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ABSTRACT

We integrate multipath exploitation with adaptive waveform design
in order to increase the tracking performance of a vehicle moving in
urban terrain. Mitigation of both clutter and strong multipath returns
can result in increased target detection. However, exploiting multiple
bounces from obstacles such as buildings can be shown to increase
radar coverage and scene visibility, especially in the absence of di-
rect line-of-sight paths. For this purpose, we formulate the multipath
propagation of an arbitrary number of specular bounces in urban ter-
rain for three-dimensional motion. We then further exploit and op-
timize multipath returns by dynamically selecting the parameters of
the transmitted waveform to minimize the predicted mean-squared
tracking error. We demonstrate our proposed approach in a realistic
urban environment by varying the type of measurement to include
regions of obscuration and different number of multipath bounces.

Index Terms— Urban terrain, multipath exploitation, waveform-
agile sensing, particle filtering, tracking.

1. INTRODUCTION

When operating in an urban environment, most radar systems could
fail due to lack of line-of-sign (LOS) returns, interference from mul-
tipath signal reflections, and large and inconsistent returns (or clut-
ter) from objects such as buildings [1]. Two major issues of urban
radar is complete obscuration or shadowing (no received measure-
ments) and multipath returns from signal reflections off surfaces that
can result in varied range measurements and contradict LOS mea-
surements. There are various techniques to overcome these prob-
lems. For example, either more sensors or airborne radar systems
with very steep grazing angles can be used to combat obscuration.
Also, multipath returns can be treated as interference and mitigated
[2, 3]. However, there are scenarios in the urban environment where
the direct path is lost, and the only paths available are the indi-
rect multipaths. In such cases, by utilizing prior knowledge about
the environment, such as road maps and building locations, multi-
path returns can be used to confirm the target detection proposed by
the LOS measurements [4]. More recently, researchers have been
studying multipath propagation [5], realizing the potential benefits
of extracting target information from multipath returns to enhance
tracking performance. An overview of the approaches that can be
employed for tracking in an urban environment are presented in [6].
Especially when no LOS is available, multipath returns allow the de-
tection and tracking of a target without LOS, thereby decreasing the
obscuration effects from buildings and increasing the visible area in
the urban environment [1]. This exploitation of information is thus
expected to increase radar coverage and scene visibility.

The work was partly supported by MURI Grant AFOSR FA9550-05-1-
0443 and by Lockheed Martin SenSIP Consortium Project 019950-005.

In this paper, we first formulate the multipath propagation ge-
ometry in urban terrain for an arbitrary number of specular bounces
in three-dimensional (3-D) space. Using this geometry, we aim to
further improve tracking performance by integrating waveform-agile
sensing with multipath exploitation radar (WASMER). Specifically,
we use a particle filter (PF) tracker for a single-target tracking sce-
nario in a partially-obscured urban environment with different areas
of sight. The PF incorporates nonlinear measurements and two dif-
ferent types of motion models to allow the target to move straight or
turn. Assuming perfect detection, the agile sensing algorithm selects
the parameters of the waveform to be transmitted at the next time
step by minimizing the predicted tracking error covariance.

The paper is organized as follows. In Section 2, we derive the
3-D multipath geometry, and Sections 3 and 4 formulate the track-
ing with multipath exploitation and waveform optimization, respec-
tively. Simulation results in Section 5 demonstrate the effectiveness
of the joint WASMER system.

2. MULTIPATH PROPAGATION GEOMETRY IN 3-D

In [5], the 2-D multipath geometry from a radar to a target is derived
under certain conditions for the path to exist. In this paper, we want
to derive the multipath geometry in 3-D space and in terms of the
possible multiple bounces that affect the target tracking estimation.
Specifically, we consider a tracking problem where a transceiver
radar located in 3-D space is transmitting a signal sT (t) in urban
terrain. We assume that the signal is bouncing between two build-
ings such that it reflects off M surfaces from the transmitter to the
target, then it reflects off its intended target, and finally it reflect off
M ′, possibly different, surfaces from the target to the receiver. Our
aim is to formulate the resulting 3-D multipath propagation geom-
etry, assuming specular reflections (i.e., for the reflected rays, the
angle of incidence equals the angle of reflection). We define a path
to be the time it takes to travel between the radar and the target.
Due to the specular assumption, if there are multiple bounces, a path
would correspond to the time it takes to travel between the radar and
a virtual target. A virtual target corresponds to a target with a fic-
tional range and range rate that the LOS would have resulted in if
the building was not obstructing the signal transmission.

