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< Analytic functions describing the battery model parameters are optimized.
< EKF based on the optimal analytic model is adopted as the SOC estimator.
< The robustness of the SOC estimator against varying loading profiles is evaluated.
< The robustness of the SOC estimator against varying temperatures is analyzed.
< The robustness of the SOC estimator against varying aging levels is assessed.
a r t i c l e i n f o

Article history:
Received 18 April 2012
Received in revised form
29 May 2012
Accepted 1 June 2012
Available online 9 June 2012

Keywords:
Battery management systems
SOC estimation
Li-ion battery
Robustness analysis
* Corresponding author. National Engineering Lab
Beijing Institute of Technology, No. 5 South Zhonggua
Beijing 100081, China. Tel./fax: þ86 10 6891 4625.

E-mail addresses: huxstank@bit.edu.cn, huxiaos@u

0378-7753/$ e see front matter � 2012 Elsevier B.V.
http://dx.doi.org/10.1016/j.jpowsour.2012.06.005
a b s t r a c t

Battery State of Charge (SOC) estimation is an important function for battery management systems and
critical for the reliable operations of batteries. This paper analyzes the robustness of SOC estimation
algorithms for two types of Li-ion batteries under varying loading conditions, temperatures and aging
levels. Based on the model templates identified in an earlier research, the model parameters are
determined. The Extended Kalman Filter (EKF) technique is then adopted as the SOC estimation algo-
rithm. The robustness of the estimator against varying loading profiles and temperatures is evaluated
and compared against the Coulomb counting method. We subsequently used data from cells that have
significantly aged to assess the robustness of the SOC estimation algorithm. Finally, the need for model
parameter updates is analyzed.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Electrified vehicles including battery electric vehicles (BEVs),
hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles
(PHEVs) have been actively studied and developed. A critical
element for their successful commercialization is technologies for
reliable battery operations. Battery management systems (BMS)
have been designed to provide monitoring, diagnosis, and control
functions to enhance the operations of battery packs. A key func-
tion of BMS is to accurately estimate battery state of charge (SOC).
Poor SOC estimation can result in larger SOC swing than specified,
and can lead to reduced cycle life or lower efficiency.
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The Coulomb counting method was often used as a core tech-
nology for battery SOC estimation [1e3]. This method is easy to
implement but has three challenges. First, the initial SOC at key-on
must be estimated accurately because subsequent estimates may
be biased by the initial SOC error [4]. Secondly, themethod is highly
dependent on the accuracy of the current sensor. The current
sensor is often subject to noise, drift induced by temperature and
other uncertainties. Finally, the battery capacity reduces with age
and will affect SOC calculation. To remedy these three challenges,
periodic resets are needed. In actual vehicle operations, the open
circuit voltage (OCV) is often used to calculate initial SOC. Since
there is typically a monotonic relationship between OCV and SOC.
Inverting this algebraic relation leads to a SOC estimate. However,
error can exist if the battery is not fully relaxed. Sometimes the
OCVeSOC curve is very flat in the middle region (e.g., between 30
and 80% SOC), particularly for lithium iron phosphate cells. A small
OCV error can result in a large SOC error. Hence, the OCV-based
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Table 1
Equations of the best performing models identified in Ref. [24].

Model Equations

(1) First-order RC
model for LiNMC
cell

Ukþ1 ¼ expð�Dt=s1ÞUk þ R1½1� expð�Dt=s1Þ�Ik
Vk ¼ VocðzkÞ � R0Ik � Uk
where I, V and z are current, output voltage
and SOC, respectively. Dt is the sampling time
and Voc is OCV. R0 is the internal ohmic
resistance which depends on the current
direction. U and s1 ¼ R1C1 are the voltage and
time constant of the RC network.

(2) First-order RC
model with
one-state
hysteresis
for LiFePO4 cell

(
Ukþ1 ¼ expð�Dt=s1ÞUk þ R1½1� expð�Dt=s1Þ�Ik
hkþ1 ¼ expð�jkIkDtjÞhk þ ½1� expð�jkIkDtjÞ�H

Vk ¼ VocðzkÞ � R0Ik � Uk þ hk
where h is the hysteresis voltage, k is a decaying
factor and H is the maximum amount of
hysteresis voltage which is positive for charge
and negative for discharge.

Table 2
Candidate OCV functions evaluated in this paper.

No. OCV functions and description

(1) Voc ¼ K0 � K1/z � K2z þ K3 ln (z) þ K4 ln (1 � z) [13]
where Voc and z are the OCV and SOC, respectively.
The optimization variable vector q ¼ [K0, K1, K2, K3, K4].

(2) Voc ¼ K0 þ a1zþ a2ð1� e�a3zÞ þ a4ð1� e�a5=1�zÞ [26]
where q ¼ [K0, a1, a2, a3, a4, a5].

(3) Voc ¼ K0 � a1=zþ a2e�a3ð1�zÞ [27]
where q ¼ [K0, a1, a2, a3].

