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Abstract—In this paper, we investigate the application of
nonbinary low-density parity-check (LDPC) cycle codes over
Galois field GF(g) to multiple-input multiple-output (MIMO)
channels. Two types of LDPC coded systems that employ either
joint or separate MIMO detection and channel decoding are
considered, depending on the size of the Galois field and the
modulation choice. We construct a special class of nonbinary
LDPC cycle codes called the parallel sparse encodable (PSE)
codes. The PSE code, consisting of a quasi-cyclic (QC) LDPC
cycle code and a simple tree code, has the attractive feature that
it is not only linearly encodable, but also allows parallel encoding
which can reduce the encoding time significantly. We provide a
systematic comparison between nonbinary coded systems and
binary coded systems in both performance and complexity. Our
results show that the proposed nonbinary system employing the
PSE code outperforms not only the binary LDPC code specified
in the 802.16e standard, but also the optimized binary LDPC
code obtained using the EXIT chart methods. Through a detailed
complexity analysis, we conclude that for the MIMO channel
considered, the nonbinary coded systems achieve a superior
performance at a receiver complexity that is comparable to that
of the binary systems.

Index Terms— MIMO channels, nonbinary LDPC, cycle codes,
quasi-cyclic.

I. INTRODUCTION

N recent years, multiple-input multiple-output (MIMO)

transmission has been identified as one of the most practical
methods to combat fading and to increase the capacity of
wireless channels. There has been much research on designing
good channel codes such as turbo codes and low-density
parity-check (LDPC) codes for MIMO channels. In particular,
LDPC codes [1] have attracted substantial interests due to their
capacity approaching performance and great flexibility in code
design and practical implementation.

Nonbinary LDPC codes are first investigated in [2] where
it is shown that nonbinary LDPC codes constructed over
higher order Galois fields achieve superior performance than
the binary codes for binary symmetric channels and binary
Gaussian channels. Applications of nonbinary LDPC codes to
Rayleigh fading channels [3], frequency selective channels [4],
and MIMO channels [5]-[8] have also been studied. Recently,
irregular nonbinary LDPC codes over GF(q) constructed using
the progressive edge growth (PEG) algorithm are proposed in
[9]. It is shown that as the field order increases, the optimized
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degree sequence of nonbinary LDPC codes favors a lower
average column weight. Furthermore, if the field order is
sufficiently large, the optimum graph tends to favor a regular
cycle code [10], [11] for which each column of the parity-
check matrix contains exactly two nonzero elements.

This motivates us to study the application of nonbinary
LDPC cycle codes to MIMO channels. In addition to a detailed
comparison of performance and receiver complexity between
nonbinary cycle codes and binary codes, we also propose a
class of nonbinary codes called the parallel sparse encodable
(PSE) codes to reduce the encoding complexity. Each PSE
code consists of a quasi-cyclic (QC) LDPC cycle code and a
simple tree code. The encoding complexity of the PSE codes
is O(md.), where m is the number of checks in the LDPC
code, and d. is the degree of check node. The QC structure
of such codes facilitates parallel encoding which results in
significant reduction of encoding time.

Furthermore, we examine the performance of the PSE
codes for MIMO systems that employ either joint or separate
(MIMO) detection and (channel) decoding. We refer to such
systems as JDD systems or SDD systems. Most work in the
literature focuses on JDD systems. In particular, binary coded
systems are JDD systems when higher order modulations
are used. For nonbinary coded systems, it is shown in [6]
that, nonbinary LDPC codes over small Galois field (up
to GF(16)) outperform certain binary LDPC codes in JDD
systems. However, since the binary LDPC codes used in [6]
are not optimized for MIMO channels, they do not serve
as accurate performance benchmarks for nonbinary coded
systems.

