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Abstract

Dirichlet process (DP) mixture models are the cornerstone of nonpara-
metric Bayesian statistics, and the development of Monte-Carlo Markov chain
(MCMC) sampling methods for DP mixtures has enabled their applications to
a variety of practical data analysis problems. However, MCMC sampling can
be prohibitively slow, and it is important to explore alternatives. One class
of alternatives is provided by variational methods, a class of deterministic al-
gorithms that convert inference problems into optimization problems (Opper
and Saad, 2001; Wainwright and Jordan, 2003). Thus far, variational meth-
ods have mainly been explored in the parametric setting, in particular within
the formalism of the exponential family (Attias, 2000; Ghahramani and Beal,
2001; Blei et al., 2003). In this paper, we present a variational inference algo-
rithm for DP mixtures. We present experiments that compare the algorithm
to Gibbs sampling algorithms for DP mixtures of Gaussians and present an
application to a large-scale image analysis problem.

1



1 Introduction

The methodology of Monte Carlo Markov chain (MCMC) sampling has energized
Bayesian statistics during the past decade, providing a systematic approach to the
computation of likelihoods and posterior distributions, and permitting the deploy-
ment of Bayesian methods in a rapidly growing number of applied problems. How-
ever, while an unquestioned success story, MCMC is not an unqualified success
story—MCMC methods can be slow to converge and their convergence can be diffi-
cult to diagnose. While further research on sampling is needed, it is also important
to explore alternatives, particularly in the context of large-scale problems.

One such class of alternatives is provided by variational inference methods (Ghahra-
mani and Beal, 2001; Jordan et al., 1999; Opper and Saad, 2001; Wainwright and
Jordan, 2003; Wiegerinck, 2000). Like MCMC, variational inference methods have
their roots in statistical physics, and, in contradistinction to MCMC methods, they
are deterministic. The basic idea of variational inference is to formulate the compu-
tation of a marginal or conditional probability in terms of an optimization problem.
This (generally intractable) problem is then “relaxed,” yielding a simplified opti-
mization problem that depends on a number of free parameters, known as variational
parameters. Solving for the variational parameters gives an approximation to the
marginal or conditional probabilities of interest.

Variational inference methods have been developed principally in the context
of the exponential family, where the convexity properties of the natural parame-
ter space and the cumulant generating function yield an elegant general variational
formalism (Wainwright and Jordan, 2003). For example, variational methods have
been developed for parametric hierarchical Bayesian models based on general expo-
nential family specifications (Ghahramani and Beal, 2001). MCMC methods have
seen much wider application. In particular, the development of MCMC algorithms
for nonparametric models such as the Dirichlet process has led to increased interest
in nonparametric Bayesian methods. In the current paper, we aim to close this gap
and indicate how variational methods can be used in the Dirichlet process setting.

The Dirichlet process (DP), introduced in Ferguson (1973), is parameterized by a
base measure G0 and positive scaling parameter α. Writing G | {G0, α} ∼ DP(G0, α)
for a draw from the Dirichlet process, suppose that {η1, . . . , ηN} are subsequently
drawn independently from G: ηn |G ∼ G. Marginalizing out the random measure G,
the joint distribution of {η1, . . . , ηN} turns out to follow a Pólya urn scheme (Black-
well and MacQueen, 1973). Thus, positive probability is assigned to configurations
in which different ηn take on identical values, and the underlying random measure
G is discrete with probability one. This is seen most directly in the stick-breaking
representation of the DP, in which G is represented explicitly as an infinite sum of
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atomic measures (Sethuraman, 1994).
The Dirichlet process mixture model (Antoniak, 1974) adds a level to the hierar-

chy, treating ηn as the parameter of the distribution of the nth observation. Given
the discreteness of G, the DP mixture has an interpretation as a mixture model with
an unbounded number of mixture components.