(4) Voc ¼ a1e�a2z þ a3 þ a4zþ a5z2 þ a6z3 [28]
where q ¼ [a1, a2, a3, a4, a5, a6].

(5) Voc ¼ a1z
6 þ a2z

5 þ a3z
4 þ a4z

3 þ a5z
2 þ a6z þ a7 [29]

where q ¼ [a1, a2, a3, a4, a5, a6, a7].

Fig. 2. OCV fitting results for LiNMC cell at 22 �C.
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reset is not suitable for batteries that are mostly half-charged. For
EVs/PHEVs, the reset can be more effectively done, since the SOC
frequently reach the two ends where the OCVeSOC slope is steep.

Many SOC estimation models have been proposed, such as
artificial neural networks based models [5e7], fuzzy logic models
[8,9] and support vector regression (SVR) based models [10,11]. The
robustness of these models strongly relies on the quantity and
quality of the training data set. A limited training data set (e.g.,
obtained from new cells) may result in limited model robustness,
thus reducing the applicability of the model.

Kalman filter and other observer-based approaches have also
been used to estimate the battery SOC. These methods use output
feedback and can have better robustness than non-feedback
methods. In Refs. [12e14], an Extended Kalman filter (EKF), based
on several nonlinear state-space models, was used to estimate the
SOC of an HEV Li-polymer cell. A central difference Kalman filter
(CDKF) using a nonlinear enhanced self-correcting battery model
was also developed to estimate SOC [15,16]. An unscented Kalman
filter (UKF) by means of a nonlinear electrochemical battery model
was also used to estimate SOC of a lithium-ion cell [17]. The
performance of these filters depends on the model accuracy. The
sigma-point based CDKF/UKF often provides better estimates than
EKF at the expense of higher complexity and computational cost.
Several variants of Kalman filter were also studied with similar
results [18e20]. Besides Kalman filters, sliding-mode observers
[21,22] and linear parameter-varying observers [23] were also
applied to predict the battery SOC.

Most of the estimation methods described above were validated
using battery data under a narrow set of scenarios, without
Fig. 1. The test schedule to collect battery cell data.
exploring different temperatures, battery ages, or highly transient
loadings. In other words, the robustness of these SOC estimation
algorithms was not sufficiently assessed. For example, many SOC
estimation approaches mentioned above were evaluated under
only one battery loading profile and one environmental tempera-
ture. Moreover, the performance and robustness of these SOC
algorithms against aging were not adequately studied. A key
contribution of this paper is that the SOC estimator performance for
two types of Li-ion batteries was evaluated under different loading
profiles, temperatures, and cell aging levels.
Fig. 3. OCV fitting results for LiFePO4 cell at 22 �C.



Table 3
Three candidate analytic functions for RC and hysteresis parameters.

Type Functions and description

(1) Polynomial [29] f ¼ cnz
n þ cn�1z

n�1 þ/þ c0
where f and z are model parameter and SOC,
respectively. n is the degree of the polynomial.
cn is a coefficient to be optimized.

(2) Exponential [28] f ¼ c1e�c2z þ c3
(3) Power series [30] f ¼ c1zc2 þ c3

Fig. 5. Comparison results of polynomials with different degrees for the LiNMC cell.
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Based on the preferred model structures identified in our earlier
work [24], the optimal analytic functions explicitly depicting the
dependency of model parameters on SOC and temperature are
determined. These models are then used in EKF to estimate SOC.
The robustness of the estimator under varying loading profiles,
temperatures and cell age are then analyzed.

The remainder of this paper is organized as follows. In Section 2,
determination of the optimal analytic functions to explicitly
delineate the model dependence on SOC and temperature is
described. In Section 3, the EKF-based SOC estimator is introduced.
The evaluation results of the estimator robustness are discussed in
Section 4, followed by conclusions in Section 5.

2. Optimization of model dependency on SOC and
temperature

In Ref. [24], we studied twelve equivalent circuit battery
model structures reported in the literature, and compared their
complexity, training and validation accuracies using test data
from multiple cells. The preferred model structures for the
lithium nickelemanganeseecobalt oxide (LiNMC) UR14650P and
lithium iron phosphate (LiFePO4) APR18650M1A cells were found
to be the first-order resistanceecapacitance (RC) model and the
Fig. 4. Schematic diagram of the two-step optimization process.
first-order RC model with one-state hysteresis, respectively. The
equations of the two models are shown in Table 1. The aim of Ref.
[24] was to find the optimal model structures and the parameters
of all the twelve models were assumed to be constant (inde-
pendent of SOC). To explore the full potential of these two
preferred model structures, in this paper we will establish the
dependence of model parameters on the battery SOC and
temperature. The test schedules shown in Fig. 1 are designed to
excite and age the two types of battery cells. The datasets are
described in details in Ref. [24]. The three dynamic test cycles
(Hybrid Pulse Test DST and FUDS) are used to identify the SOC
and temperature-dependent analytic functions.
Fig. 6. Comparison results of the three types of analytic functions for the LiNMC cell.



