
> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

1

High-Level Synthesis for FPGAs: From Prototyping to Deployment 
 

Jason Cong1,2, Fellow, IEEE, Bin Liu1,2, Stephen Neuendorffer3, Member, IEEE, Juanjo Noguera3,  
Kees Vissers3, Member, IEEE and Zhiru Zhang1, Member, IEEE 

 
1AutoESL Design Technologies, Inc. 

2University of California, Los Angeles 
3Xilinx, Inc. 

 
 
Abstract—Escalating System-on-Chip design complexity is 

pushing the design community to raise the level of abstraction 

beyond RTL. Despite the unsuccessful adoptions of early 

generations of commercial high-level synthesis (HLS) systems, we 

believe that the tipping point for transitioning to HLS 

methodology is happening now, especially for FPGA designs. The 

latest generation of HLS tools has made significant progress in 

providing wide language coverage and robust compilation 

technology, platform-based modeling, advancement in core HLS 

algorithms, and a domain-specific approach. In this paper we use 

AutoESL’s AutoPilot HLS tool coupled with domain-specific 

system-level implementation platforms developed by Xilinx as an 

example to demonstrate the effectiveness of state-of-art C-to-

FPGA synthesis solutions targeting multiple application domains. 

Complex industrial designs targeting Xilinx FPGAs are also 

presented as case studies, including comparison of HLS solutions 

versus optimized manual designs.  

 
Index Terms—Domain-specific design, field-programmable 

gate array (FPGA), high-level synthesis (HLS), quality of results 

(QoR).  

I. INTRODUCTION 

HE RAPID INCREASE of complexity in System-on-a-Chip 

(SoC) design has encouraged the design community to 

seek design abstractions with better productivity than RTL. 

Electronic system-level (ESL) design automation has been 

widely identified as the next productivity boost for the 

semiconductor industry, where HLS plays a central role, 

enabling the automatic synthesis of high-level, untimed or 

partially timed specifications (such as in C or SystemC) to a 

low-level cycle-accurate register-transfer level (RTL) 

specifications for efficient implementation in ASICs or 

FPGAs. This synthesis can be optimized taking into account 

the performance, power, and cost requirements of a particular 

system. 

Despite the past failure of the early generations of 

commercial HLS systems (started in the 1990s), we see a 

rapidly growing demand for innovative, high-quality HLS 

solutions for the following reasons: 

� Embedded processors are in almost every SoC: With 

the coexistence of micro-processors, DSPs, memories 

and custom logic on a single chip, more software 

elements are involved in the process of designing a 

modern embedded system. An automated HLS flow 

allows designers to specify design functionality in high-

level programming languages such as C/C++ for both 

embedded software and customized hardware logic on 

the SoC. This way, they can quickly experiment with 

different hardware/software boundaries and explore 

various area/power/performance tradeoffs from a single 

common functional specification. 

� Huge silicon capacity requires a higher level of 

abstraction: Design abstraction is one of the most 

effective methods for controlling complexity and 

improving design productivity. For example, the study 

from NEC [90] shows that a 1M-gate design typically 

requires about 300K lines of RTL code, which cannot be 

easily handled by a human designer. However, the code 

density can be easily reduced by 7X to 10X when moved 

to high-level specification in C, C++, or SystemC. In this 

case, the same 1M-gate design can be described in 30K 

to 40K lines of lines of behavioral description, resulting 

in a much reduced design complexity. 

� Behavioral IP reuse improves design productivity: In 

addition to the line-count reduction in design 

specifications, behavioral synthesis has the added value 

of allowing efficient reuse of behavioral IPs. As opposed 

to RTL IP which has fixed microarchitecture and 

interface protocols, behavioral IP can be retargeted to 

different implementation technologies or system 

requirements. 

� Verification drives the acceptance of high-level 

specification: Transaction-level modeling (TLM) with 

SystemC [107] or similar C/C++ based extensions has 

become a very popular approach to system-level 

verification [35]. Designers commonly use SystemC 

TLMs to describe virtual software/hardware platforms, 

which serve three important purposes: early embedded 

software development, architectural modeling and 

exploration, and functional verification. The wide 

availability of SystemC functional models directly drives 

the need for SystemC-based HLS solutions, which can 

automatically generate RTL code through a series of 

formal constructive transformations. This avoids slow 

and error-prone manual RTL re-coding, which is the 

standard practice in the industry today. 

� Trend towards extensive use of accelerators and 

heterogeneous SoCs: Many SoCs, or even CMPs (chip 

multi-processors) move towards inclusion of many 

accelerators (or algorithmic blocks), which are built with 

custom architectures, largely to reduce power compared 

to using multiple programmable processors. According 

to ITRS prediction [109], the number of on-chip 

accelerators will reach 3000 by 2024. In FPGAs, custom 

T 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

2

architecture for algorithmic blocks provides higher 

performance in a given amount of FPGA resources than 

synthesized soft processors. These algorithmic blocks 

are particularly appropriate for HLS. 

Although these reasons for adopting HLS design 

methodology are common to both ASIC and FPGA designers, 

we also see additional forces that push the FPGA designers for 

faster adoption of HLS tools. 

� Less pressure for formal verification: The ASIC 

manufacturing cost in nanometer IC technologies is well 

over $1M [109]. There is tremendous pressure for the 

ASIC designers to achieve first tape-out success. Yet 

formal verification tools for HLS are not mature, and 

simulation coverage can be limited for multi-million gate 

SOC designs. This is a significant barrier for HLS 

adoption in the ASIC world. However, for FPGA 

designs, in-system simulation is possible with much 

wider simulation coverage. Design iterations can be 

done quickly and inexpensively without huge 

manufacturing costs. 

� Ideal for platform-based synthesis: Modern FPGAs 

embed many pre-defined/fabricated IP components, such 

as arithmetic function units, embedded memories, 

embedded processors, and embedded system buses. 

These pre-defined building blocks can be modeled 

precisely ahead of time for each FPGA platform and, to 

a large extent, confine the design space. As a result, it is 

possible for modern HLS tools to apply a platform-based 

design methodology [51] and achieve higher quality of 

results (QoR). 

� More pressure for time-to-market: FPGA platforms 

are often selected for systems where time-to-market is 

critical, in order to avoid long chip design and 

manufacturing cycles. Hence, designers may accept 

increased performance, power, or cost in order to reduce 

design time. As shown in Section IX, modern HLS tools 

put this tradeoff in the hands of a designer allowing 

significant reduction in design time or, with additional 

effort, quality of result comparable to hand-written RTL. 

� Accelerated or reconfigurable computing calls for 

C/C++ based compilation/synthesis to FPGAs: Recent 

advances in FPGAs have made reconfigurable 

computing platforms feasible to accelerate many high-

performance computing (HPC) applications, such as 

image and video processing, financial analytics, 

bioinformatics, and scientific computing applications. 

Since RTL programming in VHDL or Verilog is 

unacceptable to most application software developers, it 

is essential to provide a highly automated 

compilation/synthesis flow from C/C++ to FPGAs. 

As a result, a growing number of FPGA designs are 

produced using HLS tools. Some example application 

domains include 3G/4G wireless systems [38][81], aerospace 

applications [75], image processing [27], lithography 

simulation [13], and cosmology data analysis [52]. Xilinx is 

also in the process of incorporating HLS solutions in their 

Video Development Kit [116] and DSP Develop Kit [97] for 

all Xilinx customers. 

This paper discusses the reasons behind the recent success 

in deploying HLS solutions to the FPGA community. In 

Section II we review the evolution of HLS systems and 

summarize the key lessons learned. In Sections IV-VIII, using 

a state-of-art HLS tool as an example, we discuss some key 

reasons for the wider adoption of HLS solutions in the FPGA 

design community, including wide language coverage and 

robust compilation technology, platform-based modeling, 

advancement in core HLS algorithms, improvements on 

simulation and verification flow, and the availability of 

domain-specific design templates. Then, in Section IX, we 

present the HLS results on several real-life industrial designs 

and compare with manual RTL implementations. Finally, in 

Section X, we conclude the paper with discussions of future 

challenges and opportunities. 

II. EVOLUTION OF HIGH-LEVEL SYNTHESIS FOR FPGA 

In this section we briefly review the evolution of high-level 

synthesis by looking at representative tools. Compilers for 

high-level languages have been successful in practice since the 

1950s. The idea of automatically generating circuit 

implementations from high-level behavioral specifications 

arises naturally with the increasing design complexity of 

integrated circuits. Early efforts (in the 1980s and early 1990s) 

on high-level synthesis were mostly research projects, where 

multiple prototype tools were developed to call attention to the 

methodology and to experiment with various algorithms. Most 

of those tools, however, made rather simplistic assumptions 

about the target platform and were not widely used. Early 

commercialization efforts in the 1990s and early 2000s 

attracted considerable interest among designers, but also failed 

to gain wide adoption, due in part to usability issues and poor 

quality of results. More recent efforts in high-level synthesis 

have improved usability by increasing input language 

coverage and platform integration, as well as improving 

quality of results. 

A. Early Efforts 

Since the history of HLS is considerably longer than that of 

FPGAs, most early HLS tools targeted ASIC designs. A 

pioneering high-level synthesis tool, CMU-DA, was built by 

researchers at Carnegie Mellon University in the 1970s 

[29][71]. In this tool the design is specified at behavior level 

using the ISPS (Instruction Set Processor Specification) 

language [4]. It is then translated into an intermediate data-

flow representation called the Value Trace [79] before 

producing RTL. Many common code-transformation 

techniques in software compilers, including dead-code 

elimination, constant propagation, redundant sub-expression 

elimination, code motion, and common sub-expression 

extraction could be performed. The synthesis engine also 

included many steps familiar in hardware synthesis, such as 

datapath allocation, module selection, and controller 

generation. CMU-DA also supported hierarchical design and 

included a simulator of the original ISPS language. Although 

many of the methods used were very preliminary, the 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

3

innovative flow and the design of toolsets in CMU-DA 

quickly generated considerable research interest.  

In the subsequent years in the 1980s and early 1990s, a 

number of similar high-level synthesis tools were built, mostly 

for research. Examples of academic efforts include the ADAM 

system developed at the University of Southern California 

[37][46], HAL developed at Bell-Northern Research [72], 

MIMOLA developed at University of Kiel, Germany [62], the 

Hercules/Hebe high-level synthesis system (part of the 

Olympus system) developed at Stanford University [24][25] 

[55], the Hyper/Hyper-LP system developed at University of 

California, Berkeley [10][77]. Industry efforts include 

Cathedral/Cathedral-II and their successors developed at 

IMEC [26], the IBM Yorktown Silicon Compiler [11] and the 

GM BSSC system [92], among many others. Like CMU-DA, 

these tools typically decompose the synthesis task into a few 

steps, including code transformation, module selection, 

operation scheduling, datapath allocation, and controller 

generation. Many fundamental algorithms addressing these 

individual problems were also developed. For example, the list 

scheduling algorithm and its variants are widely used to solve 

scheduling problems with resource constraints [70]; the force-

directed scheduling algorithm developed in HAL [73] is able 

to optimize resource requirements under a performance 

constraint; the path-based scheduling algorithm in the 

Yorktown Silicon Compiler is useful to optimize performance 

with conditional branches [12]. The Sehwa tool in ADAM is 

able to generate pipelined implementations and explore the 

design space by generating multiple solutions [69]. The 

relative scheduling technique developed in Hebe is an elegant 

way to handle operations with unbounded delay [56]. Conflict-

graph coloring techniques were developed and used in several 

systems to share resources in the datapath [57][72]. 

These early high-level tools often used custom languages 

for design specification. Besides the ISPS language used in 

CMD-DA, a few other languages were notable. HardwareC is 

a language designed for use in the Hercules system [54]. 

Based on the popular C programming language, it supports 

both procedural and declarative semantics and has built-in 

mechanisms to support design constraints and interface 

specifications. This is one of the earliest C-based hardware 

synthesis languages for high-level synthesis and is interesting 

to compare with similar languages later. The Silage language 

used in Cathedral/Cathedral-II was specifically designed for 

the synthesis of digital signal processing hardware [26]. It has 

built-in support for customized data types, and allows easy 

transformations [77][10]. The Silage language, along with the 

Cathedral-II tool, represented an early domain-specific 

approach in high-level synthesis.  

These early research projects helped to create a basis for 

algorithmic synthesis with many innovations, and some were 

even used to produce real chips. However, these efforts did 

not lead to wide adoption among designers. A major reason is 

that the methodology of using RTL synthesis was not yet 

widely accepted at that time and RTL synthesis tools were not 

yet mature. Thus, high-level synthesis, built on top of RTL 

synthesis, did not have a sound foundation in practice. In 

addition, simplistic assumptions were often made in these 

early systems—many of them were “technology independent” 

(such as Olympus), and inevitably led to suboptimal results. 

With improvements in RTL synthesis tools and the wide 

adoption of RTL-based design flows in the 1990s, industrial 

deployment of high-level synthesis tools became more 

practical. Proprietary tools were built in major semiconductor 

design houses including IBM [5], Motorola [58], Philips [61], 

and Simens [6]. Major EDA vendors also began to provide 

commercial high-level synthesis tools. In 1995, Synopsys 

announced Behavioral Compiler [88], which generates RTL 

implementations from behavioral HDL code and connects to 

downstream tools. Similar tools include Monet from Mentor 

Graphics [33] and Visual Architect from Cadence [43]. These 

tools received wide attention, but failed to widely replace RTL 

design. One reason is due to the use of behavioral HDLs as the 

input language, which is not popular among algorithm and 

system designers.  

B. Recent efforts 

Since 2000, a new generation of high-level synthesis tools 

has been developed in both academia and industry. Unlike 

many predecessors, most of these tools focus on using C/C++ 

or C-like languages to capture design intent. This makes the 

tools much more accessible to algorithm and system designers 

compared to previous tools that only accept HDL languages. It 

also enables hardware and software to be built using a 

common model, facilitating software/hardware co-design and 

co-verification. The use of C-based languages also makes it 

easy to leverage the newest technologies in software compilers 

for parallelization and optimization in the synthesis tools.  

In fact, there has been an ongoing debate on whether C-

based languages are proper choices for HLS [31][78]. Despite 

the many advantages of using C-based languages, opponents 

often criticize C/C++ as languages only suitable for describing 

sequential software that runs on microprocessors. Specifically, 

the deficiencies of C/C++ include the following: 

(i) Standard C/C++ lack built-in constructs to explicitly 

specify bit accuracy, timing, concurrency, synchronization, 

hierarchy, etc., which are critical to hardware design.  

(ii) C and C++ have complex language constructs, such as 

pointers, dynamic memory management, recursion, 

polymorphism, etc., which do have efficient hardware 

counterparts and lead to difficulty in synthesis.  

