
Graph Drawing by High-Dimensional
Embedding

David Harel

Dept. of Computer Science and Applied Mathematics
The Weizmann Institute of Science, Rehovot, Israel

http://www.wisdom.weizmann.ac.il/˜dharel/
dharel@wisdom.weizmann.ac.il

Yehuda Koren

AT&T Labs – Research
Florham Park, NJ 07932

http://www.research.att.com/˜yehuda/
yehuda@research.att.com

Abstract

We present a novel approach to the aesthetic drawing of undirected
graphs. The method has two phases: first embed the graph in a very high
dimension and then project it into the 2-D plane using principal compo-
nents analysis. Running time is linear in the graph size, and experiments
we have carried out show the ability of the method to draw graphs of 105

nodes in few seconds. The new method appears to have several advan-
tages over classical methods, including a significantly better running time,
a useful inherent capability to exhibit the graph in various dimensions, and
an effective means for interactive exploration of large graphs.

An earlier version of this work appeared in: Proc. 10th Graph Drawing (GD’02),
LNCS 2528, pp. 207–219, Springer-Verlag, 2002.

1 Introduction

A graph G(V = {1, . . . , n}, E) is an abstract structure that is used to model a
relation E over a set V of entities. Graph drawing is a standard means for the
visualization of relational information, and its ultimate usefulness depends on
the readability of the resulting layout; that is, the drawing algorithm’s capability
of conveying the meaning of the diagram quickly and clearly. Consequently,
many approaches to graph drawing have been developed [3, 15]. We concentrate
on the problem of drawing undirected graphs with straight-line edges, and the
most popular approaches to this appear to be those that define a cost function
(or a force model), whose minimization determines the optimal drawing. The
resulting algorithms are known as force-directed methods [1, 4, 6, 8, 14].

We suggest a new approach to the problem of graph drawing, relying on the
observation that laying out a graph in a high dimension is significantly easier
than drawing it in a low dimension. Hence, the first step of our algorithm is to
quickly draw the graph in a very high dimensional space (e.g., in 50 dimensions).

1



Since standard visualization techniques allow using only 2 or 3 dimensions, the
next step of our algorithm is to algorithmically project the high-dimensional
drawing into a low dimension. For this, we are using a well-known multivariate
analysis technique called principal components analysis (PCA).

The resulting algorithm is extremely fast, yet very simple. Its time com-
plexity is O(m · |E| + m2 · n), where m is the dimension in which the graph is
embedded during the first stage of the algorithm. In fact, the running time is
linear in the graph’s size, since m is independent of it. Typical computation
times are of less than 3 seconds for 105-node graphs, and are thus significantly
faster than force-directed approaches. As to the quality of the drawings, Section
4 shows several very encouraging results.

Beside the main application of our work, which is drawing large graphs,
another possible application is in finding the best viewpoint for projecting a
3-D graph drawing into the plane; see Subsection 6.1.

2 Drawing Graphs in High Dimension

Frequently, drawing a graph so as to achieve a certain aesthetic criterion cannot
be optimally achieved in a low dimension, due to the fact that several aesthetic
goals have to compete on a shared limited space. Thus, being able to carry
out the initial drawing work in many dimensions leaves more space for richer
expression of the desired properties, and thus makes the entire task easier.

For example, consider the task of drawing a graph consisting of a single cycle.
For any reasonable aesthetical consideration, such a cycle can be drawn opti-
mally in two or more dimensions, but cannot be drawn well in one dimension.
More generally, when confronting the task of embedding a graph in an Euclidean
space (of any dimension) so as to equate the graph-theoretical node-node dis-
tances and the Euclidean node-node distances1 quite often two dimensions are
not enough. (For example, consider embedding a torus or a cube in 2-D.) In fact,
drawing a graph in more than two dimensions is already a familiar technique;
see, e.g., [1, 9, 15]. In many cases it was found that the higher dimensional
drawing can improve the quality of the drawing in a fundamental way.

Our method for constructing a multidimensional layout is straightforward.
In order to draw a graph in m dimensions, we choose m pivot nodes that are
almost uniformly distributed on the graph and associate each of the m axes
with a unique node. Axis i, which is associated with pivot node pi, represents
the graph from the “viewpoint” of node pi. This is done by defining the i-th
coordinate of each of the other nodes as its graph-theoretic distance from pi.
Hence pi is located at place 0 on axis i, its immediate neighbors are located at
place 1 on this axis, and so on.

