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PRESERVATION OF PROPERTIES IN DISCRETE-TIME SYSTEMS

UNDER SUBSTITUTIONS

Guillermo Fernández-Anaya, José-Job Flores-Godoy and José Álvarez-RamÍrez

ABSTRACT

For discrete-time systems, using substitutions of the variable z by M1
functions, we give results on preservation of stability, stabilization, positive real
(PR), strictly positive real (SPR), bounded real (BR), and strictly bounded real
(SBR) functions, along with the H∞-norm. These results can be interpreted
in the sense of robust control or uniform systems. Based on these properties,
we present results about preservation of the SPR Lemma and absolute stability
for discrete-time descriptor systems using linear matrix inequalities (LMIs)
and substitutions.

Key Words: Discrete-time systems, SPR and PR functions, substitutions,
M1 functions, preservation of properties.

I. INTRODUCTION

The study of substitutions in the frequency domain
for discrete-time systems is not new. For instance, in
[1], a spectral transformation for digital filters is used
and it is proven that these spectral transformations (all-
pass functions) transform a given low-pass-digital-filter
into a pulse-transfer function that has the same type
of amplitude characteristics and that belongs to certain
classes of digital filters.

In [2], a theory is developed for spectral transfor-
mation of two-dimensional digital filters. It is proven
that these transformations take the form of stable two-
dimensional all-pass functions and that the result of the
spectral transformation is stable, provided that the orig-
inal transfer function is stable. This result is used to
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obtain new designs of two-dimensional digital filters
from a previous one.

In [3], a technique is presented to design low-
pass circularly symmetric 2D Infinite Impulse Response
(IIR) digital filters from a 1D digital filter transfer func-
tion via the use of substitutions of the variable z in the
1D digital filter transfer function by a 2D system. In
this case, the Bounded-Input Bounded-Output (BIBO)
stability property is preserved if the transformation is
free of poles in the unit disk.

In continuous-time systems, a justification for
studying substitutions comes from the so-called uni-
form systems, i.e. linear time-invariant systems consist-
ing of identical components and amplifiers described
in terms of a proper transfer function W (s) = N ( f (s))

D( f (s)) ,
where N (s) and D(s) are real polynomials and f (s) is
a proper transfer function (Fig. 1 illustrates a uniform
system).

If f (s) is the correct kind of strictly positive real
function, one could study the system N (s)/D(s) in
place of the more complex and higher orderW (s). Con-
cerning the study of uniform systems, a general cri-
terion for robust stability was established in [4]. By
applying such a criterion, one attains a generalization
of the celebrated Kharitonov’s theorem [5], as well as
some robust stability criteria for H∞ -uncertainty. As
far as robust stability of polynomial families is con-
cerned, some Kharitonov’s like results are given in [6]
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Fig. 1. An example of a uniform system, in which f (s) is a single-input
single-output transfer function and ni (for i = 0, . . ., 3) and d j
(for j = 1, 2, 3) are gains. The transfer function of the system
is W (s) = ∑3

i=0ni f
i /1 + ∑3

j=0d j f
j = N ( f (s))/D( f (s)).

(for a particular class of polynomials), when interpreting
substitutions as nonlinearly correlated perturbations on
the coefficients. With respect to the robustness-oriented
properties preservation in a rational transfer function
(modified by strictly positive real (SPR) substitutions),
some results linked to H∞-robustness are given in [7]
for linear time invariant (LTI) single-input single-output
(SISO) systems, while the corresponding multiple in-
put multiple output (MIMO) case is presented in [8].
[9] provides the characterization of families of alge-
braic Riccati equations associated with SISO systems
bounded in H∞-norm terms (the positive real (PR)
substitutions acting on the bounded SISO systems). All
these results have the common factor of corresponding
to scalar PR substitutions performed in scalar rational
functions or/and matrix rational functions.

