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An overview of full-waveform inversion in exploration geophysics

J. Virieux! and S. Operto?

ABSTRACT

Full-waveform inversion (FWI) is a challenging data-fitting
procedure based on full-wavefield modeling to extract quantita-
tiveinformation from seismograms. High-resol ution imaging at
half the propagated wavelength is expected. Recent advancesin
high-performance computing and multifold/multicomponent
wide-aperture and wide-azimuth acquisitions make 3D acoustic
FWI feasible today. Key ingredients of FW!I are an efficient for-
ward-modeling engine and a local differential approach, in
which the gradient and the Hessian operators are efficiently esti-
mated. Local optimization does not, however, prevent conver-
gence of the misfit function toward local minima because of the
limited accuracy of the starting model, the lack of low freguen-
cies, the presence of noise, and the approximate modeling of the

wave-physics complexity. Different hierarchical multiscale
strategiesare designed to mitigate the nonlinearity and ill-posed-
ness of FWI by incorporating progressively shorter wavelengths
in the parameter space. Synthetic and real-data case studies ad-
dress reconstructing various parameters, from Vp and Vs veloci-
tiesto density, anisotropy, and attenuation. Thisreview attempts
toilluminatethe state of the art of FWI. Crucia jumps, however,
remain necessary to make it as popular as migration techniques.
The challenges can be categorized as (1) building accurate start-
ing models with automatic procedures and/or recording low fre-
quencies, (2) defining new minimization criteria to mitigate the
sensitivity of FWI to amplitude errors and increasing the robust-
ness of FWI when multiple parameter classes are estimated, and
(3) improving computational efficiency by data-compression
techniquesto make 3D elastic FWI feasible.

INTRODUCTION

Seismic waves bring to the surface information gathered on the
physical properties of the earth. Since the discovery of modern seis-
mology at theend of the 19th century, themain discoverieshavearis-
en from using traveltime information (Oldham, 1906; Gutenberg,
1914; Lehmann, 1936). Then there was a hiatus until the 1980s for
amplitude interpretation, when global seismic networks could pro-
vide enough calibrated seismograms to compute accurate synthetic
seismograms using normal-mode summation. Differential seismo-
grams estimated through the Born approximation have been used
as perturbations for matching long-period seismograms, which can
provide high-resolution upper-mantle tomography (Gilbert and Dz-
iewonski, 1975; Woodhouse and Dziewonski, 1984). The sensitivity
or Fréchet derivative matrix, i.e., the partial derivative of seismic
datawith respect to themodel parameters, isexplicitly estimated be-
fore proceeding to inversion of the linearized system. The normal-
mode description alows a limited number of parameters to be in-

verted (a few hundred parameters), which makes the optimization
procedure feasible through explicit sensitivity matrix estimation in
spite of the high number of seismograms.

Meanwhile, exploration seismology hastaken up the challenge of
high-resolution imaging of the subsurface by designing dense, mul-
tifold acquisition systems. Construction of the sensitivity matrix is
too prohibitive becausethe number of parametersexceed 10,000. In-
stead, another road has been taken to perform high-resolution imag-
ing. Using the exploding-reflector concept, and after some kinemat-
ic corrections, amplitude summation has provided detailed images
of the subsurface for reservoir determination and characterization
(Clagrbout, 1971, 1976). The sum of the traveltimes from a specific
point of theinterfacetoward the source and the receiver should coin-
cidewiththetimeof large amplitudesin the seismogram. Thereflec-
tivity asan amplitude attribute of related seismic traces at the select-
ed point of thereflector providesthemigrated imageneeded for seis-
mic stratigraphic interpretation. Although migration is more a con-
cept for converting seismic data recorded in the time-space domain
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intoimages of physical properties, weoftenrefer toit asthe geomet-
ric description of the short wavel engths of the subsurface. A velocity
macromodel or background model provides the kinematic informa-
tion required to focuswavesinsidethe medium.

Thelimited offsetsrecorded by seismic reflection surveysand the
limited-frequency bandwidth of seismic sources make seismic im-
aging poorly sensitive to intermediate wavelengths (Jannane et al .,
1989). Thisisthe motivation behind atwo-step workflow: construct
the macromodel using kinematic information, and then the ampli-
tude projection using different types of migrations (Claerbout and
Doherty, 1972; Gazdag, 1978; Stolt, 1978; Baysal et al., 1983; Yil-
maz, 2001; Biondi and Symes, 2004). This procedureisefficient for
relatively simple geologic targets in shallow-water environments,
although more limited performances have been achieved for imag-
ing complex structures such as salt domes, subbasalt targets, thrust
belts, and foothills. In complex geologic environments, building an
accurate velocity background model for migration is challenging.
Various approachesfor iterative updating of the macromodel recon-
struction have been proposed (Snieder et al., 1989; Docherty et al.,
2003), but they remain limited by the poor sensitivity of the reflec-
tion seismic data to the large and intermediate wavelengths of the
subsurface.

Simultaneous with the globa seismology inversion scheme,
Lailly (1983) and Tarantola (1984) recast the migration imaging
principleof Claerbout (1971, 1976) asalocal optimization problem,
the aim of which isleast-sguares minimization of the misfit between
recorded and modeled data. They show that the gradient of the misfit
function along which the perturbation model is searched can be built
by crosscorrelating the incident wavefield emitted from the source
and the back-propagated residual wavefields. The perturbation mod-
el obtained after thefirst iteration of thelocal optimizationlookslike
a migrated image obtained by reverse-time migration. One differ-
ence is that the seismic wavefield recorded at the receiver is back
propagated in reversetime migration, whereasthe datamisfit isback
propagated inthewaveforminversion of Lailly (1983) and Tarantola
(1984). When added to theinitial velocity, thevelocity perturbations
lead to an updated velocity model, which isused as a starting model
for the next iteration of minimizing the misfit function. The impres-
siveamount of dataincluded in seismograms (each sample of atime
series must be considered) isinvolved in gradient estimation. This
estimation is performed by summation over sources, receivers, and
time.

Waveform-fitting imaging was quite computer demanding at that
time, evenfor 2D geometries (Gauthier et al., 1986). However, it has
been applied successfully in various studies using forward-model -
ing techniquessuch asreflectivity techniquesinlayered media(Kor-
mendi and Dietrich, 1991), finite-difference techniques (Kolb et a.,
1986; Ikelle et al., 1988; Crase et d., 1990; Picaet a., 1990; Djik-
péssé and Tarantola, 1999), finite-element methods (Choi et al.,
2008), and extended ray theory (Cary and Chapman, 1988; Koren et
al., 1991; Sambridge and Drijkoningen, 1992). A less computation-
aly intensive approachisachieved by Jin et a. (1992) and Lambaré
et al. (1992), who establish the theoretical connection between ray-
based generalized Radon reconstruction techniques (Beylkin, 1985;
Bleistein, 1987; Beylkinand Burridge, 1990) and | east-squares opti-
mization (Tarantola, 1987). By defining a specific norm in the data
space, which varies from one focusing point to the next, they were
able to recast the asymptotic Radon transform as an iterative least-
sguares optimization after diagonalizing the Hessian operator. Ap-
plicationson 2D synthetic dataand real dataare provided (Thierry et
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al., 1999b; Opertoet al., 2000) and 3D extensionispossible (Thierry
etal., 1999a; Opertoet al., 2003) because of efficient asymptotic for-
ward modeling (Lucio et al., 1996). Because the Green’s functions
are computed in smoothed media with the ray theory, the forward
problem islinearized with the Born approximation, and the optimi-
zation is iterated linearly, which means the background model re-
mainsthe same over theiterations. Theseimaging methods are gen-
erally called migration/inversion or true-amplitude prestack depth
migration (PSDM). The main difference with the waveform-inver-
sion methodswe describeisthat the smooth background model does
not change over iterations and only the single scattered wavefield is
modeled by linearizing theforward problem.

Alternatively, the full information content in the seismogram can
be considered in the optimization. Thisleadsusto full-waveformin-
version (FWI), where full-wave equation modeling is performed at
each iteration of the optimization in the final model of the previous
iteration. All typesof wavesareinvolved inthe optimization, includ-
ing diving waves, supercritical reflections, and multiscattered waves
such as multiples. The techniques used for the forward modeling
vary and include volumetric methods such as finite-element meth-
ods (Marfurt, 1984; Min et a., 2003), finite-difference methods
(Virieux, 1986), finite-volume methods (Brossier et a., 2008), and
pseudospectral methods (Danecek and Seriani, 2008); boundary in-
tegral methods such as reflectivity methods (K ennett, 1983); gener-
alized screen methods (Wu, 2003); discrete wavenumber methods
(Bouchon et al., 1989); generalized ray methods such asWKBJand
Maslov seismograms (Chapman, 1985); full-wavetheory (de Hoop,
1960); and diffraction theory (Klem-Musatov and Aizenberg, 1985).

FWI hasnot been recogni zed asan efficient seismicimaging tech-
nique because pioneering applications were restricted to seismic re-
flection data. For short-offset acquisition, the seismic wavefield is
rather insensitive to intermediate wavelengths; therefore, the opti-
mization cannot adequately reconstruct the true velocity structure
through iterative updates. Only when a sufficiently accurate initial
model is provided can waveform-fitting converge to the velocity
structure through such updates. For sampling the initial model, so-
phisticated investigations with global and semiglobal techniques
(Korenetal., 1991; Jin and Madariaga, 1993, 1994; M osegaard and
Tarantola, 1995; Sambridge and Mosegaard, 2002) have been per-
formed. The rather poor performance of these investigations that
arises from insensitivity to intermediate wavelengths has led many
researchersto believethat thisoptimization techniqueisnot particu-
larly efficient.

Only with the benefit of long-offset and transmission data to re-
construct thelarge and intermediate wavel engths of the structure has
FWI reached its maturity ashighlighted by Mora (1987, 1988), Pratt
and Worthington (1990), Pratt et al . (1996), and Pratt (1999). FWI at-
tempts to characterize a broad and continuous wavenumber spec-
trum at each point of the model, reunifying macromodel building
and migration tasksinto asingle procedure. Historical crossholeand
wide-angle surface data examplesillustrate the capacity of simulta-
neous reconstruction of the entire spatial spectrum (e.g., Pratt, 1999;
Ravaut et al., 2004; Brendersand Pratt, 2007a). However, robust ap-
plication of FWI to long-offset dataremains challenging because of
increasing nonlinearitiesintroduced by wavefields propagated over
severa tens of wavelengths and various incidence angles (Sirgue,
2006).

Here, we consider the main aspects of FWI. First, we review the
forward-modeling problem that underlies FWI. Efficient numerical
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modeling of the full seismic wavefield isacentral issuein FWI, es-
pecialy for 3D problems.

In the second part, we review the main theoretical aspects of FWI
based on aleast-squares|ocal optimization approach. Wefollow the
compact matrix formalism for itssimplicity (Pratt et al., 1998; Pratt,
1999), which leads to a clear interpretation of the gradient and the
Hessian of the objectivefunction. Oncethe gradient isestimated, we
review different optimization a gorithmsused to computethe pertur-
bation model. We conclude the methodology section by the source
estimation problemin FWI.

In the third part, we review some key features of FWI. First, we
highlight the rel ationships between the experimental setup (source
bandwidth, acquisition geometry) and the spatial resolution of FWI.
The resolution analysis provides the necessary guidelinesto design
the multiscale FWI algorithms required to mitigate the nonlinearity
of FWI. We discuss the pros and cons of the time and frequency do-
mains for efficient multiscale algorithms. We provide a few words
concerning the parallel implementation of FWI techniques because
theseare computer demanding. Then wereview somealternativesto
the least-squares criterion and the Born linearization. A key issue of
FWI istheinitial model fromwhichthelocal optimizationisstarted.
We also discuss several tomographic approachesto building a start-
ing model.

In the fourth part, we review the main case studies of FWI subdi-
vided into three categories of case studies: acoustic, multiparameter,
and three dimensional. Finally, we discuss the future challenges
raised by the revival of interest in FWI that has been shown by the
exploration and the earthquake-seismol ogy communities.

THE FORWARD PROBLEM

L et usfirstintroducethenotationsfor theforward problem, name-
ly, modeling the full seismic wavefield. The reader is referred to
Robertsson et a. (2007) for an up-to-date series of publications on
modern seismic-modeling methods.

We use matrix notations to denote the partial-differential opera-
torsof thewaveequation (Marfurt, 1984; Carcioneet a., 2002). The
most popular direct method to discretize the wave equation in the
time and frequency domains is the finite-difference method
(Virieux, 1986; Levander, 1988; Graves, 1996; Operto et a., 2007),
although more sophisticated finite-element or finite-volume ap-
proaches can be considered. This is especially true when accurate
boundary conditions through unstructured meshes must be imple-
mented (e.g., Komatitsch and Vilotte, 1998; Dumbser and Kaser,

2006).
Inthetimedomain, we have
d?u(x,t
Moo~ AGuGe) +sx0, ()

whereM and A are the mass and the stiffness matrices, respectively
(Marfurt, 1984). The source term is denoted by s and the seismic
wavefield by u. In the acoustic approximation, u generally repre-
sents pressure, although in the elastic case u generally represents
horizontal and vertical particle velocities. The timeis denoted by t
and the spatial coordinates by x. Equation 1 generally issolved with
an explicit time-marching algorithm: Thevalue of thewavefield at a
timestep(n + 1) at aspatial positionisinferred fromthevalueof the
wavefields at previous time steps. Implicit time-marching ago-
rithms are avoided because they require solving a linear system
(Marfurt, 1984). If both velocity and stress wavefields are helpful,
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the system of second-order equations can be recast as a first-order
hyperbolic velocity-stress system by incorporating the necessary
auxiliary variables (Virieux, 1986).

