
J Ambient Intell Human Comput manuscript No.
(will be inserted by the editor)

An Aspect-Oriented Language for Feature-Modeling

Qinglei Zhang · Ridha Khedri · Jason Jaskolka

Received: date / Accepted: date

Abstract When modeling families of ambient systems,
we experience a number of special challenges due to un-
predictable variability in the environments of the sys-

tems. One solution to deal with these challenges is to
adapt aspect-oriented technology to product family mod-
eling.

In this paper, we propose a new language AO-PFA,
which adapts the aspect-oriented paradigm to product
families. This paradigm enhances the adaptability and

evolvability of product families. The proposed language
is an extension of the specification language PFA (Prod-
uct Family Algebra). We discuss the constructs of the

proposed language as well as its usage to specify as-
pects.

Keywords Feature-Modeling · Product Family
Algebra · Aspect-Oriented Software Development ·
Early Aspects · Specification Language · Ambient
Systems

1 Introduction and Motivation

Ambient systems involve a multitude of interconnected
heterogeneous features that supply end users with a

variety of data and functionality. Their stability is con-
tingent on requirements that can cope with high vari-
ability (Frei et al, 2010, 2012; Habib and Marimuthu,

2011). Due to the complexity of the hardware and soft-
ware involved in collecting and acting on the signifi-
cant amount of data from the environment, there exist

This article is a revised and enlarged version of (Zhang et al,
2012a).

Qinglei Zhang · Ridha Khedri · Jason Jaskolka
Department of Computing and Software, McMaster Univer-
sity, Hamilton, Ontario, Canada
E-mail: {zhangq33, khedri, jaskolj}@mcmaster.ca

a number of special challenges to the feature-modeling
process of ambient systems. Where there is a variety
in hardware, there is a variety of possible technologies,

leading to a collection of predictable variabilities in the
product families of similar systems. This observation
has been pointed to by Parnas as early as 1976 (Par-

nas, 1976). Product family modeling was proposed to
deal with this problem of handling predictable variabil-
ities. It proposed the simultaneous development of a

family of products, rather than of one product at a
time. Approaches for handling predictable variability
are abundant in a vast literature of feature-modeling

techniques (Czarnecki, 1998; Eriksson et al, 2005; Griss
et al, 1998; Kang et al, 1990; Riebisch et al, 2002). How-
ever, approaches for handling unpredictable variability

are somewhat limited.

Unpredictable variabilities can best be illustrated

with a security related situation. When considering se-
curity, the overall security risk may be strongly affected
by changes in only a few subsystems while the sys-

tem changes and evolves (Solhaug and Seehusen, 2013).
Suppose that we need to remotely communicate with an
ambient system. Quite often, we would use an authenti-

cation feature that is in charge of identifying the caller
agent to prevent an intruder from taking control of the
system. After some time, suppose we find that there is a

flaw in the authentication feature due to the presence of
other features. For instance, it is induced by the feature-
interaction of the authentication feature with several

other features. The question then becomes how can we
quickly amend the current feature model to ensure that
all the product families involving the identified config-

uration of features gets amended to replace the flawed
configuration by another configuration of features to
remedy the situation. Such changes to the configuration

of features due to the security issue cannot be predicted

2 Qinglei Zhang et al.

at the time of the feature-modeling of the family. More-

over, it is possible that when the flaw is revealed, several
systems may already be deployed in their environment.
Usually, modularity based on the separation of concerns

in designing systems helps in easing the maintainabil-
ity of these systems. However, some concerns are inher-
ently distributed over and intertwined with other con-

cerns, and therefore resist such modularisation by con-
ventional approaches. As illustrated in (Nygard et al,
2010), multi-agent systems, which are examples of am-

bient systems, are associated with many crosscutting
concerns such as autonomy, communication, mobility,
and security. Because crosscutting concerns frequently

hinder the maintainability and modifiability of software
qualities, they often render ambient systems difficult to
be adapted and evolved. The detection of a defect in a

product family leads to the introduction or removal of
features in the family or to the amendment of the ex-
isting variability by confining it to some products but
not others. In order to address the problems engendered

by unpredicted changes to features that are related to
crosscutting concerns, we can turn to aspect-oriented
software development, which provides a powerful way

to handle crosscutting concerns in ambient systems.

In the area of software engineering, similar problems
are faced at the programming level and are dealt with
using aspect-oriented techniques. However, at the pro-

gramming level, aspect-oriented techniques have shown
very mixed results. Aspect-oriented programming leads
to systems with high modifiability, but at the same time

reduces system performance (Kuusela and Tuominen,
2009). Furthermore, the complexity of the program-
ming languages compared to that of the language we

are using at the feature-modeling level makes the as-
pect weaving process very convoluted and prone to sev-
eral aspectual compositional problems. At the feature-

modeling level, these problems are very minimal (Zhang
et al, 2012b). For this reason, we conjecture that aspect-
oriented techniques, while they exhibited mixed results

at the programming level, can be helpful at the feature-
modeling level.

In this paper, we propose a language for the sys-
tematic amendment of product families in order to dili-
gently deal with unpredictable changes as soon as they

are revealed. This paper builds on the work presented
in (Höfner et al, 2006, 2008, 2009, 2011) by expanding
the language of PFA (Product Family Algebra) to an

aspect-oriented language.

This paper is organised as follows. In Section 2,

we provide the required background and introduce an
example of an elevator product family which is used
throughout the paper. In Section 3, we present the pro-

posed specification language. In Section 4, we further

illustrate the flexibility of the proposed language by sev-

eral case studies. In Section 5, we give the theoretical
remarks on the adopted weaving procedure and discuss
the applicability of the proposed language. In Section 6,

we discuss related work reported in the literature of
aspect-oriented software development and product fam-
ily engineering. Lastly, in Section 7, we conclude and

point to the highlights of our current and future work.

2 Background

2.1 Product Family Algebra

Product family algebra extends the mathematical no-
tions of semirings to describe and manipulate product

families. A semiring is an algebraic structure consisting
of a set S with a commutative and associative binary
operator + and an associative binary operator ·. An el-

ement 0 ∈ S is the identity element with respect to +,
while an element 1 ∈ S is the identity element in S with
respect to ·. In addition, operator · distributes over op-
erator + and element 0 annihilates S with respect to ·.
We say a semiring is commutative if the operator · is
commutative and a semiring is idempotent if the oper-

ator + is idempotent.

Definition 1 (e.g., (Höfner et al, 2009)) A prod-
uct family algebra is a commutative idempotent semir-
ing (S,+, ·, 0, 1), where each element of the semiring is

a product family.

In the context of product family modeling, the opera-
tors are interpreted as follows:

(a) + denotes the choice between two product families;
(b) · indicates a mandatory composition of two product

families;

(c) 0 represents an empty product family;
(d) 1 represents a product family consisting of only a

pseudo-product which has no features.

With these interpretations, all other concepts in prod-
uct family modeling can be expressed mathematically.
In particular, optional features can be interpreted as a

choice between the features and the pseudo-product 1.
For example, a computer product family consists of
hardware and software. With regard to hardware, a ba-

sic computer is built with a hard disk and a screen,
whereas a printer may be added as required (i.e., it
is optional). With regard to software, corresponding

drivers for each type of hardware component should
be provided. The product family of software is speci-
fied within the language of product family algebra as

follows:

sw = hd drv · scr drv · (1 + prn drv).