In this paper, several results reported in [8, 10]
for the continuous-time case are extended for SISO
LTI discrete-time systems by using M1 functions (see
Definition 4). It should be stressed that spectral trans-
formations have been of particular importance in the de-
sign of digital filters. In fact, M1 functions can be seen
as similar to spectral transformation that is bounded in
the unitary circle. In this paper, it will be shown that M1
functions preserve stability, positive real (PR) functions,
strictly positive real (SPR) functions, bounded real
(BR) functions, strictly bounded real (SBR) functions,
and the H∞-norm for discrete-time systems when the
substitution of the variable z by a M1 function is used.
Additionally, M1 functions are closed under com-
position of functions. Also, spectral transformations
preserve stability of digital filters (linear discrete-
time systems) where spectral transformations must be
all-pass transfer functions which transform the uni-
tary complex circle internally [1]. However, since the
M1 functions do not transform the unitary complex

circle internally, the M1 functions are different from
the spectral transformations.

The previous preservation results are applied to
obtain results on preservation of the SPR Lemma and
absolute stability for discrete-time descriptor systems,
when the substitution of variable z by an M1 function
is used. These results can be interpreted in the sense
of robustness when considering nonlinear perturbations
on the plant parameters induced by the substitution of
the M1 function in the sense of [6, 9].

II. PRELIMINARIES

This section presents the notation and definitions
which will be used throughout the paper. Let R and
C be fields of real and complex numbers, respectively,
and C+ the open right-half complex plane; define the
following sets:

T = { z ∈ C : |z| > 1 }
�T = { z ∈ C : |z| = 1}
T̄ = T ∪ �T

T̄e = T̄ ∪ {∞}
In this paper, we will study the cases of SISO and LTI
discrete-time systems.

Definition 1. The rational real function G(z) = N (z)
D(z)

with N (z) and D(z) polynomials in z ∈ C is Schur
stable if D(z) has all its roots inside the unitary circle,
i.e., the roots of D(z) are in |z| < 1.

Definition 2. ([11–13]) A rational real function G(z)
is a strictly positive real (SPR) function if

(2.1) G(z) is analytic in T̄ , i.e., G(z) is Schur stable.
(2.2) Re[G(z)] > 0 for z ∈ T̄ .

In [13] it was shown that if G(z) is SPR then G(∞)>0.
Therefore, Definition 2 is equivalent to the following:
A real rational function G(z) is SPR if G(z) is analytic
in T̄e and Re[G(z)]>0 for z ∈ T̄e, i.e. G(T̄e) ⊆ C+.

Definition 3. ([11–13]) A rational real function G(z)
is a positive real (PR) function if

(3.1) G(z) is analytic in T̄ , i.e., G(z) is Schur stable.
(3.2) Re[G(z)] ≥ 0 for z ∈ T̄ .

Definition 4. A rational real function G(z) of zero
relative-degree is called a M1 function if

(4.1) G(z) is analytic in T̄ , i.e. Schur stable.
(4.2) 1

G(z) is analytic in T̄ , i.e. minimum phase.
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(4.3) |G(e j�)| > 1 for all � ∈ [0, 2�], i.e. G(�T )

⊆ T
(4.4) |G(∞)| > 1.

Notice that if G(z) is an M1 function, then −G(z) is
also an M1 function. Moreover, by (4.4) G(z) has zero
relative degree. On the other hand, M1 functions can
be interpreted as a generalization of bilinear transfor-
mations, i.e., real rational transformations.

Definition 5. ([14, 13]) A rational real function G(z) is
a strictly bounded real (SBR) function if

(5.1) G(z) is analytic in T̄ .
(5.2) ‖G(z)‖∞<1,with ‖G(z)‖∞:= sup

�∈[0,2�]
|G(e j�)|

In the case where condition 5.1 is satisfied and
‖G(z) ‖∞ ≤ 1, the function G(z) is called a bounded
real (BR) function.

The following lemma is proven in [15].
Lemma 6. Let G(z) be analytic in the closed bounded
domain T̄ and assume that G(z) 	= 0 anywhere in T̄ .
Then, the minimum of |G(z)| is reached on the bound-
ary of T̄ , unless G(z) is a constant.

III. RESULTS ON PRESERVATION OF
PROPERTIES UNDER SUBSTITUTIONS

In this section, the main technical results of the
paper are presented. These results will be used to prove
the results of the following applications section.