Inthefrequency domain, thewave equation reducesto asystem of
linear equations; the right-hand sideisthe source and the solutionis
the seismic wavefield. Thissystem can bewritten compactly as

B(X,w)u(X,w) = s(X,w), (2)

where B is the impedance matrix (Marfurt, 1984). The sparse com-
plex-valued matrix B hasasymmetric pattern, althoughitisnot sym-
metric because of absorbing boundary conditions (Hustedt et a.,
2004; Opertoetal., 2007).

Equation 2 can be solved by a decomposition of B such as lower
and upper (LU) triangular decomposition, leading to direct-solver
techniques. The advantage of the direct-solver approach isthat once
the decomposition is performed, equation 2 is efficiently solved for
multiple sources using forward and backward substitutions (Mar-
furt, 1984). The direct-solver approach is efficient for 2D forward
problems(Joetal., 1996; Stekl and Pratt, 1998; Hustedt et al., 2004).
However, the time and memory complexities of LU factorization
and its limited scalability on large-scale distributed memory plat-
forms prevent use of the approach for large-scale 3D problems (i.e.,
problems involving more than 10 million unknowns; Operto et a.,
2007).

Iterative solvers provide an alternative approach for solving the
time-harmonic wave equation (Riyanti et al., 2006, 2007; Plessix,
2007; Erlanggaand Herrmann, 2008). Iterative solverscurrently are
implemented with Krylov subspace methods (Saad, 2003) that are
preconditioned by solving the dampened time-harmonic wave equa-
tion. The solution of the dampened wave equation is computed with
one cycle of a multigrid. The main advantage of the iterative ap-
proach isthelow memory requirement, although the main drawback
resultsfrom adifficulty to design an efficient preconditioner because
theimpedance matrix isindefinite. To our knowledge, the extension
to elastic wave equations still needs to be investigated. As for the
time-domain approach, the time complexity of the iterative ap-
proach increases linearly with the number of sourcesin contrast to
thedirect-solver approach.

An intermediate approach between the direct and iterative meth-
odsconsists of ahybrid direct-iterative approach based on adomain
decomposition method and the Schur complement system (Saad,
2003; Sourbier et a., 2008). Theiterative solver isused to solve the
reduced Schur complement system, the solution of which is the
wavefield at interface nodes between subdomains. The direct solver
is used to factorize local impedance matrices that are assembled on
each subdomain. Briefly, the hybrid approach provides a compro-
mise in terms of memory savings and multisource-simulation effi-
ciency between thedirect and theiterative approaches.

The last possible approach to compute monochromatic wave-
fieldsisto perform the modeling in the time domain and extract the
frequency-domain solution either by discrete Fourier transform in
theloop over thetime steps(Sirgueet al ., 2008) or by phase-sensitiv-
ity detection once the steady-state regimeis reached (Nihei and Li,
2007). One advantage of the approach based on the discrete Fourier
transformisthat an arbitrary number of frequenciescan beextracted
within the loop over time steps at minimal extra cost. Second, time
windowing can be easily applied, which is not the case when the
modeling is performed in the frequency domain. Time windowing
allows the extraction of specific arrivalsfor FWI (early arrivals, re-
flections, PS converted waves), which is often useful to mitigate the
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nonlinearity of the inversion by judicious data preconditioning
(Searsetal., 2008; Brossier et al ., 2009a).

Among al of these possible approaches, the iterative-solver ap-
proach theoretically has the best time complexity (here, “complexi-
ty” denotes how the computational cost of an algorithm growswith
the size of the computational domain) if the number of iterationsis
independent of the frequency (Erlangga and Herrmann, 2008). In
practice, the number of iterations generally increases linearly with
frequency. Inthiscase, thetime compl exities of thetime-domainand
theiterative-solver approach are equivalent (Plessix, 2007).

The reader is referred to Plessix (2007, 2009) and Virieux et al.
(2009) for more detailed complexity analyses of seismic modeling
based on different numerical approaches. A discussion on the pros
and cons of time-domain versus frequency-domain seismic model-
ing with application to FWI is aso provided in Vigh and Starr
(2008b) and Warner et al. (2008).

Source implementation is an important issuein FWI. The spatial
reciprocity of Green’sfunctions can be exploited in FWI to mitigate
thenumber of forward problemsif the number of receiversissignifi-
cantly smaller than the number of sources (Aki and Richards, 1980).
Thereciprocity of Green’sfunctionsalso allowsmatching dataemit-
ted by explosionsand recorded by directional sensors, with pressure
synthetics computed for directional forces (Operto et a., 2006). Of
note, the spatial reciprocity issatisfied theoretically for the unidirec-
tional sensor and the unidirectional impulse source. However, the
spatial reciprocity of the Green’s functions can a so be used for ex-
plosive sources by virtue of the superposition principle. Indeed, ex-
plosions can be represented by double dipolesor, in other words, by
four unidirectional impulse sources.

A final comment concernstherel ationship betweenthediscretiza-
tion required to solve the forward problem and that required to re-
construct the physical parameters. Often during FWI, thesetwo dis-
cretizations are identical, although it is recommended that the fin-
gerprint of theforward problem bekept minimal in FWI.

The properties of the subsurface that we want to quantify are em-
bedded in the coefficients of matricesM, A, or B of equations 1 and
2. The relationship between the seismic wavefield and the parame-
tersisnonlinear and can be written compactly through the operator
G, defined as

u=G(m) (3

inthetimedomain or inthefreguency domain.

FWI ASA LEAST-SQUARES LOCAL
OPTIMIZATION

Wefollow the simplest view of FWI based on the so-called length
method (Menke, 1984). For information on probabilistic maximum
likelihood or generalized inverseformulations, thereader isreferred
to Menke (1984), Tarantola (1987), Scales and Smith (1994), and
Sen and Stoffa(1995).

We define the misfit vector Ad = dy,s — deu(m) of dimension N
by the differences at the receiver positions between the recorded
seismic data d,s and the modeled seismic data d.4(m) for each
source-receiver pair of the seismic survey. Here, d., canberelated to
the modeled seismic wavefield u by a detection operator R, which
extracts the values of the wavefields computed in the full computa-
tional domain at the receiver positions for each source: d.y = RuU.
Themodel m represents some physical parameters of the subsurface
discretized over the computational domain.
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Inthesimplest case corresponding to the monoparameter acoustic
approximation, the model parameters are the P-wave velocities de-
fined at each node of the numerical mesh used to discretize the in-
verse problem. In the extreme case, the model parameters corre-
spond to the 21 el astic moduli that characterizelinear triclinic elastic
media, the density, and some memory variablesthat characterizethe
anelastic behavior of the subsurface (Toksdz and Johnston, 1981).
The most common discretization consists of projection of the con-
tinuous model of the subsurface on amultidimensional Dirac comb,
although amore complex basis can be considered (see Appendix A
in Pratt et al. [1998] for a discussion on alternative parameteriza-
tions). We define anorm C(m) of this misfit vector Ad, whichisre-
ferred to asthemisfit function or the objectivefunction. Wefocusbe-
low on the least-squares norm, which is easier to manipul ate mathe-
matically (Tarantola, 1987). Other normsarediscussed | ater.

The Born approximation and the linearization of the
inverse problem

Theleast-squaresnormisgiven by
1.t
C(m) = EAd Ad, (4)

where T denotesthe adjoint operator (transpose conjugate).

In the time domain, the implicit summation in equation 4 is per-
formed over the number of source-channel pairs and the number of
time samplesin the seismograms, where achannel isone component
of amulticomponent sensor. In the frequency domain, the summa-
tion over frequenciesreplacesthat over time. Inthetimedomain, the
misfit vector is real valued; in the frequency domain, it is complex
valued.

The minimum of the misfit function C(m) issought inthe vicinity
of thestarting model m,. The FWI isessentially alocal optimization.
Intheframework of the Born approximation, we assumethat the up-
dated model m of dimension M can bewritten asthe sum of the start-
ing model my plus a perturbation model Am:m = my + Am. Inthe
following, weassumethat misreal valued.

A second-order Taylor-L agrange development of the misfit func-
tioninthevicinity of mg givestheexpr on

C(mg+ Am) =C m0)+2 C(nr1n0) Am,
j=1 9m

M M

1 32C(my)

+ = AmAmM, + O(md).
2 E]_kEJ_ ﬁm]a ! | Kk ( )

(5

Taking the derivative with respect to the model parameter m, results
in

M
aC aC 9°C
(m) _ (mo) n E (mO)Amj.
amy amy j=1 &m]t?m|

(6)

The minimum of the misfit function in the vicinity of point mg is
reached when thefirst derivative of themisfit functionvanishes. This
givesthe perturbation model vector:

A= _{azqn;o)} “HaCmy).
am am

)
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The perturbation model issearched in the oppositedirection of the
steepest ascent (i.e., the gradient) of the misfit function at point m,,.
The second derivative of the misfit functionisthe Hessian; it defines
the curvature of the misfit function at m,. Of note, the error term
O(m3) in equation 5 is zero when the misfit function is a quadratic
function of m. Thisisthe casefor linear forward problems such asu
= G.m. In this case, the expression of the perturbation model of
equation 7 givesthe minimum of the misfit function in oneiteration.
In FWI, therelationship between the dataand the model isnonlinear
and the inversion needs to be iterated several timesto converge to-
ward the minimum of themisfit function.

Normal equations: The Newton, Gauss-Newton, and
steepest-descent methods

Basic equations

The derivative of C(m) with respect to the model parameter m

gives
N
acm) 1 (o?dcai) .
ﬁm| - zigll (9m| (dobs| dcali)

- %m{(ad“‘)*(d d )1 ®)
- = 5m obs; ca;/ |»
wherethereal part and the conjugate of acomplex number are denot-
edby 9 and *, respectively. In matrix form, equation 8 trand atesto

_acm) [ [ adea(m))"
VCm_ om = _ER|:( om ) (dobs_dcal(m))]

= —R[JITAd], 9

where J is the sensitivity or the Fréchet derivative matrix. In equa-
tion9, VC,, isavector of dimension M. Takingm = myinequation9
providesthe descent direction along which the perturbation model is
searchedinequation 7.

Differentiation of the gradient expression 8, with respect to the
model parameters givesthe following expression in matrix form for
theHessian (seePratt et al. [ 1998] for details):

— =R[IJo] + R m(AdomAdo) . (10

Inserting the expression of the gradient (equation 9) and the Hessian
(equation 10) into equation 7 givesthefollowing for the perturbation
model:

(9Jt * * 1
Am= — {%{JEJO + ﬁ—nﬁ(Ado...Ado)” R[IAd,].

(11)

Themethod solving the normal equations, e.g., equation 11, general-
ly isreferred to asthe Newton method, whichislocally quadratically
convergent.

For linear problems (d=G.m), the second term in the Hessian is
zero because the second-order derivative of the datawith respect to
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model parametersiszero. Most of thetime, thissecond-order termis
neglected for nonlinear inverse problems. In the following, the re-
maining terminthe Hessian, i.e., H, = J{J,, isreferred to as the ap-
proximate Hessian. Themethod which solvesequation 11 when only
H.isestimatedisreferred to asthe Gauss-Newton method.

Alternatively, theinverse of the Hessian in equation 11 can bere-
placed by ascalar «, the so-called step length, leading to the gradient
or steepest-descent method. The step length can be estimated by a
line-search method, for which alinear approximation of the forward
problemisused (Gauthier et al., 1986; Tarantola, 1987). Inthelinear
approximation framework, the second-order Taylor-Lagrange de-
velopment of the misfit function gives

Clm — &V C(me) = C(m) - (¥ C(m)| ¥ Clmy)
+ 2 aH,(m)(Y Clmg)| Y Clm),

(12)
where we assume a model perturbation of the form Am
= aVC(my). In equation 12, we replace the second-order deriva-
tive of the misfit function by the approximate Hessian in the second
term on theright-hand side. Inserting the expression of the approxi-
mate Hessian H , into the previous expression, zeroing thepartial de-
rivative of the misfit function with respect to «, and using m = mq
gives

oo (VC(mg)|VC(my))
( J(mg) VC(mg)[J(mg) VC(mg)))

(13)

The term J'(mg) V.C(m,) is computed conventionally using afirst-
order-accurate finite-difference approximation of the partial deriva
tiveof G,

dG(mg)
am

YClmg) = Z(G(m, + £ Clmg) — G(mg),
(14

with asmall parameter e. Estimation of « requires solving an extra
forward problem per shot for the perturbed model mg + £V C(m,).
Thisline-search techniqueisextended to multiple-parameter classes
by Sambridge et al. (1991) using a subspace approach. In this case,
oneforward problem must be solved per parameter class, which can
be computationally expensive. Alternatively, the step length can be
estimated by parabolic interpolation through three points, («,C(mq
+ aVC(mg)) . The minimum of the parabola provides the desired
a. Inthis case, two extraforward problems per shot must be solved
because we already have athird point corresponding to (0,C(my))
(seeFigurelinVighetal.[2009]for anillustration).