To address these deficiencies, modern C-based HLS tools 

have introduced additional language extensions and 

restrictions to make C inputs more amenable to hardware 

synthesis. Common approaches include both restriction to a 

synthesizable subset that discourages or disallows the use of 

dynamic constructs (as required by most tools) and 

introduction of hardware-oriented language extensions 

(HardwareC [54], SpecC [34], Handel-C [95]), libraries 

(SystemC [107]), and compiler directives to specify 

concurrency, timing, and other constraints. For example, 

Handel-C allows the user to specify clock boundaries 

explicitly in the source code. Clock edges and events can also 

be explicitly specified in SpecC and SystemC. Pragmas and 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

4

directives along with a subset of ANSI C/C++ are used in 

many commercial tools. An advantage of this approach is that 

the input program can be compiled using standard C/C++ 

compilers without change, so that such a program or a module 

of it can be easily moved between software and hardware and 

co-simulation of hardware and software can be performed 

without code rewriting. At present, most commercial HLS 

tools use some form of C-based design entry, although tools 

using other input languages (e.g., BlueSpec [102], Esterel [30], 

Matlab [42], etc.) also exist. 

Another notable difference between the new generation of 

high-level synthesis tools and their predecessors is that many 

tools are built targeting implementation on FPGA. FPGAs 

have continually improved in capacity and speed in recent 

years, and their programmability makes them an attractive 

platform for many applications in signal processing, 

communication, and high-performance computing. There has 

been a strong desire to make FPGA programming easier, and 

many high-level synthesis tools are designed to specifically 

target FPGAs, including ASC [64], CASH [9], C2H from 

Altera [98], DIME-C from Nallatech [112], GAUT [22], 

Handel-C compiler (now part of Mentor Graphics DK Design 

Suite) [95], Impulse C [74], ROCCC [87][39], SPARK 

[41][40], Streams-C compiler [36], and Trident [82][83], . 

ASIC tools also commonly provide support for targeting an 

FPGA tool flow in order to enable system emulation. 

Among these high-level synthesis tools, many are designed 

to focus on a specific application domain. For example, the 

Trident compiler, developed at Los Alamos National Lab, is 

an open-source tool focusing on the implementation of 

floating-point scientific computing applications on FPGA. 

Many tools, including GAUT, Streams-C, ROCCC, ASC, and 

Impulse C, target streaming DSP applications. Following the 

tradition of Cathedral, these tools implement architectures 

consisting of a number of modules connected using FIFO 

channels. Such architectures can be integrated either as a 

standalone DSP pipeline, or integrated to accelerate code 

running on a processor (as in ROCCC). 

As of 2010, major commercial C-based high-level synthesis 

tools include AutoESL’s AutoPilot [94] (originated from 

UCLA xPilot project [17]), Cadence’s C-to-Silicon Compiler 

[3][103], Forte’s Cynthesizer [65], Mentor’s Catapult C [7], 

NEC’s Cyber Workbench [89][91], and Synopsys Synphony C 

[115] (formerly Synfora’s PICO Express, originated from a 

long range research effort in HP Labs [49]).  

C. Lessons Learned 

Despite extensive development efforts, most commercial 

HLS efforts have failed. We believe that past failures are due 

to one or several of the following reasons: 

� Lack of comprehensive design language support: The 

first generation of the HLS synthesis tools could not 

synthesize high-level programming languages. Instead, 

untimed or partially timed behavioral HDL was used. 

Such design entry marginally raised the abstraction 

level, while imposing a steep learning curve on both 

software and hardware developers. 

Although early C-based HLS technologies have 

considerably improved the ease of use and the level of 

design abstraction, many C-based tools still have glaring 

deficiencies. For instance, C and C++ lack the necessary 

constructs and semantics to represent hardware attributes 

such as design hierarchy, timing, synchronization, and 

explicit concurrency. SystemC, on the other hand, is 

ideal for system-level specification with 

software/hardware co-design. However, it is foreign to 

algorithmic designers and has slow simulation speed 

compared to pure ANSI C/C++ descriptions. 

Unfortunately, most early HLS solutions commit to only 

one of these input languages, restricting their usage to 

niche application domains.  

� Lack of reusable and portable design specification: 

Many HLS tools have required users to embed detailed 

timing and interface information as well as the synthesis 

constraints into the source code. As a result, the 

functional specification became highly tool-dependent, 

target-dependent, and/or implementation-platform 

dependent. Therefore, it could not be easily ported to 

alternative implementation targets. 

� 7arrow focus on datapath synthesis: Many HLS tools 

focus primarily on datapath synthesis, while leaving 

other important aspects unattended, such as interfaces to 

other hardware/software modules and platform 

integration. Solving the system integration problem then 

becomes a critical design bottleneck, limiting the value 

in moving to a higher-level design abstraction for IP in a 

design. 

� Lack of satisfactory quality of results (QoR): When 

early generations of HLS tools were introduced in the 

mid-1990s to early 2000s, the EDA industry was still 

struggling with timing closure between logic and 

physical designs. There was no dependable RTL to 

GDSII foundation to support HLS, which made it 

difficult to consistently measure, track, and enhance 

HLS results. Highly automated RTL to GDSII solutions 

only became available in late 2000s (e.g., provided by 

the IC Compiler from Synopsys [114] or the 

BlastFusion/Talus from Magma [111]). Moreover, many 

HLS tools are weak in optimizing real-life design 

metrics. For example, the commonly used algorithms 

mainly focus on reducing functional unit count and 

latency, which do not necessarily correlate to actual 

silicon area, power, and performance. As a result, the 

final implementation often fails to meet timing/power 

requirements. Another major factor limiting quality of 

result was the limited capability of HLS tools to exploit 

performance-optimized and power-efficient IP blocks on 

a specific platform, such as the versatile DSP blocks and 

on-chip memories on modern FPGA platforms. Without 

the ability to match the QoR achievable with an RTL 

design flow, most designers were unwilling to explore 

potential gains in design productivity. 

� Lack of a compelling reason/event to adopt a new 

design methodology: The first-generation HLS tools 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

5

were clearly ahead of their time, as the design 

complexity was still manageable at the register transfer 

level in late 1990s. Even as the second-generation of 

HLS tools showed interesting capabilities to raise the 

level of design abstraction, most designers were 

reluctant to take the risk of moving away from the 

familiar RTL design methodology to embrace a new 

unproven one, despite its potential large benefits. Like 

any major transition in the EDA industry, designers 

needed a compelling reason or event to push them over 

the “tipping point,” i.e., to adopt the HLS design 

methodology. 

Another important lesson learned is that tradeoffs must be 

made in the design of the tool. Although a designer might 

wish for a tool that takes any input program and generates the 

“best” hardware architecture, this goal is not generally 

practical for HLS to achieve. Whereas compilers for 

processors tend to focus on local optimizations with the sole 

goal of increasing performance, HLS tools must automatically 

balance performance and implementation cost using global 

optimizations. However, it is critical that these optimizations 

be carefully implemented using scalable and predictable 

algorithms, keeping tool runtimes acceptable for large 

programs and the results understandable by designers. 

Moreover, in the inevitable case that the automatic 

optimizations are insufficient, there must be a clear path for a 

designer to identify further optimization opportunities and 

execute them by rewriting the original source code. 

Hence, it is important to focus on several design goals for a 

high-level synthesis tool: 

1. Capture designs at a bit-accurate, algorithmic level in 

C code. The code should be readable by algorithm 

specialists. 

2. Effectively generate efficient parallel architectures 

with minimal modification of the C code, for 

parallelizable algorithms. 

3. Allow an optimization-oriented design process, where 

a designer can improve the performance of the 

resulting implementation by successive code 

modification and refactoring. 

4. Generate implementations that are competitive with 

synthesizable RTL designs after automatic and manual 

optimization. 

We believe that the tipping point for transitioning to HLS 

methodology is happening now, given the reasons discussed in 

Section I and the conclusions by others [14][84]. Moreover, 

we are pleased to see that the latest generation of HLS tools 

has made significant progress in providing wide language 

coverage and robust compilation technology, platform-based 

modeling, and advanced core HLS algorithms. We shall 

discuss these advancements in more detail in the next few 

sections. 

III. CASE STUDY OF STATE-OF-ART OF HIGH-LEVEL 

SYNTHESIS FOR FPGAS 

AutoPilot is one of the most recent HLS tools, and is 

representative of the capabilities of the state-of-art commercial 

HLS tools available today. Figure 1 shows the AutoESL 

AutoPilot development flow targeting Xilinx FPGAs. 

AutoPilot accepts synthesizable ANSI C, C++, and OSCI 

SystemC (based on the synthesizable subset of the IEEE-1666 

standard [113]) as input and performs advanced platform-

based code transformations and synthesis optimizations to 

generate optimized synthesizable RTL.  

AutoPilot outputs RTL in Verilog, VHDL or cycle-accurate 

SystemC for simulation and verification. To enable automatic 

co-simulation, AutoPilot creates test bench wrappers and 

transactors in SystemC so that designers can leverage the 

original test framework in C/C++/SystemC to verify the 

correctness of the RTL output. These SystemC wrappers 

connect high-level interfacing objects in the behavioral test 

bench with pin-level signals in RTL. AutoPilot also generates 

appropriate simulation scripts for use with 3rd-party RTL 

simulators. Thus designers can easily use their existing 

simulation environment to verify the generated RTL. 

 

 

AutoPilot 

Synthesis 

AutoPilot 

Simulation 

AutoPilot 
Module 

Generation 

High-level 
Spec (C, 
C++, 

SystemC) 

D
e
s
ig
n
 

T
e
s
t B
e
n
c
h
 

RTL 
(SystemC, 
VHDL, 
Verilog) 

D
e
s
ig
n
 

W
ra
p
p
e
r 

Synthesis 

Directives 

Simulation 
Scripts 

Implementation 
Scripts 

RTL/Netlist 

Xilinx ISE 
EDK 

Xilinx 

CoreGen 

RTL 

Simulator 

F
P
G
A
 P
la
tfo
rm
 L
ib
s
 

Bitstream 
 

Figure 1. AutoESL and Xilinx C-to-FPGA design flow. 
 

In addition to generating RTL, AutoPilot also creates 

synthesis reports that estimate FPGA resource utilization, as 

well as the timing, latency and throughput of the synthesized 

design. The reports include a breakdown of performance and 

area metrics by individual modules, functions and loops in the 

source code. This allows users to quickly identify specific 

areas for QoR improvement and then adjust synthesis 

directives or refine the source design accordingly. 

Finally, the generated HDL files and design constraints feed 
into the Xilinx RTL tools for implementation. The Xilinx ISE 
tool chain (such as CoreGen, XST, PAR, etc.) and Embedded 
Development Kit (EDK) are used to transform that RTL 
implementation into a complete FPGA implementation in the 
form of a bitstream for programming the target FPGA 
platform. 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

6

IV. SUPPORT OF HIGH-LEVEL PROGRAMMING MODELS 

A. Robust support of C/C++ based synthesis 

Comprehensive language coverage is essential to enabling 

wide acceptance of C/C++ based design and synthesis. The 

reasons are twofold: 

� Reduced verification effort: A broad synthesizable 

subset minimizes the required code changes to convert 

the reference C source into a synthesizable specification. 

This effectively improves the design productivity and 

reduces or eliminates the additional verification effort to 

ensure equivalence between the synthesizable code and 

the original design.  

� Improved design quality: Comprehensive language 

support allows designers to take full advantage of rich 

C/C++ constructs to maximize simulation speed, design 

modularity and reusability, as well as synthesis QoR.  

However, it is quite challenging to compile an input 

specification in software C language, which is known for its 

highly flexible syntax and semantic ambiguities, into a well-

structured and well-optimized hardware described in HDL.  

 

Table 1. Useful language features for effective C/C++-
based design and synthesis. 

Language Constructs Benefits 

C 

Arbitrary-precision 
integer types 

Bit-accurate design 
QoR 

Floating-point types Floating-point arithmetic 

Function calls Modular design hierarchy 

Pointers Efficiency and flexibility 

Structs & unions Data encapsulation 

C++ 

Fixed-point types 
Fixed-point arithmetic 
Accuracy-cost tradeoff 

Templates Parameterizable design 

Classes 
Object-oriented modeling 
(encapsulation, inheritance, 
polymorphism, etc.)  

SystemC 

Modules & processes 
Coarse-grained 
concurrency 

Clocks 
Custom protocol 
Multi-clock design 

TLM Fast simulation 

 

In fact, many early C-based synthesis tools only handle a 

very limited language subset, which typically includes the 

native integer data types (e.g., char, short, int, etc.), one-

dimensional arrays, if-then-else conditionals, and for loops. 

Such language coverage is far from sufficient to allow 

complex large-scale designs. As shown in Table 1, supporting 

more advanced language features in C, C++ and SystemC is 

critical to raising the level of design abstraction and enabling 

efficient high-level synthesis. 

AutoPilot accepts three standard C-based design entries in 

ANSI C, C++ and SystemC. It provides robust synthesis 

technologies to efficiently handle different aspects of the 

C/C++ language, such as data type synthesis (for both 

primitive and composite types), pointer synthesis, memory 

synthesis, control synthesis, loop synthesis, modular hierarchy 

synthesis (for function, class, and concurrent modules), and 

interface synthesis (for function parameters and global 

variables). 

Designers can fully control the data precisions of a C/C++ 

specification. AutoPilot directly supports single- and double-

precision floating-point types and efficiently utilizes the 

floating-point IPs provided by the FPGA platforms. Common 

floating-point math routines (e.g., square root, exponentiation, 

logarithm, etc.) can be mapped to high-quality platform-

specific IPs. 

In addition, AutoPilot has the capabilities to simulate and 

synthesize arbitrary-precision integers (ap_int) and fixed-point 

data types (ap_fixed). The arbitrary-precision fixed-point 

(ap_fixed) data types support all common algorithmic 

operations. With this library, designers can explore the 

accuracy and cost tradeoff by modifying the resolution and 

fixed-point location and experimenting with various 

quantization and saturation modes. 

AutoPilot also supports the OCSI synthesizable subset 

[113] for SystemC synthesis. Designers can make use of 

SystemC bit-accurate data types (sc_int/sc_uint, 

sc_bigint/sc_biguint, and sc_fixed/sc_ufixed) to define the 

data precisions. Multi-module hierarchical designs can be 

specified and synthesized with multiple concurrent processes 

running inside each module. 

B. Use of state-of-the-art compiler technologies 

AutoPilot tightly integrates the LLVM compiler 

infrastructure [59][110] to leverage leading-edge compiler 

technologies. LLVM features a GCC-based C/C++ front end 

called llvm-gcc and a newly developed source code front end 

for C/C++ and Object C/C++ called Clang, a virtual 

instruction set based on a type-safe static single-assignment 

(SSA) form [23], a rich set of code analyses and 

transformation passes, and various back ends for common 

target machines. 

