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ABSTRACT
To detect violence in a video, a common video description

method is to apply local spatio-temporal description on the
query video. Then, the low-level description is further sum-
marized onto the high-level feature based on Bag-of-Words
(BoW) model. However, traditional spatio-temporal descrip-
tors are not discriminative enough. Moreover, BoW model
roughly assigns each feature vector to only one visual word,
therefore inevitably causing quantization error. To tackle the
constrains, this paper employs Motion SIFT (MoSIFT) algo-
rithm to extract the low-level description of a query video. To
eliminate the feature noise, Kernel Density Estimation (KDE)
is exploited for feature selection on the MoSIFT descriptor.
In order to obtain the highly discriminative video feature, this
paper adopts sparse coding scheme to further process the se-
lected MoSIFTs. Encouraging experimental results are ob-
tained based on two challenging datasets which record both
crowded scenes and non-crowded scenes.

Index Terms— violent video detection, Motion SIFT,
kernel density estimation, sparse coding, max pooling

1. INTRODUCTION

Computer vision techniques are highly demanded for intelli-
gent surveillance and automatic video annotation. In this pa-
per, we focus on the challenging task of detecting violence in
videos, which is insufficiently studied but really useful in rat-
ing/tagging video content and video surveillance. Any videos
containing human fighting are defined as violent videos. The
intra-class variations of human motion caused by scale, oc-
clusion, viewpoint, and the clutter background make violence
detection difficult.

To detect violent video, the visual feature is constructed
based on either local spatio-temporal descriptors or global
features. Global feature represents an action as a whole. For
example, space-time shape templates from image sequences
were used in [1, 2] to describe an action. This method re-
quires foreground segmentation to extract precise silhouettes,
which is difficult in a real environment. The Violent Flow
(ViF) descriptor [3] is another global feature. It represents
the statistics of flow-vector magnitudes changing over time.
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However, ViF is designed for crowded violent scenes and is
not suitable for the scenes of less people.

Approaches based on local spatio-temporal descriptors
are commonly combined with Bag-of-Words (BoW) model
and have achieved promising performance in violence detec-
tion [4, 5]. Compared with the space-time shape and tracking
based approaches, these methods do not require foreground
segmentation or body parts tracking. Thus they are more
robust to camera movement, illumination, occlusion and even
low resolution video. These methods first detect spatio-
temporal interest points [6, 7, 8] from video clips and then
describe cuboids around the interest points using different
spatio-temporal descriptors like Histograms of Oriented Gra-
dients (HOG) and Histograms of Optical Flow (HOF). Then,
each local feature vector is quantized to its closest visual
word, and a histogram of visual words occurrence is genera-
ted as the video level representation. These fixed-dimensional
histogram vectors can then be fed into the standard classifier
such as support vector machine (SVM) [9]. The visual word
dictionary is typically constructed through K-means cluster-
ing over the sampled local descriptors. Each word in the
dictionary is the cluster center obtained by K-means.

The conventional BoW methods rely on the discrimina-
tive power of local spatio-temporal descriptors, and focus on
how often they occur in the video. However, traditional de-
scriptors like HOG and HOF are not descriptive enough to
capture both local appearance and motion information. To
tackle this problem, Motion SIFT (MoSIFT) algorithm [10]
was proposed to detect distinctive local features through lo-
cal appearance and motion. Moreover, the performance of
BoW model is impaired because of high quantization error.
Recently, the sparse coding based method has been success-
fully utilized in image classification task [11, 12, 13] and ac-
tion classification domain [14, 15]. Sparse coding method
transforms each low-level descriptor to a linear combination
of a few “atoms” in a well-trained dictionary. Compared with
BoW model, it can achieve a much lower reconstruction error
and generate a more discriminative video representation.

Motivated by the above insights, we take advantage of
the robust MoSIFT descriptor and sparse coding method to
generate a better representation of violent video. The frame-
work of our approach is illustrated in Fig. 1. Firstly, we ex-
tract MoSIFT features from video clips. Secondly, we em-
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Fig. 1. Framework of the proposed violence detection approach.

ploy Kernel Density Estimation (KDE) based feature selec-
tion method to select the most representative features from the
original 256-dimensional MoSIFT descriptor. Subsequently,
sparse coding is adopted to transform the reduced low-level
descriptors into compact mid-level features. To obtain a high-
ly discriminative representation of the whole video, max pool-
ing process is operated over the whole sparse code set of the
query video. Finally, a SVM classifier is trained using these
video level feature vectors.