Pratt et al. (1998) illustrate how quality and rate of convergence of
theinversion depend significantly onthe Newton, Gauss-Newton, or
gradient method used. Importantly, they show how the gradient
method can fail to converge toward an acceptable model, however
many iterations, unlike the Newton and Gauss-Newton methods.
They interpret thisfailure astheresult of the difficulty of estimating
areliablesteplength. However, gradient methods can be significant-
ly improved by scaling (i.e., dividing) the gradient by the diagonal
termsof H, or of the pseudo-Hessian (Shinet al., 2001a).

Downloaded 04 Dec 2009 to 193.50.85.151. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



WCC132

Numerical algorithms: The conjugate-gradient method

Over the last decade, the most popular local optimization algo-
rithm for solving FWI problems was based on the conjugate-gradi-
ent method (Mora, 1987; Tarantola, 1987; Crase et a., 1990). Here,
themode! isupdated at theiteration ninthedirection of p™, whichis
alinear combination of the gradient at iteration n, VC™, and the di-
rectionp®™-b:

p=vC"+ gMph-D, (15)

Thescalar ™ isdesigned to guaranteethat p™ and p~* arecon-
jugate. Among thedifferent variants of the conjugate-gradient meth-
od to derive the expression of 3™, the Polak-Ribiereformula(Polak
and Ribiere, 1969) isgenerally used for FWI:

(n) _ (n—1) (n)
B(n):<VC vC |vC >. (16)
Ive™?

In FWI, the preconditioned gradient W,V C™ isused for p™, where
W,, is a weighting operator that is introduced in the next section
(Mora, 1987). Only three vectors of dimension M, i.e.,, VC™,
VCO-3 and p -V, are required to implement the conjugate-gradi-
ent method.

Numerical algorithms: Quasi-Newton algorithms

Finite approximations of the Hessian and itsinverse can be com-
puted using quasi-Newton methods such as the BFGS algorithm
(named after its discoverers Broyden, Fletcher, Goldfarb, and Sh-
anno; see Nocedal [1980] for areview). The main ideaisto update
the approximation of the Hessian or itsinverse H™ at each iteration
of the inversion, taking into account the additional knowledge pro-
vided by VC™ at iteration n. Inthese approaches, the approximation
of theHessian or itsinverseisexplicitly formed.

For large-scal e problems such as FWI in which the cost of storing
and working with the approximation of the Hessian matrix isprohib-
itive, alimited-memory variant of the quasi-Newton BFGS method
known as the L-BFGS algorithm allows computing in a recursive
manner H™V C™ without explicitly forming /™. Only afew gradi-
ents of the previous nonlinear iterations (typically, 3-20 iterations)
need to be stored in L-BFGS, which represents a negligible storage
and computational cost compared to the conjugate-gradient algo-
rithm (see Nocedal, 1980; p. 177-180). The L-BFGS agorithm re-
quiresaninitial guess H'@, which can be provided by theinverse of
the diagonal Hessian (Brossier et a., 2009a). For multiparameter
FWI, the L-BFGS algorithm providesasuitable scaling of thegradi-
ents computed for each parameter class and hence provides a com-
putationally efficient alternative to the subspace method of Sam-
bridge et al. (1991). A comparison between the conjugate-gradient
method and the L-BFGS method for arealistic onshore application
of multiparameter elastic FWI isshownin Brossier et a. (2009a).

Newton and Gauss-Newton algorithms

The more accurate, athough more computationally intensive,
Gauss-Newton and Newton algorithms are described in Akcelik
(2002), Askan et a. (2007), Askan and Bielak (2008), and Epano-
meritakis et al. (2008), with an application to a 2D synthetic model
of the San Fernando Valley using the SH-wave equation. At each
nonlinear FWI iteration, amatrix-free conjugate-gradient method is
used to solve the reduced Karush-Kuhn-Tucker (KKT) optimal sys-
tem, which turns out to be similar to the normal equation system
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(equation 11). Neither the full Hessian nor the sensitivity matrix is
formed explicitly; only the application of the Hessian to a vector
needsto be performed at each iteration of the conjugate-gradient al-
gorithm.

Application of the Hessian to a vector requires performing two
forward problemsper shot for theincident and the adjoint wavefields
(Akcelik, 2002). Because these two simulations are performed at
each iteration of the conjugate-gradient algorithm, an efficient pre-
conditioner must be used to mitigate the number of iterations of the
conjugate-gradient agorithm. Epanomeritakis et al. (2008) use a
variant of the L-BFGS method for the preconditioner of the conju-
gate gradient, in which the curvature of the objective functionisup-
dated at each iteration of the conjugate gradient using the Hessian-
vector productscollected over theiterations.

Regularization and preconditioning of inversion

Aswidely stressed, FWI isanill-posed problem, meaning that an
infinite number of models matches the data. Some regularizations
are conventionally applied to the inversion to make it better posed
(Menke, 1984; Tarantola, 1987; Scaleset a., 1990). Themisfit func-
tion can beaugmented asfollows:

1 1
C(m) = EAdTWdAd + Es(m - mprior)TWm(m - mprior),

(17)

where W, = S}S;and W, = S S, Weighting operatorsare W 4 and
W, the inverse of the data and model covariance operators in the
frame of the Bayesian formulation of FWI (Tarantola, 1987). The
operator S, can be implemented as a diagonal weighting operator
that controlsthe respective weight of each element of the data-misfit
vector. For example, Operto et al. (2006) use Sy as a power of the
source-receiver offset to strengthen the contribution of large-offset
datafor crustal-scaleimaging. Ingeophysical applicationswherethe
smoothest model that fits the data is often sought, the aim of the
least-squares regularization term in the augmented misfit function
(equation 17) isto penalize the roughness of the model m, hence de-
fining the so-called Tikhonov regularization (see Hansen [ 1998] for
areview on regularization methods). The operator S,,isgeneraly a
roughness operator, such asthe first- or second-difference matrices
(Pressetal., 1986, 1007).

For linear problems (assuming the second term of the Hessian is
neglected), the minimization of the weighted misfit function gives
the perturbation model:

Am = —{R(IW o) + W} R[IWAd,], (18)

where we use M- = Mo. Of note, equation 18 is equivalent to
Tarantola(1987, p. 70) and Menke (1984, p. 55):

Am = —W_ HR(IW ;1)) + eW 1 R[I[Ad,].
(19)

Equation 19 can be more tractable from a computational viewpoint
when N < M. Because W, is a roughness operator, W' is a
smoothing operator. It can beimplemented, for example, withamul-
tidimensional adaptive Gaussian smoother (Ravaut et al., 2004; Op-
erto et al., 2006) or with alow-passfilter in the wavenumber domain
(Sirgue, 2003).

For the steepest-descent algorithm, the regularized solution for
the perturbation model isgiven by

Downloaded 04 Dec 2009 to 193.50.85.151. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Full-waveforminversion

Am = —aW  'R[IWAd,], (20)

where the scaling performed by the diagonal terms of the approxi-
mate Hessian can beembedded inthe operator W ;' in addition tothe
smoothing operator.

A more complete and rigorous mathematical derivation of these
equationsispresentedin Tarantola(1987).

Alternative regularizations based on minimizing the total varia-
tion of themodel have been devel oped mainly by theimage-process-
ing and el ectromagnetic communities. Theaim of thetotal variation
or edge-preserving regularization isto preserve both the blocky and
the smooth characteristics of themodel (Vogel and Oman, 1996; Vo-
gel, 2002). Total variation (TV) regularizationis conventionally im-
plemented by minimizing the £,-norm of the model-misfit function
Rry = (AmW,,Am)¥2, Alternatively, van den Berg and Abubakar
(2001) implement TV regul arization asamultiplicative constraint in
the original misfit function. In this framework, the original misfit
function can be seen as the weighting factor of the regularization
term, which is automatically updated by the optimization process
without the need for heuristic tuning. TV regularizationisapplied to
FWI in Askan and Bielak (2008). Theweighted £,-norm regulariza-
tion applied to frequency-domain FWI is shown in Hu et al. (2009)
and Abubakar et al. (2009).

The gradient and Hessian in FWI: Interpretation and
computation

A clear interpretation of thegradient and Hessian isgiven by Pratt
et a. (1998) using the compact matrix formalism of frequency-do-
main FWI. A review isgiven here. Let usconsider the forward-prob-
lem equation given by equation 2 for one source and one frequency.
In the following, we assume that the model is discretized in afinite-
difference senseusing auniform grid of nodes.

Differentiation of equation 2 with respect to the model parameter
m; gives the expression of the partial derivative wavefield Ju/am;
by solving thefollowing system:

Jdu
B— =, (21)
am;
where
JB
f0=— —u. (22)
am;

An analogy between the forward-problem equation 2 and equa-
tion 21 showsthat the partial-derivative wavefield can be computed
by solving one forward problem, the source of whichisgiven by f©.
This so-called virtual secondary source isformed by the product of
dB/dm, andtheincident wavefieldu. Thematrix ¢B/dm, isbuilt by
differentiating each coefficient of the forward-problem operator B
withrespect tom,. Becausethediscretized differential operatorsinB
generaly have local support, the matrix dB/dm, is extremely
sparse.

The spatial support of the virtual secondary sourceis centered on
the position of m,, whereas the temporal support of f is centered
aroundthearrival timeof theincident wavefield at the position of m,.
Therefore, the partial-derivative wavefield with respect to themodel
parameter m, can beinterpreted asthe wavefield emitted by the seis-
mic source sand scattered by apoint diffractor located at m,. Thera-
diation pattern of the virtual secondary source is controlled by the
operator 9B/ dm,. Analysis of thisradiation pattern for different pa-
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rameter classes allows usto assessto what extent parameters of dif-
ferent natures are uncoupled in the tomographic reconstruction as a
function of the diffraction angle and to what extent they can bereli-
ably reconstructed during FWI. Radiation patterns for the isotropic
acoustic, elastic, and viscoel astic wave equations are shown in Wu
and Aki (1985), Tarantola (1986), Ribodetti and Virieux (1996), and
Forguesand Lambaré (1997).

Because the gradient is formed by the zero-lag correlation be-
tween the partial-derivative wavefield and the data residual, these
have the same meaning: They represent perturbation wavefields
scattered by the missing heterogeneities in the starting model mq
(Tarantola, 1984; Pratt et a., 1998). This interpretation draws some
connectionsbetween FWI and diffraction tomography; the perturba-
tion model can be represented by a series of closely spaced diffrac-
tors. By virtue of Huygens' principle, theimage of the model pertur-
bationsisbuilt by the superposition of the elementary image of each
diffractor, and the seismic wavefield perturbation is built by super-
position of the wavefields scattered by each point diffractor (Mc-
Mechan and Fuis, 1987).

The approximate Hessian is formed by the zero-lag correlation
between the partial-derivative wavefields, e.g., equation 10. The di-
agonal terms of the approximate Hessian contain the zero-lag auto-
correlation and therefore represent the square of the amplitude of the
partial-derivative wavefield. Scaling the gradient by these diagonal
termsremovesfrom the gradient the geometric amplitude of the par-
tial-derivativewavefieldsand theresidual s. In the framework of sur-
face seismic experiments, the effects of the scaling performed by the
diagonal Hessian provide agood balance between shallow and deep
perturbations. A diagona Hessian is shown in Ravaut et al. (2004,
their Figure 12). The off-diagonal termsof the Hessian are computed
by correlation between partial -derivative wavefieldsassociated with
different model parameters. For 1D media, the approximate Hessian
isaband-diagonal matrix, and the numerical bandwidth decreasesas
the frequency increases. The off-diagonal elements of the approxi-
mate Hessian account for the limited-bandwidth effects that result
fromthe experimental setup. Applyingitsinversetothegradient can
beinterpreted as adeconvolution of the gradient from these limited-
bandwidth effects.

Anillustration of the scaling and deconvolution effectsperformed
by the diagonal Hessian on one hand and the approximate Hessian
on the other hand isprovided in Figure 1. A singleinclusion in aho-
mogeneous background model (Figure 1a) is reconstructed by one
iteration of FWI using agradient method preconditioned by thediag-
onal terms of the approximate Hessian (Figure 1b) and by a Gauss-
Newton method (Figure 1c). The image of the inclusion is sharper
when the Gauss-Newton algorithm is used. The corresponding ap-
proximate Hessian and its diagonal elements are shown in Figure 2.
Aninterpretation of the second term of the Hessian (equation 10) is
given in Pratt et al. (1998). This term accounts for multiscattering
eventssuch asmultiplesin thereconstruction procedure. Throughit-
erations, we might correct effects caused by this missing term as
long asconvergenceisachieved.