AutoPilot uses the llvm-gcc front end to obtain an 

intermediate representation (IR) based on the LLVM 

instruction set. On top of this IR, AutoPilot performs a variety 

of compiler transformations to aggressively optimize the input 

specification. The optimization focuses on reducing code 

complexity and redundancy, maximizing data locality, and 

exposing parallelism.  

In particular, the following classes of transformations and 

analyses have shown to be very useful for hardware synthesis: 

� SSA-based code optimizations such as constant 

propagation, dead code elimination, and redundant code 

elimination based on global value numbering [2].  

� Expression rewriting such as strength reduction and 

arithmetic simplification to replace expensive operations 

and expressions with simpler ones (e.g., x%2n = x&(2n-

1), 3*x-x = x<<1). 

� Range analysis and bitwidth analysis [80][21] that 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

7

extract and propagate the value range information 

throughout the program to reduce bitwidths of variables 

and operations. 

� Sophisticated alias analysis and memory dependence 

analysis [50] that analyzes data and control dependences 

to discover parallelism between pointer and array 

accesses.  

� Memory optimizations such as memory reuse, array 

scalarization, and array partitioning [19] to reduce the 

number of memory accesses and improve memory 

bandwidth.  

� Loop transformations such as unrolling, loop fusion, and 

loop rotation to expose loop-level parallelism [50].  

� Function optimizations such as inlining and pointer-to- 

scalar argument promotion to enable code optimization 

across the function boundaries.  

It is worth noting that the LLVM-based IR is in a language-

agnostic format. In other words, the code can be optimized 

without considering the source language. As a result, the same 

set of analyses and optimizations on this representation can be 

shared and taken advantage of by many different language 

front ends.  

Furthermore, unlike other conventional C/C++ compilers, 

which are typically designed to optimize with the native data 

types (e.g., char, short, int, long, etc.), LLVM and AutoPilot 

compilation and transformation procedures are fully bit 

accurate. This is a significant advantage for hardware 

synthesis since bit-level redundancy and parallelism can be 

well optimized and well exploited [93]. 

V. PLATFORM-BASED APPROACH 

A. Platform modeling for Xilinx FPGAs 

AutoPilot uses detailed target platform information to carry 

out informed and target-specific synthesis and optimization. 

The platform specification describes the availabilities and 

characteristics of important system building blocks, including 

the available computation resources, memory resources, and 

communication interfaces on a given Xilinx FPGA device.  

Component pre-characterization is involved in the modeling 

process. Specifically, it characterizes the delay, area, and 

power for each type of hardware resource, such as arithmetic 

units (e.g., adders and multipliers), memories (e.g., RAMs, 

ROMs, and registers), steering logic (multiplexors), and 

interface logic (e.g., FIFOs and bus interface adapters). The 

delay/area/power characteristic curves are derived by varying 

the bit widths, number of input and output ports, pipeline 

intervals, and latencies. The resulting characterization data is 

then used to make implementation choices during synthesis. 

Notably, the cost of implementing hardware on FPGAs is 

often different from that for ASIC technology. For instance, 

most designs include multiplexors to route data to different 

points in a design, share hardware resources, and initialize the 

state of the system. On FPGAs, multiplexors typically have 

the same cost and delay as an adder (approximately one 

LUT/output). In some cases, however, a multiplexor can 

merge with other logic, such as a downstream adder or 

multiplexor, resulting in no additional hardware cost. In 

contrast, in ASIC technology, multiplexors are typically 

significantly less expensive than adders and other arithmetic 

operations and this cost cannot typically be eliminated by 

technology mapping. As a result, understanding the cost and 

delay of multiplexing operations is critical to building 

optimized FPGA designs. 

FPGA technology also features heterogeneous on-chip 

resources, including not only LUTs and flip flops but also 

other prefabricated architecture blocks such as DSP48s and 

Block RAMs. Understanding the tradeoff between these 

heterogeneous resources is critical for efficient FPGA 

mapping. For instance, in FPGAs logic functions are 

significantly more expensive relative to memory than in ASIC 

technology, since logic functions must be implemented using 

LUTs and flip flops in the FPGA fabric whereas memory is 

usually implemented using Block RAMs which exist as 

customized SRAM cells in the FPGA. Furthermore, smaller 

memories and shift registers may be more efficiently mapped 

to LUT cells or flip flops in the FPGA than to Block RAM, 

adding additional complexity for memory characterization.  

Such FPGA-specific platform information is carefully 

modeled for each and every FPGA device families, and 

considered by AutoPilot during synthesis for performance and 

area tradeoff. In addition, AutoPilot has the capability of 

detecting certain computation patterns and mapping a group of 

operations to platform-specific architecture blocks, such as 

DSP48 blocks, or pre-defined customer IPs. 

B. Integration with Xilinx toolset 

In order to raise the level of design abstraction more 

completely, AutoPilot attempts to hide details of the 

downstream RTL flow from users as much as possible. 

Otherwise, a user may be overwhelmed by the details of 

vendor-specific tools such as the formats of constraint and 

configuration files, implementation and optimization options, 

or directory structure requirements.  

As shown in Figure 1, AutoPilot implements an end-to-end 

C-to-FPGA synthesis flow integrated with the Xilinx toolset in 

several areas: 

� ISE integration: AutoPilot automatically generates 

scripts and constraints for Xilinx ISE from the high-

level constraints entered in AutoPilot. AutoPilot can 

also directly invoke ISE from within the tool to 

execute the entire C-to-FPGA flow and extract the 

exact resource utilization and the final timing from the 

ISE reports. For advanced users who are familiar with 

the Xilinx tool flow, AutoPilot also provides options to 

tune the default implementation and optimization 

settings, such as I/O buffer insertion, register 

duplication/balancing, and place-and-route effort. 

� CoreGen integration: AutoPilot can automatically 

generate optimized IP blocks, such as memories, 

FIFOs, and floating-point units, using Xilinx Core 

Generator (CoreGen). In some cases, the CoreGen 

implementations are superior to the comparable 

functions implemented through logic synthesis 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

8

resulting in better QoR. The resulting CoreGen netlists 

are also incorporated and encapsulated without further 

user intervention. 

� EDK integration: The hardware modules synthesized 

by AutoPilot can also be integrated into Xilinx EDK 

environment for system-level hardware/software co-

design and exploration. Specifically, AutoPilot is 

capable of generating various bus interfaces, such as 

Xilinx Fast Serial Link (FSL) and Processor Local Bus 

(PLB) for integrating with MicroBlaze and PowerPC 

processors and Xilinx Native Port Interface (NPI) for 

integrating with external memory controllers. 

AutoPilot instantiates these interfaces along with 

adapter logic and appropriate EDK meta-information 

to enable a generated module can be quickly 

connected in an EDK system. 

VI. ADVANCES IN SYNTHESIS AND OPTIMIZATION 

ALGORITHMS  

In this section we highlight some recent algorithmic 

advancement in HLS that we believe are important factors in 

improving the quality of results of the latest HLS tools and 

helping them to produce results that are competitive with 

manual designs. 

A. Efficient mathematical programming formulations to 

scheduling 

Classical approaches to the scheduling problem in high-

level synthesis use either conventional heuristics such as list 

scheduling [1] and force-directed scheduling [73], which often 

lead to sub-optimal solutions, due to the nature of local 

optimization methods, or exact formulations such as integer-

linear programming [45], which can be difficult to scale to 

large designs. Recently, an efficient and scalable system of 

difference constraint (SDC) based linear-programming 

formulation for operation scheduling has been proposed [15]. 

Unlike previous approaches where using O(m×n) binary 

variables to encode a scheduling solution with n operations 

and m steps [45], SDC uses a continuous representation of 

time with only O(n) variables: for each operation i, a 

scheduling variable si is introduced to represent the time step 

at which the operation is scheduled. By limiting each 

constraint to integer-difference form, i.e.,  

si − sj ≤ dij 
where dij is an integer. It is shown that a totally unimodular 

constraint matrix can be obtained. A totally unimodular matrix 

defined as a matrix whose every square submatrix has a 

determinant of 0 or ±1. A linear program with a totally 

unimodular constraint matrix is guaranteed to have integral 

solutions. Thus, an optimal integer solution can be obtained 

without expensive branch-and-bound procedures.  

Many commonly encountered constraints in high-level 

synthesis can be expressed in the form of integer-difference 

constraints. For example, data dependencies, control 

dependencies, relative timing in I/O protocols, clock 

frequencies, and latency upper-bounds can all be expressed 

precisely. Some other constraints, such as resource usage, 

cannot directly fit into the form. In such cases, approximations 

can be made to generate pair-wise which can then be 

expressed as integer-difference constraints. Other complex 

constraints can be handled in similar ways, using 

approximations or other heuristics. Thus, this technique 

provides a very flexible and versatile framework for various 

scheduling problems, and enables highly efficient solutions 

with polynomial time complexity. 

B. Soft constraints and applications for platform-based 

optimization 

In a typical synthesis tool, design intentions are often 

expressed as constraints. While some of these constraints are 

essential for the design to function correctly, many others are 

not. For example, if the estimated propagation delay of a 

combinational path consisting of two functional units is 10.5 

ns during scheduling, while the required cycle time is 10 ns, a 

simple method would forbid the two operations to execute in 

one clock cycle. However, it is possible that a solution with a 

slight nominal timing violation can still meet the frequency 

requirement, considering inaccuracy in interconnect delay 

estimation and various timing optimization procedures in later 

design stages, such as logic refactoring, retiming, and 

interconnect optimization. In this case, strict constraints 

eliminate the possibility of improving other aspects of the 

design with some reasonable estimated violations. In addition, 

inconsistencies in the constraint system can occur when many 

design intentions are added—after all, the design is often a 

process of making tradeoffs between conflicting objectives.  

A solution to the above problems is proposed in [20] using 

soft constraints in the formulation of scheduling. The approach 

is based on the SDC formulation discussed in the preceding 

subsection, but allows some constraints to be violated. 

Consider the scheduling problem with both hard constraints 

and soft constraints formulated as follows. 

minimize  c
T
s  linear objective 

subject to Gs ≤ p  hard constraints 

Hs ≤ q  soft constraints 

Here G and H corresponds to the matrices representing hard 

constraints and soft constraints, respectively, and they are both 

totally unimodular as shown in [15]. Let Hj be the jth row of 

H, for each soft constraint Hjs ≤ qj, we introduce a violation 

variable vj to denote the amount of violation and transform the 

soft constraint into two hard constraints as 

Hjs − vj  ≤ qj 

−vj ≤ 0 

At the same time, we introduce a penalty term φj(vj) to the 

objective function, to minimize the cost for violating the jth 

soft constraint. The final formulation becomes the following. 

minimize  c
T
s + Σjφj(vj) 

subject to Gs ≤ p 

  Hs − v ≤ q 

  −v ≤ 0 
It can be shown that the new constraint matrix is also totally 

unimodular. If the amount of penalty is a convex function of 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

9

the amount of violation, the problem can be solved optimally 

within polynomial time. Otherwise, convex approximations 

can be made in an iterative manner [20].  

 

Figure 2. The structure of a scheduler using both hard 
constraints and soft constraints. 

 

The overall flow of a scheduler using this method is shown 

in Figure 2. Hard constraints and soft constraints are generated 

based on the functional specification and QoR targets. The 

constraints are fed to an optimization engine that uses a 

mathematical programming solver. The soft constraints can be 

updated, based on existing results and possibly new design 

intentions. The use of soft constraints provides a way to 

handle multiple conflicting design intentions simultaneously, 

leading to efficient global optimization using a mathematical 

programming framework. This approach offers a powerful yet 

flexible framework to address various considerations in 

scheduling. 
 

P 

0 

PCOUT 

 

C 

BCOUT 

B 

 

0 

0 

Y 

Z 

0 

1 

 
X 

A 

2-stage

 

Figure 3. The Xilinx DSP48E block. 
 

To illustrate the use of soft constraints in high-level 

synthesis for FPGAs, we apply it to the problem of efficient 

utilization of built-in fabrics on FPGA platforms. Take the 

DSP48E block in Xilinx Virtex 5 FPGAs for example: each of 

the DSP48E blocks (sketched in Figure 3) contains a 

multiplier and a post-adder, allowing efficient 

implementations of multiplication and multiply-accumulation. 

To fit the pattern of a DSP block, it is preferable that the 

operations are scheduled following certain relative cycle 

distances. Specifically, the addition should occur one cycle 

after the multiplication finishes to be mapped to the post-adder. 

In the constraint system, it is s+−s× ≤ l×, where l× is the number 

of stages the multiplication takes. These preferences can be 

nicely modeled by soft constraints as they are not required for 

a correct implementation but highly preferred to achieve good 

QoR on FPGAs. 

C. Pattern mining for efficient sharing 

A typical target architecture for HLS may introduce 

multiplexers when functional units, storage units or 

interconnects are shared by multiple operations/variables in a 

time-multiplexed manner. However, multiplexers (especially 

large ones) can be particularly expensive on FPGA platforms. 

Thus, careless decisions on resource sharing could introduce 

more overhead than benefit. In [16] a pattern-based approach 

for resource sharing is proposed. The method tries to extract 

common structures or patterns in the data-flow graph, so that 

different instances of the same pattern can share resources 

with little overhead. The approach tolerates small variations 

on port, bitwidth, operation types, etc., by using the graph 

editing distance as a metric to measure the similarity of two 

patterns. A systematic method for subgraph enumeration is 

developed which avoids generating redundant subgraphs. 

Pruning techniques are proposed based on characteristic 

vectors and locality-sensitive hashing. Instances of the same 

pattern are scheduled in the same way and conflicts are 

avoided when possible so that they can share resources, 

leading to resource reductions. This technique has been 

extended to pattern extraction and sharing in CDFGs [18]. 

D. Memory analysis and optimizations 

While application-specific computation platforms such as 
FPGAs typically have considerable computational capability, 
their performance is often limited by available communication 
or memory bandwidth. Typical FPGAs, such as the Xilinx 
Virtex series, have a considerable number of block RAMs. 
Using these RAMs effective is critical to meet performance 
target in many designs. This often requires partitioning 
elements of an array across multiple physical memory blocks 
to enable simultaneous access to different elements of the 
array. 

