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Abstract

Wave self-focusing in molecular systems subject to thermal effects, such as thin
molecular films and long biomolecules, can be modeled by stochastic versions of
the Discrete Self-Trapping equation of Eilbeck, Lomdahl and Scott, and this can be
approximated by continuum limits in the form of stochastic nonlinear Schrödinger
equations.

Previous studies directed at the SNLS approximations have indicated that the
self-focusing of wave energy to highly localized states can be inhibited by phase
noise (modeling thermal effects) and can be restored by phase damping (modeling
heat radiation).

Here it is shown that the continuum limit is probably ill-posed in the presence
of spatially uncorrelated noise, at least with little or no damping, so that discrete
models need to be addressed directly. Also, as has been noted by other authors,
omission of damping produces highly unphysical results.

Numerical results are presented here for the first time for the discrete models
including the highly nonlinear damping term, and new numerical methods are in-
troduced for this purpose.

Previous conjectures are in general confirmed, and the damping is shown to
strongly stabilize the highly localized states of the discrete models. It appears that
the previously noted inhibition of nonlinear wave phenomena by noise is an artifact
of modeling that includes the effects of heat, but not of heat loss.
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1 Introduction

Combinations of mildly nonlinear wave motion in molecular structures with
localized excitation modes can lead to localization of wave energy. Perhaps
the early mathematical example was Davydov’s soliton theory modeling exci-
ton waves in protein molecules interacting with localized phonons, vibrations
at CO bonds, where a continuum limit gave the integrable one dimensional
focusing cubic Nonlinear Schrödinger (NLS) equation [5,7,6]. This was further
developed by various authors including Scott [18], and extended to vibra-
tions in other molecular systems such as crystalline acetanilide and in smaller
molecules such as benzene [10,11]. Approximations that eliminate the fastest
internal vibration modes again lead to systems that are discrete counterparts
of the 1D focusing cubic NLS, or coupled systems of such.

Two dimensional molecular structures such as Scheibe aggregates [3] lead to
similar mathematical models related to the 2D focusing cubic NLS [14,2].

Stochastic terms are a natural refinement, modeling effects such as random
spatial variations in the medium (fixed pattern noise: time independent) or
thermal agitation (white noise: temporally uncorrelated) [1]. Nonlinear optics
has also produced continuum or semi-discrete examples including intense CW
lasers and multi-cored optical fibers with random imperfections in the medium
or in the strength of the coupling between signals in the different cores or
different propagation modes.

However, noise without balancing losses can lead to an unphysical degree of
spatial disorder or thermal runaway, impeding wave propagation in contra-
diction to experimental observations [4]. Even worse, the obvious continuum
limits give Stochastic NLS (SNLS) equations which seem to be well-posed only
when the noise has adequate spatial correlation [8], which is not necessarily
consistent with the length scales in the molecular systems. In other words,
noise can destroy the spatial smoothness needed to justify a continuum limit.

More realistic modeling thus requires damping losses, to make possible at-
tainment of thermal equilibrium, solutions with enough spatial smoothness to
sustain traveling waves, and perhaps to justify a continuum limit model. This
leads [4] to the Damped Stochastic Discrete Nonlinear Schrödinger equation
(DSDNLS)

i
dΨn

dt
+
∑
m

JnmΨm + |Ψn|2σΨn + γΨn
dWn

dt
− λΨn

d

dt
(|Ψn(t)|2σ) = 0, (1)

with σ = 1 giving the cubic case typical in physical applications. This is the
main object of this study, but possible continuum limits will also be discussed
briefly. The most obvious is the Damped Stochastic Nonlinear Schrödinger
equation (DSNLS)

i
∂ψ

∂t
+ ∆ψ + |ψ|2σψ+γψ

∂w

∂t
− λψ

∂(|ψ|2σ)

∂t
= 0, (2)
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derived and studied in [4]. Here Wn(t;ω) and w(x, t;ω) are noise processes
with ω labeling realizations, and the physical meanings of the variables and
parameters will be explained in the next section.

The next section surveys the background for this study: physical origins, math-
ematical modeling, and previous results, some theoretical, but mostly numeri-
cal simulations. Section 3 decribes the numerical methods used, and Section 4
presents numerical results, primarily for the surrogate case of a one dimen-
sional structure with quintic nonlinearity σ = 2. Then continuum limits are
discussed in Section 5, with some suggestions as to how to overcome prob-
lems with previous approaches, followed by conclusions and a discussion of
directions for further work.

2 Background

We give here some details of a two dimensional example from chemistry and
biochemistry: modeling Scheibe aggregates, a class of highly ordered thin films
of molecules coupled by dipole interactions predominantly within a plane: an
essentially two dimensional wave medium. However much of the modeling is
also relevant to a variety of other molecular systems such as the essentially one
dimensional protein models discussed above; see [6,18] and references therein.

2.1 Scheibe aggregates: highly ordered thin molecular films

Scheibe aggregates are highly regular arrangements of molecules in thin films,
sometimes a single molecule thick, or with only weak interaction between
neighboring layers of molecules. These structures have important biological
roles such as in photo-chemical reactions, and one laboratory example is the
cyanine dye Scheibe aggregates first studied by Bücher, Kuhn, Möbius et al
[3,15]. They establish an arrangement of the molecules in a single layer “brick-
wall” lattice, with the dominant dipole interactions being those with six near-
est neighboring molecules, arranged in a hexagonal array of approximately
dihedral D2 symmetry (half turns and reflection in two perpendicular axes).