More formally, denote by duv the graph-theoretic distance between node v
and node u. Let Pivots be some set {p1, p2, . . . , pm} ⊂ V . Each node v ∈ V

1Such a distance preserving embedding possess a tight connection to aesthetically pleasing
layout, as reflected in the well-known graph drawing algorithm of Kamada and Kawai [14]

2



is associated with m coordinates X1(v),X2(v), . . . , Xm(v), such that Xi(v) =
dpiv.

The resulting algorithm for drawing the graph in m dimensions is given
in Fig. 1. The graph theoretic distances are computed using breadth-first-
search (BFS). (When edges are positively weighted, BFS should be replaced by
Dijkstra’s algorithm; see e.g., [2].) The set Pivots is chosen as follows. The
first member, p1, is chosen at random. For j = 2, . . . , m, node pj is a node
that maximizes the shortest distance from {p1, p2, . . . , pj−1}. This method is
mentioned in [12] as a 2-approximation2 to the k-center problem, where we
want to choose k vertices of V , such that the longest distance from V to these k
centers is minimized. However, different approaches to selecting the pivots may
also be suitable.

Function HighDimDraw (G(V = {1, . . . , n}, E),m)
% This function finds an m-dimensional layout of G:

Choose node p1 randomly from V
d[1, . . . , n]←∞
for i = 1 to m do

% Compute the i− th coordinate using BFS
dpi∗ ← BFS(G(V,E), pi)
for every j ∈ V

Xi(j)← dpij

d[j]← min{d[j],Xi(j)}
end for
% Choose next pivot
pi+1 ← arg max{j∈V }{d[j]}

end for
return X1,X2, . . . , Xm

Figure 1: Drawing a graph in m dimensions

The time complexity of this algorithm is O(m · (|E|+ |V |)), since we perform
BFS in each of the m iterations. A typical value of m is 50.

Here now are two observations regarding the properties of the resulting draw-
ing. First, for every two nodes v and u and axis 1 � i � m, we have:

|Xi(v)−Xi(u)| � duv

This follows directly from the triangle inequality, since:

dpiu � dpiv + duv and dpiv � dpiu + duv

=⇒ |Xi(v)−Xi(u)| = |dpiv − dpiu| � duv

2A δ-approximation algorithm delivers an approximate solution guaranteed to be within a
constant factor δ of the optimal solution.

3



Thus, nodes that are closely related in the graph will be drawn close together.
In order to get a nice layout we also have to guarantee the opposite direction,

i.e., that non-adjacent nodes are not placed closely. This issue, which is handled
mainly by the projection part of the algorithm (discussed in the next section),
brings us to the second observation. Here we observe a kind of separation
between nodes that are distant in the graph.

For an axis i and nodes u and v, denote δi
v,u

def
= min{dpiv, dpiu}. Then, for

every v, u ∈ V and axis 1 � i � m, we have:

|Xi(v)−Xi(u)| � duv − 2δi
v,u

For the proof, assume w.l.o.g. that δi
v,u = dpiv. Again, using the triangle

inequality:

duv � dpiv + dpiu = dpiv + dpiv + (dpiu − dpiv) = 2δi
v,u + |Xi(v)−Xi(u)|

=⇒ duv − 2δi
v,u � |Xi(v)−Xi(u)|

Thus if we denote the minimal distance between {v, u} and Pivots by:

εv,u
def
= min

i∈{1,...,m},j∈{v,u}
dpij ,

then there exists an axis i such that |Xi(v)−Xi(u)| � duv − 2εv,u.
Since we have chosen the pivots in order to minimize their distance to the

rest nodes, we expect εv,u to be fairly small.

3 Projecting Into a Low Dimension

At this stage we have an m-dimensional drawing of the graph. In order to visu-
ally realize the drawing we have to project it into 2 or 3 dimensions. Picking a
good projection is not straightforward, since the axes are correlated and contain
redundant information. Moreover, several axes may scatter nodes better than
others, thus being more informative. For example, consider a square grid. If
we use two axes that correspond to two opposite corners, the resulting drawing
will be essentially 1-dimensional, as the two axes convey basically the same in-
formation and are anti-correlated. (That is, being “near” one corner is exactly
like being “far” from the opposite corner.) Also, taking an axis associated with
a boundary node is very often more informative than taking an axis associated
with a central node; the first case causes the nodes to be scattered in a much
better way, since the maximal distance from a boundary node is about twice as
large as the maximal distance from a central node.