Although equation 21 gives some clear insight into the physical
sense of the gradient of the misfit function, it isimpractical from a
computer-implementation point of view; with thecomputer explicit-
ly forming the sensitivity matrix with equation 21, it would require
performing as many forward problems as the number of model pa-
rametersm,(¢ = 1,M) for each source of the survey. To mitigatethis
computational burden, the spatial reciprocity of Green’s functions
can be exploited asshown below.
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Inserting the expression of the partial derivative of the wavefield
(equation 21) intheexpression of thegradient of equation 9 givesthe
following expression of thegradient:

t
VC, = D‘i[u‘[ﬁ] B‘lt(PAd)*}, (23)
am,

where P denotes an operator that augments the residual data vector
with zeroes in the full computational domain so that the dimension
of the augmented vector matches the dimension of the matrix B -
(Pratt et al., 1998). The column of B~* corresponds to the Green's
functionsfor unitimpul se sourceslocated at each node of themodel.
By virtue of the spatial reciprocity of the Green’s functions, B! is

Distance (km)

a 1
) 02 . 2 3
E ]
£ ®
5
Q.
()
o
2 |
3.
Distance (km) Vp (km/s)
b) 2 3 d) 40 41 42 43
of : v 0 i
£
<
=
Q.
(7]
o
24
3 . 3 :
Distance (km) Vp (km/s)
¢ 1 2 3€) 40 41 42 43
0 0 : .
£
o
£
(o}
[J]
a
2
3 3

Figure 1. Reconstruction of aninclusion by frequency-domain FWI.
(a) True model and FWI models built (b) by apreconditioned gradi-
ent method and (c) by aGauss-Newton method. Four frequencies(4,
5, 7,and 10 Hz) wereinverted. Oneiteration per frequency wascom-
puted. Fourteen shots were deployed along the top and |eft edges of
the model. Shots along the top edge were recorded by 14 receivers
along the bottom edge; shots along the left edges were recorded by
14 receiversalong theright edge. The P-wave vel ocitiesin the back-
ground and intheinclusion are 4.0 and 4.2 km/s, respectively. Verti-
cal velocity profilesare extracted from thetruemodel (gray line) and
the FWI models (black line) for (d) the gradient and (e) the Gauss-
Newtoninversions.
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symmetric. Therefore, B~ can be substituted by Bt in equation 23,
whichgives

VC, = m[ut[ﬁ]ts—l(md*)} = m[ut[ﬁ}trb].
ﬁmg (?mf
(24)

Thewavefieldr, correspondsto the back-propagated residual wave-
field. All of the residuals associated with one seismic source are as-
sembledtoform oneresidual source. Theback propagationintimeis
indicated by the conjugate operator in the frequency domain. The
number of forward seismic problems for computing the gradient is
reduced to two: one to compute the incident wavefield u and oneto
back propagate the corresponding residuals. The underlying imag-
ing principle is reverse-time migration, which relies on the corre-
spondence of the arrival times of the incident wavefield and the
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Figure 2. Hessian operator. (a) Approximate Hessian corresponding
tothe 31 X 31 model of Figure 1 for afrequency of 4 Hz. A close-up
of theareadelineated by theyellow square highlightsthe band-diag-
onal structure of the Hessian. (b) Corresponding diagonal terms of
the Hessian plotted in the distance-depth domain. The high-ampli-
tude coefficientsindicate source and receiver positions. Scaling the
gradient by this map removes the geometric amplitude effects from
thewavefields.
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back-propagated wavefield at the position of heterogeneity (Claer-
bout, 1971; Lailly, 1983; Tarantola, 1984).

Theapproach that consists of computing the gradient of the misfit
functionwithout explicitly building the sensitivity matrix isoftenre-
ferred to asthe adjoint-wavefield approach by the geophysical com-
munity. The underlying mathematical theory is the adjoint-state
method of the optimization theory (Lions, 1972; Chavent, 1974). In-
teresting links exist between optimization techniques used in FWI
and assimilation methods, widely used in fluid mechanics (Tala
grand and Courtier, 1987). A detailed review of the adjoint-state
method with illustrations from several seismic problemsisgivenin
Tromp et a. (2005), Askan (2006), Plessix (2006), and Epanomer-
itakis et al. (2008). The expression of the gradient of the frequency-
domain FWI misfit function (equation 24) is derived from the ad-
joint-state method and the method of the Lagrange multiplier in Ap-
pendix A.

For multiple sources and multiple frequencies, the gradient is
formed by the summation over these sourcesand frequencies:

N, Ng
VC,=2> > m[[si135]1[‘9—&]}8&(7%(1:3)]].
am, ,

i=1ls=1
(25)

We also need to note that matrices B, (i = 1,N,,) do not depend on
shots; therefore, any speedup toward resolving systemsthat involve
these matri ces with multiple sources should be considered (Marfurt,
1984; Joetal., 1996; Stekl and Pratt, 1998).

By comparing the expressions of the gradient in equations 9 and
24, we can concludethat one element of the sensitivity matrix isgiv-
enby

9B!
Jk(s,r),€ = uts|:0,,_m€:|B_l5rr (26)

wherek(s,r) denotes a source-receiver couple of the acquisition ge-
ometry, with sand r denoting ashot and areceiver position, respec-
tively. An impulse source &, islocated at receiver positionr. If the
sensitivity matrix must be built, one forward problem for the inci-
dent wavefield and one forward problem per receiver position must
be computed. Therefore, the number of simulationsto build the sen-
sitivity matrix can be higher than that required by gradient estima-
tion if the number of nonredundant receiver positions significantly
exceeds the number of nonredundant shots, or vice versa. Comput-
ing each term of the sensitivity matrix isal so required to computethe
diagonal terms of the approximate Hessian H, (Shin et al., 2001b).
To mitigate the resulting computational burden for coarse OBS sur-
veys, Operto et a. (2006) suggest computing the diagonal terms of
H, for a decimated shot acquisition. Alternatively, Shin et al.
(2001a) propose using an approximation of the diagonal Hessian,
which can becomputed at the same cost asthe gradient.

Although the matrix-free adjoint approach is widely used in ex-
ploration seismology, the earthquake-seismology community tends
tofavor the scattering-integral method, whichisbased ontheexplic-
it building of the sensitivity matrix (Chen et a., 2007). The linear
system relating the model perturbation to the data perturbation is
formed and solved with a conjugate-gradient algorithm such as
LSQR (Paige and Saunders, 1982a). A comparative complexity
analysisof the adjoint approach and the scattering-integral approach
ispresented in Chen et al. (2007), who conclude that the scattering-
integral approach outperformsthe adjoint approach for aregional to-
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mographic problem. Indeed, the superiority of oneapproach over the
other is highly dependent on the acquisition geometry (the relative
number of sources and receivers) and the number of model parame-
ters.

Theformalismin equation 25 has been kept asgeneral aspossible
and can relate to the acoustic or the elastic wave equation. In the
acoustic case, the wavefield is the pressure scalar wavefield; in the
elastic case, thewavefieldideally isformed by the componentsof the
particle velocity and the pressure if the sensors have four compo-
nents. Equation 25 can betranslated in the time domain using Parse-
val’srelation. The expression of the gradient in equation 25 can be
developed equivaently using a functional anaysis (Tarantola,
1984). The partial derivatives of the wavefield with respect to the
model parametersareprovided by thekernel of theBornintegral that
relatesthe model perturbationsto the wavefield perturbations. Mul-
tiplying the transpose of the resulting operator by the conjugate of
the data residual s provides the expression of the gradient. The two
formalisms (matrix and functional) give the same expression, pro-
vided the discretization of the partial differential operators are per-
formed consistently inthetwo approaches. Thederivationinthefre-
quency domain of the gradient of the misfit function using the two
formalismsisexplicitly illustrated by Geliset a. (2007).

Source estimation

Source excitation is generally unknown and must be considered
asan unknown of the problem (Pratt, 1999). The source wavelet can
be estimated by solving alinear inverse problem because the rela-
tionship between the seismic wavefield and the source is linear
(equation 2). Thesolutionfor the sourceisgiven by theexpression

_ (Gea(Mg)ldege)
(Gca(M0)|Gea (o))’

where g..(my) denotes the Green’s functions computed in the start-
ing model m,. The source function can be estimated directly in the
FWI agorithm once the incident wavefields have been modeled.
The source and the medium are updated alternatively over iterations
of the FWI. Notethat it is possible to take advantage of source esti-
mationto design alternative misfit functionsbased onthedifferential
semblance optimization (Pratt and Symes, 2002) or to define more
heuristic criteriato stop theiteration of theinversion (Jaiswal et a.,
2009).

Alternatively, new misfit functions have been designed so thein-
version becomes independent of the source function (Lee and Kim,
2003; Zhou and Greenhalgh, 2003). The governing ideaof the meth-
odisto normalize each seismogram of ashot gather by the sum of all
of the seismograms. Thisremovesthe dependency of thenormalized
datawith respect to the source and modifies the misfit function. The
drawback is that this approach requires an explicit estimate of the
sensitivity matrix; the normalized residuals cannot be back propa-
gated becausethey do not satisfy thewave equation.

(27)

SOME KEY FEATURES OF FWI

Resolution power of FWI and relationship to the
experimental setup

Theinterpretation of the partial-derivative wavefield asthe wave-
field scattered by the missing heterogeneities provides some connec-
tions between FWI and generalized diffraction tomography (Dev-
aney and Zhang, 1991; Geliuset a., 1991). Diffraction tomography
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recaststheimaging asan inverse Fourier transform (Devaney, 1982;
Wu and Toksoz, 1987; Sirgue and Pratt, 2004; Lecomteet al., 2005).
L et usconsider ahomogeneous background model of velocity c,, an
incident monochromatic plane wave propagating in the direction S
and a scattered monochromatic plane wave in the far-field approxi-
mation propagating in thedirectionf (Figure 3). If amplitude effects
are not taken into account, the incident and scattered Green’s func-
tionscan bewritten compactly as

Gy(x,5) = exp(ikyS.x),
Go(x,r) = exp(ikyf . X), (28)

with therelation ky = w/ ¢,. Inserting the expression of the incident
and scattered plane wavesinto the gradient of the misfit function of
equation 24 givesthe expression (Sirgue and Pratt, 2004)

VC(m) = —w?Y, > D R{exp(— iky(5+ F).X)Ad}.

(29)

Equation 29 has the form of atruncated Fourier series where the
integration variableisthe scattering wavenumber vector given by k
= ko(§+ 7). Thecoefficients of the series are the dataresiduals. The
summation is performed over sources, receivers, and frequencies
that control the truncation and sampling of the Fourier series.

We can express the scattering wavenumber vector ky(S+ ') asa
function of frequency, diffraction angle, or aperture to highlight the
relationship between the experimental setup and the spatial resolu-
tion of thereconstruction (Figure4):

k = Z—f cos(2>n, (30)
Co 2
where n is a unit vector in the direction of the slowness vector (5
+ F). Equation 30 was also derived in the framework of the ray +
Born migration/inversion, recast asthe inverse of ageneralized Ra-
dontransform (Miller et al., 1987) or asaleast-squaresinverse prob-
lem (Lambaréet al., 2003).

Severa key conclusions can be derived from equation 30. First,
onefrequency and one aperturein the dataspace map onewavenum-
ber in the model space. Therefore, frequency and aperture have re-
dundant control of the wavenumber coverage. This redundancy in-
creases with aperture bandwidth. Pratt and Worthington (1990), Sir-
gue and Pratt (2004), and Brenders and Pratt (2007a) propose deci-
mating this wavenumber-coverage redundancy in frequency-do-
main FWI by limiting the inversion to a few discrete frequencies.
Thisdatareduction leadsto computationally efficient frequency-do-
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Figure 3. Resolution analysis of FWI. (a) Incident monochromatic
plane wave (real part). (b) Scattered monochromatic plane wave
(real part). (c) Gradient of FWI describing one wavenumber compo-
nent (real part) built fromthe planewavesshownin (a) and (b).
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main FWI and allowsmanaging acompact volumeof data, two clear
advantages with respect to time-domain FWI. The guideline for se-
lecting the frequencies to be used in the FWI is that the maximum
wavenumber imaged by afrequency matches the minimum vertical
wavenumber imaged by the next frequency (Sirgue and Pratt, 2004,
their Figure 3). According to this guideline, the frequency interval
increaseswith thefrequency.

Second, the low frequencies of the data and the wide apertures
help resolve the intermediate and large wavel engths of the medium.
At the other end of the spectrum, the maximum wavenumber, con-
strained by 6 = 0and the highest frequency, leadstoamaximumres-
olution of half awavelength if normal-incidence reflections are re-
corded. Third, for surface acquisitions, long offsets are helpful for
sampling the small horizontal wavenumbers of dipping structures
such asflanksof salt domes.

A frequency-domain sensitivity kernel for point sources, referred
to as the wavepath by Woodward (1992), is shown in Figure 5. The
interference picture shows zones of equiphase over which theresid-
uals are back projected during FWI. The central zone of elliptical
shapeisthefirst Fresnel zone of width VAog, where o, isthe source-
receiver offset. Residuals that match the first arrival with an error
lower than half a period will be back projected constructively over
the first Fresnel zone, updating the large wavelengths of the struc-
ture. The outer fringes are isochrones on which residual s associated
with later-arriving reflection phases will be back projected, provid-
ing an update of the shorter wavelengths of the medium, just like
PSDM (Lecomte, 2008). The width of the isochrones, which gives
someinsight into the vertical resolution in Figure 4, is given by the
modulus of thewavenumber of equation 30.