The main contributions of this paper are summarized as
follows:

(1) We propose the use of QC nonbinary LDPC cycle code
for MIMO channels. Starting from any base QC nonbinary
LDPC cycle code, which in general is not sparse encodable,
we can construct a PSE code which allows not only linear-time
encoding but also parallel implementation. For PSE codes, our
encoding method has a much lower complexity than that of the
encoding method in [12]. Furthermore, we show that the PSE
code achieves a performance that is very close to the base code
at a much reduced encoding complexity. Compared to other
nonbinary LDPC codes considered in the literature, such as the
randomly constructed LDPC codes in [6] and the algebraically
constructed codes in [13], the proposed PSE code is more
amenable for implementation due to its simple structure.

(2) We take a broad approach by investigating both JDD
and SDD systems for MIMO channels. Our results show that
PSE codes perform well in both systems. In particular, the
proposed SDD system employing the nonbinary PSE code
over GF(256) outperforms the JDD system employing an
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Fig. 1. A schematic block diagram of SDD (without the feedback loop) and
JDD (with the feedback loop) systems.

optimized binary LDPC code by 0.37 dB, where the code
optimization is done by following a curve fitting approach
on EXIT charts proposed in [14]. Due to its highly irregular
degree sequence, the encoding complexity of the optimized
binary LDPC code is also higher than that of the proposed PSE
code. When compared with a more practical QC binary LDPC
code defined in the 802.16e standard [15] that is amenable for
implementation, the proposed SDD system employing the PSE
code achieves a larger performance gain of 0.61 dB.

(3) We conduct detailed complexity analysis to show that
performance gain of the nonbinary coded systems is achieved
at a receiver complexity that is comparable to that of the
binary coded systems. To the best of our knowledge, this is the
first work to provide a systematic performance and complexity
comparison between the optimized binary coded systems with
nonbinary coded systems for MIMO channels.

This paper is organized as follows. In Section II, we intro-
duce the system model. Section III describes the proposed PSE
nonbinary LDPC cycle codes and discusses code construction
and encoding complexity. Performance comparisons and com-
plexity analysis are presented in Section IV. Conclusions are
given in Section V.

II. SYSTEM MODEL

Fig. 1 shows a block diagram of the nonbinary LDPC coded
MIMO system. Assume that the LDPC code is defined over
GF(q), where ¢ = 2P. At the transmitter side, a sequence of
information bits {b;} is mapped to a sequence of nonbinary
symbols in GF(q) (every p bits are mapped to a single
nonbinary symbol) through a bit-to-symbol mapper g, before
passing to the nonbinary LDPC encoder. Let ¢ denote the
number of transmit antennas. At the output of the LDPC
encoder, every group of ng coded nonbinary symbols s =
{81, ,8no } € GF(q) is mapped to a group of ¢ constellation
symbols x = (z1,---,x¢) = ¢(s) through the mapper ¢.
Given the constellation size M = 2™, we have p-ng = t-myq.
The sequence of constellation symbols is then passed to the
transmit filter and sent through the ¢ transmit antennas. The
receiver performs optimal maximum a posteriori probability
(MAP) detection to compute the prior probabilities for each
group of ¢ transmitted constellation symbols. These prior
probabilities will then be passed (after the mapper ¢—1) to the
LDPC decoder for iterative decoding. After a finite number of
decoding iterations, hard decisions on the nonbinary symbols
are made at the output of LDPC decoder, which are then
demapped to the sequence of estimated information bits.

When ny = 1, the MAP detector produces prior proba-
bilities for each GF(q) symbol which can be used directly
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for nonbinary LDPC decoding over GF(q). Hence, it is suf-
ficient to perform MIMO detection only once followed by
channel decoding. This corresponds to a SDD system that
performs separate detection and decoding. When ng > 1,
the prior probabilities of the group of ng nonbinary symbols
are dependent because they are mapped to complex symbols
that are transmitted simultaneously. Then it is necessary to
pass soft information about the dependent symbols from the
LDPC decoder back to the MAP detector to produce updated
symbol-wise probabilities. This corresponds to a JDD system
that performs joint detection and decoding. As shown in Fig.
1, the JDD system requires a feedback loop from the channel
decoder to the MAP detector to allow iterative exchange of
soft information.