Our goal will be to compute the predictive density:

p(x |x1, . . . , xN ) =

∫

p(x | η)p(η |x1, . . . , xN)dη, (1)

under the DP mixture, given a sample {x1, . . . , xN}. As in many hierarchical Bayesian
models, the posterior distribution p(η |x1, . . . , xN) is complicated and difficult to
characterize in a closed form in the DP mixture setting. MCMC provides one class
of approximations for this posterior and the predictive density (Escobar and West,
1995; Neal, 2000).

In this paper, we present a variational inference algorithm for DP mixtures based
on the stick-breaking representation of the underlying DP. The algorithm involves
two probability distributions—the posterior distribution p and a variational distribu-
tion q. The latter is endowed with free variational parameters, and the algorithmic
problem is to adjust these parameters so that q approximates p. We also use a stick-
breaking representation for q, but in this case we truncate the representation to yield
a finite-dimensional representation. While in principle we could also truncate p, turn-
ing the model into a finite-dimensional model, it is important to emphasize at the
outset that this is not our approach—we only truncate the variational distribution
and approximate the posterior of an infinite-dimensional model.

The paper is organized as follows. In Section 2 we provide basic background on
DP mixture models, focusing on the case of exponential family mixtures. Section 3
overviews MCMC algorithms for the DP mixture, discussing algorithms based both
on the Pólya urn representation and the stick-breaking representation. In Section 4
we present a variational inference algorithm for DP mixtures. Section 5 presents the
results of experimental comparisons and Section 7 presents our conclusions.

2 Dirichlet process mixture models

Let η be a continuous random variable, let G0 be a non-atomic probability distri-
bution for η, and let α be a positive, real-valued scalar. A random measure G
is distributed according to a Dirichlet process (DP) (Ferguson, 1973), with scaling
parameter α and base measure G0, if for all natural numbers k and k-partitions
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{B1, . . . , Bk}:

(G(η ∈ B1), G(η ∈ B2), . . . , G(η ∈ Bk)) ∼ Dir(αG0(B1), αG0(B2), . . . , αG0(Bk)).

Integrating out G, the joint distribution of the collection of variables {η1, . . . , ηn}
exhibits a clustering effect; conditioned on n−1 draws, the nth value is, with positive
probability, exactly equal to one of those draws:

p(η | η1, . . . , ηn−1) ∝ αp(η |G0) +
n−1
∑

i=1

δηi
(η). (2)

Thus, {η1, . . . , ηn−1} are randomly partitioned according to which variables are equal
to the same value, with the distribution of the partition obtained from a Pólya urn
scheme (Blackwell and MacQueen, 1973). Let {η∗1, . . . , η

∗
|c|} denote the distinct values

of {η1, . . . , ηn−1}, let c = {c1, . . . , cn−1} denote the partition such that ηi = η∗cn
, and

let |c| denote the number of groups in that partition. The distribution of ηn follows
the urn distribution:

ηn =

{

η∗i with prob |c|i
n−1+α

η, η ∼ G0 with prob α
n−1+α

,
(3)

where |c|i is the number of times the value η∗i occurs in {η1, . . . , ηn−1}.
In the Dirichlet process mixture model, the DP is used as a nonparametric prior

in a hierarchical Bayesian model (Antoniak, 1974):

G | {α,G0} ∼ DP(α,G0)

ηn |G ∼ G

Xn | ηn ∼ p(xn | ηn).

Data generated from this model can be partitioned according to those values drawn
from the same parameter. Thus, the DP mixture has a natural interpretation as
a flexible mixture model in which the number of components (i.e., the number of
groups in the partition) is random and grows as new data are observed.

The urn scheme in Equation (3) provides an implicit definition of the DP. Sethu-
raman (1994) provides an explicit definition via a stick-breaking construction of G.
Consider two infinite collections of independent random variables, Vi ∼ Beta(1, α)
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and η∗i ∼ G0, for i = {1, 2, . . .}. We can write G as:

θi = Vi

i−1
∏

j=1

(1− Vj) (4)

G(η) =
∞
∑

i=1

θiδη∗
i
(η). (5)

Thus the support of G consists of a countably infinite set of atoms, drawn iid from G0.
The mixing proportions θi are given by successively breaking a unit length “stick”
into an infinite number of pieces. The size of each successive piece, proportional to
the rest of the stick, is given by an independent draw from a Beta(1, α) distribution.