In [19] a technique for automatic memory partitioning is 

proposed to increase throughput and reduce power for 

pipelined loops. It tightly integrates front-end transformations 

and operation scheduling in an iterative algorithm and has the 

ability to handle irregular array access, in addition to affine 

accesses. An example of memory partition is shown in Figure 

4. Consider a loop that accesses array A with subscripts i, 

2×i+1, and 3×i+1, in the ith iteration. When the array is 

partitioned into two banks, the first contains elements with 

even indices and the second contains those with odd indices. If 

the loop is targeted to be pipelined with the initiation interval 

of one, i.e., a new loop iteration starts every clock cycle, the 

schedule in (b) will lead to port conflicts, because (i+1) mod 2 

= (2×(i+1)+1) mod 2 = (3×i+1) mod 2, when i is even; this 

will lead to three simultaneous accesses to the first bank. On 

the other hand, the schedule in (c) can guarantee at most two 

simultaneous accesses. Because (i+2) mod 2 ≠ (3×i+1) mod 2 

for any i, R1 and R3 will never access the same bank in the 

same cycle. The method in [19] presents a theorem to capture 

all possible reference conflicts under cyclic partitioning in a 

data structure called a conflict graph. Then, an iterative 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

10 

algorithm is used to perform both scheduling and memory 

partitioning guided by the conflict graph.  

 for (i = 0; i < N; i++) { 

    A[i] = …;            // R1 

    A[2 * i + 1] = …;  // R2 

    A[3 * i + 1] = …;  // R3 

} 

 Step 1 Step 2 Step 3 

Iteration 1 
A[i] 

A[2*i+1] 

A[3*i+1] 
 

Iteration 2  A[i+1] 

A[2*(i+1)+1] 

A[3*(i+1)+1] 

Iteration 3   
A[i+2] 

A[2*(i+2)+1] 

 Step 1 Step 2 Step 3 

Iteration 1 A[i] 

A[2*i+1] 

 A[3*i+1] 

Iteration 2  
A[i+1] 

A[2*(i+1)+1] 
 

Iteration 3   A[i+2] 

A[2*(i+2)+1] 

(a) The loop to be pipelined. 

(b) First schedule with partition. 

(c) Second schedule with partition.  

Figure 4. An example of memory partitioning and 
scheduling for throughput optimization. 

VII. ADVANCES IN SIMULATION AND VERIFICATION 

Besides the many advantages of automated synthesis, such 

as quick design space exploration and automatic complex 

architectural changes like pipelining, resource sharing and 

scheduling, HLS also enables a more efficient debugging and 

verification flow at the higher abstraction levels. Since HLS 

provides an automatic path to implementable RTL from 

behavioral/functional models, designers do not have to wait 

until manual RTL models to be available to conduct 

verification. Instead, they can develop, debug and functionally 

verify a design at an earlier stage with high-level 

programming languages and tools. This can significantly 

reduce the verification effort due to the following reasons: 

(i) It is easier to trace, identify and fix bugs at higher 

abstraction levels with more compact and readable design 

descriptions.  

(ii) Simulation at the higher level is typically orders of 

magnitude faster than RTL simulation, allowing more 

comprehensive tests and greater coverage.  

Figure 5 captures a typical simulation and verification 

framework offered by state-of-the-art C-based HLS tools. In 

this flow designers usually start from high-level specification 

in C/C++ or SystemC. They use software programming and 

debugging tools, such as GCC/GDB, Valgrind, or Visual 

Studio, to ensure that the design is sufficiently tested and 

verified against a properly constructed test bench. Once the 

input description to HLS is clean, designers can focus on the 

synthesis aspects and generate one or multiple versions of 

RTL code to explore the QoR tradeoffs under different 

performance, area, and power constraints. To confirm the 

correctness of the final RTL designers can use the automatic 

co-simulation and/or formal equivalence checking provided by 

this framework. 

 

High-Level 

Synthesis 

T
e
s
t B
e
n
c
h
 

Cycle-Accurate Model 

RTL Model 

High-Level 

Spec 

D
e
s
ig
n
 

Simulator 
(Bit match, 
waveform, 

performance, 
coverage 7) 

Equivalence 
Checker  

(Proof, counter 
examples, 
timeout) 

Design Under Test 
(DUT) 

Debugging/verifying source program 

 

Figure 5. HLS simulation and verification framework. 

A. Automatic co-simulation 

At present, simulation is the still prevalent technique to 

check if the resulting RTL complies with the high-level 

specification. To reduce effort spent on RTL simulation, the 

latest HLS technologies have made important improvements 

on automatic co-simulation [86][8][3], allowing direct reuse of 

the original test framework in C/C++ to verify the correctness 

of the synthesized RTL.  

C-Level  

Test Bench 

(TB main) 

C-to-RTL 

Transactor 

RTL 

(Verilog/ 

VHDL/ 

SystemC) 

C/C++ Parameters RTL Signals 

TB Wrapper 

 

Figure 6. Automatic RTL test bench generation and 
connection in AutoPilot. 

 

As an example, Figure 6 shows a block diagram describing 

how AutoPilot bridges a behavioral test bench (TB) and RTL 

with automatically constructed transactor and wrapper in 

SystemC. A C-to-RTL transactor is created to connect high-

level interfacing constructs (such as parameters and global 

variables) with pin-level signals in RTL. This step involves 

data type synthesis as well as interface synthesis since the 

transactor needs to correctly translate various C/C++ data 

types and handle different interface protocols such as 

handshaking, streaming, and memory mapped I/O. 

Additionally, a SystemC wrapper is generated that combines 

the C-level test bench and transactor. This wrapper also 

includes additional control logic to manage the 

communication between the testing module and the RTL 

design under test (DUT). For instance, a pipelined design may 

require that the test bench feed input data into the DUT at a 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

11 

fixed rate.  

This style of automatic co-simulation also helps designers 

avoid the timing-consuming manual creation of an RTL test 

bench. Along with the use of instrumentation and code 

coverage tools, this flow can provide additional performance 

and code coverage analyses on the RTL output. Many HLS 

tools also generate alternative cycle-accurate models (typically 

in SystemC) of the synthesized design that can be more 

quickly simulated than HDL. 

B. Equivalence Checking 

While formal equivalence checking tools for RTL-to-RTL 

and RTL-to-gate comparisons have been in production use for 

years, high-level to RTL checking is still an evolving 

technology.  

Nevertheless, promising progress on C-to-RTL equivalence 

checking has been made in recent years, especially from 

industry. For instance, the Sequential Logic Equivalence 

Checker from Calypto [105] can identify mismatches between 

a synthesizable C/C++/SystemC model and an RTL design 

without the need of a test bench. This tool has been integrated 

in several commercial HLS flows. Synopsys has also 

presented their Hector tool in [53], which integrates multiple 

bit-level and word-level equivalence checking techniques, 

such as ATPG, BDD, SAT, and SMT to address the system 

level to RTL formal verification problem. 

An excellent survey of the sequential equivalence checking 

(SEC) techniques is given in [63], with discussions of their 

usage in the real-word high-level synthesis flows. As 

mentioned in this article, the current SEC technology can 

handle moderate design size with gate count between 500-

700K gates and tolerate latency differences between high-level 

and RTL models on the order of hundreds of clock cycles. 

Beyond this range, further design partitioning is required to 

help the checker to reduce the verification complexity.  

Currently, formal equivalence checking plays a supporting 

role in the verification flow for HLS. This is particularly true 

for FPGA designs, where in-system simulation is possible 

with much wider simulation coverage. Design iterations can 

be performed quickly and inexpensively without huge 

manufacturing cost.  

VIII. INTEGRATION WITH DOMAIN-SPECIFIC DESIGN 

PLATFORMS 

In the end, the time-to-market of an FPGA system design is 

dependent on many factors, such as availability of reference 

designs, development boards, and in the end, FPGA devices 

themselves. Primarily, HLS only addresses one of these 

factors: the ability of a designer to capture new algorithms and 

implement an RTL architecture from the algorithm. Reducing 

the overall time-to-market requires not only reducing the 

design time, but also integrating the resulting design into a 

working system. This integration often includes a wide variety 

of system-level design concerns, including embedded 

software, system integration, and verification [104]. Hence, it 

is crucial that such integration can be performed as easily and 

as quickly as possible. 

A view of an integrated design is shown in Figure 7. The 

interface cores (marked GigE, PCI, DVI, and LVDS in the 

figure) are implemented in low-level RTL code and are 

provided as encapsulated intellectual property (IP) cores. 

These cores tend to have tight requirements on circuit 

architecture in order to function correctly, and often have 

specific timing constraints, placement requirements, and 

instantiated architectural primitives. As a result, these cores 

are not easily amenable to high-level synthesis and form part 

of the system infrastructure of a design. Note, however, that 

these cores represent a small portion of the overall design 

synthesized in the FPGA, where system designers are not 

likely to have significant differentiating ability. 

A second key part of system infrastructure is the processor 

subsystem shown on the left of Figure 7. Subsystem PSS is 

responsible for executing the relatively low-performance 

processing in the system. 

P
ro

c
e

s
s
o

r

S
u

b
s
y
s
te

m

A
X

I 
In

te
rf

a
c
e

A
X

I 
s
tr

e
a
m

 I
n
te

rf
a
c
e

Platform

IP cores
DVI LVDSPCIGigE

Design synthesized from

User C code +

C Interface Libraries +

C Algorithm libraries

FPGA fabric

Figure 7. Block diagram showing an algorithmic block 

integrated with a processor and I/O. 

 

The portion of a design generated using HLS represents the 

bulk of the FPGA design and communicates with the system 

infrastructure through standardized wire-level interfaces, such 

as AXI4 memory-mapped and streaming interfaces [96] 

shown in Figure 7. These interfaces are abstracted in the C 

code to appropriate application-level interfaces, which can be 

simulated at a functional level in C code. In order to 

understand this abstract architecture model, we show some 

concrete examples of domain-specific design platforms that 

we used to build FPGA systems, one for cognitive radio 

designs and another for video applications. 

A. High-level design of cognitive radios project 

Cognitive radio systems typically contain both 

computationally intensive processing with high data rates in 

the radio processing, along with complex, but relatively low-

rate processing to control the radio processing. Such systems 

can be elegantly described and quickly simulated in 

algorithmic C code, enabling opportunities to improve the 

system-level management algorithms. However, efficiently 

building such systems in FPGAs can be complex, since they 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

12 

involve close interaction between the processing code that 

must be implemented in the FPGA fabricto provide adequate 

performance, and the control code that would typically be 

implemented in an embedded processor. Although HLS 

provides a path to implementing the radio processing 

efficiently in FPGA logic, efficient interaction with the 

processor is an important part of the overall system 

complexity. 

The target template architecture, shown in Figure 8, is 

divided in two subsystems: a processor subsystem and an 

accelerator subsystem. The processor subsystem contains 

standard hardware modules and is capable of running a 

standard embedded operating system, such as Linux. These 

modules include the embedded CPU (e.g., PowerPC or 

MicroBlaze), memory controller to interface to external 

DRAM, and I/O modules (e.g., Ethernet). The processor 

subsystem is responsible for two main tasks: executing the 

software runtime system in charge of the application control at 

runtime, and executing computationally non-intensive 

components in the application. The accelerator subsystem is 

used for implementing components with high computational 

requirements in hardware. In order to transfer data into and out 

of the accelerator subsystem, the accelerator block is 

connected to on-chip memories (i.e., standard interfaces). 

These on-chip memories are used as a shared-memory 

communication scheme between hardware and software 

components. The bus interface logic implements a DMA 

functionality to efficiently move data. A set of interface 

registers, accessible from software, is used for controlling 

hardware execution and accessing component parameters. The 

accelerator block is synthesized using the high-level synthesis 

tools. 

 

Figure 8. Radio processing architecture template. 
 

To program the architecture, the application is captured as a 

pipeline of concurrent components or actors. Each actor 

conceptually executes either in the processor subsystem, or in 

the accelerator subsystem. Actors executing in the accelerator 

system also include a small proxy component executing in the 

processor, which is responsible for data transfer and 

synchronization with the FPGA hardware generated through 

HLS. This allows the component implementation to be 

completely abstracted, and a designer can implement 

individual components without knowing about the 

implementation details of other components or how they are 

logically interconnected. The composition of actors and the 

dataflow between them is described in an XML file, enabling 

new compositions to be easily described. Components also 

expose a configuration interface with multiple parameters, 

allowing them to be reconfigured in an executing system by 

user-defined control code executing in the processor 

subsystem. 

B. Video Starter Kit 

Video processing systems implemented in FPGA include a 

wide variety of applications from embedded computer-vision 

and picture quality improvement to image and video 

compression. These systems also target a variety of end-

markets ranging from television studio equipment to industrial 

imaging and consumer equipment, such as HDTVs and digital 

cameras. Typically these systems include two significant 

pieces of complexity. First, they must communicate by 

standardized interfaces, such as HD-SDI, HDMI, or V-by-one, 

with other equipment in order to be demonstrated. Secondly, 

they often perform inter-frame processing, which almost 

always requires a large frame-buffer implemented in cheap 

external memory, such as DDR2 SDRAM. 

To address these complexities and make it relatively 

straightforward for designers to implement video processing 

applications and demonstrate them in real-time on 

development boards, we have leveraged a portable platform 

methodology. This platform is derived from the Xilinx EDK-

based reference designs provided with the Xilinx Spartan 

3ADSP Video Starter Kit and has been ported to several 

Xilinx Virtex 5 and Spartan 6 based development boards, 

targeting high-definition HD video processing with pixel 

clocks up to 150 MHz. A block diagram is shown in Figure 9. 

struct pixel_datastruct frame_data

Xilinx MPMC

Up to

150 MHz

Typically

200 to 400 MHz

NPI API

Frame Decoder

Remove

synch

Add

synch

HLS block

Streaming Function

Up to 150 MHz

Microblaze
60 MHz

to

200 MHz

Board

Specific

IO

adapter

Board

Specific

IO

adapter

 

Figure 9. Video processing architecture template. 

 
Incoming video data is received using board and protocol 

specific interface adapters and formatted as a non-handshaked 

stream of RGB video data, with horizontal and vertical 

synchronization and data enable signals. When a board uses an 

external decoder chip which formats digital video in this way, 

such as the Spartan 3ADSP video Starter Kit, the IO adapter 

can often be very simple, requiring almost no FPGA logic. In 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

13 

other cases, such as on the Xilinx University Program Atlys 

board [117] which implements HDMI interfaces entirely in 

FPGA logic, the interface logic can be more significantly 

complex. 

The incoming video data is analyzed by the Frame Decoder 

block to determine the frame size of the incoming video, 

which is passed to the application block, enabling different 

video formats to be processed. The frame size, represented by 

struct frame_data, is sent to the application block first, 

followed by the given number of active video pixels without 

synchronization signals, represented by struct pixel_data. The 

synchronization signals themselves are encoded and delayed, 

before being reassembled with the processed video data and 

sent to the output video interface. This delay accommodates 

non-causal spatial filters with up to a small number of lines of 

delay, without requiring the output video to be shifted. Longer 

processing delays can be accommodated internally to the 

application block by a frame buffer by outputting the 

previously processed frame. 