The molecules also have internal excitation states, which are coupled to the
excitons and are also subject to thermal effects: random external forces due
to collisions with molecules from outside the thin film.

2.2 An exciton-phonon system with phase noise and damping

Such thin films can be modeled as an exciton-phonon system with noise and
damping acting on the internal modes as described by Bang, Christiansen, If,
Rasmussen and Gaididei in [1], which adds damping to the purely quantum
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mechanical modeling of Bartnick and Tuszyński [2]:

ih̄
dΨn

dt
+
∑
m6=n

JnmΨm + χunΨn = 0 (3)

M
d2un

dt2
+Mλ

dun

dt
+MΩ2

0un − χ|Ψn|2 = γ
dBn

dt
(4)

where
Ψn(t) is the exciton wave at location n,
un(t) is the elastic degree of freedom of the molecule at location n,
Jnm is the dipole-dipole interaction energy,
χ is the exciton-phonon coupling constant,
dBn/dt is random external forces, the formal time derivative of an independent
Wiener process (Brownian motion) at each node,
γ is the strength of the random external forces,
λ is the damping coefficient,
M is the molecular mass, and
Ω0 is the Einstein frequency of each oscillator.

These equations conserves the energy N =
∑

n |Ψn|2 under the Stratonovic
interpretation of the stochastic term as discussed below, at least on a fully
infinite lattice or with suitable boundary conditions such as periodic.

The form of Eq’s (3),(4) also covers a wide range of other applications such as
the one dimensional protein molecule models mentioned above: the indices will
often be taken below to simply enumerate a collection of nodes, with details
such as spatial relationships between locations encoded in the coupling terms
Jnm. For further mathematical flexibility, the coupling term will henceforth be
written as a general power law χ|Ψn|2σ, though all physical models we know
of have the cubic nonlinearity σ = 1. The underlying spatial dimension will
be denoted by D, so D = 2 in the model above.

Without noise and damping, the system in (3),(4) is Hamiltonian, giving a
second conserved quantity

H = −
∑

n,m6=n

JnmΨnΨm −
2χ

1 + σ

∑
n

un|Ψn|2σ +
M

2

∑
n

(u̇n
2 + Ω2

0u
2
n).

2.3 Eliminating the phonon terms un

The phonon terms un can be eliminated using the variation of parameters for-
mula which gives an integral expression for un in terms of Ψn [4]. To eliminate
the resulting time integral and initial data transients, one must restrict to
times λt >> 1 and make the slowly varying envelope approximation: that the
exciton intensity |Ψn(t)|2 is slowly varying relative to the phonon frequency
Ω0. Thus, the presence of damping (λ > 0) is essential.

The reduced system is
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0 = ih̄
dΨn

dt
+
∑
m6=n

JnmΨm + V |Ψn|2σΨn

+
γχ

Mh̄Ω
Ψn

dWn

dt
− λV

Ω2
0

d

dt
[|Ψn(t)|2]Ψn, (5)

where V = χ2/MΩ2
0,Ω

2 = Ω2
0 − (λ/2)2, and

dWn

dt
=λ

∫ t

0
e−λs/2 sin(Ωs)Ḃn(t− s)ds. (6)

Note that the new noise processes Wn are temporally correlated, except in
certain limits such as strong damping.

2.4 Rephrasing as a Damped Stochastic Discrete Nonlinear Schrödinger Equa-
tion

If the coupling Jnm is homogeneous, in that the quantities

Jnn := −
∑
m6=n

Jnm

have a common value J0, then the Ψn have a common average phase evolution
etJ0/h̄. This can be removed by adding Jnn to each coupling sum, and with some
rescalings including γχ/(Mh̄2Ω) → γ, λ/(h̄Ω2

0) → λ, one gets the Damped
Stochastic Discrete Nonlinear Schrödinger equation Eq. (1).

Even if the Jnn are not all equal, one can use their average value J̄ as the
phase shift, and absorb the differences Jnn − J̄ into the noise coefficients as
fixed pattern noise.

The energy N =
∑

n |Ψn|2 is still conserved, and without noise or damping
the system still has a conserved Hamiltonian,

H = −
∑
n,m

JnmΨnΨm −
1

1 + σ

∑
n

|Ψn|2(1+σ).

Simple examples are uniform nearest neighbor interaction on a line [1D] or
square lattice [2D] of spacing l with all the non-zero Jnm having the same
value, J/l2. The coupling term is then a J times the standard three point
second derivative [1D] or five point discrete laplacian [2D], and the equation
is a discretization of the Damped Stochastic Nonlinear Schrödinger equation
(2). Also, the Hamiltonian for the case of no noise or damping is the natural
discretization using simple forward difference quotients for the gradient terms
of the Hamiltonian for NLS,

H =
∫
‖∇ψ‖2 − 1

1 + σ
|ψ|2(1+σ) dx.

It can be useful in places to think of the ODE systems in relation to the

5



familiar NLS equation, but a more careful consideration of continuum limit
approximations is needed, as discussed in section 5.