In the DP mixture, the vector θ comprises the infinite vector of mixing proportions
and {η∗1, η

∗
2, . . .} are the infinite number of mixture components. Let Zn denote the

mixture component with which xn is associated.1 The data can thus be described as
arising from the following process:

1. Draw Vi |α ∼ Beta(1, α), i = {1, 2, . . .}

2. Draw η∗i |G0 ∼ G0, i = {1, 2, . . .}

3. For each data point n:

(a) Draw Zn | {v1, v2, . . .} ∼ Mult(θ).

(b) Draw Xn | zn ∼ p(xn | η
∗
zn

).

2.1 Exponential family mixtures

In this paper, we restrict ourselves to DP mixtures for which the observable data are
drawn from an exponential family distribution, and where the base measure for the
DP is the corresponding conjugate prior.

A DP mixture using the stick-breaking construction is illustrated as a graphical
model in Figure 1. The distributions of Vk and Zn are as described above. The
distribution of Xn conditional on Zn and {η∗1, η

∗
2, . . .} is:

p(xn | zn, η
∗
1, η

∗
2, . . .) =

∞
∏

i=1

(

h(xn) exp{η∗i
T xn − a(η∗i )}

)zi
n ,

1We represent multinomial random vectors as indicator vectors consisting of a single component
equal to one and the remaining components equal to zero.
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Figure 1: Graphical model representation of an exponential family DP mixture.
Nodes denote random variables, edges denote possible dependence, and plates denote
replication.

where a(η∗i ) is the appropriate cumulant generating function and we assume for
simplicity that x is the sufficient statistic for the canonical parameter η.

The vector of sufficient statistics of the corresponding conjugate family is (η∗T ,−a(η∗))T .
The base measure is thus:

p(η∗ |λ) = h(η∗) exp{λT
1 η∗ + λ2(−a(η∗))− a(λ)},

where we decompose the hyperparameter λ such that λ1 contains the first dim(η∗)
components and λ2 is a scalar.

2.2 The truncated Dirichlet process

Ishwaran and James (2001) have discussed the truncated Dirichlet process (TDP), in
which VK−1 is set equal to one for some fixed value K. This yields θi = 0 for i ≥ K,
and thus converts the infinite sum in Equation (4) into a finite sum. Ishwaran and
James (2001) show that a TDP closely approximates a true Dirichlet process when
the truncation level K is chosen large enough relative to the number of data points.
Thus, they can justify substituting a TDP mixture model for a full DP mixture
model.

3 MCMC for DP mixtures

The posterior distribution under both the DP and TDP mixture models cannot be
computed efficiently in any direct way. It must be approximated, and Markov chain
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Monte Carlo (MCMC) methods are the method of choice for approximating these
posteriors (Escobar and West, 1995; Neal, 2000; Ishwaran and James, 2001).

As in the parametric setting, the idea behind MCMC for approximate posterior
inference in the DP mixture is to construct a Markov chain for which the stationary
distribution is the posterior of interest. One collects samples from the sample path
of this Markov chain to construct an estimate of the posterior. Such an estimate
can then be used to compute an approximation of the predictive distribution (see
Equation 1).

The simplest MCMC algorithm is the Gibbs sampler, in which the Markov chain
is defined by iteratively sampling each latent variable conditional on the data and the
most recently sampled values of the other latent variables. This yields a chain with
the desired stationary distribution (Geman and Geman, 1984; Gelfand and Smith,
1990; Neal, 1993). Below, we review the Gibbs sampling algorithms for DP and TDP
mixtures.