The application is typically partitioned between the 

Application Block, which is generated using HLS and the 

Microblaze control processor. In video systems, the control 

processor often handles processing that occurs at the frame 

rate (typically 60 or 120 frames per second for the majority of 

consumer video equipment), and can receive data analyzed 

from the incoming video, and generate parameter updates to 

the processing core. Simple processing tasks can be computed 

in the vertical blanking interval, while more complex tasks 

may require the entire frame time to compute, meaning that 

analysis of frame n is computed during the arrival of frame 

n+1 and the results used to update frame n+2.  

The Application Block itself is capable of processing video 

pixels at the full rate of the incoming video data, typically as a 

streaming dataflow pipeline generated from multiple loops in 

C code. To meet the pixel-rate requirements of HDTV systems, 

the Application Block typically process one new pixel per 

clock cycle in consumer grade FPGAs, such as the Xilinx 

Spartan 6 family. Video line buffers are synthesized directly 

from embedded FPGA memories, expressed as arrays in C 

code. 

The interface to external memory used for frame buffers is 

implemented using the Xilinx Multi-ported Memory 

Controller (MPMC) [118] which provides access to external 

memory to the Application Block and to the Microblaze 

control processor, if necessary. The MPMC provides a 

consistent user-level interface through the Native-Port 

Interface (NPI) [118] to a variety of memory technologies, 

abstracting the FPGA-architecture specific details of 

interfacing with correct timing to a particular external memory 

technology. NPI requires applications to explicitly specify 

large bursts in order to maximize memory bandwidth to burst-

oriented memory technologies, such as DDR2 SDRAM. The 

RTL code generated by AutoPilot can leverage these bursts to 

directly implement video frame buffers and other patterns of 

memory accesses without a separate DMA engine. 

IX. DESIGN EXPERIENCE AND RESULTS 

In this section we summarize some recent design 

experiences using HLS for FPGA designs in the two 

application domains discussed in the preceding section and 

discuss the experimental results, especially in terms of the 

quality of results of HLS as compared to manual designs. 

A. Summary of BDTI HLS Certification 

Xilinx has worked with BDTI Inc. [99] to implement an 

HLS Tool Certification Program [100]. This program was 

designed to compare the results of an HLS Tool and the Xilinx 

Spartan 3 FPGA that is part of the Video Starter Kit, with the 

result of a conventional DSP processor and with the results of 

a good manual RTL implementation. There were two 

applications used in this Certification Program, an optical flow 

algorithm, which is characteristic for a demanding image 

processing application and a wireless application (DQPSK) for 

which a very representative implementation in RTL was 

available. The results of the certification of the AutoPilot tool 

from AutoESL are available on the BDTI website [101]. 

Table 2. Quality of results for BDTI optical flow workflow 
operating point 2: maximum throughput, 1280x720 
progressive scan. (Table reproduced from [101]) 

Platform Chip 

Unit Cost 

(Qty 

10K) 

Maximum 

Frames per 

Second 

(FPS) 

Cost per 

FPS 

(Lower is 

Better) 

AutoESL AutoPilot 

plus Xilinx RTL 

tools targeting the 

Xilinx XC3D3400A 

FPGA 

$26.65 183 fps $0.14 

Texas Instruments 

software 

development tools 

targeting 

TMS320DM6437 

DSP processor 

$21.25 5.1 fps $4.20 

 

Results showing the maximum performance for the optical 

flow algorithm are shown in Table 2, comparing comparably 

priced consumer-grade FPGA and DSP targets. The AutoPilot 

implementation achieved approximately 30 times better 

throughput per dollar than the optimized DSP implementation. 

In addition, BDTI qualitatively assessed the “extent of 

modifications to the source code” necessary to implement the 

optical flow algorithm. The DSP processor implementation 

rated “fair”, while the AutoPilot implementation rated “good”, 

indicating that less source code modification was necessary to 

achieve high performance when using AutoPilot. 

Results for the DQPSK application are shown in Table 3, 

comparing the quality of results of the AutoPilot 

implementation with a manual RTL implementation. After 

optimization, including both significant source code 

refactoring and careful use of tool directives, the AutoPilot 

implementation achieved slightly lower resource usage than 

the RTL implementation. It is worth noting that the hand-

written RTL made use of optimized Xilinx CoreGen IP blocks 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

14 

where applicable. 

BDTI also assessed overall ease of use of the DSP tool flow 

and the FPGA tool flow, combining HLS with the low-level 

implementation tools. They concluded that the DSP tool flow 

was still significantly easier to use, primarily due to 

difficulties installing the FPGA tools and a lack of sufficient 

platform infrastructure that can be accessed without in-depth 

knowledge of the FPGA tool flow. In the future, we believe 

that these issues will be solved as shown in Section VIII. 

Table 3. Quality of results for DQPSK receiver workload: 
18.75 MSamples/second input data at 75MHz clock 

speed. (Table reproduced from [101]) 
Platform Chip Resource Utilization 

(Lower is Better) 

AutoESL AutoPilot plus 

Xilinx RTL tools targeting 

the Xilinx XC3D3400A 

FPGA 

5.6% 

Hand-written RTL code 

using Xilinx RTL tools 

targeting the Xilinx 

XC3SD3400A FPGA 

5.9% 

B. Sphere Decoder 

Xilinx has implemented a sphere decoder for a multi-input 

multi-output (MIMO) wireless communication system using 

AutoPilot [67][85]. The algorithm [28] consists largely of 

moderate-throughput linear algebra operations, such as matrix-

matrix multiply, matrix inverse, QR decomposition, and 

vector-norm computations implemented on small-dimension 

matrices. The application exhibits a large amount of 

parallelism, since the operations must be executed on each of 

360 independent subcarriers which form the overall 

communication channel and the processing for each channel 

can generally be pipelined. However, in order to reach an 

efficient high-utilization design, the implementation makes 

extensive use of resource sharing and time-division 

multiplexing, with the goal of simultaneously reducing 

resource usage and end-to-end processing latency. 

The algorithm was originally implemented in Matlab, which 

was converted to an algorithmic C model totaling 

approximately 4000 lines of code. The C model was further 

modified to generate an efficient implementation with 

AutoPilot. This code was converted to run through AutoPilot 

in a matter of days and optimized over a period of 

approximately three man-months. The resulting HLS code for 

the application makes heavy use of C++ templates to describe 

arbitrary-precision integer data types and parameterized code 

blocks used to process different matrix sizes at different points 

in the application. Various AutoPilot-specific #pragma 

directives were used, primarily to express the layout of arrays 

in memory blocks, to direct the unrolling and scheduling of 

loops to the appropriate level of parallelism, and to guide the 

scheduling algorithms to share operators and minimize 

resource usage. Most of the code included no explicit 

specification of the RTL structure, although in one case it was 

necessary to include a #pragma directive to force the RTL 

micro-architecture of a C function and to force the selection of 

a particular multiplier library element. 

The end architecture consists of 25 independent actors in a 

streaming dataflow architecture, shown in Figure 10. Each 

actor is separated by synthesized streams or double buffers 

from neighboring components, enabling them to execute 

concurrently. The portions marked “4x4”, “3x3” and “2x2” 

perform the same algorithm on matrices of decreasing size, 

and are collectively termed the “channel preprocessor”. These 

portions are implementing using parameterized C++ templates, 

targeted by AutoPilot at different II 1 (3 in the 4x4 case, 5 in 

the 3x3 case and 9 in the 2x2 case), enabling optimized 

resource sharing decisions to be made automatically. The 

remainder of the design operates at II=1, with all resource 

sharing described in the C code. 

Toplevel Block Diagram

H
Matrix

multiply

Matrix

multiplyQRD
Back

Subst.

4x4 Matrix Inverse Norm

Search/

Reorder

4x4

Matrix

multiply
Matrix

multiplyQRD
Back

Subst.

3x3 Matrix Inverse Norm

Search/

Reorder

3x3

Matrix

multiply
Matrix

multiplyQRD
Back

Subst.

2x2 Matrix Inverse Norm

Search/

Reorder

2x2

8x8 RVD

QRD

Tree Search Sphere Detector

Stage 1 Stage 8
Min

Search7
 

Figure 10. Architecture of the sphere decoder 
application. 

 

Table 4 below summarizes the results, comparing the 

overall AutoPilot-based implementation with a previously 

reported RTL-style implementation built using Xilinx System 

Generator. Both designs were implemented as standalone 

cores using ISE 12.1, targeting Xilinx Virtex 5 speed grade 2 

at 225 MHz. Using AutoPilot Version 2010.07.ft, we were 

able to generate a design that was smaller than the reference 

implementation in less time than a hand RTL implementation 

by refactoring and optimizing the algorithmic C model.  

Design time for the RTL design was estimated from work 

logs by the original authors of [28], and includes only the time 

for an algorithm expert and experienced tool user to enter and 

verify the RTL architecture in System Generator. Design time 

for the AutoPilot design was extracted from source code 

control logs. It reflects the time taken by a tool expert who is 

not a domain expert to take a piece of unfamiliar code, 

implement a first version in the tool, refactor the code to 

reflect a desired target architecture, reverse engineer the 

original RTL code to discover that algorithmic improvements 

were made in the RTL implementation that were not reflected 

back in the algorithmic model, and perform design exploration. 

                                                           
1  II denotes initiation interval of the pipeline. II=1 means the design 

accepts new inputs and produces new outputs at every clock cycle. 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

15 

In both cases, multiple people worked on the design in parallel. 

Given the significant time familiarizing ourselves with the 

application and structure of the code, we believe that an 

application expert familiar with the code would be able to 

create such a design at least twice as fast. 

Table 4. Sphere decoder implementation results. 

Metric RTL expert AutoPilot 

expert 

Diff. (%) 

Dev. time 
(man-weeks) 

16.5 15 -9% 

LUTs 32,708 29,060 -11% 

Registers 44,885 31,000 -31% 

DSP48s 225 201 -11% 

18K BRAMs 128 99 -26% 

 
To better understand the area savings, it is instructive to 

look more closely at smaller blocks of the design. The RVD-

QRD block, summarized in Table 5, operates at II=1, 

completing an 8x8 QR decomposition of 18-bit fixed point 

values every 64 cycles. The block implements a standard 

Givens-rotation based systolic array consisting of diagonal and 

off-diagonal cells, where the diagonal cells compute an 

appropriate rotation, zeroing one of the matrix elements, and 

the off-diagonal cells apply this rotation to the other matrix 

elements in the same row. To meet the required throughput, 

one row of the systolic array is instantiated, consisting of one 

diagonal cell and 8 off-diagonal cells, and the remaining rows 

are time multiplexed over the single row. In addition, since the 

systolic array includes a recurrence, 15 channels are time-

division multiplexed over the same hardware. Exactly the 

same architecture was implemented, although AutoPilot was 

able to generate a more optimized pipeline for the non-critical 

off-diagonal cell, resulting in slightly lower resource usage 

after optimization. After only 3 weeks, the AutoPilot design 

had met timing and throughput goals, but required more logic 

resources than the RTL design.  After additional optimization 

and synthesis constraints on the DSP48 mapping, AutoPilot 

realized the same DSP48 mapping as the RTL design (3 

DSP48s to implement the off-diagonal cell rotations and 6 

DSP48s to implement the diagonal cell computation and 

rotation), including mapping onto the DSP48 post-adder.  

Table 5. 8x8 RVD-QRD implementation results. 

Metric RTL 

expert 

AutoPilot 

expert 

AutoPilot 

expert 

Dev. time  
(man-weeks) 

4.5 3 5 

LUTs 5,082 6,344 3,862 

Registers 5,699 5,692 4,931 

DSP48s 30 46 30 

18K BRAMs 19 19 19 

 
Table 6 details multiple implementations of the “Matrix-

Multiply Inverse” components, consisting of the combined 

Matrix Multiply, QR Decomposition, and Back Substitution 

blocks. This combination implements (AT
A)-1 for various 

dimensions of 18-bit complex fixed-point matrices. In both 

RTL and AutoPilot design approaches, the 4x4 case was 

implemented first, and the 3x3 and 2x2 cases were derived 

from the 4x4 case. In RTL, resource sharing was implemented 

in a similar way for each case, with real and imaginary 

components time-multiplexed over a single datapath. Deriving 

and verifying the 3x3 and 2x2 case took approximately one 

week each. In AutoPilot, the three cases were implemented as 

C++ template functions, parameterized by the size of the 

matrix. All three cases were implemented concurrently, using 

a script to run multiple tool invocations in parallel. Depending 

on the matrix dimension, different initiation intervals were 

targeted, resulting in a variety of resource sharing 

architectures for each block, as shown in Figure 11.  

Table 6. Matrix-Multiply Inverse implementation results. 

Metric 4x4 

RTL 

4x4 

AP 

3x3 

RTL 

3x3 

AP 

2x2 

RTL 

2x2 

AP 

Dev. Time 
(man-weeks) 

4 4 1 0 1 0 

LUTs 9,016 7,997 6,969 5,028 5,108 3,858 

Registers 11,028 7,516 8,092 4,229 5,609 3,441 

DSP48s 57 48 44 32 31 24 

18K 
BRAMs 

16 22 14 18 12 14 

 

D

x x x x x x x

D

x

D

x
x x

a) 4x4 case (Toplevel II=3, OD II=3)

b) 3x3 case (Toplevel II=5, OD II=1)

c) 2x2 case (Toplevel II=9, OD II=3) 

28 DSP48

12 DSP48

4 DSP48

Figure 11. Complex QRD architectures. 

 

In the 4x4 case, the off-diagonal cell implements fine-

grained resource sharing, with one resource-shared complex 

multiplier. In the 3x3 case, the off-diagonal cell contains 3 

complex multipliers and the off-diagonal cell itself is resource 

shared at a coarser granularity. In the 2x2 case, all of the off-

diagonal cell operations are time multiplexed on a single 

complex multiplier, combining both coarse-grained and fine-

grained resource sharing techniques. In AutoPilot, the only 

difference between these blocks is the different target 

initiation intervals, resulting in significant resource sharing. 

Certainly there is no doubt that an RTL designer could have 

achieved these architectures, given the appropriate insight. 

However, getting to the optimized cases from the 4x4 case 

implemented would require a complete RTL-level redesign. 

We do observe that AutoPilot uses additional BRAM to 

implement this block relative to the RTL implementation, 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

16 

because AutoPilot requires tool-implemented double-buffers 

to only be read or written in a single loop. When considered as 

part of the overall design, however, we were able to reduce 

BRAM usage by converting BRAMs to LUTRAM due to the 

improve architecture of this block.  

X. CONCLUSIONS AND CHALLENGES AHEAD  

It seems clear that the latest generation of FPGA HLS tools 

has made significant progress in providing wide language 

coverage, robust compilation technology, platform-based 

modeling, and domain-specific system-level integration. As a 

result, they can quickly provide highly competitive quality of 

results, in many cases comparable or better than manual RTL 

designs. For the FPGA design community, it appears that HLS 

technology may be transitioning from research and 

investigation to selected deployment. 