Figure 1 illustrates an urban terrain for a radar located at lo-
cation (xR, yR, zR) (in 3-D Cartesian coordinates). At time step
k, the location and velocity of the target are given by (xk, yk, zk)
and (ẋk, ẏk, żk), respectively. In the figure, we only demonstrate
LOS and one-bounce reflections. Specifically, only three possi-
ble paths are demonstrated: radar-to-target (LOS), radar-Building
1-target (one-bounce), and radar-Building 2-target (one-bounce).
Each of the one-bounce paths have corresponding virtual targets,
as demonstrated in Fig. 1. The range of the direct signal path at
time k is given by the Euclidean distance between the radar and the
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Fig. 1. Geometry of LOS and one-bounce multipath reflections.

target: rk,0 = ((xk − xR)2 + (yk − yR)2 + (zk − zR)2)1/2.
The range-rate is the derivative of range with respect to time:
ṙk,0 = (ẋk(xk − xR) + ẏk(yk − yR) + żk(zk − zR))/rk,0.
For simplicity, we consider the multipath geometry from the radar
to the target; this can be symmetrically extended from the target to
the radar. The range from the radar to the target after m bounces is
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“
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where H is the street width. It is assumed that the first bounce was
off Building i, i = 1, 2, where [m

2
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2
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2
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2
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corresponding range-rate can be obtained by taking the derivative of
the range in (1) with respect to time. In Fig. 1, m = 1, so there
could be P = 9 possible paths after a round trip, and accordingly,
the range and range-rate for the round trip are the summation of the
range and range rate in each direction. When m = 2, the total
number of paths would be P = 25 since two-bounce paths would
be possible. Note, however, that real-data examples have shown that
two-bounce reflections suffer from severe fading and are too weak
to observe [7].

3. MULTIMODEL TRACKING WITH MULTIPATH

3.1. Representative Urban Terrain Example

Throughout the paper, we make use of an urban scene that was con-
sidered a representative example of a challenging urban environment
by the Defense Advanced Research Projects Agency (DARPA) in
their 2009 Multipath Exploitation Radar (MER) program [1]. This
scene is depicted in Fig. 2 to consist of three buildings with a ground
vehicle driving through urban terrain, following a loop trajectory.
An airborne radar is located approximately 8, 000 m southeast of
the scene and 1, 400 m high, resulting in a shallow grazing angle
that prevents LOS when the target is traveling between the build-
ings. Using prior knowledge on the urban environment, we can de-
termine different types of measurements in different areas. The map
in Fig. 3 illustrates the available measurements for the different areas
(indicated by different shaded regions), assuming perfect detection.
The loop indicates the vehicle trajectory.

3.2. State-Space Formulation

In order to formulate the state space formulation for estimating the
position and velocity of the ground vehicle (zk = 0) in the urban

Fig. 2. Representative urban terrain, DARPA MER Program [7].

terrain, consider the target state vector Xk = [xk ẋk yk ẏk]T at time
step k and the measurement vector Zk = [rk ṙk]T , where rk and ṙk

are the range and range-rate measurements, respectively, and T de-
notes vector transpose. The state process model is governed by two
possible models, depending on whether the ground vehicle moves at
a constant velocity or is turning. When moving at a constant velocity,
the state transition is given by

Xk = FXk−1 + Wk,

where F is a 4 × 4 matrix such that, for example, xk = xk−1 +
ẋk−1δt and ẋk = ẋk−1 [8], where δt is the time interval between
successive measurements. When the target is turning with a constant
turning rate ω, then F is given by [9]

F =

2
64

1 sin (ωδt)/ω 0 −(1− cos (ωδt))/ω
0 cos (ωδt) 0 − sin (ωδt)
0 (1− cos (ωδt))/ω 1 sin (ωδt)/ω
0 sin (ωδt) 0 cos (ωδt)

3
75 .

The measurement model is given by Zk = hk(Xk)+Vk , where
hk is a nonlinear function and Vk is additive Gaussian measurement
noise with covariance Rk. As the number of possible bounces can
affect the number of paths, and due to multiple possible multipaths,
we define the noise-free measurement hk(Xk) at time k as

hk(Xk) =

»
rk,1 rk,2 · · · rk,Pk

ṙk,1 ṙk,2 · · · ṙk,Pk

–
,

where rk,p and ṙk,p are the range and range rate measurements of the
pth path at time step k, p = 1, · · · , Pk, and Pk is the total number
of paths at time step k, which depends on the location of the target
at that time.

3.3. Particle Filter Tracker

Particle filtering is used as the tracker due to the nonlinearity in the
measurement model. As there are two possible types of motion, the
process model must adaptively choose the type of motion at each
time step using the multiple-model particle filter (MMPF) [10]. Us-
ing the MMPF, a model parameter needs to be estimated at each
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Fig. 3. Available measurement map for the simulated urban terrain.

time step based on the model at the previous time step and the preset
transitional probability matrix Π whose element πij represents the
transitional probability from model i to model j. The MMPF auto-
matically chooses the motion model and estimates the state at each
time step Xk using the PF and the measurement Zk.