Theorem 7. If H(z) is a rational stable function and
G(z) is a M1 function, then H(G(z)) is a rational stable
function and G(T̄e) ⊆ T .

Proof. First, it is proven that M1 functions are analytic
in T̄e. From Definition 4, we have:

G(T̄e) = G(T ∪ �T ∪ {∞})
= G(T ) ∪ G(�T ) ∪ G(∞)

⊆ G(T ) ∪ G(�T ) ∪ {c}
where G(∞)= c and |c| > 1, c ∈ T ; therefore, G(z)
is analytic in T̄e. Since G(z) and 1

G(z) are analytic in

T̄ , then G(z) 	= 0 and min�∈[0,2�] |G(e j�)|>1. From
Lemma 6, we also know that |G(z)|>1 for each z∈T̄e.
Therefore, G(T ) ⊆ T and G(T̄e) ⊆ T . Remember
that the composition of analytic functions is an analytic
function. The function H(z) is an analytic function in
T̄e and as H(G(T̄e)) ⊆ H(T ) in consequence H(G(z))
is an analytic function in T̄e. �

Theorem 7 establishes that M1 functions preserve
stability of SISO LTI discrete-time systems when sub-
stituted for the variable z; the same property is valid for
SPR0 functions in the continuous case [10].
Theorem 8. The composition of M1 functions is an
M1 function.

Proof. It is enough to show that Definition 4 holds
for the function G2(G1(z)) where G1(z) and G2(z)
are M1 functions. From Theorem 7, it is known
that if G1(T̄e)⊆T ; G1(z) and G2(z) are analytic
in T̄e, then G2(G1(z)) is analytic in T . Since
G1(T̄e)⊆T , G1(z) is analytic in T̄e and 1

G2(z)
is ana-

lytic in T , 1
G2(G1(z))

is analytic in T . As G1(�T )⊆T

and G2(�T )⊆T,G2(G1(�T ))⊆T . As |G1(∞)| ∈ T
and G2(T )⊆T, |G2(G1(∞))|∈T . �

Theorem 8 establishes that M1 functions are
closed under the composition of functions. As a matter
of fact, these results are similar to Theorem 1 and 2 in
[10] for continuous-time systems.

Theorem 9. (SPR and PR properties) If H(z) is a
SPR (PR) function and G(z) is an M1 function, then
H(G(z)) is a SPR (PR) function.

Proof. We need to show that the function H(G(z)) is
analytic in T̄e and H(G(T̄e)) ⊆ C+. By Theorem 7, we
know that whenG(T̄e) ⊆ T ,G(z) and H(z) are analytic
in T̄e, then H(G(z)) is analytic in T̄e. Since G(T̄e) ⊆ T
and Re[H(z)] > 0 for each z ∈ T̄e then H(G(T̄e)) ⊆
C+. The proof for PR functions is similar. �

Theorem 7, Theorem 8, and Theorem 9 establish
that the substitution of the variable z by M1 functions
preserves stability, SPR and PR properties and that the
class of M1 functions is closed under composition. No-
tice that substitution of a SPR function by the z variable
does not preserve stability for discrete-systems as is the
case for continuous systems [8, 10].
Proposition 10. Suppose that H(z) is Schur stable,
proper and H(z) 	= 1 for |z| = 1.

(10.1) If H(z) is a SBR function and G(z) is a M1
function, H(G(z)) is a SBR function.

(10.2) If H(z) is a BR function and G(z) is a M1
function, then H(G(z)) is a BR function.

(10.3) If ‖H(z)‖∞ ≤ �H , then ‖H(G(z))‖∞ ≤ �H
for each M1 function G(z).

Proof.

(10.1) Define H�(z)≡�−1
H H(z) where �H = ‖H(z)

‖∞. By Lemma 1 in [13], if H�(z) 	=1,
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Fig. 2. Closed loop system.

then H̄�(z) = 1+H�(z)
1−H�(z)

is SPR if and only
if H�(z) is SBR. Now, by Theorem 9,

H̄�(G(z))= 1+H�(G(z))
1−H�(G(z)) is SPR for each M1

function G(z). Then, by Lemma 1 in [13],
H̄�(G(z)) is SBR for each M1 function G(z).