2.5 Removing the extra time derivative term, and Stratonovic differential
form

For some purposes, the time derivative should be eliminated from the damp-
ing term. Also, the rigorous mathematical formulation must be in terms of
stochastic integrals and differentials, and in order to conserve the energy N ,
products involving stochastic terms must be interpreted in the Stratonovic
sense. (Loosely, the Stratonovic integral is defined as the limit of midpoint
rule (or trapezoid rule) approximations, whereas the Itô integral is the limit
of left-hand end point Riemann sums: see [16] for details.) Solving for dΨn/dt,
substituting into the other time derivative leads to the stochastic differential
form

idΨn+

[∑
m

JnmΨm + |Ψn|2σΨn + 2λΨnIm

(
Ψn

∑
m

JnmΨm

)]
dt+γΨn◦dWn = 0

(7)
with ◦d denoting the Stratonovic differential.

Why not convert to Itô integral form?

Any system of stochastic ODE’s in terms of the Stratonovic integral can be
replaced by an equivalent system which gives the same solution under the Itô
interpretation, by replacing the above Stratonovic differential by the corre-
sponding Itô differential plus a correction term [16], and the Itô form is far
more amenable to analysis such as existence and uniqueness proofs In the
current case, this gives

dΨn = [as before] + iγΨndWn −
λ2

2
Ψn (8)

However, this form is undesirable for current purposes, particularly numerical
simulations. The new term adds rapid exponential decay, destroying the man-
ifestly conservative form. This reflects the fact that the Itô differential term
itself generates rapid exponential growth of individual realizations, related
to the fact that the ensemble average of Itô solutions satisfy the underlying
noise-free equation, and so conserves the energy N .

This prevents the use of time discretizations which inherently conserve energy
N ; such conservative discretizations are used here for the Stratonovic form.

Also, the Itô form has no continuum limit with spatially uncorrelated noise.
This might reflect the conjectured lack of existence of solutions to such con-
tinuum limits, even when the limit formally exists for the Stratonovic form.
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2.6 Wave self-focusing and energy localization in SNLS

In the continuum model of 2D NLS, self-focusing can lead to the formation of
single point singularities, sometimes called wave collapse. The proof of this for
the NLS is based on a variance argument, which has been extended to various
cases of Stochastic NLS by Gaididei and Christiansen [13], Debussche and
Di Menza [9], and Fannjiang [12], though all require noise that is sufficiently
correlated in space and uncorrelated in time. The last mentioned author’s
results are as follows.

For data of sufficiently rapid decay at infinity, the pulse width can be measured
by its spatial variance

V (t) =
∫
|ψ|2‖x‖2dx.

In the critical case of 2D cubic (and more generally, σD = 2), the ensemble
average 〈V 〉 is related to the ensemble average 〈H〉 of the Hamiltonian by

d2〈V 〉
dt2

= 8〈H〉, (9)

and in turn noise modifies conservation of the Hamiltonian to

d〈H〉
dt

= R :=
1

2

∫
Φ(p)‖p‖2dp, (10)

where Φ(p) is the power spectral density of the noise distribution.

For spatially uncorrelated noise, Φ(p) is a positive constant, so R = ∞: the
formulas break down, but strongly suggest that SNLS has no solutions, at
least in Sobolev space H1. For comparison to the discrete equations, for which
no analogues of these formulas are known, note that a discretization of SNLS
with grid spacing l effectively has noise of correlation length scale l, and such
correlation in SNLS gives

R = O
(

1

l2+D

)
. (11)

Without noise, R = 0, 〈V 〉 = V evolves quadratically, and H < 0 is sufficient
condition for finite time singularity formation, as otherwise, V would become
negative. Noise changes the evolution to the cubic

〈V 〉 = 〈V 〉(0) + bt+ 4〈H〉(0)t2 + 2R/3t3. (12)

Clearly, with weak enough noise,H(0) < 0 still leads to a prediction of negative
〈V 〉 by some positive time t0, so with positive probability, solutions must
cease to exist before that time. However, sufficiently large noise eliminates
this necessity, and hints at global existence, and at dispersion with a cubic
rate of variance growth.

Such formulas have not yet been extended to account for damping, but as seen
below, there are hints of an additional negative term in dH/dt.
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2.7 Wave self-focusing and energy localization in the discrete systems

With no noise or damping, numerical simulations of discrete counterparts
of the NLS equation show phenomena analogous to wave collapse, even in
the subcritical case of 1D cubic, where the PDE has some degree of self-
focusing, but cannot develop singularities. That is, solutions can have the
energy concentrate until it is mostly at a single node (molecule), and then
stay localized in a solution that seems to oscillate around a stable steady
state. This was first described by Davydov [6] in models of protein molecules,
and further analyzed and simulated by Eilbeck, Lomdahl and Scott [18,10,11],
who describe the phenomenon as self-trapping.