Table 4
Optimal coefficients of the analytic functions for the LiNMC cell.

Parameter Coefficients

OCV Voc ¼ a1z
6 þ a2z

5 þ a3z
4 þ a4z

3 þ a5z
2 þ a6z þ a7 (0.1 � z � 0.9)

where
a1 ¼ f�0:1674ðTe� 10Þ þ 2:9192; 10 � Te < 22 ðTe : TemperatureÞ; 0:1939ðTe� 22Þ þ 0:9109; 22 � Te � 35g
a2 ¼ f0:3394ðTe� 10Þ � 5:8608; 10 � Te < 22; �0:3675ðTe� 22Þ � 1:7875; 22 � Te � 35g
a3 ¼ f�0:1811ðTe� 10Þ þ 1:3408; 10 � Te < 22; 0:0469ðTe� 22Þ � 0:8330; 22 � Te � 35g
a4 ¼ f�0:0614ðTe� 10Þ þ 5:1684; 10 � Te < 22; 0:3023ðTe� 22Þ þ 4:4320; 22 � Te � 35g
a5 ¼ f0:0948ðTe� 10Þ � 4:4983; 10 � Te < 22; �0:2336ðTe� 22Þ � 3:3606; 22 � Te � 35g
a6 ¼ f�0:0290ðTe� 10Þ þ 1:5815;10 � Te < 22; 0:0648ðTe� 22Þ þ 1:2331; 22 � Te � 35g
a7 ¼ f0:0025ðTe� 10Þ þ 3:5600; 10 � Te < 22; �0:0063ðTe� 22Þ þ 3:5901; 22 � Te � 35g

Charging R�0 R�0 ¼ c1e�c2z þ c3 (0.1 � z � 0.9)
where
c1 ¼ f�0:0116ðTe� 10Þ þ 0:1728; 10 � Te < 22; 0:0741ðTe� 22Þ þ 0:0337; 22 � Te � 35g
c2 ¼ f0:5632ðTe� 10Þ � 24:5426; 10 � Te < 22; �1:0925ðTe� 22Þ � 17:7848; 22 � Te � 35g
c3 ¼ f�0:0009ðTe� 10Þ þ 0:1086;10 � Te < 22; �0:0005ðTe� 22Þ þ 0:0972; 22 � Te � 35g

Discharging Rþ0 Rþ0 ¼ c1e�c2z þ c3 (0.1 � z � 0.9)
where
c1 ¼ f0:0072ðTe� 10Þ þ 0:0761; 10 � Te < 22; �0:0125ðTe� 22Þ þ 0:1621; 22 � Te � 35g
c2 ¼ f�2:0975ðTe� 10Þ � 4:7917; 10 � Te < 22; �0:6137ðTe� 22Þ � 29:9621; 22 � Te � 35g
c3 ¼ f�0:0010ðTe� 10Þ þ 0:1142; 10 � Te < 22; �0:0006ðTe� 22Þ þ 0:1021; 22 � Te � 35g

R1 (RC network) R1 ¼ c1e�c2z þ c3 (0.1 � z � 0.9)
where
c1 ¼ f0; 10 � Te < 22; 0; 22 � Te � 35g c2 ¼ f�0:1403ðTe� 10Þ � 21:9590; 10 � Te < 22; �0:6098ðTe� 22Þ � 23:6430; 22 � Te � 35g
c3 ¼ f�0:0015ðTe� 10Þ þ 0:0608; 10 � Te < 22; �0:0011ðTe� 22Þ þ 0:0433; 22 � Te � 35g

Time constant s1
(RC network)

s1 ¼ c1e�c2z þ c3 (0.1 � z � 0.9)
where
c1 ¼ f2:1871ðTe� 10Þ þ 19:3967; 10 � Te < 22; �1:9460ðTe� 22Þ þ 45:6424; 22 � Te � 35g
c2 ¼ f�4:1106ðTe� 10Þ � 0:6723; 10 � Te < 22; 1:9550ðTe� 22Þ � 50:0000; 22 � Te � 35g
c3 ¼ f0:5091ðTe� 10Þ þ 32:7608; 10 � Te < 22; 1:7591ðTe� 22Þ þ 38:8700; 22 � Te � 35g
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2.1. OCV function identification

Compared to lookup tables, analytic OCVeSOC functions can be
beneficial. For example, function derivatives can be calculatedmore
easily and accurately. Several candidate functions proposed in the
literature to depict the battery OCV are summarized in Table 2. We
fit the five candidate functions shown in Table 2 to the 12 OCV
points obtained in [24] by nonlinear least-squares optimization.
The results of the LiNMC and LiFePO4 cells at temperature ¼ 22 �C
Fig. 7. Comparison results of polynomials with different degrees for the LiFePO4 cell.
are shown in Figs. 2 and 3, respectively. It seems that all candidate
functionswork reasonably well and the polynomial (5) matches the
OCV points a little better for both cells. The fitting results at tem-
perature¼ 10 �C and 35 �C are similar. It was argued in Ref. [25] that
rich features in low or high SOC can be better fitted by a high-order
smooth polynomial. Therefore, function (5) in Table 2 is selected.
2.2. Optimization process for the RC circuit and one-state hysteresis