Despite this encouraging development, we also see many 

opportunities for HLS tools to further improve. In this section, 

we discuss a few directions and opportunities.  

A. Support of memory hierarchy 

The intelligent synthesis support of external off-chip 

memories is very important in applications that process large 

amounts of data or high data rates, for example:  

� Data-intensive video and image processing applications 

often require multiple frames of data to be stored. In 

practice, this storage is usually implemented using 

commodity DDR2 SDRAMs and requires fast and 

efficient direct memory access logic to achieve high 

performance. 

� Recent advances in FPGA-based high-performance 

reconfigurable computing [32] also require efficient 

access to the gigabytes of external memories shared 

between a host processor and an FPGA accelerator. 

However, as mentioned in [66], most of the existing HLS 

solutions currently lack efficient support of the memory 

hierarchy and sufficient abstraction of the external memory 

accesses. As a result, software designers are exposed to the 

low-level details of bus interfaces and memory controllers. 

They must be intimately familiar with the bus bandwidth and 

burst length and translate such knowledge to C code with 

substantial modifications. Clearly, such design practice is out 

of the comfort zone for many software developers and 

algorithm designers.  

Hence, it is highly preferable to have synthesis tools hide 

explicit external memory transfers as much as possible from 

programmers. This would require the support of efficient 

memory hierarchies, including automatic caching and 

prefetching to hide memory latency and enhance data locality.  

The CHiMPS project [76] is one of the promising attempts 

in this area. It incorporates a traditional memory hierarchy 

with caches into the synthesized FPGA system to manage 

external memory, while focusing on the highest possible 

performance from a given code without rewriting. The 

proposed C-to-FPGA compilation flow generates multiple 

distributed caches used by multiple concurrent processing 

elements. 

B. Higher-level models 

C and C++ languages are intended to describe sequential 

programs while modern FPGAs can implement highly 

complex concurrent systems. While the latest HLS tools have 

impressive capabilities to extract instruction-level and loop-

level parallelism from C/C++ programs, it is inherently 

difficult to extract task-level parallelism from arbitrary 

sequential specifications. In addition, for systems with task-

level feedback, sequential execution may not easily capture 

the parallel behavior of the system, making verification 

difficult. 

Existing approaches mainly rely on manual annotation in 

the input specification for task-level parallelism. They also try 

to extract task-level parallelism by constructing synchronous 

data flow (SDF) [60], Kahn process networks (KPN) [48], or 

communicating sequential processes (CSP) [44] models from 

a sequential specification. A more effective approach may be 

to use programming models that can explicitly specify 

concurrency, dependency, and locality. For instance, recent 

work used the CUDA language [106] for input specification to 

HLS [68] since CUDA can easily describe thread-level 

concurrency. However, CUDA was originally intended to 

model applications mapped onto NVIDIA GPUs and includes 

many GPU specific features which are not suitable for FPGAs. 

Our preference is to choose a device-neutral programming 

model. Currently, we are investigating the possibility of using 

Concurrent Collections [108] to describe the task level 

dependency while continuing to specify each task using 

C/C++ languages.  

C. In-System Design validation and debugging 

On-chip and on-board design validation and debugging has 

emerged as one of the most time-consuming aspects for 

FPGA-based systems, especially given continuously 

increasing device capacity and growing design complexity. 

Although the promise of HLS is that most verification can be 

performed by executing the original untimed C model, timing- 

and data-related errors that occur on the board are often 

difficult to debug. At present, the common practice to detect 

such errors is to perform RTL-level timing accurate simulation 

or to use in-system debugging tools from major vendors (e.g., 

Altera SignalTap II and Xilinx ChipScope). These tools can be 

used to insert logic analyzer cores and provide capabilities to 

trigger and probe internal signals inside the FPGA circuits. 

Debugging HLS designs at the RTL level is complicated by 

the fact that the structure of the original C code may not 

resemble the RTL architecture generated by an HLS tool. 

Many of the modern HLS solutions provide cross referencing 

capabilities between C and RTL to help designers understand 

the synthesis results. However, names in HDL are often 

transformed during RTL synthesis and technology mapping.  

In order to effectively debug these systems, future HLS 

tools shall enable almost all debugging to occur in the C 

domain by providing: 

� Debugging core synthesis: the ability to synthesize 

efficient debugging logic with minimal overhead. 

� Performance monitor generation: the ability to watch the 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

17 

status of critical buffers to debug performance bugs, 

such as FIFO overflows and deadlocks. 

� Step-through tracing: the ability to set breakpoints at the 

C level and observe internal states from hardware blocks. 

ACKNOWLEDGMENT 

This work is partially supported by the Gigascale System 

Research Center (GSRC) and Global Research Corporation 

(GRC). Sven van Haastregt contributed significantly to the 

implementation and analysis of the sphere decoder, and his 

efforts are highly appreciated. 

REFERENCES 

[1] T. L. Adam, K. M. Chandy, and J. R. Dickson, “A comparison of list 
schedules for parallel processing systems,” Communications of the 
ACM, vol. 17(12), pp. 685-690, Dec. 1974. 

[2] B. Alpern, W. Bowen, M.N. Wegman, and F.K. Zadeck, “Detecting 
equality of variables in programs,” in Proc. PPL’88, pp. 1-11. 

[3] B. Bailey, F. Balarin, M. McNamara, G. Mosenson, M. Stellfox, and Y. 
Watanabe, “TLM-Driven Design and Verification Methodology,” 
Cadence Design Systems, Jun. 2010. 

[4] M. Barbacci, G. Barnes, R. Cattell, and D. Siewiorek, The symbolic 
manipulation of computer descriptions: the ISPS computer description 
language, Dep. Comput. Sci., Carnegie-Mellon Univ., Pittsburgh, 
PA,Tech. Rep., Mar. 1978. 

[5] R.A. Bergamaschi, R.A. O'Connor, L. Stok, M.Z. Moricz, S. Prakash, A. 
Kuehlmann and D. S. Rao, “High-level synthesis in an industrial 
environment,” IBM Journal of Research and Development, vol. 39(1-2), 
pp. 131-148, Jan. 1995. 

[6] J. Biesenack, M. Koster, A. Langmaier, S. Ledeux, S. Marz, M. Payer, 
M. Pilsl, S. Rumler, H. Soukup, N. Wehn, and P. Duzy, “The Siemens 
high-level synthesis system CALLAS,” IEEE Trans. VLSI Systems, 
vol.1(3), pp.244-253, Sep 1993. 

[7] T. Bollaert, “Catapult synthesis: a practical introduction to interactive C 
synthesis,” in P. Coussy and A. Morawiec Eds. High-Level Synthesis: 
From Algorithm to Digital Circuit, Springer, 2008. 

[8] D. Burnette, “An ESL methodology for functional verification between 
untimed C++ and RTL using SystemC,” Mentor Graphics, 2008. 

[9] M. Budiu, G. Venkataramani, T. Chelcea and S. Goldstein, “Spatial 
computation,” in Proc. ASPLOS’04, pp. 14-26. 

[10] A. Chandrakasan, M. Potkonjak, J. Rabaey, and R. Brodersen, “HYPER-
LP: a system for power minimization using architectural 
transformations,” in Proc. ICCAD'92, pp. 300-303. 

[11] R. Composano, “Design process model in the Yorktown Silicon 
Compiler,” in Proc. DAC’88, pp. 489-494. 

[12] R. Composano, “Path-based scheduling for synthesis,” IEEE Trans. 

CAD, vol. 10(1), pp. 85-93, Jan. 1991. 
[13] J. Cong and Y. Zou, “Lithographic aerial image simulation with FPGA-

based hardware acceleration,” in Proc. FPGA’08, Feb. 2008, pp. 20-29. 
[14] J. Cong and W. Rosenstiel, “The last byte: the HLS tipping point,” IEEE 

Design & Test of Computers, vol. 26(4), pp. 104, Jul./Aug. 2009. 
[15] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm 

based on SDC formulation,” in Proc. DAC'06, pp. 433-438. 
[16] J. Cong and W. Jiang, “Pattern-based behavior synthesis for FPGA 

resource reduction,” in Proc. FPGA'08, Feb. 2008, pp. 107-116. 
[17] J. Cong, Y. Fan, G. Han, W. Jiang and Z. Zhang, “Platform-based 

behavior-level and system-level synthesis,” in Proc. IEEE Intl. SOC 

Conf., Sept. 2006, pp. 199-202.  
[18] J. Cong, H. Huang and W. Jiang, “A generalized control-flow-aware 

pattern recognition algorithm for behavioral synthesis”, in Proc. 

DATE’10, pp. 1255-1260. 
[19] J. Cong, W. Jiang, B. Liu, and Y. Zou, “Automatic memory partitioning 

and scheduling for throughput and power optimization,” in Proc. ICCAD 

'09, Nov. 2009, pp. 697-704. 
[20] J. Cong, B. Liu, and Z. Zhang, “Scheduling with soft constraints,” in 

Proc. ICCAD'09, Nov. 2009, pp. 47-54. 
[21] J. Cong, K. Gururaj, B. Liu, C. Liu, Z. Zhang, S. Zhou and Y. Zou, 

“Evaluation of static analysis techniques for fixed-point precision 
optimization,” in Proc. FCCM’09, Apr. 2009, pp. 231-234. 

[22] P. Coussy, C. Chavet, P. Bomel, D. Heller, E. Senn, and E. Martin, 
“GAUT: A High-Level Synthesis Tool for DSP Applications,” in P. 
Coussy and A. Morawiec Eds. High-Level Synthesis: From Algorithm to 
Digital Circuit, Springer, 2008.. 

[23] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck, 
“Efficiently computing static single assignment form and the control 
dependence graph,” ACM Transactions on Programming Languages 

and Systems, vol. 13(4), pp. 451-490, Oct. 1991. 
[24] G. De Micheli, D. Ku, F. Mailhot, and T. Truong, “The Olympus 

synthesis system,” IEEE Design & Test of Computers, vol. 7(5), pp. 37-
53, 1990. 

[25] G. De Micheli and D. Ku, “HERCULES—A system for high-level 
synthesis,” in Proc. DAC'88, pp. 483-488. 

[26] H. De Man, J. Rabaey, J. Vanhoof, P. Six, and L. Claesen, “Cathedral-
II—a silicon compiler for digital signal processing,” IEEE Design &Test 

of Computers, vol. 3(6), pp. 13-25, 1986. 
[27] K. Denolf, S. Neuendorffer, and K. Vissers, “Using C-to-gates to 

program streaming image processing kernels efficiently on FPGAs,” in 
Proc. FPL’09, pp. 626-630. 

[28] C. Dick et.al., “FPGA Implementation of a Near-ML Sphere Detector 
for 802.16e Broadband Wireless Systems,” in Proc. Of the SDR’09 

Technical Conference, Dec. 2009. 
[29] S. Director, A. Parker, D. Siewiorek, and D. Thomas Jr.“A design 

methodology and computer aids for digital VLSI,” IEEE Trans. Circuits 

and Systems, vol. CAS-28(7), pp. 634-645, Jul. 1982. 
[30] S. A. Edwards, “High-level synthesis from the synchronous language 

Esterel,” in Proc. IWLS’02.  
[31] S. A. Edwards. “The challenges of synthesizing hardware from C-like 

Languages,” IEEE Design & Test of Computers, vol. 23(5), pp. 375-386, 
Sept. 2006. 

[32] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko, and D. 
Buell, “The promise of high-performance reconfigurable computing,” 
IEEE Computer, vol. 41(2), pp. 69-76, Feb. 2008. 

[33] J. P. Elliott, “Understanding behavioral synthesis: a practical guide to 
high-level design,” Springer, 1999. 

[34] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer and S. Zhao, SpecC: 

specification language and methodology, Kluwer Academic Publishers, 
2000. 

[35] F. Ghenassia, Transaction-Level Modeling with SystemC: TLM 
Concepts and Applications for Embedded Systems, Springer, 2005. 

[36] M. Gokhale, J. Stone, J. Arnold, M. Kalinowski, “Stream-oriented 
FPGA computing in the Streams-C high level language,” in Proc. 

FCCM’00, pp.49-56. 
[37] J. Granacki, D. Knapp, and A. Parker, “The ADAM advanced design 

automation system: overview, planner and natural language interface,” 
in Proc. DAC '85, pp. 727-730. 

[38] Y. Guo, D. McCain, J. R. Cavallaro, and A. Takach, “Rapid industrial 
prototyping and SoC design of 3G/4G wireless systems using an HLS 
methodology,” EURASIP Journal on Embedded Systems, vol. 2006(1), 
2006. 

[39] Z. Guo, B. Buyukkurt, J. Cortes, A. Mitra, and W. Najjar, “A compiler 
intermediate representation for reconfigurable fabrics,” International 
Journal of Parallel Programming, vol. 36(5), pp. 493-520, Oct. 2008. 

[40] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau, “Coordinated parallelizing 
compiler optimizations and high-level synthesis,” ACM Trans. Design 
Automation of Electronic Systems, vol. 9(4), pp. 441–470, Oct. 2004. 

[41] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau, “SPARK: a parallelizing 
approach to the high-level synthesis of digital circuits,” Springer, 2004. 

[42] M. Haldar, A. Nayak, A. Choudhary and P. Banerjee, “A system for 
synthesizing optimized FPGA hardware from MATLAB,” in Proc. 

ICCAD’01, pp. 314-319. 
[43] A. Hemani, B. Karlsson, M. Fredriksson, K. Nordqvist, and B. Fjellborg, 

“Application of high-level synthesis in an industrial project,” in Proc. 

VLSI Design’94, pp.5-10. 
[44] C. A. R. Hoare, “Communicating Sequential Processes,” 

Communications of the ACM, vol. 21(8), pp. 666-677, Aug. 1978. 
[45] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A formal approach to the 

scheduling problem in high-level synthesis,” IEEE Trans. Computer-

Aided Design, vol. 10(4), pp. 464-475, Apr. 1991. 
[46] R. Jain, K. Kucukcakar, M.J. Mlinar, and A.C. Parker, “Experience with 

ADAM synthesis system,” in Proc. DAC '89, pp.56-61. 
[47] R. Jain, A. Parker, and N. Park, “Module selection for pipelined 

synthesis,” in Proc. DAC'88, pp. 542-547. 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

18 

[48] G. Kahn, “The semantics of a simple language for parallel 
programming,” In Jack L. Rosenfeld (Ed.): Information Processing 74, 
Proceedings of IFIP Congress 74, Aug. 1974. 

[49] V. Kathail, S. Aditya, R. Schreiber, B. Ramakrishna Rau, D. C. 
Cronquist, and M. Sivaraman, “PICO: automatically designing custom 
computers,” IEEE Computer, vol. 35(9), pp. 39-47, Sep. 2002. 