2. OUR APPROACH

2.1. MoSIFT algorithm

The MoSIFT algorithm [10] was inspired by the highly suc-
cessful Scale-Invariant Feature Transform (SIFT) [16] for ob-
ject recognition. First, the standard SIFT algorithm is applied
to find visually distinctive interest points in the spatial do-
main. Then the candidate points with insufficient optical flow
around the neighborhood are rejected, leaving only spatio-
temporal interest points with strong motion. The MoSIFT
descriptor was designed to represent the feature point in two
parts: a standard SIFT image descriptor and an analogous his-
togram of optical flows. The final MoSIFT feature is a 256
dimensional vector: the first 128 dimensions are the standard
SIFT features and the remaining 128 dimensions are the ag-
gregated histogram of optical flow.

MoSIFT algorithm detects interest points from a video
clip. Then it not only encodes their local appearance but also
explicitly models local motion. Compared with the popular
spatio-temporal descriptors such as HOG [17] and HOF [17],
the MoSIFT descriptor is more descriptive and more robust to
deformation.

2.2. KDE-based feature selection

The original 256-dimensional MoSIFT descriptor may con-
tain some irrelevant and redundant features. To improve
performance and computational efficiency, we employ the
KDE-based feature selection method [18] to select the most
representative features from the original MoSIFT descriptor.
KDE is a traditional non-parametric method for inferring
the underlying probability density function (PDF). Suppose
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Fig. 2. Normalized probability density function estimated by KDE
method.

x1, x2, ..., xN is N independent identically distributed ob-
served data of a one-dimensional random variable x. KDE
infers the probability density function of x by centering a
kernel function K(x) at each data point xi:

f̂h(x) =
1

hN

N∑
i=1

K(
x− xi

h
), (1)

where h > 0 is a smoothing parameter called bandwidth.
For j-th feature of MoSIFT descriptor, we can use KDE

to obtain a smooth probability density function based on
the training data. K(x) is chosen to be a Gaussian ker-
nel: K(x) = (1/

√
2π)e−(1/2)x2

. The bandwidth h can be
adaptively chosen using the method proposed in [19]. If the
probability density function of a feature is bimodal or mul-
timodal, this feature is considered to be more discriminative
than those with only a single mode. Fig. 2 shows a typi-
cal PDF of a feature with two modes. On the original 256
features of MoSIFT, we estimate the PDF of each feature.
According to the number of modes, we sort the 256 features
of MoSIFT descriptor in descending order. Then the first 150
features are selected to form the reduced MoSIFT descriptor
which is more effective than the original one.

2.3. Sparse coding scheme for violence detection

In our violence detection framework, sparse coding instead
of BoW model is adopted to provide a more accurate and dis-
criminative intermediate representation for human action. Let
X be a set of reduced MoSIFT feature vectors extracted from
a query video clip, i.e. X = [x1,x2, ...,xN ] ∈ Rd×N , where
xi denotes i-th feature vector of the total N data samples. A
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sparse coding problem can be formulated as

Z = argmin
Z∈Rk×N

1

2
∥X−DZ∥2ℓ2 + λ∥Z∥ℓ1 , (2)

where Z = [z1, z2, ..., zN ] ∈ Rk×N and zi is the sparse rep-
resentation of the feature vector xi. D = [d1,d2, ...,dk] ∈
Rd×k is a pre-trained dictionary, which is an overcomplete ba-
sis set, i.e. k > d. λ is a positive regularization parameter to
control the tradeoff between reconstruction error and sparse-
ness. When the dictionary D is fixed, the optimization over Z
alone is convex. The LARS-lasso method [20] is utilized to
solve Eq. (2) to get the set of sparse codes Z. In this way, the
original query video representation in X is converted to the
corresponding spare code representation Z. Then, the video
analysis/recognition is carried out on Z domain.

The dictionary D contains k atoms representing basic pat-
terns of the specific data distribution in feature space. Given
a large collection of the reduced MoSIFT features extracted
from training video clips Y = [y1,y2, ...,yM ] ∈ Rd×M , the
dictionary learning problem in sparse coding scheme can be
defined by

argmin
U∈Rk×M ,D∈C

1

M

M∑
i=1

1

2
∥yi −Dui∥2ℓ2 + λ∥ui∥ℓ1 , (3)

where U = [u1,u2, ...,uM ] ∈ Rk×M is the coefficients set
and C is a convex set

C ,
{
D ∈ Rd×k, s.t.∥di∥ℓ2 6 1, i ∈ {1, ..., k}

}
.

