
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om the velocity models. �a,c� Built by ray-based reflection tomogra-
omplex network of channels in the FWI model, although the deeper
loud in the FWI model �image courtesy L. Sirgue and O. I. Barkved,
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WCC146 Virieux and Operto
lage generates artifacts in the imaging that arise from the undesired
orrelation between each independent source wavefield with the
ack-propagated residual wavefields associated with the other
ources of the stack.Applying some random-phase encoding to each
ource before assemblage mitigates these artifacts.The method orig-
nally was applied to migration algorithms �Romero et al., 2000�.
romising applications to time- and frequency-domain FWI are pre-
ented in Krebs et al. �2009� and Ben Hadj Ali et al. �2009a, 2009b�.
lternatively, Herrmann et al. �2009� propose to recover the source-

eparated wavefields from the simultaneous simulation before FWI.
An illustration of the source-encoding technique is provided in

igure 15, in which a dip section of the overthrust model is built
hree ways: by conventional frequency-domain FWI �i.e., without
ource assemblage; Figure 15b�, by FWI with source assemblage but
ithout phase encoding �Figure 15c�, and by FWI with source as-

emblage and phase encoding �Figure 15d�. The models were ob-
ained by successive inversions of four groups of two frequencies
anging between 3.5 and 20 Hz. The number of shots was 200, and
o noise was added to the data. The number of iterations per frequen-
y group to obtain the final FWI models without and with the source
ssemblage was 15 and 200, respectively. The time to compute the
odel of Figure 15d was seven times less than the time to build the
odel of Figure 15b. More details can be found in Ben HadjAli et al.

2009�. If the phase-encoding technique is seen as sufficiently ro-
ust, especially in the presence of noise, it is likely that 3D elastic
WI can be viewed in the near future using sophisticated modeling
ngines.
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igure 15. Application of source encoding in FWI; 200 sources and
eceivers were on the surface. �a� Dip section of the overthrust
odel. �b� FWI model obtained without source assemblage and

hase encoding; 15 iterations per frequency were computed. �c� FWI
odel after assemblage of all the sources in one super shot. No phase

ncoding was applied. �d� FWI model obtained with source assem-
lage and phase encoding; 200 iterations per frequency were com-
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DISCUSSION

Most of the FWI methods presented and assessed in the literature
re based on the local least-squares optimization formulation, in
hich the misfit between the observed seismograms and the mod-

led ones are minimized in the time domain or in the frequency do-
ain. Without very low frequencies ��1 Hz�, it remains very diffi-

ult to obtain reliable results from these approaches when consider-
ng real data, especially at high frequencies. Clearly, new formula-
ions of FWI are needed to proceed further.

Recent improvements relate to Hessian estimation, which has
een shown to be quite important for better convergence toward the
olution. A systematic strategy since the beginning of FWI investi-
ations has been the progressive introduction of the entire content of
eismograms through multiscale approaches to partially prevent the
onvergence toward secondary minima.Transforming the data at the

Table 1. Nomenclature, listed as introduced in the text.

ymbol Description

Spatial coordinates �m�

, f , � �2� / f Time �s�, frequency �Hz�, circular frequency
�rad/s�

, k�c / f Wavenumber vector, wavenumber �1/m�,
where c is wavespeed

�1 /k Wavelength �m�

, A, B Mass, stiffness, impedance matrices in
the wave equation

�x,t /��, s�x,t /�� Wavefield solution of the wave equation and
seismic source

P, VS, � P-wave and S-wave velocities �m/s�, density
�kg /m3�
Attenuation factor for P-waves

, � Anisotropic Thomsen’s parameters

, m0, ∆m Updated and starting FWI models,
perturbation model

obs, dcal�m� Recorded and modeled data

d�dobs�dcal�m� Data-misfit vector

�m�, �Cm Misfit function, gradient of the misfit
function

� �∂d/∂m� Sensitivity or Fréchet derivative matrix

Step length in gradient methods

Iteration number in FWI

a�J†J Approximate Hessian
�n�, � �n� Descent direction and Polak and Ribière

coefficient in conjugate
gradients

d�Sd
t Sd Weighting operators in the data space

m�Sm
t Sm Weighting operators in the model space

Damping in damped least-squares FWI
��� Virtual source in FWI for diffractor m�

, r Source and receiver indices

Diffraction or aperture angle

Damping coefficient for time damping of
seismograms
uted �image courtesy of H. Ben HadjAli�.
SEG license or copyright; see Terms of Use at http://segdl.org/
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Full-waveform inversion WCC147
ifferent stages of the local inversion procedure �particle displace-
ent, particle velocity, logarithms of these quantities, divergence�

an also provide benefits for global convergence of the optimization
rocedure.
Do we need to mitigate the nonlinearity of the inverse problem

hrough more sophisticated search strategies such as semiglobal ap-
roaches or even global sampling of the model space? Because this
earch is quite computationally intensive, should we reduce the di-
ensionality of the parameter models? To perform such global

earches, should we speed up the forward model at the expense of its
recision? If so, can we consider these procedures as intermediate
trategies for approaching the global minimum?

A pragmatic workflow, from low to high spatial-frequency con-
ent, should be expected to move hierarchically from imaging the
arge medium wavelengths to the short medium wavelengths.Astep-
y-step procedure for extracting the information, starting from trav-
ltimes and proceeding to true amplitudes, might include many in-
ermediate steps for interpreting new observables �polarization, ap-
arent velocity, envelope�.
Another aspect is the quality control of a reconstruction. An ob-

ective analysis for uncertainty estimation is important and might
ely on semiglobal investigations once the global minimum has been
ound. Various strategies can be considered that would be manage-
ble as statistical procedures �bootstrapping or jackknifing tech-
iques� or as local nondifferential approaches �simplex, simulation
nnealing, genetic algorithms�.