(10.2) The proof is similar to the proof of the above
item.

(10.3) Using Definition 5 and Item (1) of this
theorem, we have that H̄�(G(z)) is an-
alytic in |z| ≥ 1, and ‖H�(G(z))‖∞ ≤
1 for each M1 function G(z). Now, as
‖H�(G(z))‖∞ = �−1

H ‖H(G(z))‖∞ ≤ 1,
‖H(G(z))‖∞ ≤ �H for each M1 function
G(z). �

Proposition 10 establishes that when substitutions
of the variable z by M1 functions are used, it preserves
BR and SBR functions and the H∞-norm. This result
is similar to Proposition 9 in [8] but uses M1 functions
instead of SPR functions.

Corollary 11. Consider the closed-loop system shown
in Fig. 2. If the output feedback u(z) =Gc(z)y(z) sta-
bilizes the system Gp(z) = Np(z)

Dp(z)
, i.e., the closed-loop

system

Mc(z) = Gc(z)Gp(z)

1 + Gc(z)Gp(z)
(1)

is Schur stable. Then, the output feedback u(z) =Gc
(G(z))y(z) stabilizes system

Gp(G(z))= Np(G(z))

Dp(G(z))
(2)

for each M1 function G(z). Moreover, if the con-
stant output feedback u(z) = Ky(z) stabilizes system
Gp(z) = Np(z)

Dp(z)
, the same constant output feedback sta-

bilizes the plant MK (G(z)) for each M1 function G(z)

where Mk(z) = KGp(z)
1+KGp(z)

.

Proof. The stability of Mc(G(z)) is a direct conse-
quence of the substitution z → G(z) with G(z), an

M1 function that preserves sums, products, quotients,
constants and Theorem 7. The stability of MK (G(z))
by a constant output feedback u(z) = Ky(z) is a conse-
quence of Theorem 7 and the previous paragraph. �

This result establishes that the substitution z →
G(z) with G(z) a M1 function preserves stabilization
i.e. the new controller stabilizes the new plant after the
substitution, and proportional controllers robustly stabi-
lize systems under nonlinearly correlated perturbations
induced by substitutions with M1 functions as long as
the parameters of the M1 functions vary continuously;
this interpretation is also possible for all the previous
results. If we vary the order of the M1 function G(z),
then we obtain a result of simultaneous stabilization
for the systems MK (G1(z)), . . . , MK (Gn(z)), using the
proportional controller K where the order of the sys-
tems G1(z), . . . ,Gn(z) are different [7, 8, 10].

IV. RESULTS FOR DISCRETE-TIME
DESCRIPTOR SYSTEMS

In this section, we extend the result for discrete-
time descriptor systems about the SPR Lemma [13, 16]
and absolute stability for these systems with a mem-
oryless time-varying nonlinerity in the feedback
path [13, 17].

We consider the following discrete-time descriptor
system:

Ex(k + 1) = Ax(k) + Bw(k)

y(k) = Cx(k) + Dw(k)
(3)

where x(k) ∈ Rn is the descriptor variable, w(k)
∈ R is the exogenous input, and y(k) ∈ R is the mea-
sured output. The matrix E(k) ∈ Rn×n has rank(E) =
r ≤ n. The other matrices are assumed to have appro-
priate sizes. The pair (E, A) is employed when only
the behavior of the descriptor variable in an unforced
system (3) is concerned.

Definition 12. ([14, 13]) For the descriptor system
given by (3)

(12.1) A pair (E, A) is called regular if det(zE − A)

is not identically zero.
(12.2) A pair (E, A) is called impulse-free if

(zE − A)−1 is proper.
(12.3) A pair (E, A) is called admissible if it is reg-

ular, impulse-free and stable (Schur stable).