An Aspect-Oriented Language for Feature-Modeling 3

The notions of subfamily , refinement , and constraint

which are introduced in (Höfner et al, 2009) are needed
for the rest of the paper. For elements a and b in a
product family algebra, the subfamily relation (≤) is

defined as a ≤ b ⇐⇒df a + b = b. The subfamily
relation indicates that for two given product families a
and b, a is a subfamily of b if and only if all the products

of a are also products of b. For elements a and b in a
product family algebra, the refinement relation (⊑) is
defined as a ⊑ b ⇐⇒df ∃(c |: a ≤ b · c). The
refinement relation indicates that for two given product
families a and b, a is a refinement of b if and only if
every product in family a has at least all the features of

some products in family b. For elements a, b, c, d and
a product p in product family algebra, the requirement
relation (→) is defined in a family-induction style as:

a
p→ b ⇐⇒df p ⊑ a =⇒ p ⊑ b

a
c+d→ b ⇐⇒df a

c→ b ∧ a
d→ b

The requirement relation is used to specify con-
straints on product families. For elements a, b and c,
a

c→ b can be read as “a requires b within c”.

A tool called Jory (Alturki and Khedri, 2010), is

based on product family algebra and is used to rep-
resent and manipulate product families. Jory uses a
specification language called PFA (Product Family Al-

gebra). The grammar of PFA is given in Figure 1, where
‘\n’ denotes the end of the line. In PFA, there are three
types of specification constructs: basic feature declara-

tions, labelled product families, and constraints. Each
basic feature is declared with a basic feature label pre-
ceded by the keyword bf. Each product family is defined

as an equation with a product family label at the left side
and a product family algebra term at the right side. A
constraint is represented by a triple preceded by the

keyword constraint and corresponds to a requirement
relation in product family algebra. In (Höfner et al,
2006, 2009, 2011), the reader can find more details on

the use of this mathematical framework to specify prod-
uct families.

2.2 Aspect-Orientation: Basic Concepts

Aspects are introduced to explicitly encapsulate and im-
plement crosscutting concerns in one module. At dif-

ferent software development stages, the meanings of
aspects vary in accordance with the granularities of
the concern abstractions. For example, aspects derived

from the requirement level could be a non-functional
requirement such as quality of service or a functional
requirement such as a business rule. Aspects derived

from the low implementation level could be caching

⟨PFASpec⟩ := (⟨Basic Feature⟩ | %⟨comment txt⟩\n)+

(⟨Labelled Family⟩ | %⟨comment txt⟩\n)+

(⟨Constraint⟩ | %⟨comment txt⟩\n)∗

⟨Basic Feature⟩:=bf ⟨base feature id⟩%⟨comment txt⟩\n
⟨Labelled Family⟩:=⟨family id⟩ =⟨Family Term⟩

%⟨comment txt⟩\n
⟨Constraint⟩:=constraint(⟨Family Term⟩, ⟨Family Term⟩,

⟨Family Term⟩)%⟨comment txt⟩\n
⟨Family Term⟩:=0 | 1 | ⟨base feature id⟩ | ⟨family id⟩

| ⟨Family Term⟩+ ⟨Family Term⟩
| ⟨Family Term⟩ · ⟨Family Term⟩

⟨base feature id⟩:=String of letters, numbers and “ ”

⟨family id⟩:=String of letters, numbers and “ ”

⟨comment txt⟩:=String of letters, numbers, symbols

and space.

Fig. 1: PFA Specification Grammar given in BNF no-
tation

and buffering. Aspects at analysis and design levels are
sometimes referred to as early aspects. Nevertheless,

several terminologies are widely and commonly used by
the community of aspect-oriented software engineering.
First, a join-point refers to a point in the execution of

the base program where an aspect could be introduced.
A point-cut selects a set of join-points where a cer-
tain aspect should be positioned. An advice defines the

amendment which should be introduced at the selected
join-points. Lastly, weaving is the process of combining
aspects with a base program. In essence, the point-cut

identifies join-points where an aspect should be intro-
duced, while the advice defines the specification of the
crosscutting concern.

Without loss of generality, we use an example, given
in Figure 2, to illustrate the above concepts and the gen-
eral mechanism of aspect-oriented programming. The

base program in the example is a class type point, while
the aspect is related to logging operations. The point-
cut of the logging aspect selects two join-points (under-

lined instructions in Figure 2) in the base code, while
the advice of the aspect introduces the additional print
operations after those selected joint-points. The code

at the right of Figure 2 shows the result of weaving the
aspect to the base program.

2.3 Illustrative Example

We use a simplified elevator system as a running ex-
ample to illustrate the background related to the PFA
language and to exemplify the usage of the proposed

language. An elevator product family is composed of

4 Qinglei Zhang et al.

Fig. 2: General aspect-orientation mechanism

Fig. 3: Simplified example of feature models for an ele-
vator system

a mandatory feature for base functionality and an op-
tional feature configure for customised configuration.
Moreover, the base functionality is a product family

that includes a mandatory feature move control and an
optional feature light display. For the configure feature,
we consider two unpredictable variabilities, light reset

and failure capture. Inherently, the light reset depends
on the light display and the failure capture depends on
both the features move control and light display. Be-

sides, we also consider a mandatory feature log that is
included into the feature configure due to an evolution
process.

Figure 3 illustrates feature models using a FODA-
like notation1 for the base functionality and configure,
respectively. Assume Specification 1 in Figure 4 is the

initial PFA specification of the elevator product fam-
ily. In this specification, Lines 1–3 specify three basic
features and Lines 4–9 specify product families as la-

belled product family algebra terms. Line 10 is a con-
straint, which indicates that, within the product family
elevator product line, the feature configure requires the

feature light display.

1 FODA (Kang et al, 1990) is one of the feature-modeling
techniques that are widely used to specify the reusable core
assets of a product family and to describe how individual
products can be configured from these core assets.

Specification 1:

% Declarations of basic features

1. bf move control

2. bf light display

3. bf configure

% Definitions of labeled product families

4. optional light display = light display+ 1 % an optional feature

5. optional configure = configure + 1

6. full base functionality = move control · light display

7. base functionality = move control · optional light display

8. elevator product line = base functionality · optional configure
9. customised elevators = move control + full base functionality

· configure
% Articulating a constraint on the family

10. constraint(configure, elevator product line, light display)

Fig. 4: A PFA Specification of the Elevator Product
Family

In Section 4, we illustrate how to integrate features

light display, failure capture, and log to the original spec-
ification in various ways using the proposed aspect-
oriented technique.

3 Aspect Orientation at the Feature Level

We extend the aspect-oriented notions to PFA specifica-
tions of feature models. We call the proposed language

AO-PFA (Aspect-Oriented Product Family Algebra). In
product family algebra, all kinds of common and vari-
able characteristics of product families are described

and unified as product family terms. In other words,
the basic constructs of product family algebra specifica-
tions are product family terms. Intuitively, join-points

in our technique should be in the form of product family
terms and the point-cut language defines quantification
statements over those product family terms. Based on

the mathematical setting of PFA specifications, an as-
pect in AO-PFA is compactly specified as follows:

Aspect ⟨aspectId⟩ = ⟨Advice(jp)⟩
where jp ∈

(
scope, expression, kind

)
The triple (scope, expression, kind) is the point-cut

language of AO-PFA, which specifies the quantifica-
tion statement for selecting join-points. The equation

⟨aspectId⟩ = ⟨Advice(jp)⟩ is the body of the aspect
which specifies the advice being introduced at selected
join-points. The grammar of the language for aspect

specifications is given in Figure 5, where ϵ denotes the
empty string. In the remainder of this section, we present
a detailed discussion on join-points, point-cuts, advice,

and aspects in AO-PFA.