[50] K. Kennedy and J.R. Allen, “Optimizing compilers for modern 
architectures: a dependence-based approach,” Morgan Kaufmann 
Publishers, 2001. 

[51] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli, “System level design: orthogonalization of concerns and 
platform-based design,” IEEE Trans. CAD, vol. 19(12), pp. 1523-1543, 
Dec. 2000. 

[52] V. Kindratenko and R. Brunner, “Accelerating cosmological data 
analysis with FPGAs”, In Proc. FCCM’09, pp. 11-18. 

[53] A. Kölbl, R. Jacoby, H. Jain, and C. Pixley, “Solver technology for 
system-level to RTL equivalence checking,” in Proc. DATE 2009, pp. 
196-201. 

[54] D. Ku and G. De Micheli, “HardwareC—a language for hardware design 
(version 2.0),” Technical Report. UMI Order Jumber: CSL-TR-90-419, 
Stanford University, 1990. 

[55] D. Ku and G. De Mecheli, “Constrained resource sharing and conflict 
resolution in Hebe,” Integration, the VLSI Journal, vol. 12(2), pp. 131-
165, 1991. 

[56] D. Ku and G. De Micheli, “Relative scheduling under timing 
constraints,” in Proc. DAC'91, pp. 59-64. 

[57] F. J. Kurdahi and A. C. Parker, “REAL: a program for register 
allocation,” in Proc. DAC'87, pp. 210-215. 

[58] K. Küçükçakar, C.-T. Chen, J. Gong, W. Philipsen and T. E. Tkacik, 
“Matisse: an architectural design tool for commodity ICs,” IEEE Design 

and Test of Computers, vol. 15(2), pp. 22-33, Apr.-June 1998. 
[59] C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong 

program analysis & transformation,” in Proc. CGO'04, pp. 75-86. 
[60] E. A. Lee and David G. Messerschmitt, “Synchronous data flow,” 

Proceedings of the IEEE, vol. 75(9), pp. 1235-1245, Sept. 1987. 
[61] P.E.R. Lippens, J.L. van Meerbergen, A. van der Werf, W.F.J. Verhaegh, 

B.T. McSweeney, J.O. Huisken and O.P. McArdle, “PHIDEO: a silicon 
compiler for high speed algorithms,” in Proc. EDAC’91, pp.436-441. 

[62] P. Marwedel, “The MIMOLA design system: tools for the design of 
digital processors,” in Proc. DAC’84, pp.587-593. 

[63] A. Mathur, M. Fujita, E. Clarke, and P. Urard, “Functional equivalence 
verification tools in high-level synthesis flows,” IEEE Design & Test of 

Computers, vol. 26(4), pp. 88-95, Dec. 2009. 
[64] O. Mencer, “ASC: a stream compiler for computing with FPGAs,” IEEE 

Trans. CAD, vol. 25(9), pp. 1603-1617. 
[65] M. Meredith, “High-level SystemC synthesis with Forte’s Cynthesizer,” 

in P. Coussy and A. Morawiec Eds. High-Level Synthesis: From 
Algorithm to Digital Circuit, Springer, 2008. 

[66] S. Neuendorffer and K. Vissers, “Streaming systems in FPGAS,” in 
SAMOS Workshop, ser. Lecture Jotes in Computer Science, no. 5114, 
pp. 147-156, Jul. 2008.  

[67] J. Noguera, S. Neuendorffer, S. Van Haastregt, J. Barba, K. Vissers, and 
C. Dick, “Sphere detector for 802.16e broadband wireless systems 
implementation on FPGAs using high-level synthesis tools,” in SDR’10 

Forum, Nov. 2010. 
[68] A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong, and 

W.M. Hwu, “FCUDA: Enabling Efficient Compilation of CUDA 
Kernels onto FPGAs,” in Proc. IEEE Symposium on Application 
Specific Processors, Jul. 2009. 

[69] N. Park and A. Parker, “Sehwa: a program for synthesis of pipelines,” in 
Proc. DAC'86, pp. 595-601. 

[70] A. Parker, J. T. Pizarro, and M. Mlinar, “MAHA: a program for datapath 
synthesis,” in Proc. DAC'86, pp. 461-466. 

[71] A. Parker, D. Thomas, D. Siewiorek, M. Barbacci, L. Hafer, G. Leive, 
and J. Kim, “The CMU design automation system: an example of 
automated data path design,” in Proc. DAC’79, pp. 73-80. 

[72] P. G. Paulin. J. P. Knight, and E.F. Girczyc, “HAL: A multi-paradigm 
approach to automatic data path synthesis,” in Proc. DAC'86, pp. 263-
270. 

[73] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the 
behavioral synthesis of ASIC's,” IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems, vol. 8(6), pp. 661-678, Jun. 
1989. 

[74] D. Pellerin and S. Thibault, “Practical FPGA programming in C,” 
Prentice Hall Professional Technical Reference, 2005. 

[75] P.J. Pingree, L.J. Scharenbroich, T.A. Werne, and C.M. Hartzell, 
“Implementing legacy-C algorithms in FPGA co-processors for 
performance accelerated smart payloads,” in Proc. IEEE Aerospace 

Conference, Mar. 2008, pp. 1-8. 
[76] A. Putnam, S. Eggers, D. Bennett, E. Dellinger, J. Mason, H. Styles, P. 

Sundararajan, and R. Wittig, “Performance and power of cache-based 
reconfigurable computing,” in Proc. ISCA’09, pp. 395-405. 

[77] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast prototyping of 
datapath-intensive architectures,” IEEE Design & Test, vol. 8(2), pp. 40-
51, Apr. 1991. 

[78] J. Sanguinetti, “A different view: hardware synthesis from SystemC is a 
maturing technology,” IEEE Design & Test of Computers, vol. 23(5), pp. 
387-387, Sept. 2006. 

[79] E. Snow, D. Siewiorek, and D. Thomas, "A technology-relative 
computer aided design system: abstract representations, transformations, 
and design tradeoffs," in Proc. DAC’78, pp. 220-226. 

[80] M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth analysis with 
application to silicon compilation,” in Proc. PLDI’00, pp. 108-120. 

[81] Y. Sun, J.R. Cavallaro, and T. Ly, “Scalable and low power LDPC 
decoder design using high level algorithmic synthesis,” in Proc. IEEE 
SOC Conference, 2009, pp. 267-270. 

[82] J. L. Tripp, M. B. Gokhale, and K.D. Peterson, “Trident: from high-level 
language to hardware circuitry,” IEEE Computer, vol. 40(3), pp. 28-37, 
Mar. 2007. 

[83] J. L. Tripp, K.D. Peterson, C. Ahrens, J. D. Poznanovic and M.B. 
Gokhale, “Trident: an FPGA compiler framework for floating-point 
algorithms,” in Proc. FPL'05, 2005, pp.317-322. 

[84] P. Urard, J. Yi, H. Kwon and A. Gouraud, “User needs,” in P. Coussy 
and A. Morawiec Eds. High-Level Synthesis: From Algorithm to Digital 
Circuit, Springer, 2008. 

[85] S. van Haastregt, S. Neuendorffer, K. Vissers, and B. Kienhuis, “High 
level synthesis for FPGAs applied to a sphere decoder channel 
preprocessor,” Manuscript.  

[86] D. Varma, D. Mackay, and P. Thiruchelvam, “Easing the verification 
bottleneck using high level synthesis,” IEEE VLSI Test Symposium, Apr. 
2010.  

[87] J. Villarreal, A. Park, W. Najjar and R. Halstead, “Designing modular 
hardware accelerators in C with ROCCC 2.0,” in Proc. FCCM'10, 
pp.127-134. 

[88] D. W. Knapp, “Behavioral synthesis: digital system design using the 
Synopsys Behavioral Compiler,” Prentice-Hall, 1996. 

[89] K. Wakabayashi and B. Schafer, “‘All-in-C’ behavioral synthesis and 
verification with CyberWorkBench,” in P. Coussy and A. Morawiec 
Eds. High-Level Synthesis: From Algorithm to Digital Circuit, Springer, 
2008. 

[90] K. Wakabayashi, “C-based behavioral synthesis and verification analysis 
on industrial design examples,” in Proc. ASPDAC’04, pp. 344-348. 

[91] K. Wakabayashi, “Unified representation for speculative scheduling: 
generalized condition vector,” IEICE Transactions, vol. E89-A(12), pp. 
3408-3415, 2006. 

[92] F. F. Yassa, J. R. Jasica, R. I. Hartley, and S. E. Noujaim, “A silicon 
compiler for digital signal processing: methodology, implementation, 
and applications,” in Proc. IEEE, vol. 7(9), pp. 1272-1282. 

[93] J. Zhang, Z. Zhang, S. Zhou, M. Tan, X. Liu, X. Cheng, and J. Cong, 
“Bit-level optimization for high-level synthesis and FPGA-based 
acceleration,” in Proc. FPGA’10, Feb. 2010, pp. 59-68. 

[94] Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang, and J. Cong, “AutoPilot: 

a platform-based ESL synthesis system,” High-Level Synthesis: From 
Algorithm to Digital Circuit, ed. P. Coussy and A. Morawiec, Springer 
Publishers, 2008. 

[95] Agility Design Solutions, Handel-C language reference manual, 2007. 
[96] AMBA AXI specification, version 2.0. http://www.arm.com. 
[97] Avnet Spartan-6 FPGA DSP Kit. 

http://www.xilinx.com/products/devkits/AES-S6DSP-LX150T-G.htm. 
[98] Altera Corporation, Jios II C2H compiler user guide, version 9.1, Nov. 

2009. 
[99] Berkeley Design Technology, Inc. (BDTI), www.bdti.com. 
[100] BDTI High-Level Synthesis Tool Certification Program™, 

http://www.bdti.com/products/services_hlstcp.html, Jan. 2010. 
[101] BDTI Certified™ Results for the AutoESL AutoPilot High-Level 

Synthesis Tool, http://www.bdti.com/bdtimark/hlstcp_autoesl.html, Jan. 
2010. 

[102] BlueSpec, Inc. http://www.bluespec.com. 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

 

19 

[103] Cadence C-to-Silicon white paper. 
http://www.cadence.com/rl/resources/technical_papers/c_to_silicon_tp.p
df, 2008. 

[104] Cadence EDA360 Whitepaper. Silicon realization enables next-
generation IC design. 

[105] Calypto Design Systems, Inc., http://www.calypto.com. 
[106] Compute Unified Device Architecture Programming Guide. NVIDIA, 

2007. 
[107] IEEE and OCSI. IEEE 1666TM-2005 Standard for SystemC. 

http://www.systemc.org, 2005. 
[108] Intel Concurrent Collections for C++, http://software.intel.com/en-

us/articles/intel-concurrent-collections-for-cc, Apr. 2010. 
[109] International Technology Roadmap for Semiconductors (ITRS), 2009 

edition. http://www.itrs.net/links/2009ITRS/Home2009.htm. 
[110] LLVM compiler infrastructure. http://www.llvm.org. 
[111] Magma Talus. http://www.magma-da.com/products-

solutions/digitalimplementation/talusdesign.aspx 
[112] Nallatech, Inc., DIME-C user guide.  
[113] Open SystemC Initiative. SystemC Synthesizable Subset Draft 1.3. 

http://www.systemc.org, Dec. 2009. 
[114] Synopsys IC compiler. 

http://www.synopsys.com/Tools/Implementation/PhysicalImplementatio
n/Pages/ICCompiler.aspx. 

[115] Synopsys Synphony. 
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/default.asp
x 

[116] Xilinx Spartan-6 FPGA Consumer Video Kit. 
www.xilinx.com/products/devkits/TB-6S-CVK.htm. 

[117] Xilinx University Program. 
http://www.xilinx.com/products/boards_kits/university. 

[118]  Xilinx Multi-ported Memory Controller (MPMC) Data Sheet (v6.02.a), 
DS643, Sep. 21, 2010.  



Professor Vijaykrishnan Narayanan 

Computer Science and Engineering 

The Pennsylvania State University University Park, PA 16802 

 

Dear Prof. Narayanan: 
 

Thank you very much for sending us the reviewers’ comments on our paper entitled “High-

Level Synthesis for FPGAs: From Prototyping to Deployment” by Jason Cong, Bin Liu, 
Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and Zhiru Zhang (Control Number: 

6158). We found these comments very helpful. We have revised the manuscript carefully 

according to reviewers’ comments and suggestions. Here is a brief summary of our major 

revisions: 

 

(i) More data regarding design experience and results are included. This gives more details on 

the use of high-level synthesis tools in an industrial setting, and clarifies possible 

misunderstandings about the efficiency of high-level synthesis tools. 

(ii) The section that reviews previous and concurrent high-level synthesis tools is 

substantially rewritten. Instead of describing features of each tool individually, we grouped 
them according to their contributions and timelines, with an emphasis to show the progression 

of the HLS technology. We then present AutoPilot in this backdrop, describing it as one of 

the representative tools in the current market, and avoid direct comparison between AutoPilot 

and other prevalent tools. 

(iii) A new section is added to describe debugging, simulation and verification in high-level 

synthesis per reviewers’ request. 

 

We also made numerous minor changes based on reviewers’ comments, which are detailed in 

the attachment.  We would appreciate it if you would forward this letter to the associate editor 
and the reviewers. Thank you very much for your help. 

 

Sincerely, 
 

Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and Zhiru Zhang 

AutoESL Design Technologies, Inc. 
University of California, Los Angeles 

Xilinx, Inc. 



Responses to Comments from Reviewer Number 1 

 

(1) Being a relevant competitor to AutoESL I would have, however, expected to see more 

distinction between the Mentor Graphic Catapult-C tool and AutoPilot, especially in the 

results section.  
Reply: Thanks for the suggestion. We agree that it would be useful for readers to see a 

comparison between Catapult-C and AutoPilot.  However, there is difficulty to carry out such 

a comparison for multiple reasons: (i) we do not have access to Catapult-C, and (ii) Almost all 
CAD tool end-user license agreements have confidentiality clauses that prohibit direct 

comparison of the tool’s performance with other competing tools.  Such a comparison is only 

possible when coordinated by a third-party organization with explicit consent of CAD tool 

vendors. Obviously, this is beyond the effort of the paper. We quoted the results from the 

recent BDTi a high-level synthesis tool certification program. AutoPilot was one of the tools 

evaluated for quality of result and for usability. Unfortunately, Mentor Catapult-C did not 

participate in this program. We are definitely open to discuss the comparison if similar 

programs are held in future. 

 

(2) Most importantly, Table 2, shows a 1.5 week advantage in development time for an expert 
AutoPilot user. In my opinion this is not a substantial reduction in time to convince an expert 

RTL designer to adopt this flow.  

