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Abstract—We present the Hermite radial basis function
(HRBF) implicits method to compute a global implicit func-
tion which interpolates scattered multivariate Hermite data
(unstructured points and their corresponding normals). Differ-
ently from previous radial basis functions (RBF) approaches,
HRBF implicits do not depend on offset points to ensure
existence and uniqueness of its interpolant. Intrinsic properties
of this method allow the computation of implicit surfaces rich
in details, with irregularly spaced points even in the presence of
close sheets. Comparisons to previous works show the effective-
ness of our approach. Further, the theoretical background of
HRBF implicits relies on results from generalized interpolation
theory with RBFs, making possible powerful new variants of
this method and establishing connections with previous efforts
based on statistical learning theory.

Keywords-Implicit surfaces, Hermite data, radial basis func-
tions, Hermite-Birkhoff interpolation, scattered data approxi-
mation, geometric modeling, surface reconstruction

I. INTRODUCTION

The computation of implicit surfaces that approximate or
interpolate scattered data is a classical problem in Computer
Graphics and Geometric Modeling. In particular, the interpo-
lation of scattered data sets is frequently desired in various
specific applications, e.g., modeling [1], tracking of time-
dependent surfaces [2] and polygon soup interpolation [3].

Figure 1. Hermite Radial Basis Function Implicits (octopus dataset, 29714
points/normals): Hermite Interpolation of an irregularly spaced dataset with
close sheets and thin parts (plot of normals are omitted).

In this work we tackle the problem of computing an
implicit function interpolating Hermite scattered data defined
as a set P of unorganized points with their corresponding
normal vectors. To that end, we propose a scheme named
Hermite Radial Basis Function (HRBF) Implicits which
interpolates, on its zero-level surface, simultaneously a given
set of points and — differently from previous Radial Basis
Function (RBF) approaches [4], [5] — their normal vectors.
To develop this scheme, our formulation exploits theoretical
results from Hermite-Birkhoff interpolation with RBFs [6].
Since we construct our method from such a general frame-
work, new variants can be derived for additional flexibility.

In most previous methods based on RBFs, normals are
only used to define offser-points which ensure the existence
of a non-null interpolant implicit function. In one of the
most used approaches to compute offset points is, two offset
points are created at x* & en’, for each input point x* € P,
where n® is the normal on x*, with associated offset scalars
=+e. It is not hard to see that such approaches tipicaly do not
interpolate the given normals.

Another drawback is that those offset-points lead to nu-
merical instabilities for small e, whereas a large € subjects
the methods to generate poor results. In fact, a single optimal
choice for € does not exist in general. Other heuristics have
been proposed [1], but all of them (to the best of our
knowledge) are based on hand-tuned parameters and still
subject to produce poor results.

Since HRBF implicits interpolate both points and normals,
it not only ensures the existence of a non-null implicit func-
tion without the need of offset points, but it is also capable of
generating effective results. In fact, HRBF implicits have the
good properties shared by previous RBF methods, as being
able to deal with quite irregular datasets, while experiments
indicate it is also superior to related approaches [2], [4], [7]
when dealing with close sheets [2], [7] (Fig. 2).

Many surface reconstruction methods deal with close
sheets employing combinations of spatial data structures,
geometrical heuristics (e.g. normal clustering), or even sta-
tistical inference to select points belonging to the same sheet
before evaluating the implicit function [8], [9]. In this aspect,
HRBF implicits are most similar to methods which build
into the interpolation/approximation scheme a capability of
identifying and handling close sheets without the need of
additional information [2], [4], [5], [7].
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Figure 2.  The issue of close sheets (see [2], [7]): when two parts of
the surface are very close, many interpolation/approximation techniques
behave poorly. Case (a) is an example of undesired interpolation, whereas
case (b) is an example of undesired approximation. HRBF implicits, since
it interpolates both points and normals, produces results similar to (c).

Properties and contributions of HRBF implicits

In the following, we enumerate the main properties and
contributions of HRBF implicits.

Global implicit interpolant surface of Hermite data:
HRBF implicits aim at computing a global implicit function
whose zero-level interpolates given points and their deriva-
tives, in our case, the normal vectors.

Offsets-free: Differently from previous RBF inter-
polants, HRBF implicits do not require any heuristics for
creating off-surface points improving robustness.