An Aspect-Oriented Language for Feature-Modeling 5

⟨AspectSpec⟩ := (⟨Aspect⟩\n)+

⟨Aspect⟩ := ⟨aspectId⟩ = ⟨Advice(jp)⟩\n where jp ∈ ⟨POINTCUT⟩
⟨aspectId⟩ := identifiers of aspects

⟨Advice(jp)⟩ := product family terms defined in PFA using a variable ‘jp’

⟨POINTCUT⟩ := (base, ⟨EXPRESSION BASED⟩, ⟨Constraint-related⟩)
|(⟨SCOPE⟩, ⟨EXPRESSION BASED⟩, ⟨Feature-related⟩)
| (⟨SCOPE⟩, ⟨EXPRESSION BASED⟩, ⟨Family-related⟩)

⟨SCOPE⟩:=⟨SCOPE⟩ ; ⟨SCOPE⟩|⟨SCOPE⟩ : ⟨SCOPE⟩|base
| within{⟨PF label⟩}| hierarchy{⟨PF label⟩}|protect{⟨PF label⟩}

⟨EXPRESSION BASED⟩:=Boolean expression upon PFA

⟨Feature-related⟩:=declaration{⟨PFT⟩}|inclusion{⟨PFT⟩}
⟨Family-related⟩:=creation{⟨PFT⟩}|component creation{⟨PFT⟩}

|component{⟨PFT⟩}|equivalent component{⟨PFT⟩}
⟨Constraint-related⟩:=constraint[⟨list⟩]{⟨PFT⟩}
⟨list⟩:=left⟨list’⟩|middle⟨list’⟩|right⟨list’⟩
⟨list’⟩:=, left⟨list’⟩|, middle⟨list’⟩|, right⟨list’⟩|ϵ
⟨PFT⟩:=product family terms defined in PFA.

⟨PF label⟩:=identifiers of product families.

Fig. 5: Language for Aspect Specifications

3.1 Join-Points in AO-PFA

We have mentioned above that join-points in PFA spec-
ifications are in the form of product family terms. How-
ever, within a PFA specification, there are two roles for

the same form of product family terms. They are ei-
ther being defined or being referenced. For example, in
Figure 4, the family base functionality is being defined

at the left side in Line 6, while it is being referenced
at the right side in Line 8. Consequently, there are two
types of join-points: definition join-points and reference

join-points. Integrating new aspects at the two types of
join-points corresponds to two different situations when
handling the requirements. Roughly speaking, the spec-

ified product family term can be considered as a white
box in the former case, whereas it can be considered
as a black box in the latter case. Introducing advice

at a definition join-point affects the internal descrip-
tion of the specified product family term, whereas in-
troducing advice at a reference join-point affects the

descriptions of product families including the specified
product family terms. Moreover, when it comes to the
detailed level of features, introducing advice at these

two types of positions can cause very different results.
Therefore, it is necessary to distinguish between the def-
inition and reference positions of a product family term

at the abstract feature-modeling level. The differences
between these two types of join-points are discussed fur-
ther when specifying point-cuts, advice, and aspects.

3.2 Point-cuts in AO-PFA

In existing aspect-oriented techniques, three attributes

are generally used to specify a point-cut: the scope of

join-points, a predicate that characterises the relevant

join-points, and the form and role of join-points. There-
fore, the point-cut language in AO-PFA is expressed as
a triple (scope, expression, kind).

The first component of the point-cut triple, scope,
bounds the selecting scope of join-points in PFA. Two
types of scopes are designed: within and hierarchy. Sco-

pes of type within capture join-points within specified
lexical structures, while scopes of type hierarchy cap-
ture join-points within the hierarchical property of fea-

tures in the feature models. We use “:” and “;” to ex-
press the combination of two scopes. Separating two
scopes by “:” indicates that all eligible join-points are

within the union of the two specified scopes. Separating
two scopes by “;” indicates that all eligible join-points
are within the intersection of the two specified scopes.

Moreover, we use protect to specify that all eligible join-
points are excluded from the scope. In particular, when
no scope is specified, the scope base is considered by

default, indicating that the whole base specification is
in the scope.

The second component of the point-cut triple, ex-

pression, is a Boolean expression on the language of
product family algebra, which captures characteristics
of the product families corresponding to the base spec-

ification. Boolean expressions work as guards for the
selected join-points. When no expression point-cut is
specified, the expression true is taken by default.

The third component of the point-cut triple, kind,
is used to specify the exact form and role of join-points.
Unlike the scopes and the expressions of point-cuts,

there is no default value for the kind of a point-cut.
The kind of point-cut must be explicitly specified for
each aspect. With regard to the three types of specifica-

tion constructs in PFA, we further categorise the kinds
of point-cuts as feature-related (declaration and inclu-
sion), family-related (component creation, component,

creation, and equivalent component), and constraint-rel-
ated (constraint[position list]). We further illustrate the
usage of different kinds of point-cuts in the following

sections.

3.2.1 Feature-related Point-cuts

In PFA specifications, feature-related point-cuts cap-

ture join-points which are product family terms that
are basic features in product families. Two kinds of
feature-related point-cuts are introduced. In particular,

declaration point-cuts capture join-points where a spe-
cific feature is declared, while inclusion point-cuts cap-
ture join-points where a specific feature is referenced.

The difference between these two kinds of point-cuts

6 Qinglei Zhang et al.

Table 1: Summary of Types of Point-cuts

Scope

Default base

Explicit
Scope

hierarchy

within

Excluded Scope protect(⟨scope⟩)
Combined
Scope

⟨scope1 : scope2⟩
⟨scope1; scope2⟩

Expression

Default true

Explicit
Expre-
ssion

Boolean
Expression

Kind

Definition Reference

Feature-related declaration inclusion

Family-
related

creation component

component creation equivalent component

Constraint-
related

constraint[position list]

resides in whether or not the feature’s definition can be

changed.

3.2.2 Family-related Point-cuts

Family-related point-cuts capture join-points that are
product family terms representing product families in

a PFA specification. We introduce four kinds of family-
related point-cuts: creation, component creation, com-
ponent, and equivalent component.

Creation point-cuts and component creation point-
cuts capture join-points at the left sides of labelled

family equations, which indicate the definition of spec-
ified product families. The difference between creation
point-cuts and component creation point-cuts resides in

whether we change the definition of the specified fami-
lies directly or whether we change the definition of their
components. Creation point-cuts refer to the exact def-

inition of the specified families.

On the other hand, component point-cuts and equiv-

alent component point-cuts capture join-points at the
right sides of labelled family equations, which indicate
the reference to the specified product families. Compo-

nent point-cuts refer to the appearance of the specified
product families within any other product families as
components. Equivalent component point-cuts refer to

the equivalent (or indirect) appearance of the specified
product families as components. The difference between
component point-cuts and equivalent component point-

cuts resides in whether the reference is direct or indi-
rect.

3.2.3 Constraint-related Point-cut

With regard to constraints in PFA specifications, we

introduce a constraint-related point-cut. As each con-
straint item is represented by a triple preceded by the
keyword constraint, an extra option in the point-cut

is necessary to specify which arguments of the triple
are captured. Therefore, the constraint-related point-
cut is expressed as constraint[position list]. Three key-

words, left, middle, and right, respectively correspond

to the first, second and third arguments of a PFA con-

straint triple. The keywords are used to specify the po-
sition list.

Table 1 summarises the various types of each ele-
ments of the triple (scope, expression, kind).

3.3 Advice and Aspects in AO-PFA

The advice of an aspect is specified by an equation in

AO-PFA: ⟨aspectId⟩ = ⟨Advice(jp)⟩. An aspect can ei-
ther relate to definition join-points or to reference join-
points. With regard to the different types of join-points,

there is a slight difference for specifying ⟨aspectId⟩. If
the aspects relate to definition join-points, ⟨aspectId⟩
should specify new labels that define new product fam-

ily terms. If the aspects relate to reference join-points,
⟨aspectId⟩ should always be expressed as a variable jp
that refers to join-points.

Additionally, we discuss and categorise aspects ac-
cording to the effects of their advice on the selected
join-points, which indicates that the form of the ad-

vice in AO-PFA is always specified by a product family
term; either a ground term or a term with variable jp.
In particular, we distinguish aspects in accordance with

their augmenting, narrowing, and replacing effects upon
join-points.

3.3.1 Augmentation Aspects

Augmentation aspects add features to the original spec-
ifications. In other words, for an augmentation aspect,

the advice is specified by a product family term con-
structed with variable jp. We further classify augmen-
tation aspects with respect to definition join-points and

reference join-points. Refine aspects augment the orig-
inal product families where they are defined, whereas
extend aspects augment original product families where

they are referenced.