For a regular descriptor system (3), the transfer
function from w to y is well-defined by

Tyw(z) =C(zE − A)−1B + D
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and the existence and uniqueness of the solution to (3)
are guaranteed for any specified initial condition. It is
proven in [14] that the pair (E, A) is regular if and only
if there exist two (non-unique) real nonsingular matrices
M and N such that:

MEN =
[
Ir 0

0 J

]
, MAN =

[
Ar 0

0 In−r

]

where J ∈ R(n−r)×(n−r) is nilpotent and A ∈ Rr×r

determines exactly the r finite eigenvalues of the matrix
pencil zE− A. By partitioning MB and CN as follows:

MB =
[
B1

B2

]
, CN =[C1 C1]

we have

Tyw(z) = C(zE − A)−1B + D

= C1(z Ir − Ar )
−1B1

+C2(z J − In−r )
−1B2 + D

By Definition 12, the regular pair is impulsive-free if
and only if J = 0. Therefore, the partitions ofMEN and
MAN are

MEN =
[
Ir 0

0 0

]
, MAN =

[
Ar 0

0 In−r

]

and transfer function Tyw(z) is simplified to

Tyw(z) =C1(z Ir − Ar )
−1B1 − C2B2 + D

This indicates the equivalence, in the sense of trans-
fer matrix representation, of the n-dimensional regular
and impulse-free descriptor system (3) denoted by
(E, A, B,C, D), and the r -dimensional state-space
system (Ir , Ar , B1,C1, D − C2B2) associated with the
transfer function Tyw(z). It is clear that the transfer
function Tyw(z) is Schur stable if and only if the matrix
Ar is stable.

At this point, we consider the substitution of the
variable z by a M1 functionG(z) in the transfer function
Tyw(z), as follows:

Tyw(G(z)) = C1(G(z)Ir−Ar )
−1B1−C2B2 + D

= C3(z Irm − A3)
−1B3 + D3

As a consequence, we have linked the transfer func-
tion Tyw(G(z)) to an rm-dimensional state-space sys-
tem (Irm, A3, B3,C3, D3)where the order ofG(z) ism.
Tyw(G(z)), though, is also the transfer function of some
descriptor system (Ê, Â) with matrices B̂, Ĉ, D, i.e.,
Tyw(G(z))= Ĉ(z Ê − A)−1B + D.

Proposition 13. If there exists a matrix P = PT ∈
Rn×n satisfying the following linear matrix inequalities
(LMI)

[
ATPA − ETPE + CTC ATPB + CTD

BTPA + DTC −�2 I + BTPB + DTD

]

<0

and ETPE≥0, then (Ê, Â) is admissible and ‖Tyw
(G(z))‖∞ < � for each M1 function G(z).

Proof. By Theorem 1 in [13] (cf. [16]), the conditions
of this proposition imply that the pair (E, A) is admis-
sible and ‖Tyw(z)‖∞ < �. Now, we prove first that the
pair (Ê, Â) is admissible. Using Definition 12, the pair
(E, A) is regular, thus, det(G(z)E − A) is not identi-
cal to zero for each function G(z) ∈ M1. Also, the pair
(E, A) is impulse-free, then (G(z)E − A)−1 is proper
for each function G(z) ∈ M1 because each M1 func-
tion has zero relative degree by Definition 4. If the pair
(E, A) is stable, then Tyw(z) is a rational stable func-
tion, thus by Theorem 7, Tyw(G(z)) is a rational stable
function, therefore, the pair (Ê, Â) is stable and admis-
sible. Now, by Proposition 10, if ‖Tyw(z)‖∞ < �, then
‖Tyw(G(z))‖∞ < � for each function G(z) ∈ M1. �

Proposition 14. If there exists a matrix P = PT

∈ Rn×n satisfying the following LMIs:[
ATPA − ETPE ATPB + CT

BTPA + C −D − DT + BTPB

]
< 0

and ETPE ≥ 0, then (Ê, Â) is admissible and
Tyw(G(z)) is SPR for each M1 function G(z).

Proof. The proof is similar to the previous one, but
Theorem 9 is used instead of Proposition 10. In conse-
quence, if Tyw(z) is SPR, then Tyw(G(z)) is SPR for
each function G(z) ∈ M1. �

This result is a generalization of Theorems 1 and 3
in [13]. Our results guarantee that the admissibility,
H∞-norm, and SPR property of the pair (E, A) (ratio-
nal stable function Tyw(z)) are preserved when consid-
ering nonlinear perturbations on the plant parameters
resulting from the substitution of the variable z by a M1
function G(z). Notice that the LMIs are the same as in
the original results.