In Ref. [24], the first-order RC model with one-state hysteresis
was found to fit the LiFePO4 cell results the best while the first-
order RC model was found to be the best for the LiNMC cells.
Three analytic functions commonly used to fit the RC parameters
Fig. 8. Comparison results of the three types of analytic functions for the LiFePO4 cell.
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are summarized in Table 3. The same basis functions are applied to
the hysteresis parameters as well, to reduce the complexity in
optimization. Since each model parameter is expressed as an
explicit function with unknown coefficients, all are to be found by
optimization routines. Furthermore, unlike the model parameters
(e.g., internal resistance), we often have no clear knowledge of the
bounds of the unknown coefficients. The global multi-swarm
particle swarm optimization (MPSO) method [24] is used to opti-
mize these coefficients. However, its computation load is very
heavy. If gradient-based methods such as sequential quadratic
programming (SQP) are used, they frequently got trapped at local
minima. Therefore, a two-step optimization procedure is adopted.
The schematic diagram of the two-step optimization is shown in
Fig. 4. With loose bounds for all the unknown coefficients, 4000
generations in the global MPSO are first iterated such that the RMS
error is less than 30 mV. Then, the 3 best solutions (particles)
attained by MPSO are used as the initial solutions of the SQP
Table 5
Optimal coefficients of the analytic functions for the LiFePO4 cell.

Parameter Coefficients

OCV Voc ¼ a1z
6 þ a

where
a1 ¼ f�0:46
a2 ¼ f1:0943
a3 ¼ f�0:83
a4 ¼ f0:1023
a5 ¼ f0:1514
a6 ¼ f�0:06
a7 ¼ f0:0068

Charging resistance R�0 R�0 ¼ c1z3 þ c
where
c1 ¼ f0:0148
c2 ¼ f�0:022
c3 ¼ f0:0098
c4 ¼ f�0:001

Discharging Rþ0 Rþ0 ¼ c1z3 þ c
where
c1 ¼ f�0:001
c2 ¼ f0:0005
c3 ¼ f0:0009
c4 ¼ f�0:001

R1 (RC network) R1 ¼ c1z
3 þ c2

where
c1 ¼ f0:0272
c2 ¼ f�0:042
c3 ¼ f0:0226
c4 ¼ f�0:005

Time constant s1 (RC network) s1 ¼ c1z
3 þ c2

where
c1 ¼ f0:1124
c2 ¼ f�0:437
c3 ¼ f0:2447
c4 ¼ f�0:980

Hysteresis decaying factor k k ¼ c1z
3 þ c2z

where
c1 ¼ f0:0379
c2 ¼ f�0:052
c3 ¼ f0:0188
c4 ¼ f�0:001

Maximum charging hysteresis H� H� ¼ c1z
3 þ c

where
c1 ¼ f�0:024
c2 ¼ f0:0306
c3 ¼ f�0:008
c4 ¼ f�0:000

Maximum discharging hysteresis Hþ Hþ ¼ c1z
3 þ c

where
c1 ¼ f0:0415
c2 ¼ f�0:060
c3 ¼ f0:0243
c4 ¼ f�0:001
algorithm. The optimization is conducted under each temperature.
Then, we fit piecewise linear functions to the optimal solutions for
the three temperatures, thereby establishing an explicit tempera-
ture dependency. The OCV coefficients (sixth-degree polynomial)
are also optimized in the two-step procedure, together with other
model parameters.

(1) LiNMC cell

The results using polynomial basis functions of different degrees
are shown in Fig. 5. The maximum, minimum and average RMS
errors under three temperatures are computed. The hybrid pulse
test dataset is used as the training dataset while the Dynamic Stress
Test (DST) and Federal Urban Dynamic Schedule (FUDS) datasets
[24] are used as validation datasets. The third-degree polynomial is
selected based on accuracy-complexity trade-off. Fig. 6 shows the
comparison results of the third-degree polynomial, exponential (2)
2z
5 þ a3z

4 þ a4z
3 þ a5z

2 þ a6z þ a7 (0.1 � z � 0.9)

29ðTe� 10Þ þ 1:9754; 10 � Te < 22; 0:2506ðTe� 22Þ � 3:5795; 22 � Te � 35g
ðTe� 10Þ � 3:6208; 10 � Te < 22; �0:7233ðTe� 22Þ þ 9:5106; 22 � Te � 35g
41ðTe� 10Þ þ 0:0094; 10 � Te < 22; 0:8529ðTe� 22Þ � 10:0000; 22 � Te � 35g
ðTe� 10Þ þ 4:3001; 10 � Te < 22; �0:4813ðTe� 22Þ þ 5:5273; 22 � Te � 35g
ðTe� 10Þ � 3:7275; 10 � Te < 22; 0:1121ðTe� 22Þ � 1:9108; 22 � Te � 35g
31ðTe� 10Þ þ 1:3896; 10 � Te < 22; �0:0049ðTe� 22Þ þ 0:6326; 22 � Te � 35g
ðTe� 10Þ þ 3:0629; 10 � Te < 22; �0:0002ðTe� 22Þ þ 3:1440; 22 � Te � 35g
2z2 þ c3zþ c4 (0.1 � z � 0.9)