An Aspect-Oriented Language for Feature-Modeling 7

Table 2: The categories of Aspects

Type of
Join-Points

Effects on Join-Points Categories

Definition
Join-Points

Augmentation refine

Narrowing discard

Replacement replace

Reference
Join-Points

Augmentation extend

Narrowing disable

Replacement substitute

3.3.2 Narrowing Aspects

Narrowing aspects simply result in the absence of origi-
nal join-points. The advice of narrowing aspects can be
specified as the constant element 1 of product family al-

gebra. This means that a product or family is replaced
by the neutral product denoted by 1 (a pseudo-product
that has no features). Similar to augmentation aspects,

narrowing aspects are further classified into discard and
disable aspects. Discard aspects narrow product families
or basic features where they are defined, whereas dis-

able aspects narrow product families or basic features
where they are referenced.

3.3.3 Replacement Aspects

Replacement aspects replace the appearance of original
join-points with other product families. In this case,
the advice can be specified in the form of a ground

product family term (i.e., a term constructed without
variables). Similarly, we distinguish replace aspects and
substitute aspects to respectively refer to effects on def-

inition join-points and reference join-points.

As mentioned earlier, the type of join-points is de-

cided by the kind of the point-cut. In particular, dec-
laration, creation, and component creation capture def-
inition join-points, while inclusion, component, equiva-

lent component, and constraint[position list] capture ref-
erence join-points. Moreover, the effects of aspects on
join-points are decided by the form of ⟨Advice(jp)⟩.
Therefore, given the syntax of an aspect in AO-PFA,
we can directly categorise the aspect. Such a classifi-
cation of aspects is to help the modular reasoning on

aspects in the context of product families. In summary,
the categories of aspects are given in Table 2.

4 Specifying Aspects with AO-PFA

After a product family has been deployed, it is common

that the product families evolve. Families of ambient

systems are good examples of product families where

evolution is unavoidable and continuous (Gámez and
Fuentes, 2012). Different circumstances require either
the addition of new features according to new tech-

niques or requirements, or the replacement of certain
features by other ones, or simply the removal of some
bad or old features from the product families. The pro-

posed language has the flexibility to implement each of
these different types of changes by composing aspects.
In particular, the augmentation, replacement, and nar-

rowing aspects respectively correspond to adding, re-
placing, and removing features. Besides adding, replac-
ing, and removing features, different evolution scenar-

ios have distinct requirements that should be able to
be specified by using aspects. In the remainder of this
section, we further discuss the example of the eleva-

tor product family to illustrate the flexibility of the
proposed language. Figures 6 – 8 show the resulting
specifications after weaving different aspects. In those
specifications, we use bold font to denote join-points

in the base specification and italic font to denote new
specification elements introduced by the aspect.

4.1 Introduction of Similar Crosscutting Concerns
Generating Different Sets of Products

A common type of requirement for product families is
that the appearance of certain features implies the ap-
pearance of other features. The deployed product fam-

ilies should be able to evolve with such requirements.
Meanwhile, the way to evolve with such requirements
can vary according to different circumstances.

Case (a): Suppose that we wish to express a new
requirement that intends to compose a new light reset
feature in any family that includes a light display fea-

ture. Take Specification 1 as the base specification. We
can use an aspect with an inclusion point-cut to specify
this scenario.

Aspect jp = jp · light reset
where jp ∈

(
base, true, inclusion(light display)

)
For this aspect, the new feature light reset is composed
with light display where light display is referenced in the

labelled product families. In particular, the captured
join-points in Specification 1 are at the right hand sides
of both Line 4 and Line 6. The resulting specification is

Specification 2 of Figure 6. Moreover, according to the
classification described in Section 3.3, this is an extend
aspect.

Case (b): Suppose that we wish to express a new
requirement that intends to introduce two optional fea-
tures, failure capture and light reset, to the original def-

inition of configure. Take Specification 1 of the elevator

8 Qinglei Zhang et al.

product family given in Figure 4 as our base specifica-

tion. We can use an aspect with a declaration point-cut
to specify this scenario as follows:

Aspect jp new = (1 + failure capture) · (1 + light reset)

where jp ∈
(
base, true, declaration(configure)

)
The point-cut here would capture a join-point related

to the definition of configure at Line 3 of Specifica-
tion 1. Consequently, since the captured and modified
join-point is a definition join-point and the scope point-

cut is base, all references to the original configure should
be substituted to the new ones. The resulting specifi-
cation is Specification 3 of Figure 6. This aspect is a

replace aspect.

Case (c): We next take Specification 3 of Figure 6
as the base specification. Since the original configure

feature has been changed to configure new, the con-
straints related to configure new that are inherited from
the original constraints related to configuremay become

too restrictive or too loose. In particular, the constraint
at Line 12 in Specification 3 is automatically generated
from the constraint at Line 10 in Specification 1 by

substituting configure by configure new. However, this
constraint cannot exactly specify the relationship be-
tween the light display and the newly added feature

light reset. Therefore, we specify an aspect with a con-
straint[position list] point-cut as follows:

Aspect jp = light reset

where jp ∈
(
base, true, constraint[left](configure new)

)
The above aspect is a substitute aspect. The kind of
point-cut captures join-points which reference the fea-
ture configure new and appear at the left components of

a constraint triple. Obviously, the captured join-points
are the first component of Line 12 in Specification 3 of
Figure 6. The result of weaving this aspect to Specifi-

cation 3 is given in Specification 4 of Figure 6.

We can find that the aspects in Case (b) and Case (c)

together specify similar requirements to the aspect in
Case (a). In both situations, a new light reset feature
is introduced in the elevator product family and the

appearance of light reset indicates the appearance of
light display in each product. In Case (a), as shown in
Specification 2, the new light reset feature is only com-

posed with products where light display is available in
the base Specification 1. On the other hand, the as-
pect in Case (b) first introduces the new light reset fea-

ture by further defining configure in the base Specifi-
cation 1. Consequently, weaving the aspect in Case (c)
to the base Specification 3 indicates that light reset re-

quires light display in all products of the elevator prod-
uct family. However, we should notice that the product
families specified by the above two situations are not

exactly the same. The former one composes a new fea-

Specification 2: Using an inclusion point-cut

· · ·
bf light reset

· · ·
4. optional light display = light display · light reset +1

· · ·
6. full base functionality = move control · light display ·light reset

· · ·

Specification 3: Using a declaration point-cut

1. bf move control

2. bf light display

3. bf failure capture

4. bf light reset

5. configure new = (failure capture+1) · (light reset +1)

6. optional light display = light display + 1

7. optional configure = configure new + 1

8. full base functionality = move control · light display

9. base functionality = move control · optional light display

10. elevator product line = base functionality · optional configure
11. customised elevators = move control + full base functionality

· configure new

12. constraint(configure new, elevator product line, light display)

Specification 4: Using a constraint[position-list] point-cut

· · ·
12. constraint(light reset, elevator product line, light display)

Fig. 6: Different Cases of Adding the New Feature
light reset

ture to the original product families to make them all

satisfy the requirement (see Specification 2 of Figure 6),
while the latter one removes the products that do not
satisfy the requirements from the product family (see

Specification 4 of Figure 6).

4.2 Introduction of Similar Crosscutting Concerns at

Different Types of Join-Point Positions

To add new features, it is usually the case that we need
to compose a new feature with a particular product
family. Since a feature can have different roles at dif-

ferent places in the base specification, we need to add
those new features at different types of join-points.