Capability of handling irregularly-spaced data: Simi-
larly to previous RBF-based methods, the HRBF implicits
method is also able to compute reasonable interpolations
even in the presence of irregular data distributions.

Flexibility for true Hermitian data sets: Although we
consider in the present formulation “Hermitian data” as a set
of scattered points and their associated normal vectors, the
HRBF implicits method is more general since it allows con-
straining arbitrary gradient vectors for the implicit function
on the sample points.

Capability to handle close sheets: Our results show
that HRBF implicits allow for computing surfaces with close
sheets [2], [7], and indicate that our Hermite-interpolatory
method is superior to previous solutions in this situation.

Simple implementation: Our formulation and subse-
quent treatment build upon theoretical results from scattered
data approximation theory [6] and concepts from func-
tional analysis [10], yet it leads to a simple matrix-based
algorithm that is a direct translation of the mathematical
results. This allows a simple computational implementation
general enough to be independent of the ambient space
dimension. Moreover, the theoretical framework supporting
HRBF implicits indicates directions to build variants of the
basic method which may allow further flexibility.

II. THEORETICAL FRAMEWORK

We pose the problem of fitting an implicit surface de-
fined by a function f : R — R to given Hermite data
{(xi,ni)}i\il C R"™ x R" as looking for a function
satisfying both f (x’) = 0 and Vf (x') = n’, for each
data sample, from a certain space H of sufficiently smooth
functions. In approximation theory, this problem is classified
as an instance of first-order Hermite interpolation.

In this section, we present some results from a general the-
oretical framework of Hermite-Birkhoff interpolation with
radial basis functions and its application to the first-order
Hermite interpolation of multivariate scattered data. Our
presentation is strongly influenced by Wendland’s wonderful
book [6] and, at least for this theoretical reasoning, a few
basic results from functional analysis would be helpful [10].

A. Hermite-Birkhoff interpolation with RBFs

Hermite-Birkhoff interpolation is a generalized interpola-
tion problem in which data consists of information regarding
point evaluations of differential operators acting on a func-
tion, e.g. f(x) = ¢, % (y) = ¢ and 8‘2;5; (z) = %,
Differently from Hermite interpolation, Hermite-Birkhoff
interpolation doesn’t require one to provide the full set of
values for each sample point, e.g. we might provide first-
order information without the need to provide the function’s
value. This provides a flexible framework employed even for
the numerical solution of partial differential equations [11].

More formally, Ajgiven a Hilbert space of functions and a
dataset {(\;,¢;)};_, consisting of continuous linear func-
tionals \; € H* and real numbers ¢; € R, we are looking
for a function f € H such that \; (f) = ¢;, for each i.
Such a function is called a generalized interpolant of the
data in H. However, there can be infinitely many generalized
interpolants for a dataset in H. This uniqueness issue can be
solved by taking that one with minimal 7-norm. The theory
provides us with a characterization for this solution ensuring
that it is a linear combination of the Riesz representers
v’ € H of the data functionals, ie. f* = SN o' and
the v are such that \; (u) = (v’,u), for every u € H.

Under the assumption of linear independence of the
data functionals, the coefficients in the linear combination
can be uniquely determined by enforcing the interpolation
constraints, leading to a linear system Aa = c, where
the interpolation matrix is given by (A);; = \; (v?) =
(v',v7), , hence it is an inner-product (Gramm) matrix,
therefore symmetric and positive definite.

In Hermite-Birkhoff interpolation, the data functionals
have the form A = dx o D7, where dx (u) = u(x) is the
point-evaluation functional on x € R™ and D7 is a differ-
ential operator in which the multi-index v € (NU {0})"
indicates how many times (vy;) the function will be differ-
entiated with respect to the j-th variable (z;). In this way,

we have \; (u) = (D'Ylu) (x*). In words, the application of
the functional \; on a function w consists of differentiating
w according to 4* and then evaluating the result at x’.