Toillustrate the rel ationship between FWI resolution and the ex-
perimental setup, we show the FWI reconstruction of aninclusionin
ahomogeneousbackground for three acqui sition geometries (Figure
6). Inthe crosshol e experiment (Figure 6a), FWI hasreconstructed a
low-pass-filtered (smoothed) version of thevertical section of thein-
clusion and a band-pass-filtered version of the horizontal section of
theinclusion. Thisanisotropy of the imaging results from the trans-
mission-like reconstruction of the vertical wavenumbersand the re-
flection-likereconstruction of the horizontal wavenumbersof thein-
clusion. In the case of the double crosshol e experiment (Figure 6b),
thevertical and horizontal wavenumber spectraof theinclusion have

S R

A=clf

k=fq Pr .
q=ps*p,
P = pr = 1lc

Figure4. lllustration of the main parametersin diffraction tomogra-
phy and their relationships. Key: A, wavelength; 6, diffraction or ap-
erture angle; ¢, P-wave velocity; f, frequency; ps, pr, g, Slowness
vectors; k, wavenumber vector; x, diffractor point; Sand R, source
and receiver positions.
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been partly filled because of the combined use of transmission and
reflection wavepaths. Of note, the vertical section shows alack of
low wavenumbers, whereas the horizontal section exhibits a deficit
of low wavenumbers because the maximum horizontal source-re-
ceiver offset is two times higher than the vertical one (Figure 6b).
Therefore, the aperture illuminations of the horizontal and vertical
wavenumbersdiffer. For the surface acquisition (Figure 6¢), thever-
tical section exhibitsastrong deficit of low wavenumbersbecause of
thelack of large-apertureillumination. Of note, the pick-to-pick am-
plitude of the perturbationisfully recovered in Figure 6¢. The hori-
zontal section of the inclusion is poorly recovered because of the
poor illumination of the horizontal wavenumbersfrom the surface.

The ability of the wide aperturesto resolve the large wavelengths
of themedium has prompted some studiesto consider long-offset ac-
quisitions as a promising approach to design well-posed FWI prob-
lems (Pratt et al., 1996; Ravaut et al., 2004). For example, equation
30 can suggest that the long wavelengths of the medium can be re-
solved whatever the source bandwidth, provided that wide-aperture
data are recorded by the acquisition geometry. However, al of the
conclusionsderived sofar rely onthe Born approximation. TheBorn
approximation requires that the starting model allows matching the
observed traveltimes with an error less than half the period (Bey-
doun and Tarantola, 1988). If not, the so-called cycle-skipping arti-
factswill lead to convergencetoward alocal minimum (Figure7).

Pratt et al. (2008) translatesthisconditionintermsof relativetime
error At/ T, asafunction of the number of propagated wavelengths
N,, expressed as

At 1
—<—, (31)
T N,

where T, denotesthe duration of the simulation. Condition 31 shows
that thetraveltime error must be lessthan 1% for an offset involving
50 propagated wavelengths, a condition unlikely to be satisfied if
FWI isapplied without data preconditioning. Therefore, some stud-
iesconsider that recording low frequencies (<1 Hz) isthe best strat-
egy to design well-posed FWI (Sirgue, 2006). Unfortunately, such
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Figure5. Wavepath. (a) Monochromatic Green’sfunction for apoint
source. (b) Wavepath for areceiver located at a horizontal distance
of 70 km from the source. Thefrequency is5 Hz and the velocity in
the homogeneous background is 6 km/s. The dashed red lines delin-
eatethefirst Fresnel zone and an isochrone surface. Theyellow line
isavertical section acrossthewavepath. Thebluelinesrepresent dif-
fraction pathswithinthefirst Fresnel zoneand from theisochrone.
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low fregquencies cannot be recorded during controlled-source exper-
iments. As an alternative to low frequencies, multiscale layer-strip-
ping approaches where longer offsets, shorter apertures, and longer
recording times are progressively introduced in the inversion, have
been designed to mitigate the nonlinearity of theinversion.

Multiscale FWI: Time domain ver sus frequency domain

FWI can be implemented in the time domain or in the frequency
domain. FWI was originally developed in the time domain (Taran-
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Figure 6. Imaging an inclusion by FWI. (a) Crosshole experiment.
Source and receiver linesarein red and blue, respectively. The con-
tour of the inclusion with a diameter of 400 m is delineated by the
bluecircle. Thetruevelocity intheinclusionis4.2 km/s, whereasthe
velacity inthe backgroundis4 km/s. Six frequencies(4, 7,9, 11, 12,
and 15Hz) wereinverted successively, and 20 iterationsper frequen-
cy were computed. The black and gray curves along the right and
bottom sides of the model are velocity profiles across the center of
the inclusion extracted from the exact model and the reconstructed
model, respectively. (b) Same as (a) for a vertical and horizontal
crosshol e experiment (the shotsalong the red dashed line are record-
ed by only the receivers along the vertical blue dashed line). (c)
Sameas(a) for asurface experiment.
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tola, 1984; Gauthier et al., 1986; Mora, 1987; Crase et al., 1990)
whereas the frequency-domain approach was proposed mainly in
the 1990s by Pratt and collaborators (Pratt, 1990; Pratt and Wor-
thington, 1990; Pratt and Goulty, 1991), first with application to
crosshole data and later with application to wide-aperture surface
seismicdata(Prattetal., 1996).

The nonlinearity of FWI has prompted many studies to develop
some hierarchical multiscale strategies to mitigate this nonlinearity.
Apart from computational efficiency, the flexibility offered by the
time domain or the frequency domain to implement efficient multi-
scale strategies is one of the main criteria that favors one domain
rather than the other. The multiscal e strategy successively processes
data subsets of increasing resolution power to incorporate smaller
wavenumbers in the tomographic models. In the time domain,
Bunks et al. (1995) propose successive inversion of subdata sets of
increasing high-frequency content because low frequencies are less
sensitiveto cycle-skipping artifacts. Thefrequency domain provides
amore natural framework for this multiscale approach by perform-
ing successiveinversionsof increasing frequencies. Inthefrequency
domain, singleor multiplefrequencies(i.e., frequency group) can be
inverted at atime.

Although afew discrete frequenciestheoretically are sufficient to
fill thewavenumber spectrum for wide-aperture acquisitions, simul-
taneous inversion of multiple frequencies improves the signal-to-
noiseratio and the robustness of FWI when complex wave phenom-
ena are observed (i.e, guide waves, surface waves, dispersive
waves). Therefore, atrade-off between computational efficiency and
quality of imaging must be found. When simultaneous multifre-
quency inversion is performed, the bandwidth of the frequency
groupideally must beaslarge aspossibleto mitigate the nonlinearity
of FWI interms of the nonunicity of the solution, whereas the maxi-
mum fregquency of the group must be sufficiently low to prevent cy-
cle-skipping artifacts. An illustration of this tuning of FWI isgiven
inBrossier et al. (2009a) intheframework of elastic seismicimaging
of complex onshore models from the joint inversion of surface
wavesand body waves.
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Figure 7. Schematic of cycle-skipping artifacts in FWI. The solid
black line represents a monochromatic seismogram of period T asa
function of time. The upper dashed line represents the modeled
monochromatic seismogramswith atime delay greater than T/2. In
this case, FWI will update the model such that the n + 1th cycle of
the modeled seismograms will match the nth cycle of the observed
seismogram, leading to an erroneous model. In the bottom example,
FWI will update the model such that the modeled and recorded nth
cyclearein-phasebecausethetimedelay islessthan T/ 2.
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Theregularization effectsintroduced by hierarchical inversion of
increasing frequencies might not be sufficient to provide reliable
FWI resultsfor realistic frequencies and realistic starting modelsin
the case of complex structures. This has prompted some studies to
design additional regularization levelsin FWI. One of theseisto se-
lect asubset of arrivalsasafunction of time. Anaim of thistimewin-
dowingisto remove arrivalsthat are not predicted by the physics of
thewave equation implemented in FWI (for example, PS-converted
waves in the frame of acoustic FWI). A second aim isto perform a
heuristic selection of aperture anglesin the data. Considering anar-
row time window centered on thefirst arrival leadsto so-called ear-
ly-arrival waveform tomography (Sheng et a., 2006). Time win-
dowing thedataaround thefirst arrivalsisequivalent to selecting the
large-aperture components of the data to image the large and inter-
mediate wavel engths of the medium. Alternatively, timewindowing
can be applied to isolate later-arriving reflections or PS-converted
phases to focus on imaging a specific reflector or a specific parame-
ter class, such asthe S-wave velocity (Shipp and Singh, 2002; Sears
eta., 2008; Brossier et al., 2009a).

The frequency domain is the most appropriate to select one or a
few frequenciesfor FWI, but thetime domainisthemost appropriate
to select onetypeof arrival for FWI. Indeed, time windowing cannot
be applied in frequency-domain modeling, in which only one or few
frequenciesaremodeled at atime. A last resort isthe use of complex-
valued frequencies, which is equivalent to the exponential damping
of asignal p(t) intimefrom an arbitrary traveltimet, (Sirgue, 2003;
Brendersand Pratt, 2007b):

—+0o0

P<w+l_)et°/T: f p(he” -7 detgr,  (32)
T

—0

where P(w) denotesthe Fourier transform of p(t) and 7 isthe damp-
ing factor.

A last regularization level can beimplemented by layer stripping,
in which the imaging proceeds hierarchically from the shallow part
tothe deep part. Layer stripping in FWI can be applied by combined
offset and temporal windowing (Shipp and Singh, 2002; Wang and
Reo, 2009).

Thesethreelevelsof regularization — frequency dependent, time
dependent, and offset dependent — can be combined in oneintegrat-
ed multiloop FWI workflow. An exampleisprovided in Shinand Ha
(2009) and Brossier et al. (2009a), in which thefrequency- and time-
dependent regularizations are implemented into two nested loops
over frequency groups and time-damping factors. In this approach,
the frequencies increase in the outer loop and the damping factors
decrease in the inner loop. In Figure 8, the Vp and Vs models of the
overthrust model are inferred from the successive inversion of two
groups of five frequencies (Brossier et al., 2009a). The frequencies
of thefirst group rangefrom 1.7 to 3.5 Hz, whereas those of the sec-
ond group range from 3.5 to 7.2 Hz. Five damping factors of 7 be-
tween 0.67 and 30.0 swere applied hierarchically for data precondi-
tioning during theinversion of each frequency group. Without these
two regularization level s associated with frequency and aperture se-
lections, FWI failsto converge toward acceptable models.

In summary, theimplementation of FWI in the frequency domain
alowstheeasy implementation of multiscale FWI based onthehier-
archical inversion of groups of frequencies of arbitrary bandwidth
and sampling intervals. Time-domain modeling provides the most
flexible framework to apply time windowing of arbitrary geometry.
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This makes frequency-domain FWI based on time-domain model-
ing an attractive strategy to design robust FWI algorithms. Thisises-
pecialy truefor 3D problems, for which time-domain modeling has
several advantageswith respect to frequency-domain modeling (Sir-
gueetd., 2008).

On the parallel implementation of FWI

FWI agorithms must beimplemented in parallel to addresslarge-
scale 3D problems. Depending on the numerical technique for solv-
ing the forward problem, different parallel strategies can be consid-
eredfor FWI. If theforward problem isbased on numerical methods
such astime-domain modeling or iterative solvers, which arenot de-
manding in terms of memory, acoarse-grained parallelism that con-
sistsof distributing sourcesover processorsisgenerally used and the
forward problem is performed sequentially on each processor for
each source (Plessix, 2009). If the number of processors significant-
ly exceeds the number of shots, which can be the caseif source en-
coding techniques are used (Krebs et a., 2009), a second level of
parallelism can be viewed by domain decomposition of the physical
computational domain. A comprehensive review of different algo-
rithmsto efficiently compute the forward and the adj oint wavefields
intime-domain FWI ispresented by Akcelik (2002).

In contract, if the forward problem is based on amethod that em-
beds amemory-expensive preprocessing step, such asL U factoriza-
tion in the frequency-domain direct-solver approach, parallelism
must be based on adomain decomposition of the computational do-
main. Each processor computes a subdomain of the wavefields for
all sources. Examples of such agorithms are described in Ben Hadj
Ali et al. (2008a), Brossier et al. (2009a), and Sourbier et al. (20093,
2009b). A contrast source inversion (CSl) method is described by
Abubakar et al. (2009), which allowsadecreasein the number of LU
factorizationinfrequency-domain FWI at the expense of the number
of iterations.

Variants of classic least-squares and
Born-approximation FWI

Although the most popular approach of FWI isbased on minimiz-
ing the |east-sgquares norm of the data misfit on the one hand and on
the Born approximation for estimating partial-derivative wavefields
on the other, several variants of FWI have been proposed over the
last decade. These variants relate to the definition of the minimiza-
tion criteria, the representation of the data (amplitude, phase, loga-
rithm of the complex-valued data, envelope) in the misfit, or thelin-
earization procedure of theinverse problem.

The choice of the minimization criterion

Theleast-squares norm approach assumes aGaussi an distribution
of the misfit (Tarantola, 1987). Poor results can be obtained when
thisassumptionisviolated, for example, when large-amplitude out-
liers affect the data. Therefore, careful quality control of the data
must be carried out before least-squares inversion. Crase et al.
(1990) investigate several norms such asthe least-squaresnorm £,
the least-absolute-values norm L, the Cauchy criterion norm, and
the hyperbolic secant (sech) criterion in FWI (Figure 9). The
L,-norm specifically ignores the amplitude of the residuals during
back propagation of the residuals when gradient building, making
thiscriterionlesssensitivetolargeerrorsinthedata. The Cauchy and
sech criteria can be considered a combination of the £,- and the
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L,-norms with different transitions between the norms. Crase et al.
(1990) conclude that the most reliable FWI results have been ob-
tained with the Cauchy and the sech criteria.

The £, and Cauchy criteria are also compared by Amundsen
(1991) in the framework of frequency-wavenumber-domain FWI
for stratified media described by velocity, density, and layer thick-
nesses (Amundsen and Ursin, 1991). They consider random noise
and weather noiseand concludein both casesthat the Cauchy criteri-
onleadsto themorerobust results.

The Huber norm also combines the £,- and the £,-norms; it is
combined with quasi-Newton L-BFGS by Guitton and Symes
(2003) and Bubeand Nemeth (2007). TheHuber normisalsousedin
the framework of frequency-domain FWI by Ha et al. (2009) and
showsan overall morerobust behavior thanthe £,-norm.