Case (a): Consider Specification 3 of Figure 6 to
be the base specification. Suppose that we want to in-
clude a new log feature with the original configure new

product family. We can accomplish this using a refine
aspect as follows:

Aspect jp new = jp · log
where jp ∈

(
base, true, creation(configure new)

)
The creation point-cut intends to capture join-points
where configure new is defined. Therefore, this aspect

captures join-points at the left hand side of Line 5
of Specification 3 and adds a new feature log to ob-
tain a new definition for configure new. Since the cap-

tured and changed join-points are definition join-points,

An Aspect-Oriented Language for Feature-Modeling 9

Specification 5: Using a creation point-cut

bf log
· · ·
5. configure new = (failure capture + 1) · (light reset + 1)

configure new new = configure new · log
· · ·
7. optional configure = configure new new + 1
· · ·
11. customised elevators = move control + full base functionality

· configure new new

12. constraint(configure new new, elevator product line, light display)

Specification 6: Using a component point-cut

bf log
· · ·
7. optional configure = configure new · log + 1
· · ·
11. customised elevators = move control + full base functionality

· configure new · log
. . .

Fig. 7: Different Cases of Adding the New Feature log

the references to configure new in Line 7, Line 10, and
Line 12 are automatically substituted by the new one.

Specification 5 of Figure 7 shows the result of weaving
this aspect to Specification 3.

Case (b): We assume that a new feature log is re-
quired to be composed with the configure new product
family as described above, while the original definition

of configure new should not be changed. In this case,
we can use an extend aspect to specify this scenario as
follows:
Aspect jp = jp · log
where jp ∈

(
base, true, component(configure new)

)
The component point-cut intends to capture join-points
where configure new is referenced in the labelled prod-
uct families. Therefore, this aspect composes the fea-

ture log at the right hand sides of Line 7 and Line 10
of Specification 3 where configure new appears. The re-
sult of weaving this aspect to Specification 3 is shown

in Specification 6 of Figure 7.

Comparing the resulting specifications of the above

two cases, the difference lies in whether or not the def-
initions of product families are changed. The aspect in
Case (a) modifies the original definition of configure new.

All references to the feature configure new in the spec-
ification, including the one in the constraint, have to
be changed to the new one in Specification 5. On the

other hand, the aspect in Case (b) does not change the
original definition of configure new and the reference to
this product family in the constraint is unchanged in

Specification 6.

Specification 7: Using a component creation point-cut

1. bf move control

2. bf light display

bf failure capture

move control new = move control · failure capture

light display new = light display · failure capture

· · ·
6. full base functionality = move control new · light display new

· · ·
Specification 8: Using an equivalent component point-cut

· · ·
bf failure capture

· · ·
6. full base functionality = move control · light display

7. base functionality = move control · light display · failure capture

+ move control
· · ·
9. customised elevators = move control +full base functionality ·

failure capture · configure
· · ·

Specification 9: Using a non-default scope point-cut

bf failure capture
· · ·
9. customised elevators = move control + move control · failure capture

· light display · configure
· · ·

Fig. 8: Different Cases of Adding the New Feature
failure capture

4.3 Introduction of Similar Crosscutting Concerns
Regarding Different Feature Relationships

We still consider adding new features to the original
product family. However, the newly added feature may

not only have simple relationships with one particular
feature/family in the original product family as in the
previous section. We should be able to add new features

in more flexible ways that can handle more complex
relationships.

Case (a): Suppose that we want to capture any
defective behaviour in the full base functionality. How-

ever, full base functionality is composite and we cannot
be sure which component might cause the defective be-
haviour. Therefore, we need to add a failure capture

feature to each of its components, move control and
light display. Take Specification 1 (Figure 4) as our base
specification. We can specify an aspect with a compo-

nent creation point-cut as follows:

Aspect jp new = jp · failure capture

where jp ∈
(
base, true, component creation(full base functionality)

)
The components of full base functionality, which is spec-
ified in Line 6, are move control and light display. Con-

sequently, the join-points related to the definitions of
move control and light display are Line 1 and Line 2. In
other words, the above point-cut would capture join-

points at both Line 1 and Line 2 of Specification 1
of Figure 4, and add the new feature failure capture
there. Automatically, references to those components

move control and light display in Line 6 are changed

10 Qinglei Zhang et al.

to the new ones. Specification 7 of Figure 8 shows the

result of weaving this aspect to Specification 1. The
aspect is a refine aspect.

Case (b): Alternatively, suppose we want to cap-
ture any equivalent defective behaviour in the prod-

uct family full base functionality from the base speci-
fication. However, assume that we are not allowed to
make changes to the definition of the product fam-

ily full base functionality. An aspect with an equiva-
lent component point-cut, exemplified in Section 3.2, is
able to specify this scenario. Taking Specification 1 of

Figure 4 as our base specification again, we specify an
aspect with an equivalent component point-cut as fol-
lows:
Aspect jp = jp · failure capture

where jp ∈
(
base, true, equivalent component(full base functionality)

)
For this aspect, the captured join-points should be ref-
erence join-points which are equivalent to the product

family full base functionality. The right hand side of
Line 7 includes the product family term move control ·
light display, which is equivalent to the product fam-

ily term full base functionality due to the definition of
full base functionality at Line 6. Moreover, the right
hand side of Line 9 includes the product family term

full base functionality. Therefore, this aspect will add
the new feature failure capture at the right hands sides
of Line 7 and Line 9 of Specification 1. Specification 8

of Figure 8 shows the result of weaving this aspect to
Specification 1. Straightforwardly, the aspect is an ex-
tend aspect according to the proposed classification.

Case (c):We continue with our running example to
introduce a new failure capture feature in the base spec-
ification. Suppose we are required to capture all defec-

tive behaviours with themove control component in the
full base functionality family. In addition, we only intro-
duce the new feature within the customised elevators.

In this case, we specify an aspect as follows:
Aspect jp = jp · failure capture

where jp ∈
(
within(customised elevators) ; hierarchy

(full base functionality), true, inclusion(move control)
)

Straightforwardly, the captured join-points should be

related to the reference of move control. Moreover, the
set of join-points are further bounded by the scope
point-cuts. In particular, the within scope narrows the

join-points to only Line 9 of Specification 1 of Figure 4,
and the hierarchy scope specifies that the move control
should be constructed from the full base functionality.

Therefore, this aspect will not add the failure capture
with the first move control, but with the second one
in Line 9. This is an extend aspect and the resulting

specification is Specification 9 of Figure 8.

Although the term of the advice is the same for each

aspect (i.e., Advice(jp) is jp · failure capture for each of
the above cases), the resulting specifications are quite
different. The join-points of the aspects in Case (a) and

Case (b) are related to full base functionality. The join-
points of the aspect in Case (c) are related to the feature
move control, while the feature full base functionality

only specifies the scope of join-points. Furthermore, be-
sides the slight difference in meaning, the main differ-
ence between Case (a) and Case (b) resides in whether

or not the definitions of the full base functionality fam-
ily (or its components) have changed. The different ef-
fects of these aspects show that our point-cut language

is capable of distinguishing between slight differences
among requirements.

5 Remarks on AO-PFA

5.1 Theoretical Remarks

The language of a product family algebra is that of a
semiring. However, the extended PFA language includes

equations defining families and constraints on families
presented in Section 2.1, which brings some complica-
tions into its semantics. A product family specification

is a parameterised algebraic specification (SPEC,PSPEC).
The component SPEC is the parameter specification,
and the component PSPEC is the target specification.

Then, a particular product family algebra specification
can be denoted by the actualisation of the parameter
SPEC. The parameter specification SPEC contains a

sort f , and operations +, ·, 0 and 1 of the commuta-
tive idempotent semiring. The sort f denotes the sort of
product families. The parameter specification is a sub-

specification of the target specification, which means
that the target specification can use the sorts, and the
operations defined in the parameter specification. We

have a set Ef of equations which are the axioms of
a commutative idempotent semiring. An equation is
usually represented by a triple (X, l, r) which means

l = r with l, r ∈ Tf (X). For example, an equation
(x+y)+z = x+(y+z) is represented by

(
{x, y, z}, (x+

y)+ z, x+(y+ z)
)
, where {x, y, z} explicitly claims the

variables that occur in the equation. Formally, the pa-
rameterised specification is then defined as follows:

PSPEC[SPEC] = SPEC ⊎ (∅, ∅,Ef), (1)

where ⊎ is the disjoint union.