Let us consider a MIMO channel with two transmit and
receive antennas. Suppose that the 16 quadrature amplitude
modulation (QAM) is used. An example of the JDD system
is with ¢ = 16 and ny = 2. Namely, every two GF(16)
coded symbols are mapped to two 16 QAM symbols that are
transmitted simultaneously through the two transmit antennas.
An example of a SDD system is with ¢ = 256 and ng = 1.
A single coded GF(256) symbol is mapped to two 16 QAM
symbols which are transmitted simultaneously.

Next, we explain how the MAP detector shown in Fig. 1
works. The channel model is given by

y=Hx+n (D

where x € C**! is the complex transmitted signal vector that
satisfies the component-wise energy constraint E(||z;]|?) =
E,/t, and E; is the total transmitted power, y € crxl
is the complex received signal vector, r is the number of
receive antennas, H € C"*? is the channel fading matrix with
independent entries that are complex Gaussian distributed with
zero mean and unit variance, n € C"™*! is complex white
Gaussian noise with variance o2 per dimension. H is assumed
to be known to the receiver but not to the transmitter.

Given each received signal vector y, we perform MAP
detection to determine the a posteriori probabilities (APP)
of each nonbinary symbol s;,j = 1,---,mg, by comput-
ing the log-likelihood-ratio vector (LLRV) over GF(q). Let
{0,a1,- - ,ay—1} denote elements in GF(g). The LLRV of s;
is defined by z = {29, 21, -, 2q—1}, where z; = In[p(s; =
0)/p(s; = a;)]. From equation (1) we have

> sis,—0 €xp[—|ly — Ho(s)[|?/(202)]p(s)

D sis,—a, Py —Ho(s)[2/(202)]p(s)
I

zi =1In 2)
where || - [|° denotes the norm square of a vector and p(s)
denotes the prior probabilities of s which are passed from the
LDPC decoder. Subsequently, these LLRV values are passed
to the LDPC decoder for iterative decoding.

III. PARALLEL SPARSE ENCODABLE (PSE) NONBINARY
LDPC CYCLE CODES

In this section, we first discuss the code construction of
nonbinary QC LDPC cycle codes. By exploiting the QC
structure of nonbinary cycle codes, we then obtain a class
of PSE cycle codes that allows not only linear-time encoding
but also efficient parallel implementation. Performance of the
PSE codes will be examined in Section IV.
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A. Construction of quasi-cyclic nonbinary LDPC codes

We use the method of quadratic permutation polynomial
(QPP) over integer rings [3], [16], [17] to construct nonbinary
QC cycle codes. These codes are used as based codes in
Section III-C to define PSE codes. First, we apply the QPP
method to construct a binary QC code [16], [17]. Then we
replace each nonzero binary circulant submatrix in the parity-
check matrix of the binary code with a nonbinary circulant
permutation matrix to obtain a nonbinary QC code. Analog
to the binary case, each row of the nonbinary circulant
permutation matrix is the right cyclic-shift of the row above
it. The nonzero element § in the first row of the circulant
matrix is randomly chosen from GF(q). We apply this method
to construct a rate 1/2 QC LDPC cycle code over GF(256)
using the QPP f(z) = 17z + 3022, The code length is 300
GF(256) symbols, the dimension of the circulant size ( = 15,
and the check node degree d. = 4. The local girth is 14 for
each variable node. We also construct a nonbinary LDPC code
over GF(256) based on the PEG algorithm [9], for which one
variable node has a local girth of 16, 262 variable nodes have
a local girth of 14, and 37 variable nodes have a local girth
of 10. Both codes are used in the simulation.

B. Sparse encoding of binary cycle codes

Even though it is well-known that binary cycle codes are
linearly encodable [10], in this section we provide a proof
for this important fact. The encoding method described in the
proof will be extended to the encoding of nonbinary cycle
codes in Section III-C. Here we represent LDPC cycle codes
by normal graphs [10], [18] where each row of the parity-
check matrix H corresponds to a verfex and each column
corresponds to the an edge whose two end vertices correspond
to the two rows with nonzero elements in that column.

Theorem 3.1: Binary cycle codes are linearly encodable.