The choice of the linearization method

The sensitivity matrix is generally computed with the Born ap-
proximation, which assumes a linear tangent relationship between
the model and wavefield perturbations (Woodward, 1992). Thislin-
ear relationship between the perturbations can be inferred from the
assumption that the wavefield computed in the updated model isthe
wavefield computed in the starting model plus the perturbation
wavefield.
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Figure 8. Multiscal e strategy for elastic FWI with application to the
overthrust model. (a) FWI velocity models Vp (top) and Vs (bottom).
(b) Comparison between the logs from the true model (black), the
starting model (dashed gray), and the final FWI model (solid gray).
(c) Synthetic seismograms computed in thefinal FWI modelsfor the
horizontal (left) and vertical (right) components of particle velocity.
The bottom panels are the final residuals between seismograms
computed inthetrueand in thefinal FWI models (image courtesy R.
Brossier).
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The Rytov approach considersthe generalized phase asthe wave-
field (Woodward, 1992). The Rytov approximation providesalinear
rel ationship between the complex-phase perturbation and the model
perturbation by assuming that the wavefield computed in the updat-
ed model isrelated to the wavefield computed in the starting model
through u(Xx,w) = Ug(X,w)exp(A¢(X,w)), where Ap(X,w) denotes
the complex-phase perturbation. The sensitivity of the Rytov kernel
is zero on the Fermat raypath because the traveltime is stationary
along this path. A linear relationship between the model perturba-
tions and the logarithm of the amplitude ratio Ln[A(w)/Ao( )] is
also provided by the Rytov approximation by taking thereal part of
the sengitivity kernel of the Rytov integral instead of the imaginary
part that providesthe phase perturbation.

The Born approximation is valid in the case of weak and small
perturbations, but the Rytov approximation is supposed to be valid
for large-aperture anglesand asmall amount of scattering per wave-
length, i.e., smooth perturbations or smooth variation in the phase-
perturbation gradient (Beydoun and Tarantola, 1988). Although sev-
eral analysesof the Rytov approximation have been carried out, it re-
mains unclear to what extent its domain of validity differs signifi-
cantly from that of the Born approximation. A comparison between
the Born approximation and the Rytov approximation in the frame-
work of elastic frequency-domain FWI is presented in Gelis et .
(2007). The main advantage of the Rytov approximation might beto
provide a natural separation between phase and amplitude (e.g.,
Woodward, 1992). This separation alows the implementation of
phase and amplitude inversions (Bednar et al., 2007; Pyun et al.,
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Figure9. Different functional sfor FWI. (a) Valueof four functionals
as a function of real-valued data residua. The £, £,, Huber, and
mixed £,—L, functionals are plotted as indicated. (b) Amplitude of
the residual source used to compute the back-propagated adjoint
wavefield for the different functionals shown in (a). Note that the
back-propagated sourceinthe £;-normisnot sensitiveto theresidu-
al amplitudeandthereforeislesssensitivetolarge-amplituderesidu-
alsthanthe £,-norm (image courtesy R. Brossier).
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2007) from afrequency-domain FWI code using alogarithmic norm
(Shinand Min, 2006; Shin et al., 2007), the use of which leadsto the
Rytov approximation in the framework of local optimization
problems.

Another approach in the time-frequency domain is devel oped by
Fichtner et al. (2008) for continental- and global-scale FWI, in
which the misfit of the phase and the misfit of the envelopesaremin-
imized in aleast-squares sense. The expected benefit from this ap-
proachisto mitigate the nonlinearity of FWI by separating the phase
and amplitudeintheinversion and by inverting the envel ope instead
of theamplitudes, theformer being morelinearly related to the data.

Building starting models for FWI

Theultimategoal inseismicimagingisto beableto apply FWI re-
liably from scratch, i.e., without the need for sophisticated a priori
information. Unfortunately, because multidimensional FWI at
present can only be attacked through local optimization approaches,
building an accurate starting model for FWI remains one of the most
topical issues because very low frequencies (<1 Hz) still cannot be
recorded intheframework of controlled-source experiments.

A starting model for FWI can be built by reflection tomography
and migration-based velocity analysis such as those used in il and
gas exploration. A review of the tomographic workflow isgivenin
Woodward et a. (2008). Other possible approaches for building ac-
curate starting models, which should tend toward a more automatic
procedure and might be moreclosely related to FWI, arefirst-arrival
traveltimetomography (FATT), stereotomography, and L aplace-do-
maininversion.

FATT performsnonlinear inversions of first-arrival traveltimesto
produce smooth models of the subsurface (e.g., Nolet, 1987; Hole,
1992; Zelt and Barton, 1998). Traveltimeresidual sare back project-
ed along the raypaths to compute the sensitivity matrix. The tomog-
raphic system, augmented with smoothing regularization, generally
is solved with a conjugate-gradient algorithm such as L SQR (Paige
and Saunders, 1982b). Alternatively, the adjoint-state method can be
appliedto FATT, which avoidsthe explicit building of the sensitivity
matrix, just asin FWI (Taillandier et al., 2009). The spatial resolu-
tion of FATT is estimated to be the width of the first Fresnel zone
(Williamson, 1991; Figure5).

Examplesof applicationsof FWI toreal datausing astarting mod-
€l built by FATT areshown, for example, in Ravaut et al. (2004), Op-
erto et a. (2006), Jaiswal et al. (2008, 2009), and Malinowsky and
Operto (2008) for surfaceacquisitions; in Dessaand Pascal (2003) in
the framework of ultrasonic experimental data; in Pratt and Goulty
(1991) for crossholedata; andin Gao et al. (2006b) for V SPdata.

Several blind tests that correspond to surface acquisitions have
been tackled by joint FATT and FWI. Results at the oil-exploration
scaleand at thelithospheric scaleare presented in Brendersand Pratt
(2007a, 2007b, 2007c) and suggest that very low frequencies and
very large offsets are required to obtain reliable FWI results when
the starting model isbuilt by FATT. For example, only the upper part
of the BP benchmark model was imaged successfully by Brenders
and Pratt (2007c) using astarting frequency assmall as0.5Hzand a
maximum offset of 16 km. Another drawback of FATT is that the
method is not suitable when low-vel ocity zones exist because these
low-velocity zones create shadow zones.

Reliablepicking of first-arrival timesisalso adifficult issuewhen
low-velocity zones exist. Fitting first-arrival traveltimes does not
guaranteethat computed traveltimesof |ater-arriving phases, such as
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reflections, will match the true reflection traveltimes with an error
that doesnot exceed half aperiod, especialy if anisotropy affectsthe
wavefield. We should stressthat FATT can berecast asaphaseinver-
sion of the first arrival using a frequency-domain waveform-inver-
sion algorithm within which complex-valued frequenciesareimple-
mented (Min and Shin, 2006; Ellefsen, 2009). Compared to FATT
based on the high-frequency approximation, this approach helps ac-
count for thefinite-frequency effect of the datain the sensitivity ker-
nel of the tomography. Judicious selection of thereal and imaginary
partsof thefrequency allowsextraction of the phase of thefirst arriv-
al. Theprinciplesand some applications of the method are presented
inMin and Shin (2006) and Ellefsen (2009) for near-surface applica-
tions. Thisisstrongly related to finite-frequency tomography (Mon-
telli etal., 2004).

Traveltime tomography methods that can manage refraction and
reflection traveltimes should provide more consistent starting mod-
els for FWI. Among these methods, stereotomography is probably
one of the most promising approaches because it exploits the slope
of locally coherent events and areliable semiautomatic picking pro-
cedure has been developed (Lambaré, 2008). Applications of ste-
reotomography to synthetic and real data sets are presented in Bil-
letteand Lambaré (1998), Alerini et a. (2002), Billette et al. (2003),
Lambaréand Al érini (2005), and Dummong et al. (2008).

To illustrate the sensitivity of FWI to the accuracy of different
starting models, Figure 10 shows FWI reconstructions of the syn-
thetic Valhall model whenthe starting model isbuilt by FATT and re-
flection stereatomography (Prieux et a., 2009). In the case of ste-
reotomography, the maximum offset is 9 km and only the reflection
traveltimesareused (Lambaréand Alérini, 2005), whereasthe maxi-
mum offset is32 km for FATT (Prieux et al., 2009). Sterectomogra-
phy successfully reconstructs the large wavelength within the gas
cloud downto amaximum depth of 2.5 km; FATT failstoreconstruct
the large wavelengths of the low-velocity zone associated with the
gascloud. However, the FWI model inferred fromthe FATT starting
model shows an accurate reconstruction of the shallow part of the
model. Theseresultssuggest that joint inversion of refraction and re-
flection traveltimes by stereotomography can provide a promising
framework to build starting modelsfor FWI.

A third approach to building astarting model for FWI can be pro-
vided by Laplace-domain and Laplace-Fourier-domain inversions
(Shin and Cha, 2008, 2009; Shin and Ha, 2008). The Laplace-do-
main inversion can be viewed as a frequency-domain waveform in-
version using complex-valued frequencies (see equation 32), the
real part of whichiszeroandtheimaginary part of which controlsthe
time damping of the sei smic wavefield. In other words, the principle
istheinversion of the DC component of damped seismogramswhere
the Laplacevariable s correspondsto 1/ 7 in equation 32. The DC of
the undamped datais zero, but the DC of the damped dataisnot and
is exploited in Laplace-domain waveform inversion. The informa-
tion containedinthe datacan be similar totheamplitude of thewave-
field (Shin and Cha, 2009). Laplace-domain waveform inversion
provides a smooth reconstruction of the velocity model, which can
be used as a starting model for Laplace-Fourier and classical fre-
guency-domain waveforminversions.

TheL aplace-Fourier domainisequivalent to performing aninver-
sion of seismograms damped in time. The results shown in Shin and
Cha (2009) suggest that this method can be applied to frequencies
smaller than the minimum frequency of the source bandwidth. The
ability of the method to use frequencies smaller than the frequencies
effectively propagated by the seismic sourceiscalled amirageresur-
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rection of the low frequencies by Shin and Cha (2009). An applica-
tion to real data from the Gulf of Mexico is shown in Shin and Cha
(2009). For the real-data application, frequencies between 0 and 2
Hzin combination with nine L aplace damping constantsare used for
the Laplace-Fourier-domain inversion, the final model of which is
used asthestarting model for standard frequency-domain FWI.

Joint application of Laplace-domain, Laplace-Fourier-domain
and Fourier-domain FWI to the BPbenchmark model isillustratedin
Figure 11 (Shin and Cha, 2009). The starting model isasimple ve-
locity-gradient model (Figure 11b). A first velocity model of the
large wavelengthsis obtained by L aplace-domain inversion (Figure
11c), whichissubsequently used asastarting model for inversionin
the Laplace-Fourier-domain inversion, the final model of which is
shown in Figure 11d. During this stage, the starting frequency used
in the inversion of the damped datais as low as 0.01 Hz. The final
model obtained after frequency-domain FWI isshownin Figure1le.
All of the structures were successfully imaged, beginning with a
very crude starting model.
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Figure 10. (a) Close-up of the synthetic Valhall velocity model cen-
tered onthegaslayer. (b) FWI model built from astarting model ob-
tained by smoothing the true model with a Gaussian filter with hori-
zontal and vertical correlationlengthsof 500 m. (c) FWI model from
astarting model built by FATT (Prieux et al., 2009). (d) FWI model
from a starting model built by stereotomography (Lambaré and
Alérini, 2005). (e) Velocity profilesat adistance of 7.5 km extracted
from the true model (black line), from the starting model built by
smoothing thetrue model (blueline), and from the FWI model of (b)
(redline). (f) Sameas(e) for the starting model built by FATT and (c)
the corresponding FWI model. (g) Sameas (e) for the starting model
built by stereotomography and (d) the corresponding FWI model.
Thefrequenciesusedintheinversion arebetween 4 and 15 Hz.
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CASE STUDIES

Applications of FWI have been applied essentially to synthetic
examples for which high-resolution images have been constructed.
Because FWI is an attractive approach, the number of real-data ap-
plications has increased quite rapidly, from monoparameter recon-
structionsof the Vp parameter to multiparameter ones.

Monoparameter acoustic FWI

Most of therecent real-data case studies of FWI at different scales
and for different acquisition geometries have been performed in the
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Figure 11. Laplace-Fourier-domain waveform inversion. (a) BP
benchmark model. (b) Starting model. (c) Velocity model after
Laplace-domain inversion. (d) Velocity model after Laplace-Fouri-
er-domain inversion. (e) Velocity model after frequency-domain
FWI (imagecourtesy C. Shinand Y. H. Cha).
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acoustic isotropic approximation, considering only V, as the model
parameter (Dessa and Pascal, 2003; Ravaut et al., 2004; Chironi et
a., 2006; Gao et al., 2006a, 2006b; Operto et al., 2006; Bleibinhaus
et a., 2007; Ernst et ., 2007; Jaiswal et al., 2008, 2009; Shin and
Cha, 2009). Although the acoustic approximation can be questioned
in the framework of FWI because of unreliable amplitudes, one ad-
vantage of acoustic FWI isdealing with lesscomputationally expen-
sive forward modeling than in the elastic case. Moreover, acoustic
FWI isbetter posed than elastic FWI because only the dominant pa-
rameter Vi canbeinvolvedintheinversion.