To address these issues we use a tool that is well known and in standard use
in multivariate analysis — principal component analysis (PCA). PCA trans-
forms a number of (possibly) correlated variables into a (smaller) number of
uncorrelated variables called principal components (PCs). The first principal
component accounts for as much of the variability in the data as possible, and

4



each succeeding component accounts for as much of the remaining variability
as possible. By using only the first few principal components, PCA makes it
possible to reduce the number of significant dimensions of the data, while main-
taining the maximum possible variance thereof. See [7] for a comprehensive
discussion of PCA.

In our case, we have m n-dimensional variables X1, . . . , Xm, describing the
n nodes in m dimensions. We want to represent the n nodes using only k dimen-
sions (typically k = 2), using k n-dimensional uncorrelated vectors Y 1, . . . , Y k,
which are the principal components. Hence, the coordinates of node i are
(Y 1(i), . . . , Y k(i)). Each of the PCs among Y 1, . . . , Y k is a linear combination
of the original variables X1, . . . , Xm.

Here are the details. Denote the mean of i-th axis by mi
def
=

∑n
j=1

Xi(j)
n .

The first stage of the PCA is to center the data around 0 which is just a harm-
less translation of the drawing. We denote the vectors of centered data by
X̂1, . . . , X̂m, defined as:

X̂i(j) = Xi(j)−mi, i = 1, . . . ,m, j = 1, . . . , n

We now construct an m × n matrix, X, whose rows are the (centered) coordi-
nates:

X =

⎛
⎜⎜⎝

X̂1(1) . . . X̂1(n)
. . . . .
. . . . .

X̂m(1) . . . X̂m(n)

⎞
⎟⎟⎠

The covariance matrix S, of dimension m×m, is defined as

S =
1
n

XXT

We now have to compute the first k eigenvectors of S (those that correspond to
the largest eigenvalues). We denote these eigenvectors by u1, . . . , uk. The vector
lengths should be normalized to 1, so that these k vectors are orthonormal. A
simple method for computing the eigenvectors is described below.

Now to the projection itself. The first new axis, Y 1, is the projection of the
data in the direction of u1, the next axis, Y 2, is the projection in the direction
of u2, and so on. Hence the new coordinates are defined by:

Y i = XT ui, i = 1, . . . , k

For the interested reader, we now briefly discuss the theoretical reasoning
behind the PCA process. The projection of the data in a certain direction can
be formulated by y = XT u, where u is a unit vector (‖u‖2 = 1) in the desired
direction. Since the original data is centered, the projection, y, is also centered.
Thus, the variance of y can be written simply as yT y/n. Note that,

1
n

yT y =
1
n

(XT u)T XT u =
1
n

uT XXT u = uT Su .

5



Consequently, to find the projection that retains the maximum variance, we
have to solve the following constrained maximization problem:

max
u

uT Su (1)

subject to: ‖u‖2 = 1

Standard linear algebra shows that the maximizer of problem 1 is u1, the first
eigenvector of S. Hence, Y 1 is the 1-dimensional projection of the data that
has the maximal variance (i.e., in which the data is most scattered). Using sim-
ilar techniques it can be shown that Y 1, . . . , Y k constitute the k-dimensional
projection of the data that yields the maximal variance. Moreover, the orthog-
onality of u1, . . . , uk implies (Y i)T Y j = 0 for i �= j. Hence, these k axes are
uncorrelated.

In general, as we shall see in Section 4, it suffices to draw a graph on the
plane using Y 1 and Y 2 only, thus scattering the nodes in a maximal fashion.3

However, sometimes using Y 3 or Y 4 may be useful too.
Regarding time complexity, the most costly step is computing the covariance

matrix S = 1
nXXT . (In practice we do not divide by n, since multiplication

by a constant does not change the eigenvectors.) This matrix multiplication
is carried out in a straightforward way using exactly m2n multiplications and
additions, so the time complexity is O(m2n), with a very small hidden constant
(although matrix multiplication can be done faster in theory; see e.g., [2]).