ðTe� 10Þ � 0:1670; 10 � Te < 22; �0:0018ðTe� 22Þ þ 0:0105; 22 � Te � 35g
1ðTe� 10Þ þ 0:2458; 10 � Te < 22; 0:0027ðTe� 22Þ � 0:0200; 22 � Te � 35g
ðTe� 10Þ � 0:1027; 10 � Te < 22; �0:0014ðTe� 22Þ þ 0:0149; 22 � Te � 35g
6ðTe� 10Þ þ 0:0349; 10 � Te < 22; �0:0001ðTe� 22Þ þ 0:0151; 22 � Te � 35g
2z2 þ c3zþ c4 (0.1 � z � 0.9)

2ðTe� 10Þ � 0:0010; 10 � Te < 22; 0:0106ðTe� 22Þ � 0:0153; 22 � Te � 35g
ðTe� 10Þ þ 0:0274; 10 � Te < 22; �0:0163ðTe� 22Þ þ 0:0333; 22 � Te � 35g
ðTe� 10Þ � 0:0340; 10 � Te < 22; 0:0071ðTe� 22Þ � 0:0231; 22 � Te � 35g
3ðTe� 10Þ þ 0:0432; 10 � Te < 22; �0:0014ðTe� 22Þ þ 0:0277; 22 � Te � 35g
z2 þ c3z þ c4 (0.1 � z � 0.9)

ðTe� 10Þ � 0:3042; 10 � Te < 22; �0:0058ðTe� 22Þ þ 0:0220; 22 � Te � 35g
4ðTe� 10Þ þ 0:4777; 10 � Te < 22; 0:0078ðTe� 22Þ � 0:0309; 22 � Te � 35g
ðTe� 10Þ � 0:2715; 10 � Te < 22; �0:0022ðTe� 22Þ � 0:0000; 22 � Te � 35g
4ðTe� 10Þ þ 0:0956; 10 � Te < 22; �0:0007ðTe� 22Þ þ 0:0311; 22 � Te � 35g
z2 þ c3z þ c4 (0.1 � z � 0.9)

ðTe� 10Þ � 4:3311; 10 � Te < 22; �0:2546ðTe� 22Þ � 2:9824; 22 � Te � 35g
9ðTe� 10Þ þ 1:1861; 10 � Te < 22; �0:0584ðTe� 22Þ � 4:0682; 22 � Te � 35g
ðTe� 10Þ þ 6:2657; 10 � Te < 22; �1:4771ðTe� 22Þ þ 9:2026; 22 � Te � 35g
0ðTe� 10Þ þ 35:2236; 10 � Te < 22; 0:5832ðTe� 22Þ þ 23:4637; 22 � Te � 35g
2 þ c3z þ c4 (0.1 � z � 0.9)

ðTe� 10Þ � 0:5478; 10 � Te < 22; 0:0243ðTe� 22Þ � 0:0925; 22 � Te � 35g
1ðTe� 10Þ þ 0:7931; 10 � Te < 22; �0:0339ðTe� 22Þ þ 0:1675; 22 � Te � 35g
ðTe� 10Þ � 0:3157; 10 � Te < 22; 0:0124ðTe� 22Þ � 0:0903; 22 � Te � 35g
5ðTe� 10Þ þ 0:0410; 10 � Te < 22; �0:0011ðTe� 22Þ þ 0:0233; 22 � Te � 35g
2z

2 þ c3z þ c4 (0.1 � z � 0.9)

8ðTe� 10Þ þ 0:9525; 10 � Te < 22; �0:0725ðTe� 22Þ þ 0:6554; 22 � Te � 35g
ðTe� 10Þ � 1:3109; 10 � Te < 22; 0:1021ðTe� 22Þ � 0:9440; 22 � Te � 35g
5ðTe� 10Þ þ 0:4424; 10 � Te < 22; �0:0331ðTe� 22Þ þ 0:3399; 22 � Te � 35g
5ðTe� 10Þ þ 0:0060; 10 � Te < 22; 0:0018ðTe� 22Þ þ 0:0000; 22 � Te � 35g
2z

2 þ c3z þ c4 (0.1 � z � 0.9)

ðTe� 10Þ � 0:0848; 10 � Te < 22; �0:0091ðTe� 22Þ þ 0:4134; 22 � Te � 35g
9ðTe� 10Þ � 0:0169; 10 � Te < 22; 0:0165ðTe� 22Þ � 0:7478; 22 � Te � 35g
ðTe� 10Þ þ 0:0944; 10 � Te < 22; �0:0065ðTe� 22Þ þ 0:3857; 22 � Te � 35g
8ðTe� 10Þ � 0:0392; 10 � Te < 22; 0:0005ðTe� 22Þ � 0:0613; 22 � Te � 35g



Fig. 9. OCV function of the LiNMC cell.