The formulation is not convex with respect to D and U simul-
taneously. We adopt the online dictionary learning algorithm
[21] to solve this joint optimization problem, which has been
proven to be more suitable for large training sets.

2.4. Max pooling over motion features

To capture the global statistics of the whole video, max pool-
ing is applied over sparse code set Z ∈ Rk×N to get a video
level feature,

β = F(Z), (4)

where β is a vector with k dimensions and F is a pooling
function defined on each row of Z. Different pooling func-
tions construct different video statistics [14, 15]. It has been
reported empirically and also theoretically that max pooling
outperforms the average pooling [11, 22]. In this work, we
adopt the max pooling function defined as

βi = max{|Zi1|, |Zi2|, ..., |ZiN |}, (5)

where βi is the i-th element of β, Zij denotes the (i, j)-th
entry of the matrix Z.

Compared with the BoW model, sparse coding method
achieves a much lower reconstruction error and captures the

Fig. 3. Sample frames from Hockey Fight dataset (first row) and
Crowd Violence dataset (second row). The left three columns are
violent scenes while the right three columns are non-violent scenes.

salient properties of human actions. By max pooling proce-
dure over the sparse code set, the irrelevant information is dis-
carded. Only the strongest response to each particular atom in
dictionary is preserved. It generates a compact and discrimi-
native video feature β for our violence detection task. SVM
is then employed to classify β as either violent or non-violent.

3. EXPERIMENTS

3.1. Datasets

We carry out the experiments on two challenging datasets cre-
ated specifically for violent video detection: Hockey Fight [5]
and Crowd Violence [3]. Fig. 3 shows a few sample frames
from each dataset.

Hockey Fight dataset. This dataset contains 1000 video
clips of action from hockey games of the National Hockey
League (NHL). 500 videos in the dataset are manually labeled
as fight and others are labeled as non-fight. Each clip consists
of 50 frames with a resolution of 360× 288 pixels.

Crowd Violence dataset. This dataset is assembled for
violent crowd behavior detection. All video clips are collec-
ted from YouTube, presenting a wide range of scene types,
video qualities and surveillance scenarios. The dataset con-
sists of 246 video clips including 123 violent clips and 123
normal clips with a resolution of 320×240 pixels. The whole
dataset is split into five sets for 5-fold cross validation. Half
of the footages in each set present violent crowd behavior and
the other half presents non-violent crowd behavior.

3.2. Experimental settings

The regularization parameter λ in Eq. (2) and Eq. (3) is set to
1.2√
m

according to [21], where m is the dimension of the ori-
ginal feature. In our approach, the dimension of the reduced
MoSIFT feature is 150. Hence m = 150 and λ ≈ 0.098. To
assess the impact of dictionary size, we learn dictionaries of
different sizes. Both the MoSIFT feature and the final video
level feature vector are ℓ2 normalized. To evaluate the classi-
fication accuracy, we employ the 5-fold cross validation test
on each dataset.

3.3. Results and discussions

We compare the proposed method against the state-of-the-art
techniques including BoW based methods, Local Trinary Pat-
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Table 1. Violence detection performance of various algorithms on Hockey Fight dataset (5-fold cross validation)

Dictionary HOG + BoW [5] HOF + BoW [5] MoSIFT + BoW [5] MoSIFT + Sparse Coding MoSIFT + KDE + Sparse Coding
ACC ± SD AUC ACC ± SD AUC

50 words 87.8% 83.5% 87.5% 88.3 ± 1.35% 0.9220 90.9 ± 1.82% 0.9512
100 words 89.1% 84.3% 89.4% 90.1 ± 0.89% 0.9410 92.6 ± 2.19% 0.9579
150 words 89.7% 85.9% 89.5% 91.9 ± 1.52% 0.9579 93.4 ± 1.85% 0.9630
200 words 89.4% 87.5% 90.4% 92.7 ± 1.92% 0.9670 94.1 ± 1.64% 0.9713
300 words 90.8% 87.2% 90.4% 93.1 ± 1.52% 0.9598 94.1 ± 1.71% 0.9682
500 words 91.4% 87.4% 90.5% 93.0 ± 1.27% 0.9661 94.3 ± 1.68% 0.9708
1000 words 91.7% 88.6% 90.9% 93.6 ± 1.67% 0.9694 94.0 ± 1.97% 0.9666

tern (LTP) [23] and ViF. SVM with RBF kernel is adopted as
classifier in all the mentioned approaches. Results are report-
ed with mean prediction accuracy (ACC) ± standard devia-
tion (SD) as well as the area under the ROC curve (AUC).