As to computing the first eigenvectors of the m × m covariance matrix S
(i.e., those that correspond to the largest eigenvalues), we use the simple power-
iteration method; see e.g., [22]. Since m << n, the running time is negligi-
ble (taking in practice less than a millisecond) and there is no need for more
complicated techniques. The basic idea is as follows. Say we are given an
m×m symmetric matrix A with eigenvectors u1, u2, . . . , um, whose correspond-
ing eigenvalues are λ1 > λ2 > · · · > λm � 0. Let x ∈ R

n. If x is not orthogonal
to u1 (i.e., xT u1 �= 0) then the series Ax,A2x,A3x, . . . converges in the direc-
tion of u1. More generally, in the case where xT u1 = 0, xT u2 = 0, . . . , xT uj−1 =
0, xT uj �= 0, the series Ax,A2x,A3x, . . . converges in the direction of uj . The
full algorithm is depicted in Fig. 2.

4 Examples

Our algorithm was implemented in C, and runs on a dual processor Intel Xeon
1.7Ghz PC. Since the implementation is non-parallel, only one of the processors
is used. For all the results given here we have set m = 50, meaning that the
graphs are embedded in 50 dimensions. Our experience is that the results are
not sensitive to the exact value of m. In fact, increasing m does not degrade
the quality of the results, but doing so seems not to be needed. On the other
hand, picking an overly small value for m may harm the smoothness of the

3Thus, using PCA is, in a sense, incorporating a global “repulsive force”, in the terms used
in force-directed methods.

6



Function PowerIteration (S – m×m matrix )
% This function computes u1, u2, . . . , uk, the first k eigenvectors of S.

const ε← 0.001
for i = 1 to k do

ûi ← random
ûi ← ûi

‖ûi‖
do

ui ← ûi

% orthogonalize against previous eigenvectors
for j = 1 to i− 1 do

ui ← ui − (uT
i uj)uj

end for
ûi ← Sui

ûi ← ûi

‖ûi‖ % normalization

while ûT
i ui < 1− ε % halt when direction change is negligible

ui ← ûi

end for
return u1, u2, . . . , uk

Figure 2: The power iteration algorithm

drawing. We speculate that as the graphs are to be drawn in only two or three
dimensions, a vast increase of m cannot be helpful.

Table 1 gives the actual running times of the algorithm on graphs of different
sizes. In addition to the total computation time, we show the times of the two
most costly parts of the algorithm — computing the m-dimensional embedding
(Fig. 1) and computing the covariance matrix S. We want to stress the fact that
since the algorithm does not incorporate an optimization process, the running
time is determined completely by the size of the graph (i.e., |V | and |E|), and is
independent of the structure of the graph. This is unlike force-directed methods.

Graphs of around 105 nodes take only a few seconds to draw, and 106-node
graphs take less than a minute. Thus, the algorithm exhibits a truly signifi-
cant improvement in computation time for drawing large graphs over previously
known ones.4

Following is a collection of several drawings produced by the algorithm. The
layouts shown in Fig. 3 are typical results of our algorithm, produced by taking
the first two principal components as the axes. In Fig. 3(a) we show a square
grid with and in Fig. 3(b) we are showing the same grid with 1

3 of the edges
omitted at random. Figure 3(b) shows a folded grid, obtained by taking a square
grid and connecting opposing corners. This graph has high level of symmetry,
which is nicely reflected in the drawing. In Fig. 3(d) we are showing a torus.
Figures 3(c,d) show two finite element graphs, whose drawings give a feeling of

4Our recent ACE algorithm, [16], exhibits similar advantages using totally different meth-
ods.

7



Table 1: Running time (in seconds) of the various components of the algorithm.
We denote with TE the time to compute the high-dimensional embedding, with
TC the time to compute the covariance matrix and with T the total running
time.

graph |V| |E| T TE TC

516 [21] 516 729 0.00 0.00 0.00
Fidap006§ 1651 23,914 0.03 0.02 0.01
4970 [21] 4970 7400 0.08 0.03 0.05
3elt† 4720 13,722 0.09 0.05 0.05
Crack‡ 10,240 30,380 0.30 0.14 0.08
4elt2† 11,143 32,818 0.25 0.16 0.09
Sphere† 16,386 49,152 0.81 0.47 0.16
Fidap011§ 16,614 537,374 0.75 0.59 0.13
Sierpinski (depth 10) 88,575 177,147 1.77 0.89 0.77
grid 317 × 317 100,489 200,344 2.59 1.59 0.89
Ocean† 143,437 409,593 7.16 5.74 1.25
mrngA† 257,000 505,048 13.09 10.66 2.19
grid 1000 × 1000 1,000,000 1,998,000 50.52 41.03 8.48
mrngB† 1,017,253 2,015,714 57.81 47.83 8.84

§ Taken from the Matrix Market, at:
http:/math.nist.gov/MatrixMarket

† Taken from the University of Greenwich Graph Partitioning Archive, at:
http://www.gre.ac.uk/~c.walshaw/partition

‡ Taken from Jordi Petit’s collection, at:
http://www.lsi.upc.es/~jpetit/MinLA/Experiments

a 3-D landscape.
Sometimes it is aesthetically better to take different principal components.