Table 6
EKF equations for the SOC estimation.

Nonlinear battery model
xkþ1 ¼ A(zk, Te)xk þ B(zk, Te)uk þ uk

yk ¼ g(xk, Ik) þ nk
where x, I and y are state variables, current and voltage, respectively.
The first element of x is SOC z. u is the model input. A and B are SOC
and temperature-dependent matrices. u and n are assumed to be
independent, zero-mean, Gaussian noise processes
of covariance matrices Q and V.

(1) Initialization

Assign the initial state estimate bxo , error covariance P0, Q and V.
(2) Prediction

( bxkjk�1 ¼ Aðbzk�1; TeÞbxk�1 þ Buk�1

Pkjk�1 ¼ Aðbzk�1; TeÞPk�1Aðbzk�1; TeÞT þ Q

(3) Correction

(Gk ¼ Pkjk�1Cðbzkjk�1; TeÞT ½Cðbzkjk�1; TeÞPkjk�1Cðbzkjk�1; TeÞT þW ��1bxk ¼ bxkjk�1 þ Gk½yk � gðbxkjk�1; IkÞ�
Pk ¼ ½E � GkCðbzk; TeÞ�Pkjk�1

where

Cðbzkjk�1; TeÞ ¼ vgðxk; IkÞ
vxk

j
xk¼bxkjk�1

Table 7
Matrices of the state-space models for the LINMC and LiFePO4 cells.

(1) The first-order RC model of the LiNMC cell

xk ¼ ½ zk
Uk

�, Aðzk; TeÞ ¼
"1 0
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��Dt

s1

�#
, Bðzk; TeÞ ¼

2664
�hDt
3600Cn

R1 � R1exp
��Dt

s1

�
3775,

gðxk; IkÞ ¼ Voc;k � Uk � Iþk R
þ
0 � I�k R

�
0

where U is the voltage across the RC network at time k. Dt is the sampling time,
h is Coulombic efficiency, and Cn is the cell capacity. Iþ and I� are discharging
and charging currents, respectively. When I � 0 (charging), Iþ ¼ 0, I� ¼ I;
when I > 0 (discharging), I� ¼ 0, Iþ ¼ I.
(2) The first-order RC model with hysteresis for the LiFePO4 cell

xk ¼ ½
zk
Uk
hk

�, Aðzk; TeÞ ¼

2641 0 0

0 exp
��Dt

s1

�
0

0 0 expð�jkIkDtjÞ

375,
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�hDt
3600Cn

0

R1 � R1exp
��Dt

s1

�
0

377775,
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and power series (3). The results are all very similar (i.e., they all
work reasonably well). The exponential function shows slightly
better validation accuracy (especially in FUDS data) and is quite
simple. Therefore, the exponential function is used to describe the
RC parameters of the first-order RC model for the LiNMC cells. The
optimal coefficients of the analytic functions are summarized in
Table 4.

(2) LiFePO4 cell

Polynomials of different degrees for the LiFePO4 cell are shown
in Fig. 7. Fig. 8 shows the performance of the third-degree poly-
nomial, exponential, and power series models. It was found that the
third-degree polynomial function shows the best balance between
training/validation accuracies and complexity. The optimized
coefficients of the analytic functions for the LiFePO4 cell (the first-
order RC model with one-state hysteresis) are summarized in
Table 5. The OCV functions of the two types of Li-ion batteries are
shown in Figs. 9 and 10. It is obvious that the OCV of the LiFePO4 cell
between 25% and 85% SOC is much flatter than that of the LiNMC
cell. The exact dependence of the model parameters on SOC and
temperature are unclear due to the complex reactions and
dynamics inside the cells [26]. Furthermore, since we use lumped
models to approximate the currentevoltage relationships, the
model parameters are just estimates with no clear physical
Fig. 10. OCV function of the LiFePO4 cell.

0 1� expð�jkIkDtjÞ

u ¼
��

I
H�

�
; I � 0;

�
I
Hþ

�
; I > 0g, gðxk; IkÞ ¼ Voc;k � Uk þ hk � Iþk R

þ
0 � I�k R

�
0 .
meanings. Nevertheless, the models were able to represent the
lumped behavior of the battery well. With the RMS error around
merely 5 mV, the achieved analytic functions can be used to predict
battery voltage with adequate accuracy. It should be emphasized,
however, that the model error in the validation dataset is much
higher. This is perhaps because the hysteresis model was trained
Table 8
Assumed initial SOC error of Coulomb counting for the
LiNMC cell.