Reply: Thanks for pointing it out.  

We were trying to give a comparison between the AutoPilot flow and the sysgen-RTL flow 

by reporting the time to capture and verify the design, as extracted from source-code control 

logs. In both cases, a process of converting the reference model in Matlab is included. Yet, 

the RTL design was performed by a team including someone who are very familiar with the 

Matlab model, and the 16.5 weeks of design time does not include that spent on learning 

about the algorithm. On the other hand, the team using HLS flow did not have the domain 
knowledge initially, and thus spent a significant amount of time understanding the Matlab 

code and converting it to C++. We believe that a domain expert would be able to create the 

C++ model much faster. We have clarified this in the revised manuscript (Page 14, last 
paragraph).  

Once a reference C/C++ model is available, it is very easy to obtain RTL results using 

AutoPilot. It is very easy to explore the design space by changing synthesis directives and 
constraints. This fast exploration actually provided us a way to get better QoR. Using a recent 

version of AutoPilot, we are actually able to get significant QoR improvements (see Table 4, 

5, 6). In Table 6 of the revised manuscript, we report different architectures for the matrix-

multiply inverse module. Once the 4x4 case is implemented in C, obtaining the 3x3 and 2x2 

cases took almost no time. We believe these results are encouraging for the deployment of 

HLS tools. 

 

(3) Finally, the validation and debugging limitations of HLS are of large importance 

deserving of more discussion than that in section IX.C. 
Reply: Thanks for the suggestion. In the revised manuscript, we have Section VII devoted to 

design verification. We included both simulation-based approach and the formal approach. 



Responses to Comments from Reviewer Number 2 

 

(1) For the second point of section II.C, you have said the existing hls tools required users to 

embed detailed timing and interface information as well as the synthesis constraints into the 

source code. Please explain it or cite some references. 
Reply: When synthesizing a module described in behavior languages like C/C++ into RTL, it 

is important that the module meets the timing specifications, including interface protocol, 

latency, etc. A typical approach to specify these constraints in C/C++ file is to use compiler 
pragmas in the source code. However, different tools often require different formats to impose 

the constraints, making the specification not portable. 

 

 

(2) What's the benefit of using soft constraints? 

Reply: Using soft constraints is a natural way to specify non-functional design requirements 

or intentions. Soft constraints do not lead to infeasible constraint systems and thus can be 

imposed without worrying consistency with other existing constraints. In addition, the special 

form of soft constraints (integer-difference soft constraints) can be handled optimally in a 

mathematical-programming formulation. In the revised manuscript, we have included the 
formulations and added more explanation on this part (Section VI.B). 

 

(3) Please make fig 7 clearer, some words in fig 7 cannot be seen clearly. 

Reply: Thanks for the suggestion. We have included a clearer version of the figure. We have 

also redrawn several other figures are redrawn in vector graphic format in the revised 

manuscript. 



Responses to Comments from Reviewer Number 3 

 

(1) The paper does provide a valuable survey of HLS history but then recent achievements in 

HLS are restricted to the authors own work. Why not include a survey of recent algorithm 

advancements by other researchers as well to help make the case that HLS has advanced? 
The paper currently makes it seem like the only valuable recent HLS research in the past five 

to ten years has been on AutoPilot. 

 
Inclusion of a number of recent C-language HLS advancements that were not made by the 

authors. Published work by Impulse-C and Celoxia should be considered and included in a 

somewhat significant way in the main body of the paper, not just in the background section. 

The authors should at least mention that Altera has a C2H tool. 

Reply: Thanks for your suggestion. We have substantially reorganized Section II, and added a 

lot of new materials. More tools (including Impulse-C, Celoxica, and Altera C2H) are 

included, and they are categorized in various aspects to provide more insight.  

 

 

(2) Significantly more results (e.g. at least 3 or 4 designs) showing that AutoPilot can 
generate code for a Xilinx device that is close to hand-written RTL are needed. 

Reply: Thanks for your suggestion. We have expanded the section about design experience 

and quality-of-results, with more modules and QoR data. Table 4-6 show that AutoPilot is 

capable of producing comparable or better QoR than manual RTL on industrial designs. 

 

(3) Removal of various marketing type statements about how designers prefer AutoPilot, its 

easy-of-use, its acceptance in the marketplace, how it addresses failures of other company's 

products, etc. In my opinion these types of statements belong in trade magazines, not top 

research journals like TCAD 
Reply: In the revised manuscript, we removed such statements and avoided direct comparison 

between AutoPilot and other tools in the market. Instead, we position AutoPilot as one of the 

representative C-base synthesis tools and try to describe the current status of HLS adoption 
using AutoPilot as an example. 

 

(4) The paper is a little long and could be shorted. Some of the background material on the 
early HLS systems is verbose and could be trimmed. There could be more of a focus on the 

specific contributions of each tool rather than details of all their features. The "Lessons 

Learned" section could be merged with the "Early Efforts" section to make the deficiencies of 

earlier systems clearer (e.g. which specific system had which deficiency?). At a minimum, the 

"Lessons Learned" section should include references to make it clearer which previous 

systems had these deficiencies. A lot of Sections V.A and V.B is repeated in Section VII. 

Reply: We have reorganized Section II in the revised manuscript to make it more concise and 

insightful, by categorizing tools according to different aspects. We have a “lessons learned” 

subsection without specifying which tool has which deficiency for several reasons. (1) Some 
of the deficiencies are shared by many tools, and we have tried to discuss the pros and cons 

for the general approach (such as “using C/C++ as input language”). (2) With some of the 

authors being affiliated with AutoESL, emphasizing the deficiency of tools from our 
competitors seems inappropriate in a technical article, and thus is avoided. (3) Many of the 

tools are still evolving; a specific deficiency of a tool may be fixed in the near future (or 

maybe have already been fixed at the time when the paper is published).  

 

(5) I'm not sure why Figure 3 is included. 

Reply: Thanks for pointing out the missing reference. We have fixed the problem as well as a 

few other similar ones in the revised manuscript. 



Responses to Comments from Reviewer Number 4 

 

(1) In some figures (e.g. 7) you need to increase the size of the captures or lines and maybe 

you should not use colors. Greyscale is better since many often, the papers are printed black 

and white. 
Reply: Thanks for your suggestion.  

We have edited the figures to make them more visible in the revised manuscript.



Responses to Comments from Reviewer Number 5 

 

(1) I have included the PDF file that is marked with small grammatical edits. 

Reply: Thank you very much for your help. We have corrected all the mistakes you pointed 

out, and refined the language/grammar for the entire article. 
 

(2) The biggest problem I have with this paper is the design validation and debugging at the 

end of the paper. It should be moved forward to section V or so. 
In general, debugging with HLS is not addressed until the end of the paper and should be 

addressed before that. It is hard to debug FPGAs when using VHDL descriptions, using HLS 

is even harder because of the mapping between the VHDL and high-level description. 

Reply: Thanks for your suggestion. We have expanded the section and moved it before the 

“design experience” section. 

 

(3) Section I: In formal verification for HLS, how do you separate functional vs. timing bugs. 

This is something that seems to be overlooked.  

 

Reply:  We added a new section (Section VII) to discuss simulation and formal verification.  
Simulation-based method can catch and debug both functional and timing errors (esp. for I/O 

timing). We are not aware of formal equivalence checking tools (or research publications) 

that specifically address timing bugs for HLS.  We would be glad to include them if the 

reviewer can provide further suggestion. 

 

(4) Section II: When discussing the evolution of HLS, it would seem appropriate to classify or 

categorize the systems so that you are only presenting examples of such systems and 

techniques. This will help to differentiate the systems and later demonstrate why the new HLS 

will succeed. 
Reply: Thanks a lot for your comment. Following your suggestion, we have rewritten Section 

II. The tools are categorized according to their key contributions and timelines, and 

discussions on each specific category is added to provide more insight and to the trend. 
 

(5) In Section B, are the C-based languages restricted, how and why? Has that changed over 

time? I understand the desire to have algorithm designers to have a comfortable transition to 
FPGAs, but what about systems like BlueSpec? 

Reply: We have added more discussion about the pros and cons of C-based languages, as well 

as typical ways to expand/restrict the language to make it more suitable for HLS.  

We have added BlueSpec reference in Section II. C-based HLS flow is currently more 

prevalent in the FPGA design community, and is the focus of this article.  

 

(6) Section III: AutoPilot (AP) creates synthesis reports. How good are the estimates for 

resource utilization, timing, latency, etc.? I ask because these estimates may be used to drive 

HLS design decisions before going through the design flow. 
Reply: Thanks for the question.  

AutoPilot reports estimated performance (latency and clock period) and resource usage (e.g., 

LUT#, FF#, DSP#, BRAM#, etc.) as well as the utilization ratio of the target FPGA device. 
Although the reported numbers may not be accurate enough for design signoff yet, they do 

provide good basis for user to quickly explore the design space and make high-level design 

decisions.  

 

 

 

(7) In subsection A, you mentioned improved design quality. Mapping designs to ASICs is 

very different than mapping designs to FPGAs for structures like CAMs, gang-cleared bits, 

etc. If AP is an ASIC tool, how was it changed for FPGAs? If AP is an FPGA tool, is there a 

path to go to ASICs which will use different structures? 



Section V: In the third paragraph, you mention the cost of implementing HW on FPGAs is 

different, but the implementation can also be different compared to ASICs. This ties into the 

earlier comment on how AP is customized for FPGAs vs. ASICs. 

More specifically, how is AP customized for the Xilinx environment and individual FPGA 

platforms? There is quite a difference in architectures, moving from Virtex-4 to Virtex-5, for 
instance. DSP block functionality has also changed. Is the intermediate representation robust 

enough to handle Xilinx generational differences, mapping to Altera and/or ASICs? 

This section also does not quantify how AP was changed to deal with Xilinx. It seems to me 
that significant modifications are required to integrate the tools and target Xilinx parts. This 

section also seems like a good place to discuss debugging. It is hardware to debugging 

highly-optimized C-code because the mappings from the assembly to C are difficult. This 

seems to be an even more significant issue for FPGAs. 

Reply: AutoPilot is able to support both ASIC and FPGA, by incorporating a flexible 

platform model. For components that are different in ASIC and FPGA, the platform library 

includes characterization of the components, and an automated mechanism to generate 

technology dependent cores is available. 

In AutoPilot, each platform is characterized. Separate platform library files are included for 

Virtex-4 and Virtex-5. Differences like DSP functionality are also described in the platform 
library file and is considered in the synthesis process. AutoPilot also has characterization for 

Altera FPGA and some ASIC process libraries. Large and more complex built-in blocks on 

FPGA (like an integrated Ethernet controller) can be modeled as user IPs, and the mapping to 

user IP is controlled by the designer. 

The approach for platform modeling in AutoPilot is described in Section V.A in the 

manuscript. 

 

(8) Section VI: Figure 2: re three intermediate results that can be used or studied? This way 

the user can provide input on the constraints as well, if they are not converging. 
Reply:  

Soft constraints come from two sources: user directives (manual) and synthesis engine 

(automatic). Yes, soft constraints allow the user to enforce some degree of control on the 
synthesis result.  We have expanded the subsection on scheduling with soft constraints. 

 

(9) There is no reference to Figure 3: There is a lot of text in the figure that is too small. 
Remove that text or make it smaller. I am not sure the figure is required. 

Reply: Thanks for your suggestion. We have redrawn the figure as well as several others to 

make them more visible. 

 

(10) Section VI: Subsections C and D are poorly written. There is very bad flow and no 

introduction for these subsections. Why are these subsections necessary? In introduction 

would help. In subsection D, Figure 4 is very poorly referenced. It would be good to provide 

more description of the various parts of the figure, only b and d are referenced. Please 

describe a, c, and e. There is also a very clear place to add a reference to 4.f. 
Reply: Subsections C and D are intended to describe some recent algorithmic developments 

on HLS that take special consideration of the FPGA platform. In the revised manuscript, we 

have added a brief description of the background and motivation in the beginning of each 
subsection. Figure 4 has been redrawn, with unreferenced subfigures removed. 

 

(11) In subsection E, how does AP know about the FPGA components? Does it read a 

technology file for the FPGA that it is going to map the design to? 

Reply: Yes. As described in the reply of (7), AutoPilot has detailed platform characterization 

for each and every FPGA platform device family. The performance, area and power 

characteristics of components like DSP and memory are described in the technology library 

file. 

 



(12) Section VII: Figure 5: Could you make the text more readable or remove it. The same 

applies to Figure 7. 

Reply: Thanks for the suggestion. We have redrawn the figures to make them more visible. 

 

(13) Section VIII: What modifications were made to make an efficient AP implementation? 
What were the modifications? Is this the addition of the pragmas? You have two different 

types of pragmas, for memories and to force mappings? When are they necessary and not? Is 

this complete? 
Reply: Code modifications typically include two steps: (a) change the code to make it 

synthesizable (including the elimination of dynamic memory allocation, avoid recursive 

function calls, etc.), (b) add pragmas/directives to guide the synthesis.  

Memory selection and functional unit mapping are among the important pragmas we use in 

the designs presented. These pragmas are used to allow designer to guide the synthesis tool. 

Pragmas are not always necessary, because there are automatic mechanisms in the synthesis 

engine to make various decisions; and pragmas/directives are just one way to expose the 

decision engine to the designer. 

Considering that there are different types of decisions to make in the synthesis process, there 

are also many types of pragmas. The complete list of pragmas/directives is long, and is not 
the focus of this paper. The AutoPilot User’s Manual contains more details on this topic. 

 

(14) There is no reference to Figure 8. This would be helpful to describe the figure and make 

the font larger and/or clearer. 

Reply: Thanks for pointing out. We have redrawn the figure and added descriptions for it. 

 

(15) Are the results in Table 4 significant? There is less than a 10% difference. This could be 

attributed to a lot of ISE parameters or other things. A better comparison should be provided 

or explanation of why 5.6% vs. 5.9% is significant. 
Reply: Thanks for your comment. We have added additional clarification in Section IX. The 

DQPSK RTL design was created by experienced FPGA designers. It made use of highly 

optimized Xilinx CoreGen IPs when applicable (e.g. Viterbi decoder). In this particular case, 
producing comparable or slightly better area from C code via automated synthesis is not an 

insignificant result. 

 
(16) Section IX: Design validation and debugging should be moved to the beginning of the 

paper. IMHO, HLS will not gain traction until this is addressed. You provided some 

suggestions, but that has not changed in the lifetime of HLS. 

Reply: Thanks for your comment. We have added a section in the revised manuscript to 

describe design validation and debugging. Simulation-based approaches and formal 

approaches are both included. This is clearly a direction prevalent HLS tools are going. 


	HLS-FPGA-nov23.pdf
	ResponseLetter_Nov23