The following provides an extension of a result of
absolute stability for discrete-time descriptor systems.
Consider the feedback connection of the discrete-time
descriptor system (3) and the memoryless time-varying
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nonlinearity in the feedback path:

w(k)= − �(k, y(k)) (4)

where the memoryless time-varying nonlinearity � :
Z+ × Rm → Rm is restricted to the first and third
quadrants, i.e., the following sector condition is satisfied
for all nonnegative integer k

�(k, y(k))y(k) ≥ 0, for all y(k) ∈ Rm (5)

and �(k, 0) = 0.
The following necessary definition of global uni-

formly asymptotic stability is recalled.

Definition 15. ([17]) Consider the well-defined feed-
back connection of the discrete-time descriptor system
(3) and the nonlinear control (4). The equilibrium point
x = 0 is

(15.1) Uniformly stable if, for each ε and any initial
time k0 ≥ 0, there is �(ε), independent of k0,
such that ‖x(k0)‖ < � implies ‖x(k)‖ < ε for
all k ≥ k0;

(15.2) Globally uniformly asymptotically stable if
it is uniformly stable and, for each pair of
positive numbers ε and �, there is a non-
negative constant that may depend on � and
ε, K (ε, �) ≥ 0 such that ‖x(k)‖ < ε for all
k ≥ k0 + K (ε, �) whenever ‖x(k0)‖ < �

Corollary 16. If (E, A) is admissible and Tyw(z) is
SPR, then the equilibrium point of the feedback system
of the discrete-time descriptor system

Ê x(k + 1) = Âx(k) + B̂w(k)

y(k) = Ĉx(k) + D̂w(k)
(6)

with a memoryless time-varying nonlinearity in the
feedback path (4) that satisfies the sector condition (5),
is globally uniformly asymptotically stable for each
M1 function G(z), where Tyw(G(z)) is the transfer
function of some descriptor system (Ê, Â, B,C, D),
i.e., Tyw(G(z))= Ĉ(z Ê − A)−1B + D

Proof. By Theorem 9, if Tyw(z) is SPR, then
Tyw(G(z)) is SPR for each M1 function G(z). As
shown in Proposition 14, if (E, A) is admissible,
then (Ê, Â) is admissible for each M1 function G(z).
Now, by Theorem 4 in [13], if (Ê, Â) is admissible
and Tyw(G(z)) is SPR, then the equilibrium point
of the feedback system of (6) and the control (4) is
globally uniformly asymptotically stable for each M1
function G(z). �

This result is a generalization of Theorem 4
in [13]. Our result guarantees that this closed-loop
system is globally uniformly asymptotically stable for
each M1 function G(z). Thus, the new closed-loop
system is robustly globally uniformly asymptotically
stable when considering nonlinear perturbations on the
plant parameters induced by the substitution of the M1
function G(z), and for any memoryless time-varying
nonlinearity � satisfying the sector condition (5).

Example 17. Consider the discrete-time descriptor
system (3) with system matrices (Example 1 in [13]):

E =

⎡
⎢⎢⎢⎢⎣

4 0 0 4

−8 4 0 −4

0 0 0 0

4 0 0 4

⎤
⎥⎥⎥⎥⎦

A =

⎡
⎢⎢⎢⎢⎣

−6 2 0 −4

7 −4 0 3

0 0 1 0

−6 2 0 −3

⎤
⎥⎥⎥⎥⎦

B =
⎡
⎢⎣
1
0
0
0

⎤
⎥⎦ , C = [−1 0 0 0], D = 3

The corresponding transfer function

Tyw(z) = 2
16z2 + 23z + 9

8z2 + 12z + 5

is an SPR function. Now, consider the following family
of M1 functions (bilinear transformations):

�(a, b, c, d)

�=
{
G(z) = N

az + b

cz + d
: −b

a
, −d

c

∈ (−1, 1), N
a

c
> 1, N

∣∣∣∣a − b

c + d

∣∣∣∣ > 1

}

Then, by Theorem 9, the family of transfer functions

�(a, b, c, d)
�= {Tyw(G(z)) : G(z) ∈ �(a, b, c, d)}

can be interpreted like the robustness of the property
SPR of the transfer function Tyw(z) under the nonlin-
ear perturbation on the parameters of the system Tyw(z)
induced by the substitution of the M1 functions G(z)
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Fig. 3. Memoryless nonlinearities.