For the discrete systems with noise, no formulas are known for the evolution
of ensemble averages considered above, but from Eq. (1) and alternative form
(7) the Hamiltonian evolution for individual realizations satisfies

dH
dt

=
∑
n

dWn

dt

d

dt
(|Ψn|2)− λ

[
d

dt
(|Ψn|2)

]2
 (13)

=
∑
n

dWn

dt
Im

(
Ψn

∑
m

JnmΨm

)
− 4λIm

(
Ψn

∑
m

JnmΨm

)2
 . (14)

These no longer make it clear that noise causes the previously noted linear
increase in H, or corresponding growth in beam spatial variance or inhibition
of wave collapse, but all these are still seen in numerical studies of discrete
systems with spatially uncorrelated noise, including those below. This is to be
expected, since those discrete systems are effectively discretizations of SNLS
with noise of spatial correlation on length scale comparable to the mesh spac-
ing of the discretization.

The full 2D Stochastic NLS equation with spatially uncorrelated noise has
been simulated by Bang, Christiansen, If, Rasmussen and Gaididei in[1], and
the 1D quintic case of the Stochastic NLS equation by DeBussche and Di
Menza in [9]. In each case it is observed that spatially uncorrelated noise
above a certain threshold level prevents wave collapse.

The former paper indicates that this noise effect is too strong to match physical
experiments: noise levels so low as to correspond to temperatures of a few
Kelvin are needed to reproduce behavior seen in experiments at far higher
temperatures. The likely cause is “thermal runaway” due to the absence of a
mechanism for “heat loss”, such as the damping term.

The latter authors also interpret simulations as showing that with spatially
correlated noise (as is effectively imposed by a fixed spatial discretization),
collapse can only be delayed, but will always occur. They also offer a non-
rigorous argument for this second conclusion.

However we come to a different conclusion below. In [9], the authors judge that
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collapse has occurred whenever the maximum amplitude has grown by a factor
of three at any one time, but this seems unreliable when noise is present, since
then amplitude spikes this high at a single node can occur transiently, rather
than as part of ongoing focusing events. A more reliable criterion for numerical
detection of wave collapse and energy localization is that the energy at a
single node exceeds some substantial fraction of all energy, persistently for a
significant interval of time. In the simulations below, localization is manifested
with a majority of all energy staying at one node until the end of the computer
time, and thus persisting for at least as long as the rise time of the localization.

As to damping effects, Eq. (13) indicates that damping has the opposite effect
of noise, causing reduction of H. Combined with the expectation that (9) still
holds approximately for discretizations of SNLS, this suggests the possible
return of wave collapse, in the discrete form of concentration of energy near a
single node.

Christiansen et al [4] have done the only simulations known to the current
authors of the model with damping of Eq. (2). They do this with further
approximate by a small system of ODE’s, first imposing radially symmetry
and then using the method of collective coordinates. Such modeling has lead
to some analytical results on self-focusing in the NLS equation, but with the
stochastic terms, it still requires study primarily by simulation.

They start with simulations without damping, corroborating the above de-
scribed observations about inhibition of wave collapse by sufficiently strong
noise, leading instead to dispersion of initially concentrated wave energy. With
damping added, they observe that the effect of noise can be reversed, leading
to collapse where with noise alone it would not occur, as suggested by Eq. (13).
Again there appears to be a threshold damping level for this to occur with
given initial data and noise level.

With this survey done, we are ready to consider new numerical methods and
results of simulations based on Eq. (1).

3 Numerical methods: a variant of Chang and Xu’s iterative trape-
zoid

With noise but no damping, and with homogeneous coupling and periodic
boundary conditions, a Fourier split-step method could be used, as was done
by Bang et al [1] for SNLS.

Instead, an implicit time discretization based on fixed point iterative solution
of the trapezoid rule is used, similar to one described and analyzed by Chang
and Xu [17]. It has several virtues:

• it satisfies the needed Stratonovic interpretation (no need for the Itô cor-
rection term),

• it conserves the exciton energy N , and
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• with no noise or damping, it conserves the hamiltonian H.

The main disadvantage is the need for iterative solution (so that conservation
is no longer exact, but still highly accurate), and the fact that it is difficult to
go beyond simple fixed point iteration due to the existence of coupled nonlinear
terms, leading to the time step size restrictions typical of an explicit method
rather than the underlying implicit method and a large number of iterations
needed when noise effects are strong. Since the coupling is strong relative to
the other terms (as in the discretized NLS equations that these essentially are)
the system is rather stiff, leading to the need for rather small time steps.

However, arguably the short spatial scales of the noise mean that the time
step size limitations of simple iterative solution method are also the natural
time scales of the smallest relevant features, so there might be little room for
time step increases without inaccurate handling of noise effects.

That is, the stiffness of the ODE systems is probably an essential time scale
that must be preserved in the modeling, including the fully discrete model
used for numerical solution.

3.1 Trapezoid method: conservative time discretization

Writing Ψj
n for the approximations of Ψn(tj), δt = tj+1 − tj, and δW j

n/δt for
the approximation of σn(t), constant on tj ≤ t ≤ tj+1, the scheme used for the
cubic case is

0 = i
Ψj+1

n −Ψj
n

δt
+
∑
m

Jmn
Ψj

m + Ψj+1
m

2
+

γ δW j

δt
+
|Ψj

n|2 + |Ψj+1
n |2

2

+λIm

(
Ψj

n

∑
m

JmnΨj
m + Ψj+1

n

∑
m

JmnΨj+1
m

)× Ψj
n + Ψj+1

n

2
. (15)

For the case studied so far of totally uncorrelated noise, the noise components
W j

n are independent with normal distribution δW j
n ∼ N (0, δt/l) , so that

δW j
n/δt ∼ N (0, 1/(lδt)). The scaling with l and nearest coupling strength

Jnm = 1/l2 are used for consistency with interpretation as the discretization
of the DSNLS, Eq. (2).