A given PFA specification S can be denoted as a
term algebraic specification with a fixed set of sym-
bols L(S), which represent the labels of the defined fam-

ilies (including basic features). Product family terms

An Aspect-Oriented Language for Feature-Modeling 11

w.r.t. the specification S are denoted by Tf (L(S)). The

signature of S is ({f}, {+, ·, 1, 0} ∪ L(S)}). Moreover,
let ({c}, ∗) be the signature of a monoid. The set of all
possible labels for features or families can be denoted

by V = Tc(Γ), where Γ is the alphabet and ∗ is inter-
preted as the concatenation operation on strings. We
should have L(S) ⊆ V . Besides, a PFA specification S

also brings a set of equations Eq(S) defining families,
and a set of constraints Cp(S). Each equation (X, l, r)
in Eq(S) satisfies l, r ∈ Tf (X) and X ⊆ L(S). Each

constraint in Cp(S) is represented by a triple (l,m, r)
satisfying l, r ∈ Tf (L(S)), corresponding to the require-
ment relationship introduced in Section 2.1. Therefore,

a given PFA specification S corresponds to an algebraic
specification

S =
(
{f}, {+, ·, 1, 0} ∪ L(S), Eq(S) ∪ Cp(S)

)
.

According to Equation (1), we denote the given PFA

specification S by actualising the parameter specifica-
tion SPEC with S, which can be written as

PSPEC[SPEC 7→ S] = S ⊎ (∅, ∅,Ef).

In summary, the semantics of the PFA specification lan-

guage are those of S⊎(∅, ∅,Ef), which are still semiring-
based semantics. The models can be trivial extensions
to models of commutative idempotent semirings such as

the set-based or the bag-based ones discussed in (Höfner
et al, 2006). In AO-PFA, we have a base specification
that is a PFA specification and an aspect specification.

After the weaving process, we get a PFA specification
(for more details, we refer the reader to (Zhang and
Khedri, 2013)). We have shown in (Zhang and Khedri,

2013) that the rewriting system needed for the weaving
process is convergent (i.e., confluent and terminating).
Also, we have shown that the procedure for determining

a join-point in the base specification is decidable (i.e.,
deciding on Ef ∪ Eq(S) |= (s = t), for terms s and t).

5.2 Applicability of AO-PFA

To evaluate the applicability and the effectiveness of
the proposed approach, we discuss four of the desired
qualities that should be facilitated by any analysis and

design approach: composability, evolvability, scalability,
and traceability (Chitchyan et al, 2005).

The composition of feature models with AO-PFA is
rigorously specified by the point-cut language, and is
well-defined according to the formal semantics of the

PFA language and the weaving process (Zhang and
Khedri, 2013). Moreover, the formal techniques given
in (Zhang et al, 2011, 2012b) provide techniques for

verifying the correctness of aspectual composition.

The proposed feature-modeling approach is evolv-

able due to the characteristics of the aspect-oriented
paradigm. The case study given in Section 4 illustrates
the flexibility of the proposed approach for making cha-

nges to feature models. The support of the formal weav-
ing progress and the formal verification of the aspectual
composition problems make amending feature models

automatic, which eases the evolution of the models. Any
change to the feature model can be systematically and
automatically propagated.

The scalability of the proposed approach is con-
strained by the scalability of the Jory tool that is used
to specify and analyse PFA specifications. Jory , which

executes PFA specifications for analysis purposes, uses
the binary decision diagrams provided by the library
BuDDy (Lind-Nielsen, 2010). BuDDY can handle up

to 50, 000 nodes in every megabyte of memory (tested
for 232 nodes) (Alturki and Khedri, 2010). We use one
node to represent one feature. Therefore, the handled
families can be huge in size (Alturki and Khedri, 2010).

The traceability of the proposed approach is not ad-
dressed at this point in time. It requires techniques that
map features from the feature-modeling level to the de-

sign and implementation levels. As future work we in-
tend to develop mapping techniques from an AO-PFA
specification to the elements of all the following stages

of the development life-cycle.

6 Related Work and Discussion

6.1 Work Related to Product Family Algebra

The work of AO-PFA is based on the work of prod-
uct family algebra (Höfner et al, 2006) and a formal

specification language PFA (Alturki and Khedri, 2010).
Formal specifications are particularly essential for be-
ing used by tools to assist complex activities such as

managing and analysing large and complicated feature
models. Product family algebra is notable for its capa-
bility to represent feature models very compactly. More-

over, the Jory tool implements the automatic analysis
of PFA specifications based on BDDs (Binary Decision
Diagrams) (Andersen, 1997). Results shown in (Bena-

vides et al, 2006), indicate that BDDs provide a faster
approach for the analysis and reasoning of feature mod-
els. Therefore, we can particularly benefit from using

this tool for extremely large feature models.
Our work is also an extension of the work in (Höfner

et al, 2008). In this work, feature models are integrated

by view integration, where each view partially describes
common and variable characteristics of the considered
product family. View reconciliation (Höfner et al, 2008)

is used to exclude all products violating the constraints

12 Qinglei Zhang et al.

from the integrated product families. However, as recog-

nised in general software development, there is a bottle-
neck for the classic multi-view integration approach to
separate and compose crosscutting concerns (Chitchyan

et al, 2005). If we compose crosscutting concerns with
other concerns by view reconciliation, we are required
to specify various constraints in the corresponding spec-

ification. To specify all of those constraints can be quite
tedious for large feature models. Moreover, adding and
removing features from feature models are common op-

erations that are necessary for the evolution of feature
models. But constraints only allow to remove products
from the original product families. The language pro-

posed in this paper intends to complement the multi-
view integration approach used in product family alge-
bra by providing a modular means to handle crosscut-

ting concerns. A complete product family algebra spec-
ification for a product family feature model is described
by integrating different views/perspectives of the sys-
tem with view reconciliation and composing crosscut-

ting concerns with the aspect-oriented paradigm. Simi-
lar to the general benefits that can be obtained from the
aspect-oriented paradigm, our technique can improve

the modular development, maintenance, and evolution
of feature models for product families.

Besides, there are also other extension works for

AO-PFA, such as the verification of aspectual compo-
sition in AO-PFA. To avoid obtaining unsound feature
models by composing aspects with base specifications,

we have proposed a formal verification approach for as-
pectual composition in (Zhang et al, 2012b). In par-
ticular, the work of (Zhang et al, 2012b) establishes

a set of criteria and propositions to enable the detec-
tion of dependency, reference, or definition invalid as-
pects before the weaving process based on AO-PFA.

The verification of aspectual composition is a common
and heavily discussed issue in the literature of aspect-
oriented techniques (Kuhlemann et al, 2009). However,

the main difficulty for aspectual verification in many
early aspect-oriented techniques is due to their informal
specifications. Therefore, the formal nature of AO-PFA

eases the formal verification of aspectual composition
at the early stages. Moreover, the formal verification
of aspectual composition in AO-PFA also provides a

way to detect unsafe composition of features at a more
abstract level and at an earlier stage.

6.2 Approaches for Using Product Family Engineering
for Ambient Systems

In (Fuentes and Gámez, 2010), we find a discussion of
why and how to use product family engineering in am-

bient systems. Ambient systems are comprised of a set

of heterogeneous devices, which communicate via di-

verse environments. Besides, different applications of
ambient systems have quite distinct requirements. Con-
ventionally, one solution to handle the complexity and

variabilities of ambient systems is to use a middleware
platform. However, with such a middleware solution,
all applications deployed in each device will be homo-

geneous. In other words, more services are deployed but
are disabled in each one of those heterogeneous devices.
On the other hand, product family engineering can pro-

vide a rapid and systematic way to develop similar but
specific ambient systems that target heterogeneous de-
vices, different networks, or distinct requirements.