4. DYNAMIC WAVEFORM SELECTION

4.1. Signal and noise models

The waveform selection is designed to choose the parameters of
the transmission signal in order to minimize the tracking estima-
tion mean-squared error (MSE). The transmission signal considered
is a Gaussian enveloped linear frequency-modulated (LFM) chirp,

sT (t) = a(t) e
j2π B

Td
t2

, where the Gaussian window is a(t) =`
1

πλ2

´1/4
e−t2/(2λ2), λ parameterizes the pulse length, and B is the

bandwidth of the signal. The effective pulse length Td is the time
interval over which the signal amplitude is greater than 0.1% of its
maximum value. This criteria determines λ = Td/7.4338 [11]. The
unit normalized transmission signal with carrier frequency fc is then
represented by s(t) =

√
2Re

ˆ
sT (t)ej2πfc t

˜
. For a ground vehicle

moving in the urban terrain with P multipath returns, the received
signal is given by

sr(t) =
PX

p=1

√
2 Re

n
βpsT (t− τp)e

j2π(fct+νpt)
o

, (2)

where βp is the reflection coefficient and τp and νp are the delay
and Doppler shift components of the pth path. The received signal,
sR(t) = sr(t) + w(t), has a zero-mean additive white Gaussian
noise (WGN) component w(t). The radar measures the delay and
Doppler related to the tracker range (rp) and range-rate (ṙp) obser-
vations as rp = cτp/2 and ṙp = cνp/(2fc) where c is the speed of
propagation of the transmitted signal. The error in the measurement
of the delay and Doppler hence impacts the accuracy of the range
and range rate observations.

The detection and estimation is performed in each range cell,
and using the urban map, the total number of multipath returns can
be calculated. Let the delay and Doppler parameters to be esti-
mated be defined as Φ = [φ1 φ2 · · · φp]

T where φp = [τp νp].

Using this discretization, the received signal can be expressed as
sR[n] = sr[n; Φ] + w[n], where w[n] are independent zero-mean
WGN samples with variance σ2. The estimation of Φ is equivalent
to estimating a vector signal parameter in the presence of WGN. The
Fisher information matrix (FIM) for estimating Φ is given by [12]

[I(Φ)]ij =
1

σ2

NX
n=1

∂sr[n; Φ]

∂φi

∂sr[n; Φ]

∂φj
(3)

and CRLB(Φ) = I(Φ)−1 corresponds to the Cramér-Rao lower
bound (CRLB) for the delay and Doppler estimate variance. From
(3), the CRLB depends on the transmission waveform parame-
ters. Let θk = [λk Bk]T represent the waveform parameter
vector which describes the LFM chirp. The noise covariance for
the measurement of range and range-rate is therefore a function of
the waveform parameters and found by R(θk) = ΓI(Φ)−1

Γ
T ,

where Γ is a diagonal matrix with P block diagonal matrices,
γp = diag(c/2, c/(2fc)), p = 1, · · · Pk.

4.2. Cost function computation

We consider a library of L waveform parameter vectors, θl, l =
1, · · · , L. At every time step k, we seek to choose the parame-
ter in the library which minimizes the tracking MSE J(θk). The
trace of the state covariance matrix Pk|k(θk) can be used to ap-
proximate J(θk). This covariance matrix can be computed using
the Kalman filter covariance update equation for linear measurement
models. For nonlinear measurement models, an approximate solu-
tion for the Kalman filter covariance update can be found using the
unscented transform (UT) [13]:

P̂k|k(θk) = Pk|k−1 −PXZ(PZZ + R(θk))−1
P

T
XZ . (4)

The estimated state error covariance for each of the l waveforms
in the library is thus given by,

P̂k|k(θl
k) = Pk|k−1 −PXZ(PZZ + R(θl

k))−1
P

T
XZ

We evaluate the cost function J(θl
k) = trace(P̂k|k(θl

k)) at every
time step for the entire library of waveforms and choose that θl

which provides the minimum J(θk).

5. SIMULATIONS

We simulate tracking with dynamic waveform selection using the ur-
ban terrain example in Section 3.1. The single ground moving target
is assumed to be moving at a speed of 5 m/s. A library of constant
time-bandwidth product and unit energy signals was created with 0.1
μs minimum and 1 ms maximum pulse durations. The bandwidth
was chosen to be between 1 kHz to 10 MHz. The carrier frequency
was fc = 1 GHz and the velocity of propagation of the waveform
was c = 3 × 108 m/s. The measurements were simulated such that
there was a loss of 10 dB in energy for every reflection. At every time
step, waveforms are chosen from a library so as to minimize the cost
function in Section 4.2. The true target trajectory and the estimated
target trajectory obtained using the waveform selection algorithm are
shown in Fig. 4. The performance deterioration in the shadow re-
gions is expected as there are no measurements received during that
time; the state vector is only updated by the process model. The se-
lected waveform duration and bandwidth parameters at every time
step are shown in Fig. 5.

We compare the performance of the tracking system using wave-
form selection with an open loop system which transmits waveforms
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from the library in a round-robin fashion. The comparison of the
MSE in tracking the position and velocity in both the systems is
shown in Fig. 6 and Fig. 7. Except for the shadow regions, we
can observe the reduced MSE performance achieved with waveform-
agile tracking.
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Fig. 4. True and estimated target trajectory.
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Fig. 5. Waveform parameter selection.

6. CONCLUSION

We considered the problem of dynamic waveform design for track-
ing a ground moving vehicle in an urban environment. We formu-
lated multipath geometry in 3-D space, and then we integrated mul-
tipath exploitation with waveform design to increase target tracking
performance. Application of the proposed approach to a challenging
urban scene demonstrated the decrease in mean-squared estimation
error.
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