For example, in Fig. 4(a) the 516 graph is depicted using the first and second
PCs, while in Fig. 4(b) the first and third PCs are used. Note that the second
PC scatters the nodes better than the third PC, as must be the case. However,
here, using the third PC instead of the second one results in an aesthetically
superior drawing. A similar example is given in Fig. 4(c,d) with the Fidap006
graph. In fact, this is the typical case with many graphs whose nice drawing has
an unbalanced aspect ratio. The first two axes provide a well balanced drawing,
while using different axes (the third or the forth PCs) yields a prettier result.

In fact, the algorithm also produces more information than others, by draw-
ing the graph in a high dimension. Thus, we can view the graph from different
viewpoints that may reveal interesting aspects of the graph. This is demon-
strated in the drawing of the Sphere graph. Fig. 5(a) shows a drawing using
the first and second PCs. The six “smooth” corners appearing in Fig. 5(a) be-
come really salient in Fig. 5(b), where the third and forth PCs are used. These

8



corners are still clearly visible using the forth and fifth PCs in Fig. 5(c), where
a flower shape emerges.

9



(a) (b)

(c) (d)

(e) (f)

Figure 3: Layouts of: (a) A 50× 50 grid; (b) A 50× 50 grid with 1
3 of the edges

omitted at random; (c) A 100 × 100 grid with opposite corners connected; (d)
A a 100× 100 torus; (e) The Crack graph; (f) The 3elt graph

10



(a)

(b)

(c)

(d)

Figure 4: (a,b592) Drawing the 516 graph using: (a) 1st and 2nd PCs; (b) 1st

and 3rd PCs. (c,d) Drawing the Fidap006 graph using: (c) 1st and 2nd PCs; (d)
1st and 3rd PCs

11



(a) (b)

(c) (d)

Figure 5: Multiple viewpoints of the Sphere graph: (a) first and second PCs;
(b) third and forth PCs; (c) forth and fifth PCs; (d) zooming in on one of the
corners

12



4.1 Zooming in on regions of interest

Drawings in two dimensions reveal only part of the richness of the original high
dimensional drawing. Indeed, the 2-D drawing must forgo showing some prop-
erties of small portions of the graph, in order to get a well balanced picture of
the entire graph. This facilitates a novel kind of interactive exploration of the
graph structure: The user can choose a region of interest in the drawing and
ask the program to zoom in on it. We then utilize the fact that we have a high
dimensional drawing of the graph, which possibly contains a better explanation
for the chosen subgraph than what shows up in 2-D. First we take the coordi-
nates of the subgraph from the already computed m-dimensional drawing. We
then use PCA to project these coordinates into 2-D. In this way we may reveal
properties appearing in the high-dimensional drawing, which are not shown in
the low-dimensional drawing of the full graph.

For example, we wanted to investigate the “corners” of the Sphere graph.
We zoomed in on one of the corners, and the result is shown in Fig. 5(d). It
can be seen that the corner is a meeting point of four faces. Another example
is the dense graph, Fidap011, depicted in Fig. 6. Due to file size limitation,
we cannot print this huge graph with adequate visual quality. Hence, it is very
instructive to see parts of its micro-structure, as shown in the bottom of Fig.
6(b).

Figure 6: Top: The Fidap011 graph; Bottom: zooming in on the micro-structure

Additional related examples are given in Fig. 7. The Sierpinski fractal of
depth 7, is shown in Fig. 7(a). Note that the left and top parts of it are distorted
(in fact, they are explained by the third PC). In Fig. 7(b) we depict the result
of zooming-in on the left part of the graph, revealing its nice structure. The
layout of the 4elt2 graph, depicted in Fig. 7(c), resembles the one obtained by
[16]. For a better understanding of its structure we may zoom-in on parts of the

13



drawing. Fig. 7(d) shows the results of zooming-in on the bottom strip. In Fig.
7(e) we provide a drawing of the Ocean graph, containing over 143,000 nodes.
To understand its micro-structure we zoom-in on it, providing a sample result
in Fig. 7(f). The last example is the 4970 graph, nicely depicted in Fig. 7(g).
We zoom-in on its top-center portion, as shown in Fig. 7(h).