All we need is a construction of suitable spaces H in
which the representers of the Hermite-Birkhoff functionals,
as well as their inner-products, can be effectively computed.
Indeed, it can be shown that such spaces can be implicitly
constructed from certain radial functions. Formally, given a
positive definite radial basis function ¢ : Ry — R such
that ¥ = ¢ (|l)) € C**R™) NLi(R™) (k> [+, Vi),



there exists a unique (up to isometric isomorphisms) native
Hilbert space H in which the \; are continuous and, as
long as they are pairwise distinct, they are also linearly
independent. Moreover, their representers have the form

vi(x) = — (D“Yi@[;) (x — x*) and their inner-product given

by <vi,vj>H = —(D'VlD'V]z/J) (xi —xj) [6]. The most
notable examples of such RBFs are the Gaussians and
the compactly supported (piecewise polynomial) Wendland’s
functions [12], which we employ in our implementation.

The main advantage of employing spaces implicitly con-
structed by these RBFs is that they provide explicit means
to compute both the Riesz representers and their inner-
products, making computationally feasible the solution of a
minimum norm generalized multivariate interpolation prob-
lem with scattered Hermite-Birkhoff data functionals. Other
advantages come from the vast literature on both theory and
practice of scattered data approximation with radial basis
functions, opening many avenues for further research, some
of which we discuss in the last section.

B. First-order Hermite interpolation with RBFs

We now exploit the theoretical developments on general
Hermite-Birkhoff interpolation with RBFs to our model of
implicit surface reconstruction from exact Hermite data.

In our problem statement, we assume to have a dataset
consisting of N points on the surface we are interested
in recovering and their associated normals. Posing the
problem in the framework above, we have n + 1 kinds

of data for each sample: (dy:,0), (5xi 0 52, (n') )

)
gfxi o 52, (n‘)n) Therefore, the representation results
above ensure that the interpolant we are interested in can
be written in the form:

N N
* x):Zaﬁ/)(xij Z ﬁj Vo (x—x7)) (1)
j=1 j=1

where each of the coefficients a; € R and B/ € R”
can be uniquely determined by enforcing the interpolation
conditions f* (x) =0 and V f* (x*) = n’, Vi. Leading to

N
Zajw(xi—xj Z ,BJ vy (x' —X])>=0 )
=1 3:1

N
Zajw; (Xi — xj) — ZH’(/J (xi — xj) B =n" (3)
j=1 j=1

where H is the Hessian operator defined by (H); := %283:1'

Here, the requirement that ¢) be at least twice as much
continuously differentiable as the maximum order of the dif-
ferential operators in the data functionals is more concrete.
Therefore, for our implicit surface reconstruction problem,
we need to choose a RBF at least C?, resulting in a function

at least C! (naturally, unless zero is a regular value of f*,
we can’t guarantee a priori that our “surface” will be C1).

We are now able to numerically implement a method for
Hermite interpolation of implicit surfaces with radial basis
functions. We discuss computational aspects of this method
in the next section. Nevertheless, we first comment on an
existing alternative method to approximate given Hermite
data and its connection to our interpolatory scheme.

C. A note on a regularization-based approach

In the framework we presented, we have taken an interpo-
latory approach to recover an implicit surface from Hermite
data. However, for other important applications, the input
data is corrupted by noise and an approximative approach
would be more adequate. In such a setting, the traditional
strategy is to penalize the solution’s deviation from the input
data as well as the magnitude of its {-norm (otherwise there
would be infinitely many interpolatory solutions). Such a
regularization-based approach was taken by Walder et al.
[13] building upon statistical learning theory. While our
interpolatory approach can be variationally stated as

min ,
omin flh

theirs can be written as (here, slightly more general actually)

mm{”f”?—{"'zpz i _Ci)Q} 4)
=1

where p; > 0 are penalization parameters.

It turns out that (4) also admits a unique solution as
a linear combination of the data functionals’ represen-
ters. By restricting the optimization problem to this finite-
dimensional space, it can be shown that the coefficients for
the regularized solution can be computed by solving the
system (A +D™') a = ¢, where D = diag(p1,...,pn)
and everything else as above.

The insights gained on this method from the previous de-
velopments we made indicate that not only the regularization
approach is well posed but also the limiting interpolatory
case, when each p; — oo and D! = 0. Also, this analysis
indicates that more flexibility is feasible by interpolating just
a subset of the data, where the corresponding entry in D!
must be zeroed, without sacrificing well-posedness of the
combined interpolation/regularization system (since, A is
guaranteed to be positive definite and D! positive semi-
definite). This might be interesting for example when the
normals come from an inexact process, as when they are
just estimated from given surface points.