Moreover, the evolution problems in ambient sys-
tems require approaches to deal with them in the con-
text of product family engineering. We find in (Gámez
and Fuentes, 2012) a process to automatically propa-

gate and trace changes from feature models to architec-
ture components of ambient systems. Since their work
does not discuss the evolution problems of the feature

models themselves, our work can be considered as a
complement work of theirs, which provides a system-
atic way for changing the feature models.

6.3 Approaches for Adapting the Aspect-Oriented

Paradigm into Product Family Engineering

Our work mainly adapts several ideas from AspectJ

to the product family specification level. Terms in our
work can be analogous to terms in AspectJ. On the
other hand, by constructing our language upon the math-

ematical structure of product family algebra, we sim-
plify the constructs and notations which would be used
in aspect-oriented techniques. Besides modularisation,

the aspect-oriented paradigm also provides the mecha-
nism for composition. In contrast with AspectJ, feature-
related point-cuts can be respectively analogised as the

field set and field get point-cuts in AspectJ. The two
types of family-definition point-cuts can be connected
to the class/object creation point-cuts in AspectJ, while

the other two types of family-reference point-cuts can
be connected to the method-related point-cuts in As-
pectJ. However, unlike at the programming level, we

are able to adapt aspect-oriented techniques at the ab-
stract level of product families using very simple nota-
tions with the help of product family algebra. In PFA,

only a few notations are necessary to specify product
families. Hence, join-points of PFA specifications can
simply be unified as product family terms, which are

the basic elements in PFA specifications.
We find other related works that attempt to man-

age the variabilities in product families by introduc-

ing the aspect-oriented paradigm to product family en-

An Aspect-Oriented Language for Feature-Modeling 13

gineering. Griss (Griss, 2000) summarised the advan-

tages of composition and weaving approaches for deal-
ing with crosscutting concerns in product families. Ear-
lier techniques that adapt the aspect-oriented paradigm

to product family engineering mainly focus on the im-
plementation stage at the programming level, such as
Framed aspect (Loughran and Rashid, 2004), Aspectual

Mixin Layer (Apel et al, 2006), and Caesar (Mezini and
Ostermann, 2004). Recently, several works are articu-
lated around adapting the aspect-oriented paradigm at

the earlier analysis and design stages. VML4RE (Alférez
et al, 2009) presents a requirement specification lan-
guage to compose elements from different requirement

models. The language is based on concrete models that
it supports (i.e., use cases, interaction diagrams, and
goal models). Xweave (Groher and Voelter, 2007) is a

model weaver supporting the composition of different
views. It helps weaving variable parts of architectural
models to base models. In VML4RE and Xweave, the
variabilities of product families are composed into the

concrete models of product families using the aspect-
oriented paradigm. Their techniques can be seen as
complement techniques of our method. By appropri-

ately mapping mechanisms for aspects, we should han-
dle aspects consistently and systematically from the
feature-modeling level to the concrete models and to

the implementation.
In (Bošković et al, 2010), the authors introduce a

feature-modeling technique AoFM and argue that the

aspect-oriented paradigm can help to manage and main-
tain large feature models. This work has a similar mo-
tivation as ours. However, due to the graph-based no-

tations of AoFM, it is a challenge to automate the pro-
cessing and verification of feature models. In compari-
son with AoFM, our technique adopts a formal aspect-

oriented approach at the feature-modeling level, which
enhances automatic analysis and verification of feature
models.

6.4 Approaches for Composing Feature Models

At the modeling and specification level for product fam-
ilies, many efforts have been taken in the literature to

manage the common and variable features. Our work
aims to facilitate the management of complexity in large
feature models. In (Acher et al, 2010), the authors deal

with a problem similar to that of our work, but in a
different way. With regard to the composition of fea-
ture models, they mainly focus on the insert and merge

operators. From our perspective, their merge operator
can be handled by using view reconciliation presented
in (Höfner et al, 2008, 2009) and the insert operator can

be handled with the aspect-oriented paradigm. Their

work considers the composition operators from the per-

spective of model integration, whereas our work dis-
cusses the issue from the perspective of composition
mechanisms for different concerns.

Another focus of our approach is formalisation. A
feature algebraic foundation for feature composition is
proposed in (Apel et al, 2010). Similar to product fam-

ily algebra, the work captures the basic ideas of features
and feature composition at an abstract level in terms
of an algebraic setting. However, their approach for fea-

ture composition is more related to programming lan-
guages. Our approach resides in the specification lan-
guage at the early analysis and design stages of prod-

uct family engineering. This enables us to bridge the
gap of formalisations from the requirements stage to
the implementation stage. Another related work is dis-
cussed in (Thüm et al, 2009) that deals with reasoning

on feature models. In their work, they explore the re-
lationship between the original feature model and the
modified feature model. By contrast, our technique han-

dles feature models modularly with the aspect-oriented
paradigm and explores the relationship between base
feature models and composed feature models by rea-

soning on aspects. In this paper, we classify aspects to
help with modular reasoning on them.

7 Conclusion and Future Work

In this paper, we presented an approach which adapts
the aspect-oriented paradigm to feature-modeling tech-
niques of product families. We proposed a language,

AO-PFA, which extends aspect-oriented notations to
specifications based on product family algebra. The pro-
posed language allows for the articulation of aspects,

advice, and point-cuts in feature-modeling. The seman-
tics of the proposed language is based on the models
of product family algebra discussed in (Höfner et al,

2006, 2009). Also, through the use of several feature-
modeling situations and an illustrative example of an
elevator product family, we illustrated the scope and

flexibility of the proposed language.
Ambient systems are able to adapt to the particular

needs and profiles of a variety of users. They also offer

its users mobile and pervasive access to data. For this
reason, ambient systems are exceedingly susceptible to
change. As the needs of the users and the environment

change, developers of ambient systems need to be able
to amend the system in a timely manner in order for
the system to cope with such changes. Although the

environments for which ambient systems are developed
contain many common characteristics, they are not al-
together the same. Similarly, different users may have

different needs, but in all likelihood, they will share a

14 Qinglei Zhang et al.

number of common needs. Due to this commonality,

the recommended approach for developing these types
of ambient systems is the family oriented approach. In
this paper, we proposed an approach for specifying am-

bient systems as product families. By proposing the use
of an aspect-oriented approach, we provide a convenient
means for amending the feature models of ambient sys-

tems to allow them to evolve in order to fit their envi-
ronments and meet the needs of their users.

We intend to extend the existing Jory tool to auto-

mate the proposed approach. The envisioned extension,
would use the kernel of Jory for the automatic analy-
sis of large feature models. With regard to the syntax

of the proposed language, we only need to perform a
lightweight extension to the existing notation of Jory
to support the aspect specifications. In addition, we

aim at developing modules to support the verification
of aspectual composition and the weaving of aspects.
Based on the formal technique presented in (Zhang

et al, 2011), the verification of aspectual composition
for the proposed approach can be easily automated.
Also, we have given the formal semantics and proofs

for the weaving process in (Zhang and Khedri, 2013),
according to which the automation of the weaving pro-
cess is straightforward. In particular, with regard to

the term rewriting system required by the weaving pro-
cess, we have implemented a prototype using the term
rewriting tool Maude (Clavel et al, 2011). After com-

pleting the above extensions to the tool support of the
proposed approach, we aim at conducting an empirical
evaluation to assess its performance on industrial-sized

feature models.

As the basis for our ongoing and future work on the
introduction of finer granularity aspects at the state

level rather than the feature level, we use the work pre-
sented in (Höfner et al, 2011) to analyse feature models
at a finer level that of the systems’ states. We aim to

advance towards automatic code generation from the
specification of the base product family, the specifica-
tion of the aspects, and the specification of each of the

basic features. This was shown to be an achievable ob-
jective in (Höfner et al, 2011), where the features of
a product family were given as requirements scenarios

formalised as pairs of relational specifications of a pro-
posed system and its environment.