Before ending this section, we should mention that our algorithm is not
suitable for drawing trees; see e.g. Fig. 8. In fact, for tree-like graphs, it may
be very hard to pick a suitable viewpoint for projection. This is probably due
to the fact that the high dimensional drawing of these graphs spans a “wild”
subspace of quite a high dimension. Moreover, if there is no pivot within some
subtree, all the nodes that have the same distance to the root of the subtree
(the node that connects the subtree to the rest of the graph) will get exactly
the same coordinates in the high-dimensional embedding.5

5 Related Work

The most common approach to drawing undirected graphs with straight line
edges is based on defining a cost function (or a force model), whose minimization
determines the optimal drawing. Such techniques are known as force-directed
methods [3, 15].

In terms of performance and simplicity, the algorithm has some significant
advantages when compared to force-directed methods. To appreciate these ad-
vantages, let us make a short divergence for surveying the state of the art
in force-directed drawing of large graphs. A naive implementation of a force-
directed method encounters real difficulties when dealing with graphs of more
than a few hundred nodes. These difficulties stem from two reasons. First, in
a typical force model there is a quadratic number of forces, making a single
iteration of the optimization process very slow. Second, for large graphs the
optimization process needs too many iterations for turning the initial random
placement into a nice layout. Some researchers [19, 20] have improved these
methods to some extent, by accelerating force calculation using quad-trees that
reduce the complexity of the force model. This way, [20] reports drawing 1000-
node graphs in around 5 minutes and [19] mentions vastly improved running
times per a single iteration. Whereas using quad-trees addresses the first issue
by accelerating each single iteration, there is still the second issue of getting out
of the initial random placement. Both these issues receive adequate treatment
by incorporating the multi-scale strategy as suggested by several authors; see
[9, 10, 11, 21]. These methods considerably improve running times by rapidly
constructing a simplified initial globally nice layout and then refining it locally.
The fastest of them all, [21], draws a 105-node graph in a typical time of ten
minutes. Coming back to our algorithm, we do not have an optimization process,
so we do not encounter the aforementioned difficulties of the force-directed ap-
proach. Our algorithm is considerably faster than all of these, however, being

5This observation was brought to our attention by Ulrik Brandes.

14



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: (a) A depth 7 Sierpinski graph; (b) zooming-in on the squeezed left
side of (a); (c) the 4elt2 graph; (d) zooming-in on the bottom of (c); (e) the
Ocean graph; (f) zooming-in on the micro structure of (e); (g) the 4970 graph;
(h) zooming-in on the top-center portion of (g)

15



Figure 8: Drawing of a depth 5 full binary tree

able to draw a 105-node graph in less than three seconds. Moreover, the imple-
mentation of our algorithm is much simpler and is almost parameter-free.

Recently, we have designed another algorithm for drawing huge graphs,
which we call ACE [16]. ACE draws a graph by quickly calculating eigen-
vectors of the Laplacian matrix associated with it, using a special algebraic
multigrid technique. ACE can draw 105-node graphs in about 2 seconds. How-
ever, the running-time of ACE (like that of force-directed methods) depends
on the graph’s structure, unlike our algorithm, where it depends only on the
graph’s size. A detailed comparison between the results of the two algorithms
has yet to be done.

In terms of drawing quality, the results of the new algorithm resemble those
of force-directed graph drawing algorithms. However, being limited by the linear
projection, frequently, the static 2-D results are inferior to those of the force-
directed approach. For example, in many of the drawings that were given here,
it may be observed that the boundaries are somewhat distorted, as they lie
inside an absent third dimension. Nevertheless, we should stress the fact that
the full power of our algorithm is not expressed well in static 2-D drawings. In
order to really utilize its capabilities, one should explore the graph using the
novel technique for interactive visualization, which is unique to this algorithm.