3.3.1. Hockey Fight dataset

Table 1 shows the violence detection performance of vari-
ous methods on the Hockey Fight dataset. The results on
this dataset using BoW model paired with HOG, HOF and
MoSIFT are reported in [5]. Among the BoW based me-
thods, MoSIFT and HOG perform comparably, with a slight
improvement over HOF. It indicates the MoSIFT descriptor is
discriminative and effective. Our proposed method combines
the MoSIFT algorithm and the sparse coding framework. The
results show that this method can obtain a higher accuracy
than BoW based approaches because the former encodes the
local descriptor with less quantization error. The performance
is further improved by adding the KDE-based feature selec-
tion procedure to our method. Reason for the improvement
resides in the fact that the irrelevant and redundant features of
MoSIFT are removed while leveraging feature selection, thus
contributing to a more descriptive local descriptor.

In this experiment, the number of words in the dictionary
of BoW equals to the size of sparse dictionary in sparse cod-
ing. With the increase of the size of dictionary, the perfor-
mance will improve first and then stay stably if the size is
large enough. This indicates that an appropriate size of dic-
tionary contributes to both accuracy improvements and com-
putational saving. Besides, the quantization process of BoW
is very time consuming especially for large dictionary size.
Our sparse coding based method performs much faster when
LARS-lasso method is exploited to solve Eq. (2).

3.3.2. Crowd Violence dataset

This dataset is more challenging than the Hockey Fight
dataset because it consists of videos in crowded scenes. Ta-
ble 2 presents the results of various methods on the Crowd
Violence dataset. The dictionary size is fixed to 500 in our ex-
periments on this dataset. HOG, HOF and HNF (combination
of HOG and HOF) [17] are spatio-temporal descriptors com-
bined with BoW model while LTP and ViF are the approaches
based on global representation.

Table 2. Violence detection performance of various algorithms on
Crowd Violence dataset (5-fold cross validation)

Method ACC ± SD AUC
HOG + BoW [3] 57.43 ± 0.37% 0.6182
HOF + BoW [3] 58.53 ± 0.32% 0.5760
HNF + BoW [3] 56.52 ± 0.33% 0.5994

LTP [3] 71.53 ± 0.17% 0.7986
ViF [3] 81.30 ± 0.21% 0.8500

MoSIFT + BoW 83.42 ± 8.03% 0.8751
MoSIFT + Sparse Coding 86.60 ± 3.29% 0.8922

MoSIFT + KDE + Sparse Coding 89.05 ± 3.26% 0.9357

Our sparse coding based methods still outperform other
approaches despite the challenging nature of this dataset. In
this case, MoSIFT descriptor is significantly superior in per-
formance to HOG, HOF and HNF. It proves that MoSIFT is
a more effective descriptor for representing action. Consis-
tent with the results on Hockey Fight dataset, MoSIFT com-
bined with the sparse coding method outperforms BoW based
method, and employing the KDE-based feature selection ef-
fectively facilitates the improvements of classification accu-
racy. Results on this dataset demonstrate that our method is
also effective for detecting violence in crowded scenes.

4. CONCLUSION

This paper proposes an effective violent video detection ap-
proach based on the MoSIFT algorithm and the sparse coding
scheme. Several procedures have been employed to gener-
ate a highly discriminative video representation: 1) MoSIFT
captures distinctive local shape and motion patterns of an acti-
vity; 2) KDE-based feature selection method selects the most
representative features of the MoSIFT descriptor; 3) sparse
coding method paired with max pooling procedure generates
a discriminative high-level video representation from local
features. The proposed method outperforms the state-of-the-
art techniques for violence detection in both crowded and
non-crowded scenes. It demonstrates the effectiveness of the
proposed video feature extraction framework, and whether
this video feature can maintain effectiveness in other video
analysis tasks is worthy of further research.
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