10 �C 22 �C 35 �C

�3.74% �3.09% �3.28%



Fig. 11. SOC estimation errors of the LiNMC cell under 22 �C (before aging), (a) hybrid
pulse test; (b) DST test; (c) FUDS test.

Fig. 12. RMS SOC errors under three tempe

Table 9
Assumed initial SOC error of Coulomb counting for the LiFePO4

cell.

10 �C 22 �C 35 �C

�6.30% �5.41% �9.65%
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using less-transient dynamic dataset and during the more signifi-
cant transient the model error increases.

3. EKF-based SOC estimator

EKF is a widely used state estimation method for nonlinear
dynamical systems. Based on the optimal models presented in
Section 2, EKF is adopted to estimate the battery SOC. The EKF
equations for the SOC estimation are summarized in Table 6. The
matrices for the state-spacemodels for the LINMC and LiFePO4 cells
are summarized in Table 7.

4. Robustness of the SOC estimator

To better evaluate the robustness of the SOC estimator in an
environment close to realistic automotive environment, artificial
Gaussian noise is added to the current collected by the Arbin tester.
The mean and standard deviation of the noise are �0.01 A and
0.06 A (around 2% of the full range), respectively.

4.1. Robustness against different loading profiles and temperatures

The hybrid pulse test, DST and FUDS datasets collected under
three different temperatures for new cells are used in this subsec-
tion. The data below 20% SOC is discarded, since the battery SOC is
seldom permitted to be less than 20% in actual driving. To better
ratures for the LiNMC cell (new cell).



Fig. 14. RMS SOC errors under three tempe

Fig. 13. SOC estimation errors of the LiFePO4 cell under 22 �C (before aging), (a) hybrid
pulse test; (b) DST test; (c) FUDS test.
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evaluate the SOC estimator, its performance is compared against
the Coulomb counting method.

(1) LiNMC cell

The OCV is often used to determine the initial SOC of Coulomb
counting using the OCVeSOC relationship. The OCV error thus leads
to the initialization error for Coulomb counting. Based on the fact
that the practically available cell-level precision is around 0.1% [31],
the OCV error incurred by voltage sensor is thus around 4 mV.
Furthermore, in practice OCV measurement is subject to electro-
magnetic interference, switching of high-current loads in nearby
wiring and insufficient relaxation. Sometimes insufficient relaxa-
tion can induce a voltage measurement error of 20 mV [32]. Based
on these considerations, we assume that the absolute measure-
ment error of the cell OCV is 8 mV. The maximum initial SOC error
of the Coulomb counting method can be algebraically calculated
based on this assumed OCV error and the SOCeOCV curve. The
results are summarized in Table 8.

The initial error of the EKF is assumed to be 10%. The initial
values of the EKF prediction and correction gain matrices are fixed
for all cases. Note that both the EKF and Coulomb counting use the
corrupted current measurement in their SOC estimation. Fig. 11
shows the SOC estimation results for 22 �C. It can be seen that
the EKF-based estimator efficiently compensates for the initial
error and has a better accuracy than Coulomb counting for both the
training and validation datasets. The biased current noise has
a larger negative impact to the Coulomb counting method than to
the EKF. The results under 10 �C and 35 �C are similar. To more
clearly compare the overall performance of the EKF and Coulomb
counting, the RMS SOC estimation errors under three temperatures
are shown in Fig. 12. It is obvious that the EKF SOC estimator has
better accuracy. Since the model has an inferior accuracy in the
validation data (DST/FUDS dataset excluding the data below 20%
SOC) to that in the training data (hybrid pulse test dataset excluding
ratures for the LiFePO4 cell (new cell).



Fig. 15. Normalized capacities of the LiNMC cell in the aging process.
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the data below 20% SOC), the error of SOC estimation in the vali-
dation data is always higher. The estimation errors in the validation
datasets under three temperatures are around 1%, indicating a good
robustness against varying loading profiles and temperatures.

(2) LiFePO4 cell

The initial SOC error of Coulomb counting for the LiFePO4 cell is
determined using the same method as the LiNMC cell. Again
assuming a voltage measurement error of 8 mV, the results for the
LiFePO4 cell are shown in Table 9. The errors are larger than those of
Fig. 16. Comparison results of a sequence of estimators for the LiNMC
the LiNMC cell, due to the flatter OCVeSOC curves. The SOC esti-
mation errors under 22 �C are shown in Fig. 13. The RMS SOC errors
under three temperatures are shown in Fig. 14. The results are
similar to those of the LiNMC cells. Further, we can see that there is
an obvious difference in estimation errors between the training and
validation datasets. Due to the flatter OCV, the SOC estimation of
the LiFePO4 cell is more susceptible to model error. The validation
errors are around 2.5%, higher than the 1% accuracy achieved on the
LiNMC cells.