Acknowledgements This research is supported by the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC), Grant Number RGPIN227806-09.

We thank the numerous reviewers for their comments that
helped us improve the quality of this paper.

References

Acher M, Collet P, Lahire P, France R (2010) Compos-
ing feature models. In: van den Brand M, Gaševic D,

Gray J (eds) Software Language Engineering, Lec-
ture Notes in Computer Science, vol 5969, Springer
Berlin / Heidelberg, pp 62–81

Alférez M, Santos J, Moreira A, Garcia A, Kulesza U,
Araújo J, Amaral V (2009) Multi-view composition
language for software product line requirements. In:

Proc. of the 2nd International Conference on Soft-
ware Language Engineering, pp 103–122

Alturki F, Khedri R (2010) A tool for formal feature
modeling based on bdds and product families alge-

bra. In: 13th Workshop on Requirement Engineering,
pp 109–120

Andersen HR (1997) An introduction to binary deci-

sion diagrams. In: Lecture notes for 49285 Advanced
Algorithm E97

Apel S, Leich T, Saake G (2006) Aspectual mixin layers:

Aspects and features in concert. In: Proc. of the In-
ternational Conference on Software Engineering, pp
122–131

Apel S, Lengauer C, Möller B, Kästner C (2010) An al-
gebraic foundation for automatic feature-based pro-
gram synthesis. Science of Computer Programming

75(2010):1022–1047
Benavides D, Segura S, Trinidad P, Ruiz-Cortes A
(2006) A first step towards a framework for the au-

tomated analysis of feature models. In: Proc. of the
Workshop held in conjunction with the 10th Software
Product Line Conference

Bošković M, Mussbacher G, Bagheri E, Amyot D,
an Marek Hatala DG (2010) Aspect-oriented fea-
ture models. In: Models in Software Engineering-

Workshops and Symposia at MODELS 2010
Chitchyan R, Rashid A, Sawyer P, Garcia A, Alarcon
MP, Bakker J, Tekinerdogan B, Clarke S, Jackson A

(2005) Survey of Analysis and Design Approaches.
Survey, AOSD-Europe

Clavel M, Durán F, Eker S, Lincoln P, Mart́ı-Oliet N,

Meseguer J, Talcott C (2011) Maude Manual (Ver-
sion 2.6). SRI International, Menlo Park, CA 94025,
USA.

Czarnecki K (1998) Generative programming, princi-
ples and techniques of software engineering based on
automated configuration and fragment-based compo-

nent models. PhD thesis, Technical University of Il-
menau

Eriksson M, Börstler J, Borg K (2005) The PLUSS

approach-domain modeling with features, use cases
and use realization. In: Proc. of 9th International
Conference on Software Product Lines, pp 33–44

An Aspect-Oriented Language for Feature-Modeling 15

Frei R, Di Marzo Serugendo G, Şerbănuţă TF (2010)

Ambient intelligence in self-organising assembly sys-
tems using the chemical reaction model. Journal
of Ambient Intelligence and Humanized Computing

1(3):163–184
Frei R, Şerbănuţă TF, Di Marzo Serugendo G (2012)
Self-organising assembly systems formally specified

in Maude. Journal of Ambient Intelligence and Hu-
manized Computing pp 1–20

Fuentes L, Gámez N (2010) Configuration process of a

software product line for AmI middleware. Journal of
Universal Computer Science 16(12):1592–1611

Gámez N, Fuentes L (2012) Architectural evolution

of FamiWare using cardinality-based feature models.
Information and Software Technology

Griss ML (2000) Implementing product-line features by

composing component aspects. In: Proc. of First In-
ternational Software Product Lines Conference, pp
271–288

Griss ML, Favaro J, d’Alessandro M (1998) Integrating

features modeling with the RSEB. In: Proc. of the
5th International Conference on Software Reuse, pp
76–85

Groher I, Voelter M (2007) Xweave: Models and aspects
in concert. In: Proc. of the 10th Workshop on Aspect-
Oriented Modelling, pp 35–40

Habib S, Marimuthu P (2011) Self-organization in am-
bient networks through molecular assembly. Journal
of Ambient Intelligence and Humanized Computing

2(3):165–173
Höfner P, Khedri R, Möller B (2006) Feature alge-
bra. In: Misra J, Nipknow T, Sekerinski E (eds) For-

mal Methods, Lecture Notes in Compute Science, vol
4085, Springer-Verlag, pp 300–315

Höfner P, Khedri R, Möller B (2008) Algebraic view rec-

onciliation. In: Proc. of 6th IEEE International Con-
ference on Software Engineering and Formal Meth-
ods, pp 85–94

Höfner P, Khedri R, Möller B (2009) An algebra of
product families. Software and Systems Modeling
10(2):161–182

Höfner P, Khedri R, Möller B (2011) Supplementing
product families with behaviour. International Jour-
nal of Informatics pp 245 – 266

Kang K, Cohen S, Hess J, Novak W, Peterson A (1990)
Feature oriented domain analysis (FODA) feasibility
study. Technical Report CMU/SEI-90-TR-21, Soft-

ware Engineering Institute, Carnegie Mellon Univer-
sity

Kuhlemann M, Batory D, Kästner C (2009) Safe com-

position of non-monotonic features. In: 8th Interna-
tional Conference on Generative Programming and
Component Engineering

Kuusela J, Tuominen H (2009) Aspect-Oriented ap-

proach to operating system development empirical
study. Journal of Communication and Computer
6(8):233–238

Lind-Nielsen J (2010) Buddy BDD Library.
http://sourceforge.net/projects/buddy/, (Last
accessed on March 28, 2013)

Loughran N, Rashid A (2004) Framed aspect: Support
variability and configurability for AOP. In: Proc. of
International Conference on Software Reuse, pp 127–

140
Mezini M, Ostermann K (2004) Variability manage-
ment with feature-oriented programming and as-

pects. In: Proc. of the 12th ACM International Sym-
posium on Foundations of Software Engineering, pp
127–136

Nygard KE, Xu D, Pikalek J, Lundell M (2010) Multi-

agent designs for ambient systems. In: 1st Interna-
tional ICST Conference on Ambient Media and Sys-
tems, pp 10:1–10:6

Parnas DL (1976) On the design and development of
program families. IEEE Transactions on Software
Engineering 2(1):1–9

Riebisch M, Böllert K, Streitferdt D, Philippow I (2002)
Extending feature diagrams with UML multiplicities

Solhaug B, Seehusen F (2013) Model-driven risk analy-

sis of evolving critical infrastructures. Journal of Am-
bient Intelligence and Humanized Computing pp 1–
18

Thüm T, Batory D, Kästner C (2009) Reasoning about
edits to feature models. In: In Proc. International
Conference on Software Engineering

Zhang Q, Khedri R (2013) Proofs of the conver-
gence of the rewriting system for the weaving of
aspects in the AO-PFA language. Tech. Rep. CAS-

13-01-RK, McMaster University, Hamilton, Ontario,
Canada, available: http://www.cas.mcmaster.ca/

cas/0template1.php?601

Zhang Q, Khedri R, Jaskolka J (2011) An aspect-
oriented language based on product family alge-
bra: Aspects specification and verification. Tech.

Rep. CAS-11-08-RK, McMaster University, Hamil-
ton, Ontario, Canada, available: http://www.cas.
mcmaster.ca/cas/0template1.php?601

Zhang Q, Khedri R, Jaskolka J (2012a) An aspect-
oriented language for product family specification. In:
Ambient Systems, Networks and Technologies, 3rd

International Conference, ANT2012
Zhang Q, Khedri R, Jaskolka J (2012b) Verification and
validation of aspectual composition in product fam-

ilies. In: Software Engineering and Formal Methods,
10th International Conference, SEFM2012