More generally, exact conservation of the Hamiltonian is achieved by discretiz-
ing the nonlinear term |Ψj|p−1Ψj as(

2

p+ 1

)
|Ψj+1

n |p+1 − |Ψj
n|p+1

|Ψj+1
n |2 − |Ψj

n|2
× Ψj+1

n + Ψj
n

2
.

Thus for quintic nonlinearity, the form for this term is not the familiar trape-
zoid approximation, but

|Ψj
n|4 + |Ψj

n|2|Ψj+1
n |2 + |Ψj+1

n |4

3

Ψj
n + Ψj+1

n

2
.

10



3.2 Trapezoid method: iterative scheme

The nonlinear implicit scheme above is solved using a simple fixed point it-
eration, eliminating implicit form even for the linear dipole coupling (dis-
crete laplacian) terms, and thus avoiding simultaneous linear equation solving,
contrary to the original Chang-Xu algorithm. The reason is the nonlinearity
and stiffness of the damping term and the formally unbounded noise terms,
which lead in practice to similar “explicit scheme” time step size restriction
δt = O(l2) even with implicit handling of the linear coupling term.

Writing Ψj,k
n for the k-th iterate, the initial approximation used for the new

time step is Ψj+1,0
n = Ψn,j, and and subsequent iterates are given by solving

the uncoupled linear equations

0 = i
Ψj+1,k+1

n −Ψj
n

δt
+
∑
m

Jmn
Ψj

m + Ψj+1,k
m

2
+

 |Ψj
n|2 + |Ψj+1,k

n |2

2
+ γ

δW j
n

δt

+λIm

(
Ψj

n

∑
m

JmnΨj
m + Ψj+1,k

n

∑
m

JmnΨj+1,k
n

)× Ψj
n + Ψj+1,k+1

n

2
. (16)

3.3 Time step size

The fixed point scheme has a worst case convergence rate of K = κδt with
κ = maxn

∑
n |Jnm|/2, so κ = 2/l2 for the three point discrete second derivative

used in the 1D quintic case, giving a convergence condition δt < 1/κ,= l2/2.
To minimize computational cost in the sense of minimizing expected iterations
per unit time, the optimal choice of K balances O(1/K) time steps per unit
time and the O(ln ε/ lnK) iterations per time step needed to meet a given
error tolerance ε.

Minimization of | ln ε/(K lnK)|) gives K = 1/e, which is in fact observed to
be optimal with spatially uncorrelated noise and no damping, a case where it
will be seen below that “thermal runaway” puts significant amount of signal
in the shortest length scales, realizing the worst case convergence rate. On
the other hand, without noise or with damping, solutions are smoother and
larger values K ≈ 0.5 are most efficient, with K < 1 always necessary for
convergence.

4 Numerical results

For computational efficiency, simulations have been done with a single com-
putational space dimension, using two different approaches to this reduction
of dimension.

The main studies are done for the one dimensional quintic case D = 1, σ = 2,
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with this somewhat unnatural nonlinearity power used for the sake of remain-
ing in the critical case for collapse in NLS. Homogeneous nearest neighbor
coupling is used, corresponding to discretizing NLS with the the standard
three point discretization of the second derivative. Nearest neighbor coupling
makes sense in the physical models, since dipole interactions are very short
range. It also makes little sense to use higher order spatial discretizations
of Stochastic NLS equations, because the noise eliminates the higher order
smoothness needed to make such discretizations more accurate. This case,
without damping, was also studied by DeBussche and Di Menza [9], as dis-
cussed in section 2.7 above.

The second reduction used is imposing radial symmetry on the two dimen-
sion cubic NLS (D = 2, σ = 1), and then again using standard three point
discretization of spatial derivatives. This allows comparison to the results of
Bang, Christiansen et al [1,4] also discussed above.

4.1 1D lattice with quintic nonlinearity and homogeneous nearest neighbor
coupling

The initial data used in this section is always discretization of Ψn(0) =
ψ0(xn) = 1.1(1 + cosxn)/2 on a uniform periodic grid of nnodes equally spaced
nodes in the period cell [−π, π]. This is chosen to be close to the “Townes
soliton” R0 central to theory of NLS self-focusing, giving Hamiltonian H just
slightly negative so as to ensure self-focusing in NLS, while having energy
N = Nψ0 just slightly above the minimum value N (R0) needed for self-
focusing to be possible (c.f. [19]).

The default parameters are nnodes = 100, and noise strength γ = 0.04, damping
strength λ = 0.002 when noise or damping are present at all, with the choice
of the latter two values explained below. Also, results for a single “standard
noise realization” are presented in many graphs, with corroboration by data
from multiple realizations where appropriate.

In the figures, a systematic curve color coding is used. Black is used only
for initial data with functions of node index, and for averages over multiple
realizations with functions of time. The color sequence blue, green, red, cyan,
magenta, yellow is used both for later times with functions of node index, and
for successive realizations with functions of time.