Several force-directed graph drawing algorithms compute the layout by first
constructing a multidimensional drawing of the graph and then transforming
it into a lower dimension, see, e.g., [9, 20]. Calculation of the initial multidi-
mensional drawing is carried out by several kinds of force-directed optimization
processes. Running time of such algorithms significantly increases as the dimen-
sionality of the original drawing grows. Consequently, the dimensionality of the
initial drawing is typically at most three or four. Regarding the transformation
into a lower dimension, the work of [9] uses random projections, while the other
method [20] uses a more computationally intensive optimization process that
gradually decreases the “size” of one of the dimensions (a sort of “squashing”)
until the drawing is of a lower dimensionality. Both these algorithms could pos-

16



sibly benefit from incorporating principal components analysis to project the
drawings onto the plane. See also Subsection 6.1.

6 Additional Applications

6.1 Finding the best viewpoint for 3-D layouts

The popularity of 3-D graph drawing created a need for algorithms that auto-
matically compute the best 2-D projection of a 3-D layout. An exact algorithm
that requires a preprocessing time of Ω((|V |+|E|)4 log(|V |+|E|)) was suggested
in [5]. Iterative heuristic algorithms, with a faster running time (but still, at
least O(|V | · |E|)), were suggested in [13]. We suggest using PCA for calculating
the best viewpoint, resulting in a much faster exact algorithm.

A good projection should prevent overlaps between the graph elements,
avoiding vertex-vertex, vertex-edge, and edge-edge occlusions [5, 13]. There-
fore, we construct a set of points, P ⊂ R

3, containing those points in the 3-D
layout whose overlap we want to avoid in the 2-D projection. The set P natu-
rally contains all the 3-D points where the graph vertices are located. Sample
points along which edges pass might also be added to P.

Let us denote a projection by the function p : R
3 → R

2. In a 2-D projection
we want to minimize occlusions between points in P. Hence, an adequate cost
function for the quality of the projection will be:

∑
a�=b∈P

|p(a)− p(b)|2 . (2)

A good projection should maximize (2), thus, separating elements of P. In
other words, the best projection is one that best preserves the pairwise squared
distances of P. The work of [17] proves that the maximizer is exactly the PCA
projection of the points in P. Therefore, we have an algorithm for finding the
“best” viewpoint, whose running time is O(|P|). It is also possible to maximize
a weighted version of (2), where we can grant more importance to preserv-
ing distances among some pairs. This is done by fixing non-negative pairwise
weights and maximizing:

∑
a�=b∈P

wab|p(a)− p(b)|2 . (3)

As explained in [17], such a maximization problem can be solved optimally and
some general weighting schemes are suggested there.

We have not implemented this viewpoint-finding algorithm, so we cannot
compare its quality to previous approaches. However, it constitutes a promising
direction because of its excellent complexity and our positive experience with
the aesthetical properties of PCA-based projection.

17



6.2 Applications to information visualization

Here, we consider a general scenario in which we are given some kind of data
in a metric space, and we want to convey its overall structure by mapping it
into a low-dimensional space (mostly 2-D or 3-D) that can be assessed by our
own visual system. Using the pairwise distances between data elements, we can
model the data by a weighted graph, and use force-directed drawing algorithms
for computing a low-dimensional representation of the data. Our algorithm
can deal directly with edge-weighted graphs, making it suitable for such an
information visualization task.

In this case, our algorithm has an important performance-related advantage
over other algorithms — fewer pairwise distances should be computed. Note
that the time needed for computing the distance between two objects depends
solely on the complexity of those objects, and is independent of n, the number of
objects. (This is unlike the computation of the graph theoretic distance, which
is not needed in this case.) Frequently, computing the distance between two
objects is a costly operation; e.g., when the objects are DNA sequences of length
k, a common distance measure is the “edit-distance”, whose computation may
take time O(k2). Since in such applications n is typically large, one would have
to consider multi-scale enhancements, and these would require the computation
of the close neighbors of each of the objects. This, in turn, would require the
computation of the distances between all pairs, resulting in n ·(n−1)/2 distance
computations, which is often far too costly. In contrast, our method requires
only m · n distance computations — a significant improvement.

7 Conclusions

We have presented an extremely fast approach to graph drawing. It seems that
our two key contributions are the simple technique for embedding the graph in
a very high dimension and the use of principal component analysis (PCA) for
finding good projections into lower dimensions.

The output of our algorithm is multi-dimensional, allowing multiple views
of the graph. This also facilitates a novel technique for interactive exploration
of the graph, by focusing on selected portions thereof, showing them in a way
that is not possible in a 2-D drawing of the entire graph.