Proof: Since the normal graph of a binary cycle code,
denoted by N(H), must be a union of several connected
graphs, without loss of generality, it is sufficient to consider a
single connected graph GG. Assume that H has n columns and
m rows, then G has n edges and m vertices. It is well-known
that every connected graph contains a spanning tree, with any
specified vertex as its root [19]. Starting from an arbitrary
vertex ¢1 in G, let Tr(G) denote a spanning tree of G with
¢ as the root. Since GG contains m vertices, there must be a
total of m — 1 edges in Tr(G). Let by, by, - -+ , by_s11 denote
edges in GG but not in Tr(G). The encoding process proceeds
as follows: let by, ba, -+ , by _my1 correspond to information
bits of the code, then the values of the edges in Tr(G) that are
incident to the leaves can be computed since only one edge is
unknown at each leaf. Subsequently, by removing all the edges
whose values are previously computed, we obtain a new tree.
This way we can compute all the edge values level by level
until all the edges incident to c¢; are computed. We claim that
the check equation corresponding to ¢; is then automatically
satisfied. In other words, the vertex c¢; is a redundant check.
This is because the summation of all rows in the parity-check
matrix of a cycle code equals zero, which means that if all the
other m — 1 checks are satisfied, then the remaining check is
also satisfied. ]
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The proof above shows that the encoding process of binary
cycle codes is equivalent to solving the parity-check equations
row by row sequentially with a re-arranged order of the rows
in H. We refer to this encoding algorithm as sparse encoding.
The codes that can be encoded using sparse encoding are
called sparse encodable codes. Compared to a similar proof
in [20], our proof is more compact due to the use of the well-
known spanning tree concept. Also, we do not remove the
redundant check as in [20]. This is useful in extending our
proof to nonbinary case.

C. Parallel sparse encoding of nonbinary cycle codes

Unfortunately, nonbinary cycle codes are not sparse encod-
able in general. The proof of Theorem 3.1 shows that the root
vertex ¢; must be redundant in order for the code to be sparse
encodable. This is not necessarily true for nonbinary codes.
Therefore, in order to realize sparse encoding for nonbinary
cycle codes, one option is to change the code constraint
associated with the root vertex c;. Based on this idea, we
propose a novel sparse encoding method for nonbinary QC
LDPC cycle codes. Since this method utilizes the QC structure
of the LDPC cycle code to facilitate parallel encoding, we refer
to it as parallel sparse encoding. We will show that, starting
from any base QC nonbinary LDPC cycle code, we can obtain
a PSE code consisting of a QC subcode, modified from the
base code, and a simple tree subcode. Simulation results in
Section IV demonstrate that the resulting PSE code achieves
a comparable performance to the base code with much reduced
encoding time.

The parallel sparse encoding procedure.

Assume that the parity-check matrix of the base QC code,
H, with dimensions m X n, is composed of permutation
circulant submatrices of dimensions ¢ x (. We first show that
the normal graph N (H) consists of ¢ disjoint spanning trees
that are isomorphic. We build the spanning trees using the
¢ vertices corresponding to the first ( rows of H as roots.
Suppose that we have formed ¢ disjoint isomorphic trees each
with & levels. Then at the (k4 1)-th level, we first add all the
edges that are incident to the leaves to each of the ( trees.
If cycles appear, then we remove some of these newly added
edges while keeping all the new leaves reachable. We say
that a vertex in N(H) connects to a circulant submatrix of
H if part of its corresponding row belongs to that circulant
submatrix. The cycles of H can be categorized as two types:
type-I cycle paths that do not cross the vertices connecting
to the same circulant submatrix more than twice, and type-
II cycle paths that go through several vertices connecting to
the same circulant submatrix before returning to the starting
vertex. We call those edges in the same tree as inner edges
and those connecting different trees as outer edges. For type-I
cycles, we simply remove the same set of edges (under the
isomorphism) from each tree. For type-II cycles, we remove
outer edges to break the connected graph into ( disjoint trees.
Due to the QC structure of the code, the isomorphism among
the ( trees is still kept after adding the new edges. Therefore,
we obtain ¢ disjoint trees of (k + 1) levels. The trees grow
in this way until all the vertices have been reached. After
the spanning trees are built, we let the edges not included in
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the trees be the information symbols. Subsequently, we can
perform parallel sparse encoding as described in Theorem 3.1
over each disjoint tree in parallel.