Specific waveform-inversion data processing generaly is de-
signed to account for the amplitude errors introduced by acoustic
modeling (Pratt, 1999; Ravaut et al., 2004; Brenders and Pratt,
2007b). The amplitude discrepanciesin the P-wavefield result from
incorrectly modeling the amplitude-variati on-with-offset (AV O) ef-
fects and incorrectly modeling the directivity of the source and re-
ceiver (Brendersand Pratt, 2007b). A coustic-wave modeling gener-
ally is based on resolving the acoustic-wave equation in pressure;
therefore, the particle-velocity synthetic wavefields might not be
computed (Hustedt et al., 2004). If the receivers are geophones, the
physical measurements collected inthefield (particle velocities) are
not the same as those computed by the seismic modeling engine
(pressure). A match between thevertical geophonedataand the pres-
sure synthetics can, however, be performed by exploiting the reci-
procity of the Green’sfunctionsif the sourcesare explosions(Operto
etal., 2006).

In contrast, if the sources and receivers are directional, the pres-
sure wavefield cannot account for the directivity of the sources and
receivers, and heuristic amplitude corrections must be applied be-
fore inversion. Brenders and Pratt (2007b) propose optimizing an
empirical correction law for the decay of the rms amplitudes with
offset. Applying this correction law to the model ed data matchesthe
main AV O trend of the observed data before FWI. Using this data
preprocessing, Brenders and Pratt (2007b) successfully image the
onshorelithospheric model of the CCSShlind test (Zelt et al., 2005)
by acoustic FWI of synthetic elastic data. This strategy is also used
successfully by Jaiswal et al. (2008, 2009) in the framework of
acoustic FWI of real onshore datain the Nagathrust and fold beltin
India.

Successful application of acoustic FWI to synthetic elastic data
computed in the marine Vahall model from an OBC acquisition is
presented by Brossier et al. (2009b). An application of acoustic FWI
to real onshore long-offset data recorded in the southern Apennines
thrust beltisillustrated in Figure 12 (Ravaut et al ., 2004). Theveloc-
ity model isvalidated locally by comparison with aV SPlog. Appli-
cation of PSDM using the final FWI model as a starting model con-
tributesto the validation of therelevance of thevelocity structurere-
constructed by FWI (Operto et a., 2004). Some guidelines based on
numerical examples of the domain of validity of acoustic FWI ap-
pliedto elastic dataare also provided in Barnesand Charara (2008).

Multiparameter FWI

Because FWI accounts for the full wavefield, the seismic model-
ing embedded inthe FWI a gorithm theoretically should honor asfar
aspossibleall of the physics of wave propagation. Thisisespecially
required by FWI of wide-aperture data, in which significant AVO
and azimuthal anisotropic effectsshould beobserved inthedata. The
requirement of realistic seismic modeling has prompted some stud-
iesto extend monoparameter acoustic FWI to account for parameter
classes other than the P-wave velocity, such as density, attenuation,
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shear-wave velocity or related parameters, and anisotropy. The fact
that additional parameter classes are taken into account in FWI in-
creasesin theill-posedness of theinverse problem because more de-
greesof freedom are considered in the parameterization and because
the sensitivity of theinversion can change significantly from one pa-
rameter classtothenext.

Different parameter classes can bemoreor lesscoupled asafunc-
tion of the aperture angle. This coupling can be assessed by plotting
theradiation pattern of each parameter class using some asymptotic
analyses. Diffraction patterns of the different combination of param-
eters for the acoustic, elastic, and viscoelastic wave equation are
shown in Wu and Aki (1985), Tarantola (1986), Ribodetti and
Virieux (1996), and Forgues and Lambaré (1997). An dlternative is
to plot thesensitivity kernel, i.e., that obtained by summing all of the
rowsof the sensitivity matrix for thefull acquisition and for different
combinations of parameters and to qualitatively assess which com-
bination provides the best image (Luo et al., 2009). Hierarchical
strategies that successively operate on different parameter classes
should be designed to mitigate theill-posedness of FWI (Tarantola,
1986; Kamei and Pratt, 2008; Sears et al., 2008; Brossier et al.,
2009b).

Density

Density is difficult to reconstruct (Forgues and Lambaré, 1997).
Asanillustration, acoustic radiation patternsare shown in Figure 13
for different combinations of parameters (Ip,p), (15,Vp), and (Vp,p),
where | denotes P-wave impedance. The radiation pattern of Vp is
isotropic because the operator 9B/ dm, reducesto ascalar for Vp and
therefore represents an explosion. On the other hand, the density has
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Figure 12. Two-dimensional seismic imaging of athrust belt in the
southern Apennines, Italy, from long-offset data by frequency-do-
main FWI. Thirteen frequencies from 6 to 20 Hz were inverted suc-
cessively. (a) Starting model for FWI developed by FATT (Improta
et a., 2002). (b—d) FWI model after inversion of (b) the starting
6-Hz, (c) 10-Hz, and (d) 20-Hz frequencies(Ravaut et a., 2004).
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thesameradiation pattern as Vp at short aperturesbut does not scatter
energy at wide apertures because the secondary source f¢ corre-
spondsto avertical force for the density. Because Vr and p have the
same radiation pattern at short apertures, these two parameters are
difficult to reconstruct from short-offset data. For such data, the
P-wave impedance can be considered areliable parameter for FWI.
If wide-aperture dataare available, Vp and | » might provide the most
judicious parameterization because they scatter energy for different
aperture bands (wideand short apertures, respectively; Figure 13b).

A successful reconstruction of the density parameter in the case of
theMarmousi case study is presented by Choi et al. (2008). Howev-
er, theuse of an unrealistically low frequency (0.125 Hz) bringsinto
question thepractical implication of theseresults.

Attenuation

The attenuation reconstruction can beimplemented in frequency-
domain seismic-wave modeling using complex velocities (Toksdz
and Johnston, 1981). The most commonly applied attenuation/dis-
persion model is referred to as the Kol sky-Futterman model (Kol-
sky, 1956; Futterman, 1962). This model has linear frequency de-
pendence of the attenuation coefficient, whereas the deviation from

315°

225

180°
s P

Figure 13. Radiation pattern of different parameter classesin acous-
ticFWI. (@) lp.,; (D) I5-Vp; (€) Ve,
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constant-phasevel ocity isaccounted for through atermthat variesas
the logarithm of the frequency. This model is obtained by imposing
causality on the wave pul se and assuming the absorption coefficient
isstrictly proportional to thefrequency over arestricted range of fre-
guencies.

Using theK ol sky-Futterman mode!, the complex velocity cisgiv-
enby

-1
c= c[(l 4 i||og(w/wr)|> 4 i&(“’)] (33
mQ 2Q
where Q istheattenuation factor and w, isareferencefrequency.

In frequency-domain FWI, thereal and imaginary partsof theve-
locity can be processed as two independent real-model parameters
without any particular implementation difficulty. However, the re-
construction of attenuation is an ill-posed problem. Ribodetti et al.
(2000) show that in the framework of the ray + Born inversion,
P-wave velocity and Q are uncoupled (i.e., the Hessian isnonsingu-
lar) only if areflector isilluminated from both sides (with circular
acquisition asin medical imaging; see Figure 5b of Ribodetti et al .,
2000). In contrast, the Hessian becomes singular for asurface acqui-
sition. Mulder and Hak (2009) al so concludethat Vi, and Q cannot be
imaged simultaneously from short-aperture databecause the Hilbert
transform with respect to depth of the complex-valued perturbation
model for Vp and Q produces the same wavefield perturbation in the
framework of the Born approximation as the original perturbation
model. Despite this theoretical limitation, preconditioning of the
Hessian is investigated by Hak and Mulder (2008) to improve the
convergenceof thejointinversionfor Vs and Q.

Assessment and application of viscoacoustic frequency-domain
FWI is presented at various scales by Liao and McMechan (1995,
1996), Song et al. (1995), Hicksand Pratt (2001), Pratt et al. (2005),
Malinowsky et al. (2007), and Smithyman et al. (2008). Kamei and
Pratt (2008) recommend inversion for Vp only in afirst step and then
jointinversionfor Ve and Q in asecond step becausethereliability of
the attenuation reconstruction strongly depends on the accuracy of
the starting Ve model. Indeed, accurate V, models are required be-
fore reconstructing Q so that the inversion can discriminate the in-
trinsic attenuation from the extrinsic attenuation.

Elastic parameters

A limited number of applications of elastic FWI have been pro-
posed. Because Vp isthe dominant parameter in elastic FWI, Taran-
tola (1986) recommends inversion first for Ve and |5, second for Vg
and |5, and finally for density. This strategy might be suitableif the
footprint of the S-wavevel ocity structureontheseismicwavefieldis
sufficiently small. This hierarchical strategy over parameter classes
isillustrated by Searset al. (2008), who assesstime-domain FWI of
multicomponent OBC datawith synthetic examples. They highlight
how the behavior of FWI becomesill-posed for S-wave velocity re-
construction when the S-wave velocity contrast at the seabottom is
small. In this case, the S-wave velocity structure has a minor foot-
print on the seismic wavefield because the amount of PS conversion
issmall at the sea bottom. In this configuration, they recommend in-
versionfirst for Vp, using only the vertical component; second for Vp
and Vs from the vertical component; and finally for Vs, using both
components. The aim of the second stage isto reconstruct theinter-
mediate wavelengths of the S-wave velocity structure by exploiting
theAV O behavior of the P-waves.

In contrast, Brossier et al. (2009a) conclude that joint inversion
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for Vp and Vs with judicious hierarchical data preconditioning by
time damping is necessary for inversion of land datainvolving both
body waves and surface waves. The strong sensitivity of the high-
amplitude surface waves to the near-surface S-wave velocity struc-
turerequiresinversionfor Vs during theearly stagesof theinversion.
This makes the elastic inversion of onshore data highly nonlinear
whenthe surfacewavesare preserved inthe data.

A recent application of elastic FWI to agasfield in Chinais pre-
sented by Shi et al. (2007). They invert for the Lamé parametersand
unambiguously image Poisson’sratio anomalies associated with the
presence of gas. They accel eratethe convergence of theinversion by
computing an efficient step length using an adaptive controller based
on the theory of model-reference nonlinear control. Several logs
available along the profile confirm the reliability of this gas-layer
reconstruction.

Anisotropy

Reconstruction of anisotropic parametersby FWI isprobably one
of themost undevel oped and challenging fields of investigation. Ver-
ticaly transverse isotropy (VTI) or tilted transversely isotropic
(TTI) media are generally considered a realistic representation of
geologic mediain oil and gas exploration, although fractured media
require an orthorhombic description (Tsvankin, 2001). The normal-
moveout (NMO) P-wavevelocity inVTI mediadependsononly two
parameters. the NMO velocity for a horizontal reflector Vywo(0)
=Vp Y1+ 25 andthe n = (e — 8)/(1+ 25) parameter (Alkhali-
fah and Tsvankin, 1995), which is a combination of Thomsen's pa-
rameterse and § (Thomsen, 1986). The dependency of NMO vel oc-
ity in VTI mediaon alimited subset of anisotropic parameters sug-
gests that defining the parameter classesto beinvolved in FWI will
be akey task. Another issuewill beto assessto what extent FWI can
be performed in the acoustic approximation knowing that acoustic
media are by definition isotropic (Grechka et a., 2004). The kine-
matic and dynamic accuracy of an acoustic TTI wave equation for
FWI isdiscussedin Opertoet al. (2009).

Afeasibility study of FWIinVTI mediafor crosswell acquisitions
is presented in Barnes et a. (2008). They invert for five parameter
classes— Vp, Vg, density, &, and e — and show reliable reconstruc-
tion of the classes, even with noisy data. Pratt et al. (2001, 2008) ap-
ply anisotropic FWI to crossholereal data. The results of Pratt et al.
(2001) highlight the difficulty in discriminating layer-induced an-
isotropy fromintrinsic anisotropy in FWI.

Further investigations of anisotropic FWI in the case of surface
seismic dataarerequired. In particular, the benefit of wide apertures
in resolving as many anisotropic parameters as possible needsto be
investigated (Joneset al., 1999).

Three-dimensional FWI

Because of the continuous increase in computational power and
theevolution of acquisition systemstoward wide-apertureand wide-
azimuth acquisition, 3D acoustic FWI isfeasible today. In three di-
mensions, the computational burden of multisource seismic model-
ing isone of the main issues. The prosand cons of time-domain ver-
sus frequency-domain seismic modeling for FWI have been dis-
cussed. Another issueisassessing theimpact of azimuth coverageon
FWI. Sirgueet al. (2007) show thefootprint of the azimuth coverage
in 3D surveysonthevelocity model reconstructed by FWI. Theirim-
aging confirms the importance of wide-azimuth surveysfor FWI of
coarseacquisitionssuch asnodesurveys.
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Most 3D FWI applications have been limited to low frequencies
(<7 Hz). At these frequencies, FWI can be seen asatool for veloci-
ty-model-building rather than a sel f-contai ned sei smic-imaging tool
that continuously proceedsfrom the vel ocity-model -building task to
the migration task through the continuous sampling of wavenum-
bers(BenHadj Ali etal., 2008b).