taken from the set �(a, b, c, d). In other words, a trans-
fer function

Tyw(G(z))= z2(46Nac + 18c2 + 32N 2a2) + z(36cd + 46Nad + 46Nbc + 64N 2ab) + 46Nbd + 18d2 + 32N 2b2

z2(12Nac + 5c2 + 8N 2a2) + z(10cd + 12Nad + 12Nbc + 16N 2ab) + 12Nbd + 5d2 + 8N 2b2

is an SPR function, for all reals a, b, c, d such that the
following conditions are met:

1. − b
a , − d

c ∈ (−1, 1)

2. N a
c > 1

3. N
∣∣∣ a−b
c+d

∣∣∣ > 1

i.e. the transfer functions N az+b
cz+d are M1 functions.

Now, consider two forms of memoryless nonlin-
earity in the feedback path:

(i) The decoupled time-invariant nonlinearity,

�(y(k))
�= [�1(y1(k)) �2(y2(k))]T, where �1(?

is a dead-zone nonlinearity and �2(? is a satura-
tion nonlinearity, as shown in Fig. 3.

(ii) The couple time varying nonlinearities �̄(y(k))
�=

[�̄1(y1(k)) �̄2(k, y2(k))]T where �̄1(y(k))=
y1(k)y22(k), �̄2(k, y(k))= 2ky2(k).

Since (E, A) is admissible and Tyw(z) is SPR,
then, by Corollary 16, the equilibrium point of the feed-
back system of the discrete-time descriptor system (3)
with each one of the memoryless nonlinearities in the
feedback path i) and ii) is globally uniformly asymptot-
ically stable for each M1 function G(z), in particular
for all G(z) ∈ �(a, b, c, d), where Tyw(G(z)) is the
transfer function of some descriptor system (Ê, Â)

and the new matrices (Ê, Â, B̂, Ĉ, D) are functions of
the parameters (a, b, c, d). In that sense, we have the

robust global uniformly asymptotic stability property
of the equilibrium point of the feedback system of the

discrete-time descriptor system (3), with each of the
memoryless nonlinearities (i) and (ii) in the feedback
path under nonlinear perturbation on the parameters of
the system Tyw(z), induced by the substitution of the
M1 functionsG(z), taken from the set�(a, b, c, d), and
more general for all M1 functions G(z).

The class of parametric perturbations that can be
modeled by the substitution of M1 functions are non-
linear polynomial relations among the parameters of the
transfer function and the coefficients of the M1 func-
tion, which is induced by the composition.

V. CONCLUSION

New results on the preservation of stability H∞-
norm, PR, SPR, BR, and SBR properties for discrete-
time systems under substitutions by M1 functions were
proven. These results are different from the continuous
case because the substitution is via M1 functions in-
stead of SPR functions. Nevertheless, the performance
is similar to the continuous case [7–9], and [10]. Also,
notice that M1 functions are not spectral transforma-
tions since M1 functions do not transform the unitary
complex circle internally [1]. Based on the previous
results, conditions for the preservation of the SPR
Lemma and absolute stability from discrete-time de-
scriptor systems, when the substitution of the variable z
by a M1 function is used, are presented. The LMIs in-
volved in Propositions 13 and 14 are the same LMIs in
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Theorems 1 and 3 in [13], respectively; also, the con-
ditions in Corollary 16 are the same as Theorem 4
in [13]. Consequentially, Theorems 1, 3, and 4, pre-
sented in [13], are robust when considering nonlinear
perturbations on the system’s parameters induced by
the substitution of M1 functions in the sense of [6].
In particular, Corollary 16 is a result of robust global
uniformly asymptotic stability of the equilibrium point
of the feedback connection for descriptor systems.
These results can be easily tested by using currently
available software packages for solving problems in
LMIs. Further work on the relationship between the
M1 functions and the SPR0 functions currently is under
development.
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