4.2. Robustness against cell aging

The battery cells always degrade with time in real operations.
The degradation is manifested as capacity or power losses. The
capacity loss is partially due to loss of cyclable Li Ions caused by
multiple factors, such as cathode structure degradation, side reac-
tions, passivation form and lithium plating at the anode [33]. The
power loss is mainly due to the increase in cell resistance. It is
important to study the robustness of the SOC estimator since
robustness against cell aging is of great significance for BMS of
electrified vehicles.

(1) LiNMC cell

Fig. 15 shows the calibrated capacities under three temperatures
in the degradation process of the LiNMC cell at 22 �C. Here, we used
data up to cell age of 342 cycles at 22 �C to analyze the robustness of
the EKF estimator. The capacity reduced by about 10% at 10 �Cwhen
the cell is 342 cycles old at 22 �Cdwhich is roughly half way
through the typical life expectancy accepted for automotive appli-
cations (a battery pack is determined to be “at the end of its life”
when its capacity loss reaches 20%). The three characterization test
cell (after aging) with different level of model parameter update.



Fig. 17. Comparison results of a sequence of estimators for the LiFePO4 cell (after aging) with different level of model parameter update.
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datasets right after 342 cycles are used to evaluate the SOC esti-
mator. The initial SOC error and tuning parameters of the EKF are
kept unchanged when we compare a sequence of estimators with
increasing level of parameter updates. Fig. 16 shows the compar-
ison results. It can be seen that if no parameters, including the
capacity Cn, are updated, the estimator performance deteriorates
significantly. The RMS errors of the SOC estimation are clearly
larger than those shown in Fig. 12. Updating internal ohmic resis-
tance R0 can improve the SOC estimation in most cases. Updating
parameters of the RC network in addition to R0 does not help much.
If we update all model parameters, including the cell capacity Cn,
the RMS error can be reduced to below 1% in most cases.

It should be noted that updating some of the model parameters
is quite easy to do. For example, the internal ohmic resistance R0
can be easily obtained even under simple pulse loads. This simple
update reduces model prediction error by more than half. Updating
RC parameters or the cell capacity is harder onboard. It may be
possible to obtain thosemodel parameters during charging process,
when the charging current can be manipulated and more compu-
tation power is available.

(2) LiFePO4 cell

The LiFePO4 cells we tested show much slower degradation. We
have finished 2600 cycles and the capacity loss at 22 �C is only
around 3%. The three characterization test datasets collected right
after 2587 cycles are used. The RMS errors of the estimators with
different levels of model parameter updates are shown in Fig. 17.
Again, the estimator without parameter update shows poor per-
formancedthis is because while the cell capacity does not reduce
significantly, its dynamic behavior changes noticeably. The RMS
errors in the training datasets (hybrid pulse test) areworse than the
LiNMC cell, due to the very flat OCVeSOC curve of the LiFePO4 cell.
The RMS errors in the validation datasets (DST and FUDS) are
similar to the LiNMC cell. The nominal model of the LiFePO4 cell is
less accurate after degradation. Also, updating internal resistance
R0 improves the robustness of the SOC estimator noticeably.
Updating the RC network and capacity does not help much, since
capacity loss is small. If all the model parameters are updated, the
SOC estimator has the best robustness based on the overall evalu-
ation of all the 9 datasets. In practice, however, it is challenging to
update all the model parameters. Considering both the model
accuracy and requirement for parameter update, we concluded that
updating the internal resistance is the most cost-effective update
one can use to improve the robustness of SOC estimation method
against cell aging.

5. Conclusions

The robustness of SOC estimation algorithms of two types of Li-
ion batteries is studied against varying loading profiles, tempera-
tures and aging levels. The preferred model structures determined
in our previous work [24] for the LiNMC and LiFePO4 cells are used.
The optimal functions of SOC and temperature explicitly describing
the model parameters are selected from commonly used generic
functions for battery modeling. The sixth-degree polynomial is
found to depict OCVs of both cells well. The exponential function is
determined to be the best for the RC parameters of the first-order
RC model for the LiNMC cell; the third-degree polynomial is
preferred for the RC and hysteresis parameters of the first-order RC



X. Hu et al. / Journal of Power Sources 217 (2012) 209e219 219
model with hysteresis for the LiFePO4 cell. The coefficients of these
generic functions are optimized by a combined MPSO and SQP
procedure. Based on the optimal model parameters, the Extended
Kalman Filter technique is used to estimate the battery SOC. Given
the training datasets from new cells, the robustness of the SOC
estimator against varying loading profiles and temperatures is
evaluated and compared against the Coulomb counting method.
The EKF-based estimator performs better than the Coulomb
counting method, and the RMS estimation errors under validation
datasets under three temperatures are around 1% and 2.5% for the
LiNMC and LiFePO4 cells, respectively. Due to a flatter OCVeSOC
surface, the SOC estimation of the LiFePO4 cell is more vulnerable to
cell aging and if the model is not updated, its performance was
found to be unacceptable. Updating the internal ohmic resistance of
the nominal model improves the performance of the estimator
significantly (by about half). Updating all the model parameters
achieves even better performance however this may not be easy to
achieve in real-time driving.
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