This encoding procedure leads to a modified version of the
base QC code. Note that the check equations corresponding
to the ¢ root vertices are not necessarily satisfied after the
values of all edges incident to these vertices are computed.
To offer additional protection on the symbols corresponding
to these edges, and also to reduce the number of low weight
codewords, we add a simple tree code on top of the QC code.
The resulting code is a combination of a QC code and a
small tree code. Next, we illustrate the parallel sparse encoding
method through an example.

Example 3.1: Consider a mother code whose parity-check
matrix H,, and corresponding normal graph are shown in Fig.
2 (a).

In the normal graph, the vertex ¢;,7 = 1,--- , 6 corresponds
to the i-th row of H,,, and b;,i = 1,--- ,9 corresponds to the
i-th column of H,,. A two-layer spanning tree of the normal
graph is shown in bold solid lines. Using this mother code,
we can construct a base QC cycle code with ( = 3 as follows.

The parity-check matrix of the base QC code, denoted by
H, is obtained by replacing each “0” in H,, with a 3 x 3
zero matrix, and replacing each “1” in H,, by a nonbinary
circulant permutation matrix. In general, the nonbinary cir-
culant permutation matrices are designed to ensure that the
resulting nonbinary code has a large girth. Here, for simplicity,
we assume that each “1” in the (4, j)-th position (i-th row and
j-th column) of H,,, where (i,5) # (4,9), is replaced by a
3 x 3 identity matrix times J; ; , where ¢; ; € GF(q), and the
“1” located at the (4, 9)-th position is replaced by d4 9 times a
3 x 3 permutation matrix obtained by cyclically shifting each
row of the identity matrix to the right by one position.

The normal graph of H is shown in the lower part of
Fig. 2 (b). Note that {c},c?,¢?} and {b},b?, b3} correspond
to equivalent (under the isomorphism) rows and columns of
H. Following the PSE procedure, we can identify ( = 3
disjoint spanning trees each of which is isomorphic to the
spanning tree of the mother code. The i-th tree T; consists
of vertices {c¢},j = 1,---,6} with ¢| as the root, and
edges {b%,b5,0%,b%,b%}. In order to form disjoint trees, the
remaining edges in the graph, represented by dash lines, are
removed to eliminate cycles. Specifically, the inner edges
{b%, b, bi} are removed to eliminate the type-I cycles such as
¢t — b — cb — ci; and the outer edges {b}} are removed

to eliminate the type-II cycles such as ¢} — ¢} — 2 — 3 —

A - —c—ch—cl— cl The
12 removed edges correspond to information symbols, from
which the values of coded symbols can be computed. Note that
without the tree subcode, the three root vertices {ci,c?,c3}
are not necessarily satisfied for nonbinary codes. Hence, we
add four additional coded symbols {b11,--- ,b14} and checks
{e7,cs} to offer stronger protection.

The following steps summarize the PSE procedure executed
on Fig. 2 (b). Note that in each of the first four steps,
encoding is implemented in parallel for each spanning tree
T:,i=1,2,3.

Step 1: Let {bi,b%,b,b%,i = 1,2,3} be the information
bits.
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Step 2: For each i = 1,2,3,

Compute b} using check constraint at cb: 2 1b% + d2 4b% +

52,61% = 0;. ) ) ]
Compute b% using check constraint at ¢f: d4,3b% + 04 5b% +
(54)91)6 = O;

Compute b’ using check constraint at ct: &5 7b% + 05 6b = 0;
Compute b} using check constraint at c: dg sbi + 6,065 =
0, 6678b§ + 667917% =0, 66,81)% + 55,91% =0.

Step 3: Compute {b},i = 1,2,3} using check constraint at
Cg: 53_]2[)3 + 53,4173 + (53751)% + 537[)17 + 53,8b§ =0.