A newer work [18] suggests an alternative approach to the PCA projection.
Thus, the second step of our algorithm is replaced by a new projection method
that maximizes the scatter of the nodes while keeping edge lengths short.

18



References

[1] I. Bruss and A. Frick, “Fast Interactive 3-D Graph Visualization”, Proc. 3rd
Graph Drawing (GD’95), Lecture Notes in Computer Science, Vol. 1027,
pp. 99–110, Springer-Verlag, 1996.

[2] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms,
MIT Press, 1990.

[3] G. Di Battista, P. Eades, R. Tamassia and I.G. Tollis, Graph Drawing:
Algorithms for the Visualization of Graphs, Prentice-Hall, 1999.

[4] R. Davidson and D. Harel, “Drawing Graphs Nicely Using Simulated An-
nealing”, ACM Trans. on Graphics 15 (1996), 301–331.

[5] P. D. Eades, M. E. Houle and R. Webber, “Finding the Best Viewpoints for
Three-Dimensional Graph Drawings”, Proc. 5th Graph Drawing (GD’97),
LNCS 1353, pp. 87–98, Springer-Verlag, 1997.

[6] P. Eades, “A Heuristic for Graph Drawing”,Congressus Numerantium 42
(1984), 149–160.

[7] B. S. Everitt and G. Dunn, Applied Multivariate Data Analysis, Arnold,
1991.

[8] T.M.G. Fruchterman and E. Reingold, “Graph Drawing by Force-Directed
Placement”, Software-Practice and Experience 21 (1991), 1129–1164.

[9] P. Gajer, M. T. Goodrich, and S. G. Kobourov, “A Multi-dimensional
Approach to Force-Directed Layouts of Large Graphs”, Proc. 8th Graph
Drawing (GD’00), LNCS 1984, pp. 211–221, Springer-Verlag, 2000.

[10] R. Hadany and D. Harel, “A Multi-Scale Method for Drawing Graphs
Nicely”, Discrete Applied Mathematics, 113 (2001), 3–21.

[11] D. Harel and Y. Koren, “A Fast Multi-Scale Method for Drawing Large
Graphs”, Journal of graph algorithms and applications 6 (2002), 179–202.
Earlier version: Proc. 8th Graph Drawing (GD’00) , LNCS 1984, Springer-
Verlag, pp. 183–196, 2000.

[12] D. S. Hochbaum (ed.), Approximation Algorithms for NP-Hard Problems,
PWS Publishing Company, 1996.

[13] M. E. Houle and R. Webber, “Approximation Algorithms for Finding Best
Viewpoints”, Proc. 6th Graph Drawing (GD’98), LNCS 1547, pp. 210–223,
Springer-Verlag, 1998.

[14] T. Kamada and S. Kawai, “An Algorithm for Drawing General Undirected
Graphs”, Information Processing Letters 31 (1989), 7–15.

19



[15] M. Kaufmann and D. Wagner (Eds.), Drawing Graphs: Methods and Mod-
els, LNCS 2025, Springer-Verlag, 2001.

[16] Y. Koren, L. Carmel and D. Harel, “ACE: A Fast Multiscale Eigenvector
Computation for Drawing Huge Graphs”, Proceedings of IEEE Information
Visualization (InfoVis’02), IEEE, pp. 137–144, 2002.

[17] Y. Koren and L. Carmel, “Robust Linear Dimensionality Reduction”, IEEE
Transactions on Visualization and Computer Graphics 10 (2003), 459–470.

[18] Y. Koren, “Graph Drawing by Subspace Optimization”, Proceedings of
6th Joint Eurographics - IEEE TCVG Symp. Visualization (VisSym ’04),
Eurographics, pp. 65–74, 2004.

[19] A. Quigley and P. Eades, “FADE: Graph Drawing, Clustering, and Visual
Abstraction”, Proc. 8th Graph Drawing (GD’00), LNCS 1984, pp. 183–196,
Springer-Verlag, 2000.

[20] D. Tunkelang, A Numerical Optimization Approach to General Graph
Drawing, Ph.D. Thesis, Carnegie Mellon University, 1999.

[21] C. Walshaw, “A Multilevel Algorithm for Force-Directed Graph Drawing”,
Proc. 8th Graph Drawing (GD’00), LNCS 1984, pp. 171–182, Springer-
Verlag, 2000.

[22] D. S. Watkins, Fundamentals of Matrix Computations, John Wiley, 1991.

20