III. COMPUTATIONAL ASPECTS

After presenting a theoretical framework to deal with
Hermite-Birkhoff interpolation problems and specializing
those results to the first-order Hermite interpolation of our
surface fitting model, we will discuss some aspects and



issues of its computational implementation. More specifi-
cally, we deal with the assembly of the interpolation system
defined by equations (1) and (2) and its numerical solution.

A. Assembling the interpolation system

Prior to the direct solution of the interpolation system,
we need to assemble the corresponding matrix. For this end,
notice that equations (1) and (2) can be rewritten as

> [ =) V(- Xﬂ M B M
2o ) Hu ) | |@] T
with each block in the sum as a (n + 1) x (n + 1)-matrix.
Therefore, the (n + 1)N x (n + 1)N linear system can be
assembled one block at a time, corresponding to a pair (i, j)
of samples. All we need to compute such a block is to know
how to evaluate v, its gradient and its Hessian on a point.

At this point, we notice that the cost O ([(n + 1)N]?) of
assembling such a system on globally supported RBFs is
prohibitive for many applications. Indeed, our first imple-
mentation used dense matrix packages and this limited our
experiments to about 8K points in R? and 6K points in R?,
on a commodity laptop with 2GB of RAM.

We have addressed this problem by using compactly-
supported RBFs and employing sparse matrix packages.
In our implementation, we used Wendland’s ¢3 ; function
which defines a family ¢, (x) := ¢ (¥) indexed by a radius
r > 0, where each v, is a C? positive definite function, for
n <3, (x) = daa (|x]) and a1 (1) = (1 — £)4(4¢ + 1),
for ¢ € [0, 1], and ¢3 1 (t) = 0, otherwise [12]. That’s all one
needs to compute formulae for the gradient and Hessian of
the v, and, consequently, assemble the interpolation matrix.

Nonetheless, even with compactly-supported basis and
efficient numerical methods, the assembly procedure can
became the bottleneck when a very large number of samples
are used. Theses cases demand a data structure for acceler-
ating the range queries and retrieving only those pairs for
which the blocks were non-zero. However, this introduces
another problem, the trade-off between system sparsity and
the width of the neighborhood in which the surface is
defined. This issue is well known in methods which use
compactly-supported kernels (e.g. RBF and moving least
squares). Although we do not elaborate on this problem in
this work, in the last section we discuss how we intend
to build upon previous methods developed for classical
interpolation problems with RBFs [14], [15].

B. Solving the interpolation system

It is well known and reported elsewhere that RBF interpo-
lation systems suffer from numerical conditioning problems
when the sampling is large and too dense. Many methods
for improving the condition numbers have been developed
to circumvent this issue and allow faster convergence of
iterative methods for the sparse systems [6], [14].

With this in mind, we chose a simpler implementation for
our first prototypes and decided to employ direct methods
tailored for sparse systems. Since our analysis ensures that
the interpolation system is symmetric and positive definite,
we employ a sparse Cholesky factorization as implemented
in the PARDISO solver [16] and the efficient codes in
the BLAS and LAPACK linear algebra packages as imple-
mented by the ATLAS project [17] in our core mathematical
routines for evaluating gradients and Hessians.

Using these numerical packages along with the C++ lan-
guage, we were able to develop a code completely indepen-
dent of dimension, including the range-query acceleration
data structure, which we chose to be a kd-tree. This pro-
totype allowed us to solve Hermite interpolation problems
with up to 500K samples in R3 with a suitably chosen
sparsity structure, limited by the memory requirements of
the PARDISO solver.

IV. RESULTS

We first examine how changes on radius in 1, influence
the family of HRBF implicits (Fig. 3 and 5).

In Fig. 3-(a), as we consider radius smaller than the
distance between two points, HRBF implicits consists of
four disjoint line segments. It can be noticed in the following
images (from 3-(b) to 3-(f)) that, the larger the radius, the
smoother HRBF implicits turns out.

Fig. 5 depicts the equivalent three-dimensional case of
previous experiment, where from a set of six equally spaced
points on the unity sphere, our method produces a family of
HRBF implicits. In that case, the sequence of interpolants
ranges from six disjoint discs (when radius is smaller than
the inter-point distance), through a cube, to a sphere.