Step 4: Compute {b(1144),% = 1,2,3} using check con-
straint at Czli b(11+i) + 51’1b11 + (51)2[)72’ + 61’3bé =0.

Step 5: Compute by; according to check constraint at cg
such that b11 + bio + b1z + b4 = 0.

D. Encoding complexity of sparse encodable and parallel
sparse encodable codes

As discussed above, sparse encoding solves row equations
of H sequentially. Its overall complexity is md. multipli-
cations (denoted by ®) and m(d. — 1) additions (denoted
by @) over GF(q), where d. is the degree of check nodes.
Hence, the encoding process requires m[d 17 + (d. — 1)7T5]
clock cycles, where 13,7, are the clock cycles required for
a ® and an @ over GF(q), respectively. For parallel sparse
encoding, the overall encoding time is further reduced to
(m/¢)[d. Ty + (d. — 1)Ty] for the encoding of QC subcode,
plus the encoding time of the tree subcode, which is typically
much smaller than the encoding time of the QC subcode.
Compared to the generator matrix based encoding scheme,
which has a complexity of O(n?), where n is the code length,
the sparse and parallel sparse encoding schemes achieve
significant complexity saving since H is a sparse matrix. In
[12], Lin et al. proposes an encoder for QC LDPC codes which
utilizes the QC structure to reduce the density of the generator
matrix. This encoder requires (n —m)[(n —m)/¢ + 1] ® and
(n —m)[(n —m)/{] ® over GF(g). With parallel processing,
its encoding time is {[((n —m)/¢ + 1)T1 + ((n — m)/¢)T5]
clock cycles. In general, since d. is typically much smaller
than ¢, when the code rate is not too low, we will have
d. < (n/m—1)( so that the proposed parallel sparse encoder
has a much lower complexity and shorter encoding time than
the encoder in [12]. For instance, for a PSE code constructed
from a rate 1/2 QC GF(256) cycle code with d. = 4, n = 300,
and ¢ = 15, the parallel sparse encoder saves about 60% in
complexity and encoding time compared to the encoder in
[12]. In [9], a modified PEG algorithm is proposed to construct
sparse encodable codes. However, since the codes constructed
in [9] are not QC, parallel encoding is not applicable which
results in a higher encoding complexity than the proposed
parallel sparse encoder.

IV. NUMERICAL RESULTS

In this section, we examine the performance of LDPC cycle
codes in MIMO channels. We first compare the performance
of the proposed PSE cycle codes with those constructed from
the PEG algorithm and the QPP algorithm. Then we provide a
performance and complexity comparison between nonbinary
coded systems employing the PSE codes and binary coded
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(a) Normal graph and parity-check matrix of mother code

Tree subcodeé

(b) A PSE cycle code consists of a QC subcode and a tree subcode

Fig. 2. Normal graph representation of a PSE code.

systems employing an optimized binary LDPC code or a QC
code in the 802.16e standards.

A. Performance comparisons of different cycle code construc-
tions

We first compare the performance of three LDPC cycle
codes over GF(256) constructed using different methods. The
PEG code and the QPP code are constructed using the PEG
algorithm and the QPP algorithm, respectively, as discussed
in Section III-A. The code length is 300 GF(256) symbols
and the code rate is R. = 1/2. The PSE code, constructed
from the QPP code, consists of a QC subcode and a 5-level
tree subcode. It has 165 information symbols, 329 coded
symbols, and a rate of 0.502. As discussed in Section III-
D, the encoding time of the PEG code and the QPP code,
encoded using methods in [9] and [12] respectively, are both
much longer than that of the PSE code. Fig. 3 presents the
bit-error-rate (BER) and block-error-rate (BLER) performance
curves of these three codes for a MIMO channel with two
transmit and two receive antennas. The 16 QAM modulation
is used. We adopt the same definition of E;/Ny as in [21].
The average signal energy per transmitted QAM constellation
symbol is F,/t. Since we assume that the channel matrix
has i.i.d. Rayleigh entries and is independent over time, the
average signal energy per received antenna is F;. Hence, the
r receive antennas collect total power rE;, carrying t - mg
coded bits, of R, -t - mg information bits. The signal energy

per transmitted information bit at the receiver is defined to be

Ey = (r/Rctmyg) - Es, or, expressed in terms of logarithmic

SNR measures
Ey
No

Es

dB N 0

r
“ + 10log;, Rutmo’