4.1.1 Self-focusing and energy localization without noise or damping

The time evolution of Eq. (1) in the 1D quintic case without any noise or
damping is illustrated in Fig’s 1 and 2, which show the distribution of energy
|Ψn(t)|2 amongst nodes, for various times t. The first figure shows all 100
nodes, at three times before self-trapping occurs at t = t∗ ≈ 2.6 and two times
afterwards. The second and all subsequent graphs of energy distribution are
restricted to nodes near the self-trapping locus.
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Fig. 1. Energy distribution for 1D quintic, no noise or damping. Times and curve
colors t = 0, 2, 2.5, 3, 3.5, 4 as noted in the text.

Note that once the energy at any node passes about 10, and certainly once
it passes 20, energy is largely concentrated on only a few nodes so that the
solution is no longer accurate as a discrete approximation of NLS. Likewise,
in all subsequent solutions with the current spacing of l = 50/π, data past
the time when the energy at any node first exceeds about 10 should only be
considered as accurate for the spatially discrete models. Indeed the maximum
possible energy at one node is N/l, which for the current initial data is ap-
proximately 45.3. Thus the values seen here of about 35 and above at a single
node represent a clear majority of all energy concentrated at that node.

The evolution of the degree of energy localization is shown in Fig. 3, as mea-
sured by the maximum energy at any one node as a function of time. Once
energy localization has occurred, it is seen to persist, but with significant
oscillations. The oscillations fit with the idea of the solution entering a neigh-
borhood of an orbitally stable stationary state that is a center: the existence of
such localized stable center stationary states has been proven in the minimal
case of nnodes = 2 by Eilbeck, Lomdahl and Scott [11].

Note that this oscillatory behavior is purely a property of the discrete system,
as it only sets in after the maximum single node energy becomes too high for
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Fig. 2. As in Fig. 1 but restricted to nodes near the self-trapping locus, showing
energy persistently concentrated almost entirely at a single node.

the numerical solutions to be relevant to the related PDE models.

4.1.2 Inhibition of self-focusing by sufficient noise, without damping

The results here are much as seen in the simulations by various previous au-
thors discussed in section 2.7. With low levels of noise, up to γ ≈ 0.03, focusing
of energy to a single node followed by persistent localization still occurs. Higher
noise levels of γ ≥ 0.04 inhibit self-focusing and energy localization, as shown
in Fig. 4 for the single standard noise realization, and confirmed by multiple
realizations.

Another notable feature is the loss of the spatial smoothness that would be
needed for continuum limit PDE modeling. It seems likely that this spatial
disorder has the effect of inhibiting exciton wave propagation, and that this is
the mechanism which prevents energy localization, by preventing the needed
energy flux.

The evolution of the degree of localization, or lack thereof, is shown in Fig. 5.
Note that transient spikes to values more than four times the initial value
occur, above all close to the focusing time t∗ ≈ 2.6 noted above, but these are
not indications of focusing towards localization. Continuing this solution for
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Fig. 3. Evolution of maximum single node energy for 1D quintic, no noise or damp-
ing.

considerably more time never again reaches the maximum of about 4.5 seen
at t ≈ 3.

4.1.3 Effects of adding both damping and noise

The effect of adding damping at various strengths λ = 0.001, 0.002, 0.01, 0.1,
0.26, 0.27 while maintaining the noise level of γ = 0.04 is summarized in Fig. 6
in terms of the maximum single node energy, and spatial structure is shown
for the case λ = 0.002 in Fig. 7.

Small damping values (λ ≤ 0.001) cause a transient increase in collapse, but
not enough to produce localization; instead, one eventually gets dispersion,
as with damped noise. With damping above some threshold near λ = 0.002,
collapse proceeds to persistent localization of most energy at a single node.
With the larger damping values λ = 0.01, 0.1, the maximum single node energy
quickly becomes almost constant at a value very close to 45.3, which as noted
above means that almost all energy is at one node.

Apparently solutions settle into a very close approximation of a steady state
that has energy almost completely localized. This is also true at the lower
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Fig. 4. Energy distribution for 1D quintic, noise γ = 0.04, no damping. Color-time
labeling as in Fig. 1.

damping values for which localization is seen, but with far slower onset. For
λ = 0.002 maximum single node energy continues the rising trend seen, reach-
ing 41 by t = 50 and 43 by t = 100.

This strong spatial localization even for λ = 0.002 is shown in Fig. 8, which
gives data for five times after onset of localization. This and the previous graph
show a form far closer to a steady state than for the undamped, noiseless case
above. The strong oscillations seen previously are absent here, replaced only
by far smaller fluctuations, as are inevitably caused by the noise.

Fig. 9 shows the approach to a nearly stationary state over a longer time in-
terval as indicated by maximum single node energy. It also gives the solution
with the same damping but no noise: there is relatively little difference, indi-
cating that damping is the dominant mechanism driving the solution towards
a steady state, and that this mechanism is robust enough to be little perturbed
by noise.

A final observation is that as damping strength λ is increased, the localization
initially occurs earlier, then later, and finally, localization completely fails with
a sharp transition between λ = 0.26 and 0.27. Sufficiently strong damping
apparently causes spatial smoothing which not only counteracts noise effects
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Fig. 5. Maximum single node energy for 1D quintic, noise γ = 0.04, no damping.

as before but also inhibits self-focusing.

