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The energy reconstruction of both neutrino-induced muons from neutrino interactions in the vicinity of

the detector and of muons from cosmic ray air showers contributes indispensable information for a

broad range of physics analyses, e.g. by increasing the sensitivity in neutrino point source searches or in

offering access to observables such as the atmospheric neutrino spectrum. Currently, four energy

reconstruction methods are implemented in the ANTARES data analysis framework, ranging from

estimates based on photon counting and the total charge deposited in the detector to methods based on

probability density functions and Artificial Neural Networks. These four methods, their performance

and systematic studies of the energy resolution capabilities of the ANTARES detector are presented.

& 2012 Elsevier B.V. All rights reserved.
1. Energy-related analysis in ANTARES

Energy reconstruction of neutrino-induced muons is in the
core of ultra-high-energy neutrino astronomy. Large-volume
neutrino experiments face the challenge of distinguishing cosmo-
genic neutrinos from a comparatively large background of neu-
trinos produced by air showers in the atmosphere, in order to
increase the statistical significance of discoveries of cosmic point
sources. Generally, cosmogenic neutrinos are expected to have a
harder spectrum than atmospheric neutrinos, exceeding their flux
in the ultra-high energy region, which makes event selection
through energy reconstruction an essential task. On the other
hand, the measurement of the diffuse cosmogenic neutrino flux
can give a hint toward production mechanisms of ultra-high-
energy cosmic rays.

In the ANTARES neutrino telescope, Cherenkov photons from
muons produced by charged-current interactions of neutrinos are
detected. The detector is located in the Mediterranean Sea, about
40 km off the French coast at a depth of 2500 m. It consists of 885
Optical Modules (OMs), installed in groups of three on 12 vertical
lines. These lines have an instrumented length of 350 m each,
covering a total area of 0.1 km2. Single photons are measured
using the charge induced in photomultiplier tubes within the
OMs which are digitized by two Analogue Ring Samplers (ARSs).
The readout of a triggered ARS, which is called a ‘hit’, provides a
measurement of the arrival time and the amount of photons
arriving at the OM within the integration window of the ARS.
ll rights reserved.
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Photon arrival time and the charge of these hits are the basic
information available for muon energy reconstruction, and are
used in various ways in the reconstruction methods developed by
the ANTARES collaboration.
2. Muon energy loss

Muon energy estimates cannot be obtained by direct measure-
ment but are dependent on the characteristics of the energy loss
of the particle traversing the medium. At all energies, ionization
causes a fairly constant and homogeneous energy loss of the
muon, while radiative processes like bremsstrahlung, pair pro-
duction and photonuclear processes emerge and become domi-
nant above the muon critical energy of several hundred GeV,
where their contribution to energy loss increases linearly with
energy [3]. They add a strongly stochastic fluctuation to energy
losses, as they cause electromagnetic and hadronic particle
cascades along the muon track, in which a substantial fraction
of the muon energy is deposited. Therefore, energy loss can only
be calculated by statistical approximation of the mean muon
energy loss per unit length, which is given by

dE

dx

� �
¼ aðEÞþbðEÞE ð1Þ

where a(E) describes the ionization loss and b(E) contains the
effect of all radiative processes.

This implies two possibilities to reconstruct the muon energy.
In the low-energy region with dominant ionization loss, the total
length of the track can be used to estimate the energy, if the track
ends or is contained within the detector volume. In the case of
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ANTARES, tracks up to about 100 GeV can be contained within the
detector, although the limited size of the detector poses a
challenge to the identification of tracks at 100 GeV. For particles
with energies above the muon critical energy, the onset of
radiative processes can serve to reconstruct particle energy, as
cascades cause additional photons through Cherenkov emission of
the constituents of the cascade, which arrive at the photomulti-
plier tubes delayed in comparison to direct Cherenkov emission of
the muon due to their diverging emission angle and due to
scattering. This delay is called the time residual of a photon
tres ¼ thit�tCherenkov. The time residual and number of photons are
therefore the basic observables for muon energy reconstruction in
the high energy region. In this region, energy reconstruction has
to deal with the highly stochastic nature of muon energy loss,
which leaves a comparatively large uncertainty in the reconstruc-
tion of the single muon energy which cannot be overcome by
technical means.
Fig. 2. Average time residual of all hits per event for repeated simulations of

upgoing muon tracks at discrete energies.
2.1. Systematic studies of energy loss phenomenology

In order to investigate the stochastic error induced by the
energy-loss phenomenology, a dedicated Monte Carlo study is in
progress, of which some first results will be presented here. The
Monte Carlo simulation [1] of the ANTARES detector response to
passing muons was performed for muons tracks which were
uniformly and isotropically distributed in the detector. For each
track, various discrete energies for the complete sensitive energy
range of ANTARES were assumed, and the track simulation
repeated 500 times for each energy. In the first step, basic
reconstruction parameters like the total charge of the ARS readout
and the average time residuals for hits in each event were
investigated. In the second step, the energy was reconstructed
for each event to estimate the performance of the energy
reconstruction methods for a given track.