Finally, solving large-scale 3D elastic problems remains beyond
ur present tools, although one must be aware that these aids are
ight around the corner. Because massive data acquisition for 3D re-
onstruction has been achieved, we indeed expect an improvement
n our data-crunching for high-resolution imaging.

An appealing reconstruction is 4D imaging, which is based on
ime-lapse evolution of targets inside the earth. Differential data are
vailable, providing us with new information for tracking the evolu-
ion of the subsurface parameters. Thus, fluid tracking and variations
n solid-rock matrices are possible challenges for FWI in the near fu-
ure.

CONCLUSION

FWI is the last-course procedure for extracting information from
eismograms. We have shown the conceptual efforts that have been
arried out over the last 30 years to provide FWI as a possible tool for
igh-resolution imaging. These efforts have been focused on devel-
pment of large-scale numerical optimization techniques, efficient
esolution of the two-way wave equation, judicious model parame-
erization for multiparameter reconstruction, multiscale strategies to
itigate the ill-posedness of FWI, and specific waveform-inversion

ata preprocessing.
FWI is mature enough today for prototype application to 3D real

ata sets.Although applications to 3D real data have shown promis-
ng results at low frequencies ��7 Hz�, it is still unclear to what ex-
ent FWI can be applied efficiently at higher frequencies. To answer
his question, a more quantitative understanding of FWI sensitivity
o the accuracy of the starting model, to the noise, and to the ampli-
ude accuracies is probably required.

If FWI remains limited to low frequencies, it will remain a tool to
uild background models for migration. In the opposite case, FWI
ill tend toward a self-contained processing workflow that can re-
nify macromodel building and migration tasks.
Downloaded 04 Dec 2009 to 193.50.85.151. Redistribution subject to 
The present is exciting because realistic applications are becom-
ng possible right now. However, new strategies must be found to
ake this technique as attractive as the scientific issues require.
ields of investigation should address the need to speed up the for-
ard problem by means of providing new hardware �GPUs� and

oftware �compressive sensing�, defining new minimization criteria
n the model and data spaces, and incorporating more sophisticated
ave phenomena �attenuation, elasticity, anisotropy� in modeling

nd inversion.
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APPENDIX A

APPLICATION OF THE ADJOINT-STATE
METHOD TO FWI

In this appendix, we provide some guidelines for the derivation
f the gradient of the misfit function �equation 24� with the adjoint-
tate method and Lagrange multipliers. The reader is referred to No-
edal and Wright �1999� for a review of constrained optimization
nd to Plessix �2006� for a review of the adjoint-state method and its
pplication to FWI.

First, we introduce the Lagrangian function L corresponding to
he misfit function C augmented with equality constraints:

L�ū,m,���
1

2
�P�dobs�Rū�P�dobs�Rū��

� ��B�m�ū�s� �A-1�

he equality constraints correspond to the forward-problem equa-
ion, namely, the state equation, which must be satisfied by the seis-
ic wavefield. A realization u of the state equation is the so-called

tate variable. In equation A-1, we introduce the variable ū to distin-
uish any element of the state variable space from a realization of the
tate equation �Plessix, 2006�.

The vector �, the dimension of which is that of the wavefield u, is
he Lagrange multiplier; it corresponds to the adjoint-state variables.
SEG license or copyright; see Terms of Use at http://segdl.org/
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WCC148 Virieux and Operto
n the framework of the theory of constrained optimization, the first-
rder necessary optimality conditions known as the Karush-Kuhn-
ucker �KKT� conditions state that the solution of the optimization
roblem is obtained at the stationary points of L.

The first condition, ��L /��	ū�cste,m�cste�0, leads to the for-
ard-problem equation: B�m�u � s. Resolving the state equation for
�m0 provides the incident wavefield for FWI.
The second condition, ��L /� ū	��cste,m�cste�0, leads to the so-

alled adjoint-state equation, expressed as

�L�ū,m,��

� ū
�P�dobs�Rū��B†�m���0 . �A-2�

or the derivation of equation A-2, we use the fact that ��,B�m�ū�
�B†�m��,ū� and that the source does not depend on ū. Choosing
�m0 and ū�u�m0� in equation A-2 leads to

B†�m0���P��d0�, �A-3�

hich can be rewritten equivalently as

�*�B�1�m0�P��d0
*�, �A-4�

here we exploit the fact that B�1 is symmetric by virtue of the spa-
ial reciprocity of Green’s functions. The adjoint-state variables are
omputed by solving a forward problem for a composite source
ormed by the conjugate of the residuals, which is equivalent to back
ropagation of the residuals in the model.

The third condition, ��L /�m	ū�cste,��cste�0, defines the mini-
um of L in a comparable way as for the unconstrained minimiza-

ion of the misfit function C. We have

�L�ū,m,��
�m

���
�B�m�

�m
ū� . �A-5�

or any realization of the forward problem u, L�u,m,���C�m�.
herefore, equation A-5 gives the expression of the desired gradient
f C as a function of the state variable and adjoint-state variable
hen ū�u:

�C

�m
���

�B�m�
�m

u� . �A-6�

nserting the expression of � �equation A-4� into equation A-3 and
hoosing m�m0 gives the expression of the gradient of C at the
oint m0 in the opposite direction of which a minimum of C is sought
or in FWI:

�C�m0�
�m

�ut�m0�
�Bt�m0�

�m
B�1�m0�P��d0

*� . �A-7�

quation A-7 is equivalent to equation 24 in the main text.
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