Ben Hadj Ali et al. (2008a) apply afrequency-domain FWI algo-
rithmto aseriesof synthetic datasets. Theforward problemissolved
in the frequency domain with a massively parallel direct solver.
Plessix (2009) presents an application to real ocean-bottom-seis-
mometer (OBS) data. Seismic modelingisperformedinthefrequen-
cy domain with an iterative solver. The inverted frequencies range
between 2 and 5 Hz. The inversion converges to asimilar velocity
model down to thetop of asalt body using two different starting ve-
locity models, with one asimple vel ocity-gradient model. An appli-
cation to areal 3D streamer data set is presented by Warner et al.
(2008) for theimaging of a shallow channel. They perform seismic
modeling in the frequency domain using an iterative solver (Warner
etal., 2007).

Three-dimensional time-domain FWI is developed by Vigh and
Starr (2008a), inwhich theinput datain FWI are plane-wave gathers
rather than shot gathers. The main motivation behind the use of
plane-wave shot gathersisto mitigate the computational burden by
decimating thevolumeof data. The computational costisreduced by
one order of magnitude for 2D applications and by afactor 3 for 3D
applicationswhen the plane-wave-based approach isused instead of
the shot-based approach.
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Sirgue et a. (2009) apply 3D frequency-domain FWI to the hy-
drophone component of OBC data from the shallow-water Valhall
field. Frequencies between 3.5 and 7 Hz are inverted successively,
using a starting model built by ray-based reflection tomography.
They successfully image acomplex network of shallow channels at
150 m depth and a gas cloud between 1000 and 2500 m depth. Al-
though the spacing between the cablesis as high as300 m, alimited
footprint of the acquisition is visible in the reconstructed models.
Comparisons of depth-migrated sections computed from the reflec-
tion tomography model and the FWI velocity model show the im-
provements provided by FWI, both in the shallow structure and at
the reservoir level below the gas cloud. The step-change improve-
ment in the quality of the depth-migrated image results from the
high-resolution nature of the velocity model from FWI and the ac-
counting of the intrabed multiples by the two-way wave-equation
modeling engine. Comparisons between depth slices across the
channelsand the gas cloud extracted from the refl ection tomography
and the FWI models highlight the significant resolution improve-
ment provided by FWI (Figure 14).

Solving large-scale 3D elastic problems is probably beyond our
current tools because of the computational burden of 3D elastic
modeling for many sources. Thishas prompted several studiesto de-
velop strategies to mitigate the number of forward simulations re-
quired during migration or FWI of large data sets. One of these ap-
proaches stacks the seismic sources before modeling (Capdeville et
al., 2005). Because the relationship between the seismic wavefield
and the source is linear, stacking sources is equivalent to emitting
each source simultaneously instead of independently. This assem-
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Figure 14. Imaging of the Valhall field by 3D FWI. Depth slices extracted from the vel ocity models. (a,c) Built by ray-based reflection tomogra-
phy. (b,d) Built by 3D FWI. (c,d) Theshallow slice at 150 m depth showsacomplex network of channelsinthe FWI model, although the deeper
slice at 1050 m depth shows amuch higher resol ution of thetop of the gascloud in the FWI model (image courtesy L. Sirgueand O. |. Barkved,

BP).
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blage generates artifactsin theimaging that arisefrom the undesired
correlation between each independent source wavefield with the
back-propagated residual wavefields associated with the other
sources of the stack. Applying some random-phase encoding to each
source before assembl age mitigatesthese artifacts. Themethod orig-
inally was applied to migration algorithms (Romero et al., 2000).
Promising applicationsto time- and frequency-domain FWI are pre-
sented in Krebset a. (2009) and Ben Hadj Ali et a. (2009a, 2009b).
Alternatively, Herrmann et al. (2009) proposeto recover the source-
separated wavefieldsfrom the simultaneous simul ation before FWI.

An illustration of the source-encoding technique is provided in
Figure 15, in which a dip section of the overthrust model is built
three ways:. by conventional frequency-domain FWI (i.e., without
sourceassemblage; Figure 15b), by FWI with sourceassemblage but
without phase encoding (Figure 15¢), and by FWI with source as-
semblage and phase encoding (Figure 15d). The models were ob-
tained by successive inversions of four groups of two frequencies
ranging between 3.5 and 20 Hz. The number of shots was 200, and
no noisewasadded to the data. The number of iterations per frequen-
cy group to obtain thefinal FWI modelswithout and with the source
assemblage was 15 and 200, respectively. The time to compute the
model of Figure 15d was seven times less than the time to build the
model of Figure 15b. Moredetailscan befoundin Ben Hadj Ali et al.
(2009). If the phase-encoding technique is seen as sufficiently ro-
bust, especially in the presence of noise, it islikely that 3D elastic
FWI can be viewed in the near future using sophisticated modeling
engines.
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Figure 15. Application of source encoding in FWI; 200 sources and
receivers were on the surface. (a) Dip section of the overthrust
model. (b) FWI model obtained without source assemblage and
phaseencoding; 15iterationsper frequency were computed. (c) FWI
model after assemblage of all the sourcesin one super shot. No phase
encoding was applied. (d) FWI model obtained with source assem-
blage and phase encoding; 200 iterations per frequency were com-
puted (image courtesy of H. Ben Hadj Ali).
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DISCUSSION

Most of the FWI methods presented and assessed in theliterature
are based on the local least-squares optimization formulation, in
which the misfit between the observed seismograms and the mod-
eled ones are minimized in the time domain or in the frequency do-
main. Without very low frequencies (<1 Hz), it remains very diffi-
cult to obtain reliable results from these approaches when consider-
ing real data, especially at high frequencies. Clearly, new formula-
tionsof FWI areneeded to proceed further.

Recent improvements relate to Hessian estimation, which has
been shown to be quite important for better convergence toward the
solution. A systematic strategy since the beginning of FWI investi-
gations hasbeen the progressiveintroduction of the entire content of
seismograms through multiscal e approachesto partially prevent the
convergencetoward secondary minima. Transformingthedataat the

Table 1. Nomenclature, listed as introduced in the text.

Symbol Description

X Spatia coordinates (m)

t, f, o=2m/f Time (s), frequency (Hz), circular frequency
(rad/s)

k, k=c/f Wavenumber vector, wavenumber (1/m),
where ¢ is wavespeed

A=1/k Wavelength (m)

M, A, B Mass, stiffness, impedance matrices in

the wave equation

u(x,t/w), s(x,t/w) Wavefield solution of the wave equation and
seismic source

Vp, Vs, p P-wave and S-wave velocities (m/s), density
(kg/md)

Q Attenuation factor for P-waves

S, ¢ Anisotropic Thomsen's parameters

m, my, Am Updated and starting FWI models,
perturbation model

obs, dea(M) Recorded and modeled data

Ad = dgs — deg(m) Data-misfit vector

C(m), VC, Misfit function, gradient of the misfit
function
J = [od/ém] Sensitivity or Fréchet derivative matrix
a Step length in gradient methods
n Iteration number in FWI
H,=J"J Approximate Hessian
p™, gm Descent direction and Polak and Ribiére
coefficient in conjugate
gradients
Wy =SSy Weighting operators in the data space
W, =S, Sh Weighting operators in the model space
€ Damping in damped least-squares FWI
fO Virtual source in FWI for diffractor m,
S, r Source and receiver indices
% Diffraction or aperture angle
T Damping coefficient for time damping of

seismograms
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different stages of the local inversion procedure (particle displace-
ment, particle velocity, logarithms of these quantities, divergence)
can also provide benefitsfor global convergence of the optimization
procedure.

Do we need to mitigate the nonlinearity of the inverse problem
through more sophisticated search strategies such as semiglobal ap-
proaches or even global sampling of the model space? Because this
search is quite computationally intensive, should we reduce the di-
mensionality of the parameter models? To perform such global
searches, should we speed up theforward model at the expense of its
precision? If so, can we consider these procedures as intermediate
strategiesfor approaching the global minimum?

A pragmatic workflow, from low to high spatial-frequency con-
tent, should be expected to move hierarchically from imaging the
large medium wavel engthsto the short medium wavelengths. A step-
by-step procedure for extracting the information, starting from trav-
eltimes and proceeding to true amplitudes, might include many in-
termediate steps for interpreting new observables (polarization, ap-
parent velocity, envelope).

Another aspect is the quality control of areconstruction. An ob-
jective analysis for uncertainty estimation is important and might
rely on semiglobal investigationsoncethe global minimum hasbeen
found. Various strategies can be considered that would be manage-
able as statistical procedures (bootstrapping or jackknifing tech-
niques) or aslocal nondifferential approaches (simplex, simulation
annealing, genetic algorithms).

Finaly, solving large-scale 3D elastic problems remains beyond
our present tools, although one must be aware that these aids are
right around the corner. Because massive data acquisition for 3D re-
construction has been achieved, we indeed expect an improvement
inour data-crunching for high-resolutionimaging.

An appealing reconstruction is 4D imaging, which is based on
time-lapse evolution of targetsinside the earth. Differential dataare
available, providing uswith new information for tracking the evolu-
tion of the subsurface parameters. Thus, fluid tracking and variations
insolid-rock matrices are possible challengesfor FWI inthe near fu-
ture.

CONCLUSION

FWI isthe last-course procedure for extracting information from
seismograms. We have shown the conceptual efforts that have been
carried out over thelast 30 yearsto provide FWI asapossibletool for
high-resolution imaging. These efforts have been focused on devel -
opment of large-scale numerical optimization techniques, efficient
resolution of the two-way wave equation, judicious model parame-
terization for multiparameter reconstruction, multiscal e strategiesto
mitigate theill-posedness of FWI, and specific waveform-inversion
datapreprocessing.

FWI is mature enough today for prototype application to 3D real
datasets. Although applicationsto 3D real data have shown promis-
ing results at low frequencies (<7 Hz), it isstill unclear to what ex-
tent FWI can be applied efficiently at higher frequencies. To answer
this question, a more quantitative understanding of FWI sensitivity
to the accuracy of the starting model, to the noise, and to the ampli-
tude accuraciesis probably required.

If FWI remains|limited to low frequencies, it will remain atool to
build background models for migration. In the opposite case, FWI
will tend toward a self-contained processing workflow that can re-
unify macromodel building and migration tasks.

WCC147

The present is exciting because realistic applications are becom-
ing possible right now. However, new strategies must be found to
make this technique as attractive as the scientific issues require.
Fields of investigation should address the need to speed up the for-
ward problem by means of providing new hardware (GPUs) and
software (compressive sensing), defining new minimization criteria
in the model and data spaces, and incorporating more sophisticated
wave phenomena (attenuation, elasticity, anisotropy) in modeling
andinversion.
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APPENDIX A

APPLICATION OF THE ADJOINT-STATE
METHOD TO FWI

In this appendix, we provide some guidelines for the derivation
of the gradient of the misfit function (equation 24) with the adjoint-
state method and Lagrange multipliers. Thereader isreferred to No-
cedal and Wright (1999) for a review of constrained optimization
and to Plessix (2006) for areview of the adjoint-state method and its
applicationto FWI.

First, we introduce the Lagrangian function £ corresponding to
themisfit function C augmented with equality constraints:

L@ = 5(P(dogs — R P ~ R)

—(AIB(m)u—s) (A-1)

The equality constraints correspond to the forward-problem equa-
tion, namely, the state equation, which must be satisfied by the seis-
mic wavefield. A realization u of the state equation is the so-called
statevariable. In equation A-1, weintroducethe variableu to distin-
guishany element of the statevariable spacefrom arealization of the
state equation (Plessix, 2006).

Thevector A, thedimension of whichisthat of thewavefieldu, is
the Lagrange multiplier; it correspondsto the adjoint-state variables.
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Intheframework of thetheory of constrained optimization, thefirst-
order necessary optimality conditions known as the Karush-Kuhn-
Tucker (KKT) conditions state that the solution of the optimization
problemisobtained at the stationary pointsof L.

The first condition, [9L£/dAJg=csem=cse = O, l€ads to the for-
ward-problem equation: B(m)u = s. Resolving the state equation for
m = mq providestheincident wavefield for FWI.

The second condition, [ 9 £/ U], - csem=cse = 0, l€ads to the so-
called adjoint-state equation, expressed as

dL(u,m,A) _ .

T =P(dgps— RU) — B'(M)A=0. (A-2)
For the derivation of equation A-2, we use the fact that (A,B(m)u)
= (Bf(m)A,u) and that the source does not depend on u. Choosing
m = myandu = u(m,) inequation A-2leadsto

B(mg)A = P(Ady), (A-3)
which can berewritten equivalently as
A* =B H(mp)P(Ady), (A-4)

wherewe exploit thefact that B~ is symmetric by virtue of the spa-
tial reciprocity of Green’sfunctions. The adjoint-state variables are
computed by solving a forward problem for a composite source
formed by the conjugate of theresiduals, which isequivalent to back
propagation of theresidualsinthemodel.

The third condition, [ £/ Mz ctercse = O, defines the mini-
mum of £ in acomparable way asfor the unconstrained minimiza-
tion of themisfit function C. We have

dL(u,m.A) A|aB(m)U

A-5
am aom (A-9)

For any realization of the forward problem u, £(u,m,A) = C(m).
Therefore, equation A-5 givesthe expression of the desired gradient
of C as afunction of the state variable and adjoint-state variable
whenu = u:

aC JB(m
~= _ /\|LU

A-6
am am ( )
Inserting the expression of A (equation A-4) into equation A-3 and
choosing m = m, gives the expression of the gradient of C at the
point my intheoppositedirection of whichaminimum of Cissought
forin FWI:

dC(my) _ ut(mo)aB‘(mo)

om WBfl(mo)'P(Ado). (A-7)

Equation A-7 isequivalent to equation 24 inthe main text.
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