To ensure the accuracy of numerical results, we collect at
least 100 error blocks for each point in the performance curve.
Fig. 3 shows that the QPP code performs slightly better than
the PEG code. This may be attributed to the larger girth of the
QPP construction. The PSE code, with the shortest encoding
time, performs only about 0.05 dB worse than the other codes.
This further justifies the effectiveness of PSE codes.

B. Performance comparisons of nonbinary coded systems with
binary coded systems

In Fig. 4, we compare the performance of nonbinary and
binary LDPC coded systems. The GF(16) PSE code has a code
length of 569 symbols (2276 bits) and a rate of 0.502. It is
constructed by adding a 5-level tree code to a QC subcode of
length 540 and ¢ = 15. The GF(256) PSE code has a length of
287 symbols (2296 bits) and a rate of 0.501. It is constructed
by adding a 5-layer tree subcode to a QC subcode of length
256 and ¢ = 16. These parameters are chosen such that the
code lengths are close to that of the rate 1/2 QC binary LDPC
code (2304 bits) defined in the IEEE 802.16e standard [15].
The optimized binary LDPC code has a length of 2304 and
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Fig. 3. Performance comparisons of LDPC cycles codes over GF(256).
The PEG code and the QPP code are constructed from the PEG and QPP
algorithm, respectively. The PSE code is constructed from the QPP code.

a rate of 1/2. Its degree distribution is optimized using the
EXIT chart approach [14].

Since the complexity of the MIMO detector is much higher
than that of each LDPC decoding iteration (a detailed com-
plexity analysis is presented in Section IV-C), for JDD systems
employing the GF(2) (binary) and GF(16) codes, we perform
multiple super-iterations between the MIMO detector and the
channel decoder. In each super-iteration, MIMO detection is
performed once followed by five iterations of LDPC decoding.
For the SDD system employing the GF(256) code, there is
no iterative processing between the MIMO detector and the
channel decoder. The decoding process is halted if the decoder
converges to a valid codeword or a maximum number of
iterations (set to be 40 super-iterations for JDD systems and
150 decoding iterations for SDD systems) is reached.

We consider the same MIMO channel model as described
in Section IV-A. Fig. 4 shows that the SDD system employing
the PSE GF(256) code performs the best. At BER = 1074,
it achieves a performance gain of 0.37 dB compared to the
JDD system employing the optimized binary LDPC code.
Performance of the IEEE 802.16e code is 0.26 dB worse
than that of the optimized binary code and is more than 0.6
dB worse than that of the GF(256) code. We also note that
even though the BER curves of the GF(16) code and the
GF(256) code are quite close, there is a larger gap between
their BLER curves especially at higher SNR. This may be
explained as follows. Given the normal graph of a cycle code,
one can verify that if there exists a cycle of length w and its
parity-check matrix is rank-deficient, then there must exist a
codeword of weight w. For cycle codes over smaller Galois
fields, there is larger probability that the parity-check matrix
of a cycle is rank-deficient when the nonzero elements of H
are picked randomly. Hence, there exists many low weight
codewords corresponding to the short cycles in the graph and
the decoder is more likely to converge to the wrong codeword
resulting in undetected errors. We observe that, at 6.1 dB,
among the 100 error blocks we collected, 74 error blocks are
undetected errors due to low weight codewords. This explains
why the GF(16) code does not perform as well in terms of
BLER.
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Fig. 4. Performance comparisons of PSE codes over GF(256) (SDD) and
GF(16) (JDD), the IEEE 802.16e code (JDD), and the optimized binary LDPC
code (JDD). Let d,, and d. denote the degree sequences of variable nodes
and check nodes, respectively. Let u, (¢) denote the fraction of edges that are
connected to variables nodes of degree dy, (%), and let u.(z) denote the fraction
of edges that are connected to check nodes of degree dc (7). The optimized
binary LDPC code has parameters d, = [2,3,7,8,23,24], dc = [7], uv =
[0.568,0.298,0.029, 0.076,0.012,0.017], u. = [1]. The IEEE 802.16¢
code has parameters d, = [2, 3, 6], dc = [6, 7], uy = [0.289,0.316,0.395],
ue = [0.632,0.368].