As ANTARES is optimized for the detection of muon tracks
emerging from below the detector, the best reconstruction quality
can be expected for tracks with a zenith-angle y¼ 1801 (upgoing
tracks). In order to analyse the energy resolution obtained from
the basic parameters mentioned above, the total charge of the OM
readouts per simulated track and the mean time residual per
event are plotted for various upgoing tracks in Figs. 1 and 2. The
total charge is here corrected for the varying detector efficiency
towards the individual track while the same correction was not
necessary for the average time residual. This shows that the
number of photons can serve as a good measure for energy loss,
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Fig. 1. Integrated charge A measured in ANTARES for repeated simulations of

upgoing muon tracks (y¼ 1801) at discrete energies.
but has to be corrected for detector effects and efficiency. As the
number of photons is also dependent on the length of the track in
the detector, the number of photons can also be used for
reconstruction of muon energies below 100 GeV.

The average time residual, on the other hand, needs no
correction for detector effects, as it simply measures the excess
of late photons over direct Cherenkov photons from the muon. As
a drawback, this parameter cannot be used in the low energy
range, as it only reflects the contribution of radiative processes to
the energy loss.
3. Energy reconstruction in ANTARES

Two basic approaches to single muon energy reconstruction
are pursued within ANTARES. Either the energy is obtained by
fitting the distribution of an energy-correlated parameter over the
simulated spectrum, or energy-loss patterns are modelled using a
wide range of parameters. Reconstruction methods using the first
approach are the dE/dx-Estimator and the R-Estimator, while
modelling based on probability density functions (PDFs) is used
for the Maximum Likelihood approach and within Artificial Neural

Networks. These four methods will briefly be described here.

3.1. The dE/dx-estimator

The total number of photons caused by the muon is the basic
quantity to be used for muon energy reconstruction, but it has to
be corrected for the detector efficiency e towards a given track,
which considers the attenuation length latt of the medium and
the angular acceptance a of each OM. It is given by

e¼
X
NOM

ed=latta
d

ð2Þ

where d is the distance between the muon track and the OM for
photons emitted with the Cherenkov angle. The total number of
photons is also dependent on the track length within the detector,
therefore, the energy loss has to be corrected for the path length L

of the muon in the detector. This disqualifies the estimator for
energy reconstruction in the low energy range, but can increase
accuracy in the regime of radiative losses. The estimate for dE=dx

is therefore given by the correlated parameter

r¼ 1

Nhits

P
A

Leffe
ð3Þ
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Fig. 3. R-value (black markers) and r of the dE=dx-Estimate (white markers) for

repeated simulations of upgoing muon tracks at discrete energies.
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where A is the total amplitude of the ARS readouts and Nhits the
number of hits associated with the event. For upgoing muons,
average values for r are plotted in Fig. 3. A polynomial fit of r to
simulated data is used to obtain dE=dx and thus the mean energy
for this energy loss.
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3.2. The R-estimator

The larger time residual of Cherenkov photons of muon-
induced cascades is reflected in the number of hits at a given
OM. In the case of several photons arriving at the OM, the two
ARSs in each OM are triggered consecutively and undergo a
deadtime of 250 ns before they can be triggered again. For this
estimator, only hits within 500 ns of the estimated arrival time of
Cherenkov photons are selected. Therefore, only two consecutive
readouts of both ARSs are analysed and a maximum of four hits
can be recorded at one OM. This is used to define the R-parameter,
which is given by the average number of hits per OM with at least
one hit divided by the total number of OMs with hits

R¼
X
NOM

Nhitsi

NOM
ð4Þ

where NOM denotes only those OMs that received a hit. R can
therefore be seen as a measure of the average time residual of the
photons and is largely independent from the detector acceptance
for a given track. The muon energy can directly be obtained from
a polynomial fit to the distribution of R in the simulated data. This
energy approximation is well established within ANTARES and
has successfully been used to calculate a limit on the cosmic ray
flux [2]. Its distribution for upgoing tracks can be seen in Fig. 3.
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Fig. 4. Energy estimates from Maximum Likelihood (black markers) and ANN