Since normals are also interpolated, in Fig. 4 we show
examples of how the normals affect results. In Fig. 4-(a)
we observe a zero-contour which does not interpolates any
point due to the normal orientations. Such a zero-contour
arises due to the Intermediate Value Theorem. That issue is
avoided when normals are accordingly oriented (Fig. 4-(b)).
Notice that oscillations occur in the corner of the mouth
in Fig. 4-(c). In that case, since we set arbitrary normals
in the corners, which are non-differentiable regions, it is
expected such oscillations as HRBF implicits need to satisfy
all constraints of normals and points.

In Fig. 6 we present the capability of HRBF implicits in
dealing with close sheets. For comparisons, in Fig. 7 and 8§,
we present results from RAMLS surfaces [2] and FastRBF
implicits [4], respectively. This experiment considers points
distributed along two orthogonally interlaced tori, with inner
radius 1 and outer radius 3, distanced 0.25 from each other.
In Fig. 6-(a)-left we plot points as red spheres (we omit
the arrows representing normal vectors) and its HRBF im-
plicits, whereas in (a)-right we plot only HRBF implicits.
Comparing to RAMLS surfaces in Fig. 7-(a), one can
observe that interpolation does not occur, as was expected,
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Figure 3. Varying the radius in v,- (HRBF implicits in green): subfigures are composed of zero-level and Hermite samples (top-left), different isocontours
(top-right) and HRBF implicits’ graph (bottom). Data consists of four points equally spaced on the unity circle and their normals. Increasing r > 0, the
family of HRBF implicits ranges from disjoint line segments (when radius is smaller than inter-point distance), through a square, to (almost) a circle.

(a)

Figure 4.

(b)

(©)

Examples of how normals can affect results: (a) inconsistent orientation causes an additional zero-level. This can be avoided by flipping the

outer normals (b). In (c), arbitrarily chosen normals at non-differentiable regions (corner of the mouth) can cause oscillatory results.

since RAMLS surfaces employs an approximation-based
approach. In addition, the region where the two tori become
closer, the RAMLS surface comes to be thinner than the
same region in the HRBF implicits method.

The reader could figure that a smaller radius in the weight
function for the RAMLS method could lead to a more
precise approximation. However, the use of smaller radius
makes the method to fail, since the minimum number of
points can’t be attained (see Gois et al. [2] for further details
on selecting radii).

We ran FastRBF creating offset points at x’ + en’, where
e = 0.1 (left) and ¢ 0.01 (right) for each x* € P
with normal n’ (Fig. 8-(a)). It is observed that FastRBF
implicits tend to be more oscillatory. We believe this occurs
due to issues of numerical instabilities and farther offsets.
Assuming € > 1 we experienced results that do not resemble

at all the two tori.

In Fig. 6-(b), 7-(b) and 8-(b) we repeat the previous
test, but considering a denser sampling. In that case, we
observe that RAMLS surfaces behaves quite similarly to
HRBF implicits. Despite less perceptible than in the previous
test, FastRBF again presents an oscillatory behavior.

Fig. 1 and 9 show the ability of our method to interpolate
irregularly spaced datasets. One may observe that, even in
the presence of clusters and “rings” of points, the method
robustly interpolates the data. This property, also present in
previous RBF interpolants [4], [5], is not shared by RAMLS
surfaces [2]. Further, in Fig. 1, one can again notice the
capability of HRBF implicits of handling close sheets and
irregularly spaced data simultaneously.

Finally, in Fig. 10, we can observe that HRBF implicits
are able to enhance object details. We believe this prop-
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Figure 5. Varying the radius in 1, (HRBF implicits in gray): six points (antipodaly placed on the sphere) and their normals. Increasing r > 0, the family
of HRBF implicits ranges from six disjoint discs (when the radius is smaller than inter-point distance), through a cube, to (almost) a sphere.

Figure 9. Ability of HRBF implicits to interpolate even irregularly spaced
datasets even in the presence of clusters and “rings” of points. Such a
property is also shared by previous RBF interpolants [4], [5] (Homer
Simpson dataset with 5103 points/normals).

erty is due to its Hermite-interpolatory character and the
smoothness-degree of the chosen RBF, capturing continous
variations of the normal field along the surfaces.