C. Complexity analysis of nonbinary coded systems and bi-
nary coded systems

In this section, we compare the receiver complexity of
nonbinary and binary systems considered in Section I'V-B. The
basic operations involved are @, ®, logarithm, and exponen-
tial. Here we consider two types of & operations: the regular
@ in the non-logarithmic domain and the sign/logarithmic
number system (LNS) @ in the logarithmic domain [22].
For the decoding of nonbinary LDPC codes, we refer to the
low complexity algorithm in [3] where detailed complexity
computations of the decoding algorithm are presented.

We first examine the complexity of the binary system.
The complexity of the MIMO detector is computed based
on equation (2). The computation of terms |y — He(s)|?
for all 2fm0 = 28 possible values of s requires 672 ®
and 704 @ per bit. The bitwise LLR is then computed by
performing 2 x (2!™0 /2 — 1) = 254 LNS @ and 2 regular
@ per bit. From [3], we find that the binary LDPC decoder
requires 75 X 5 = 375 @ and 34 x 5 = 170 LNS & for
the five decoding iterations in each super-iteration. Therefore,
the complexity of the binary system per super-iteration is
704 4+ 375 + 2 = 1081 &, 672 ®, and 254 4+ 170 = 424
LNS . Similarly, the complexity of the GF(16) system per
super-iteration is 1368 @, 672 ®, 60 LNS & and 320 log/exp.
For the GF(256) system, the MIMO detector requires 672 ®
and 618 & per bit, and the LDPC decoder requires 2176 &
and 512 log/exp per bit per iteration [3]. Table I compares
the receiver complexity of different systems at BER = 1074
Since an LNS addition requires three ¢ and one look-up
table (LUT), and a log/exp (implemented using look-up table)
requires one LUT, the overall complexity is counted only in
terms of the number of ®, @, and LUTs. We note that since
MIMO detection is performed only once in a SDD system, the
overall number of ® required by the GF(256) system is only
1/4 of that of the binary system. Even though the GF(256)
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TABLE 1
COMPLEXITY COMPARISON OF NONBINARY SYSTEMS AND OPTIMIZED BINARY SYSTEM AT BER=1.0 x 10~%.
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| || Ey/No (dB) | average # of iter.

total # of multiplication ® |

total # of addition | total # of LUT |

GF(2) 6.24 4 super-iter. 672 * 4 = 2688 (1081 + 60*3)*4 = 9412 424%4=1696
GF(16) 5.96 3 super-iter. 672 * 3 = 2016 (1368 + 60%3)*3 = 4644 (60+320)*3=1140
GF(256) 5.87 8 decoding iter. 672 * 1 =672 (1081 + 424*3)*8 = 18026 512%8= 4096

system requires more @ and LUTs, its simulation time is
comparable to that of the binary system because the latter has
more ® and each ® requires more clock cycles than does an
or a LUT. Hence, the GF(256) system achieves a performance
gain of about 0.37 dB over the optimized binary system with a
comparable complexity. Table I shows that the GF(16) system
also outperforms the binary system at a reduced complexity.

V. CONCLUSION

In this paper, we propose a class of nonbinary LDPC
cycle codes for MIMO channels which demonstrates superior
performance than the best optimized binary LDPC code. By
exploiting the QC structure of nonbinary cycle codes, a novel
parallel sparse encoding method is developed to facilitate
parallel implementation in addition to linear-time encoding.
Compared to the widely studied JDD systems, we show
that best performance can be achieved by a SDD system
employing a simple PSE cycle code over GF(256). Through
explicit performance and complexity comparisons with binary
systems, we conclude that the proposed PSE nonbinary cycle
codes are good candidates for MIMO channels.
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