(white markers) for repeated simulations of upgoing muon tracks at discrete

energies.
3.3. Maximum likelihood method

Instead of using only single parameters for energy estimates,
methods spanning a larger parameter space are likely to improve
energy resolution. This calls for a mathematical approach to
model the complex dependence between the chosen parameters
and the energy, which has to include photon propagation,
detector response and background. In the Maximum Likelihood
approach, these effects are described by an analytical PDF, which
is used to derive the probability of photon detection POM(E) at a
certain OM. The likelihood for an event is then given by

L¼
YNOM

i

PiðEÞ ð5Þ

where NOM is the number of OMs. The probability is described by
different expressions, depending on whether or not photons
producing charge A were detected at the OM:

PðA;/nSÞ ¼
Xnmax

n ¼ 1

PPðn;/nSÞ � PGðA;nÞ ð6Þ

Pð0;/nSÞ ¼ e/nSþPthresholdð/nSÞ: ð7Þ

In the case of photon detection, Eq. (6) describes the probability to
measure amplitude A if the mean number of expected photons
/nS is assumed, which itself is dependent on the energy of the
track, /nSðEÞ. In this formula, PPðn;/nSÞ is the Poissonian
probability of n photons arriving at the OM if /nS are expected,
weighted by the Gaussian probability of PGðA;nÞ that these
photons produce amplitude A in the OM. In the case of no photon
detection, Eq. (7) represents the two probable causes by either
having no photon present at the OM, although /nS are expected,
or having a photon that produces a charge which is below the
PMT threshold of the OM. In order to maximize the likelihood,
�logðLÞ is minimized and the resulting energy estimate Ê shifted
to represent the true muon energy through a linear correction,
which is shown in Fig. 4. This method has already been used for
an unfolding of the neutrino spectrum [4].
3.4. Neural network approach

Apart from the parametric approach using an analytic PDF,
machine-learning algorithms are an established method to derive
the dependence between sets of variables in a semi-parametric
way. In the case of feed-forward Artificial Neural Networks (ANN),
the functional dependence between an input vector of observa-
bles x̂ and the output Ê is modelled by the nodes and connections
between the nodes of the ANN. In each node, all input values to
the node are added up and analysed by the so-called activation
function g. If the output of a node is connected to the input of
another node, this connection is given a weight w. Therefore, the
dependence between inputs x̂i and output y in each node can be
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given as

y¼ g
X

i

wix̂i

 !
ð8Þ

such that an ANN can be seen as multidimensional array of
functions to represent the dependence between input and output.
In order to adapt an ANN to a given set of simulated data (x̂MC ,
EMC) during learning, an error function EðÊðŵMC ,x̂Þ,EMCÞ describing
the overall error on a set of data between desired ANN output EMC

and achieved output E, depending on the individual connection
weights of the ANN, is used. During learning, the connection
weights ŵ are adapted such that EðÊðŵ,x̂Þ,EMCÞ is minimized.
The resulting ANN can therefore be seen as a representation of
the PDF describing the relation between input parameters x̂

and output Ê and the learning process as analogous to the
minimization step in the Maximum Likelihood method, with the
main difference that the latter uses an analytical PDF while the
ANN derives the PDF from a set of simulated data.

In ANTARES, the input vector consists of 56 different features
including the number of hits, total charge and average time
residual of the hits of the event, which are in a preprocessing
step decoupled through application of a Principal Component
Analysis (PCA) to reduce the dimensionality of the problem. The
PCA transforms the input vector into feature-space, in which all
components are orthogonal to each other, which leads to a more
efficient training of the ANN [5]. The output of this ‘ANNergy-
Estimator’ can be seen in Fig. 4. In the low energy region, adaption
of the ANN to specific observables describing the length of the
muon track is under investigation and might offer access to
energy reconstruction for muon energies below 100 GeV.
4. Conclusion

For many analyses, energy reconstruction of the neutrino-
induced muon is of essence and various muon energy estimators
have been developed. Energy reconstruction in ANTARES is
relying on the characteristics of muon energy loss and uses both
the increased number and the delayed arrival times of photons
emerging from radiative processes along the muon track. These
parameters are either used separately as energy estimate, like the
R-value and in the dE=dx-Estimator, or an energy estimate is
derived from multiple parameters by usage of a PDF. This is
implemented both with an analytical PDF through a Maximum
Likelihood method or by machine learning from Monte Carlo
simulation through an Artificial Neural Network. All estimates
presented here focus on muon energies above 1 TeV, although
reconstruction for energies below 100 GeV, using the total track
length of the muon, are also under investigation.
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