4.1.4 Connections to evolution of the Hamiltonian

There are indications in Eq’s (9-13) that the evolution of the Hamiltonian H
could be related to the occurrence of self-focusing and localization of energy,
as it is for the NLS, so this will be examined.

First, it can be shown that the result of Eq’s (10,11) apply at least qualita-
tively to the discrete system with noise but no damping, by considering the
latter as a discretization of the Stochastic NLS with noise having correlation
length scale proportional to the lattice spacing l. Since the precise constant
of proportionality is not known, this will be done by checking first that 〈H〉
grows roughly linearly in time, and then by observing that this linear growth
rate is roughly proportional to n3

nodes, as suggested by Eq. (11).

The evolution of 〈H〉 is approximated by the black curve in Fig. 10. This is
the average of results for four noise realizations shown by the colored curves,
of which the blue curve corresponds to the single realization used in earlier
graphs. It is seen that there is indeed roughly linearly growth in time, at an
average rate of about 15.
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Fig. 6. Maximum single node energy for 1D quintic, noise γ = 0.04, damping from
λ = 0.001 to 0.27.

Increasing nnodes with initial data and noise adjusted as for grid refinement
in discretization of the SNLS, the growth rate of the Hamiltonian is seen in
Fig. 11 to go from about 15 for nnodes = 100 to 100–120 for nnodes = 200 and
740–1000 for nnodes = 400. Though only a single realization is shown in each
case, the growth rates are again approximately linear, and the changes in the
rates are consistent with the predicted n3

nodes scaling. As noted in section 2.6,
this indicates the ill-posedness of SNLS with spatially uncorrelated noise.

The addition of damping is predicted by Eq. (13) to at least partially offset the
growth ofH caused by noise. It is natural to ask under what circumstances this
effect is sufficient to bring H back to negative values, and how the restoration
of negative H is related to the restoration of energy localization, and the
answers appear to be positive.

In the less interesting case of damping insufficient to restore energy localiza-
tion, H initially grows roughly linearly as without damping, but then levels
out to fluctuation around a significantly positive value.

With damping sufficient to restore energy localization (λ = 0.002, γ = 0.04),
Fig. 12 shows for each of four realizations there is initial roughly linear growth
of H at about the same rate 15 seen above, but this is followed by slowing

18



40 42 44 46 48 50 52 54 56 58 60
0

5

10

15

20

25

30

35

node

ex
ci

to
n 

en
er

gy
1D quintic, 100 nodes, noise=0.04, damping=0.002

Fig. 7. Energy distribution for 1D quintic, noise γ = 0.04, damping λ = 0.002.

of the growth, and then a sudden drop to negative values. These negative
values quickly become very large and remain so, as shown for the standard
noise realization in Fig. 13. For each realization, the time of this drop is fairly
close to the time at which localization occurs, and indeed is driven by the
sixth power nonlinearity term in H taking on a large negative value when the
energy at any one node is a substantial proportion of the total.

The longer time behavior of H shown in Fig. 13 is continued decrease, corre-
lated to the move closer to a localized steady state that is also indicated by
Fig. 9. The values of both maximum single node energy and H seem to settle
slowly near asymptotic values, but with persistent noise driven fluctuations.
However, whereas maximum single node energy gets quite close to the extreme
valueN/l ≈ 45.3, the value ofH does not get so close to the minimum possible
value of Hmin = 2(N −N3/6)/l2 ≈ −511, though both extrema occur for the
same case of having all energy at one node. The extra energy is presumably
persistent spatial variations or thermal energy in the free energy part of H.
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Fig. 8. As above but for times t = 3.4, 3.8, 4.2, 4.6, 5 after the onset of energy
localization, showing the persistence of a near steady state.

4.2 Discrete 2D radially symmetric DSNLS

A nearest neighbor discretization of the 2D cubic DSNLS with radial symmetry
has also been studied, in order to test the conjectures described in section 2.7,
based on a collective coordinates reduction of this 2D cubic case. Another
goal is computationally efficient initial comparison to simulations of the full
2D cubic model with noise but no damping by Bang et al [1].

A weakness is the physically unlikely assumption of radially symmetric noise,
but the qualitative features match those seen in the previous section, suggest-
ing robustness under variations of lattice geometry, coupling, and nonlinearity
power.

Indeed, no fundamental differences are seen from the previous study of D = 1,
σ = 2 case, so we will simply summarize the points of agreement.

All results are for the initial data from discretization of ψ(0, r) = 1.65sech(r)
on 0 ≤ r ≤ 10 with 256 equally spaced nodes. This function is close to the
ground state “Townes soliton”, giving initial value of the hamiltonean H ≈
−0.006 and N ≈ 1.8867, just above the collapse threshold value Nc ≈ 1.87.
Thus singularity formation is ensured in the absence of noise and damping,
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Fig. 9. Maximum single node energy for 1D quintic, damping λ = 0.002, for both
noise λ = 0.04 and no noise.

but only just. The idea is to maximize the sensitivity of self-focusing effects
to the perturbations applied.

Noise without damping inhibits self-focusing localization of energy if its strength
γ exceeds a threshold, between 0.01 and 0.02. The hamiltonian for each real-
ization H grown roughly linearly in time, and more so the approximation of
ensemble average 〈H〉 given by averaging even a few realizations. If the spa-
tial discretization is refined to more nodes, the rate constant increases rapidly,
suggesting the failure of the continuum limit and ill-posedness of this form of
SNLS.