V. FINAL REMARKS

We present Hermite-RBF Implicits, a method to interpo-
late implicit curves and surfaces from Hermite data without
recurring to introduction of offset points. In our way to
tackle this problem, we present some basic results from a
theory of Hermite-Birkhoff interpolation with radial basis
functions. This provides a flexible theoretical and compu-
tational framework to pose many relevant problems and
which we believe not to be broadly known by the graphics
community.

With our proof-of-concept prototype, we were already
able to solve interpolation problems consisting of 500K
point/normal samples in R within a couple minutes. Its
implementation is an almost direct translation of the math-
ematical results and is general enough to be independent of
the space dimension, apart from the visualization module,
yet including the main acceleration data structure.

As byproduct of our theoretical developments, we gained

Figure 10. HRBF implicits enhance details in the interpolated surfaces (on
the left half of each image we plot the sample points): Lion Vase dataset
(left, 154906 points) and Buste Model (right, 255358 points).

insight on a related regularization-based scheme, which
was deduced from a statistical learning perspective, and
this allowed us to enhance flexibility of both methods by
ensuring well-posedness of a promising combined interpola-
tion/regularization approach which we haven’t explored yet.

A. Ongoing work

Currently, we are tackling two issues of our formula-
tion by exploiting the full machinery of Hermite-Birkhoff
interpolation we developed, in contrast to the presented
which reduces to the special case of first-order Hermite
interpolation. The first one deals with the constraint that
the gradient field of the implicit function interpolates the
given normal samples (all that might be ensured by the
Implicit Function Theorem is that they are parallel). While
the second one is concerned with points where the normals
are not available or even not defined a priori as occurs on
points along features. Solving both issues might improve



flexibility of the reconstruction problems we would be able
to deal with and expressiveness of the range of representable
surfaces. The theoretical framework that we present provides
enough flexibility to deduce the form of an RBF-interpolant
for these full Hermite-Birkhoff interpolation problems as it
did for our special Hermite case.

B. Future directions

We envision a number of avenues for further investigation.
It would be interesting to try proving theoretical guarantees
on the reconstructed surfaces by combining the many results
from the theory of generalized interpolation with RBFs [6]
and the techniques from surface reconstruction theory [18].

On the computational side, we are interested in adapting
existing methods for the classical interpolation problem
which try to aleviate the trade-off between sparsity and
the support of the implicit function. More specifically,
we are evaluating three main approaches: multiple-scale
methods [19], preconditioning of Krylov iterations [14] and
domain decomposition [15]. This would allow for a better
control on the trade-off between running time and memory
footprint, which are very related as we noticed that memory
consumption of our direct solver for large datasets was so
big that much of the running time was spent in swapping.

With respect to applications, we intend to work on dy-
namic implicit surfaces represented by Lagrangian particles
augmented with normal data in a manner similar to [2], but
with a resampling scheme suitably adapted from [20].

Since we had access to software from the authors of [4]
and [2], we were able to compare our method to theirs.
Our next step in this direction is to implement and compare
Alexa and Adamson’s recent interpolatory approach based
on moving least squares surfaces [21].
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(a) 256 points and Radius 3 (b) 4096 points and Radius 1.5

Figure 6. HRBF Implicits: Comparing with RAMLS surfaces (see Fig. 7) and FastRBF implicits (see Fig. 8), one can observe that our method produce
more accurate results in the presence of close sheets, which is most noticeable in the presence of sparse samples.

(a) 256 points and weight function radius 1.5 (b) 4096 points and weight function radius 0.375

Figure 7. RAMLS surfaces (considering the weight function proposed in Gois et al. [2]): In subfigure (a), where the two tori are closer, we observe that
RAMLS surfaces are far from the samples and shrink both tori. In subfigure (b), this issue is not noticeable and the result is similar to ours (Fig. 6).

(a) 256 points + 512 offsets (b) 4096 points + 8192 offsets

Figure 8. FastRBF implicits [4] (offset points where created at x* + en?, for ¢ = 0.1 (left) and € = 0.01 (right) in both subfigures): Near close sheets
one can observe an oscillatory behavior of FastRBF implicits for three of the four tests.