With above-threshold noise γ = 0.02, damping restores energy localization
once its strength λ in turn exceeds a threshold, between 0.05 and 0.1. This
is related to first slower growth of H, and then its decrease to substantially
negative values at about the same time as the localization.

4.3 1D lattice, quintic nonlinearity, spectral coupling

Finally, a different spatial discretization has been used at the opposite extreme
to nearest neighbor: discretization of the damped stochastic NLS equation for
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Fig. 10. Hamiltonian for 1D quintic, noise γ = 0.04, no damping. Colored curves
are for different noise realizations, the black curve is their mean.

D = 1, σ = 2 with periodic boundary conditions as above, but with spectral
discretization of derivatives.

The only changes seen are in quantitative details, not the qualitative features
described for both previous cases, so details are omitted.

This coupling is unnatural for the underlying molecular systems due to a mix-
ture of signs corresponding to alternation between attractive and repulsive
dipole interactions. However if continuum limits are valid for suitable combi-
nations of noise and damping, so that there is smoothness on a scale larger
than the molecular spacing, spectral discretization could potentially reduce
computational costs.

5 Refining the continuum limit approximations

As discussed above in sections 2.6, 4.1.2 and 4.1.4, the continuum limit from
the undamped Stochastic Discrete NLS (Eq. 1 with λ = 0) with spatially
uncorrelated noise is probably ill-posed; a so-called “ultra-violet catastrophe”.
Some brief comments on possible solutions are offered to indicate possible
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Fig. 11. Hamiltonian for 1D quintic, noise γ = 0.04, no damping. Blue is with 200
nodes, red is with 400, one realization for each.

future research directions.

One possibility is that the addition of damping restores well-posedness, and
numerical evidence above suggests that this might be so. However, it is not
clear that the damping term allows one to overcome the technical obstacles to
establishing existence and uniqueness; instead its fully nonlinear term might
only increase the technical difficulties.

A second approach is retaining higher order terms in approximating the dis-
crete coupling terms by Taylor series expansions, which preserves explicit de-
pendence on a length scale parameter l.

Assuming the Dihedral D2 symmetry of the brick-wall molecular film struc-
ture, one gets

∑
m

JnmΨm = j2,0ψxx+j0,2ψyy+l2[j4,0ψxxxx+j2,2ψxxyy+j0,4ψyyyy)]+O(l4) (17)

With the physically natural assumption of non-trivial and attractive coupling,
meaning that all Jnm are non-negative and some are positive, all the new jab

coefficients are non-negative and all ja0, j0b are positive. Linear rescaling of
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Fig. 12. Hamiltonian for 1D quintic, noise γ = 0.04, damping λ = 0.002. Same noise
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the x and y variables can then give the form

∑
m

JnmΨm = ψxx + ψyy +O(l2), (18)

and discarding terms that vanish as l → 0 lead to the standard DSNLS ap-
proximation in Eq. (2).

If instead we retain the next most important terms, involving fourth order
spatial derivatives, and assuming D2 symmetry, one can rescale to get

i
∂ψ

∂t
+ ∆ψ+l2[j4,0(ψxxxx + ψyyyy) + j2,2ψxxyy] + |ψ|2ψ+ γσψ− λ∂(|ψ|2)

∂t
ψ = 0.

(19)
With nearest neighbor coupling on a rectangular lattice the cross derivative
term vanishes (j2,2 = 0), but that does not fit the brick-wall symmetry ob-
served for cyanine dye Scheibe aggregates.

A third approach is to use Padé fitting to the coupling term instead of Tay-
lor polynomials, giving a pseudo-differential equation. With nearest neighbor
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Fig. 13. The first realization above to t = 100.

coupling on a rectangular lattice one can get

i
∂ψ

∂t
+

[
I − l2

12
∆

]−1

∆ψ + |ψ|2ψ + γσψ − λ
∂(|ψ|2)
∂t

ψ = 0. (20)

One potentially advantage is that the pseudo-differential operator is bounded,
which explicit removes the risk of an “ultra-violet catastrophe” and so might
facilitate analysis.

6 Conclusions and Plans

• Noise without damping can inhibit wave collapse, related to an increase in
the hamiltonian.

• There is a minimum threshold noise level needed to do this.
• The continuum limit as a Stochastic NLS equation with spatially uncorre-

lated noise appears to be ill-posed.
• Damping can restore collapse, again requiring a threshold strength.
• Damping might also restore well-posedness with spatially uncorrelated noise.
• Even more damping inhibits self-focusing and collapse.

In further work, the model should be refined in various ways.
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• Simulations and analysis of full 2D models.
• Consideration of the 1D cubic case and related models of nonlinear waves

in long bio-molecules, where energy localization still occurs in discrete NLS
models but the NLS continuum limit does not have self-focusing collapse.

• Analysis of well-posedness of the various PDE and pseudo-differential equa-
tion models, including the effects of damping.

• Direct analysis and study of the ODE system (lattice models) with various
interaction forms such as longer range.

• Simulation with time correlation in the noise, as seen in Eq. (6).
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