3.1 Collapsed Gibbs sampling

In the collapsed Gibbs sampler for a DP mixture with conjugate base measure (Esco-
bar and West, 1995), we integrate out the random measure G and distinct parameter
values {η∗1, . . . , η

∗
|c|}. The Markov chain is thus defined only on the latent partition

of the data, c = {c1, . . . , cN}.
Denote the data by x = {x1, x2, . . . , xN}. For n ∈ {1, . . . , N}, the algorithm

iteratively samples each group assignment Cn, conditional on the partition of the
rest of the data c−n. Note that Cn can be assigned to one of |c−n|+ 1 values: either
the nth data point is in a group with other data points, or in a group by itself.

By exchangeability, Cn is drawn from the following multinomial distribution:

p(ck
n = 1 |x, c−n, λ, α) ∝ p(xn |x−n, c−n, c

k
n = 1, λ)p(ck

n = 1 | c−n, α). (6)

The first term is a ratio of normalizing constants of the posterior distribution of the
kth parameter, one including and one excluding the nth data point:

p(xn |x−n, c−n, c
k
n = 1, λ) =

exp
{

a(λ1 +
∑

m6=n ck
mXm + Xn, λ2 +

∑

m6=n ck
m + 1)

}

exp
{

a(λ1 +
∑

m ck
mXm, λ2 +

∑

m6=n ck
m)
} .

(7)
The second term is given by the Pólya urn scheme:

p(ck
n = 1 | c−n) ∝

{

|c−n|k if k is an existing group in the partition
α if k is a new group in the partition,

(8)
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where |c−n|k denotes the number of data in the kth group of the partition.
Once this chain has reached its stationary distribution, we collect B samples

{c1, . . . , cB} to approximate the posterior. The approximate predictive distribution
is an average of the predictive distributions for each of the collected samples:

p(xN+1 |x1, . . . , xN , α, λ) =
1

B

B
∑

b=1

p(xN+1 | cb,x, α, λ).

For a particular sample, that distribution is:

p(xN+1 | c,x, α, λ) =

|c|+1
∑

k=1

p(ck
N+1 = 1 | c)p(x | c,x, ck

N+1 = 1).

When G0 is not conjugate, the integral in Equation (7) does not have a simple
closed form. Effective algorithms for handling this case are given in Neal (2000).

3.2 Blocked Gibbs sampling

In the collapsed Gibbs sampler, the distribution of each partition group variable Cn

depends on the most recently sampled values of the other variables. Thus, these
variables must be updated one at a time, which could potentially slow down the
algorithm when compared to a blocking strategy. To this end, Ishwaran and James
(2001) developed an inference algorithm based on the TDP described in Section 2.
By explicitly sampling an approximation of G, this model allows for a blocked Gibbs
sampler, in which collections of variables can be updated simultaneously.

The state of the Markov chain consists of the beta variables V = {V1, . . . , VK−1},
the component parameters η

∗ = {η∗1, . . . , η
∗
K}, and the component assignment vari-

ables Z = {Z1, . . . , ZN}. The blocked Gibbs sampler iterates between the following
three steps:

1. For n ∈ {1, . . . , N}, independently sample Zn from:

p(zk
n = 1 |v,η∗,x) = θkp(xn | η

∗
k),

where θk is the function of v given in Equation (4).

2. For k ∈ {1, . . . , K}, independently sample Vk from Beta(γk,1, γk,2), where:

γk,1 = 1 +
∑N

n=1 zk
n

γk,2 = α +
∑K

i=k+1

∑N

n=1 zi
n.
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This step follows from the conjugacy between the multinomial data z and the
truncated stick-breaking construction, which is a generalized Dirichlet distri-
bution (Connor and Mosimann, 1969).

3. For k ∈ {1, . . . , K}, independently sample η∗k from p(η∗k | τk). This distribution
is in the same family as the base measure, with parameters:

τk,1 = λ1 +
∑

i6=n zk
i xi

τk,2 = λ2 +
∑

i6=n zk
i .

(9)

After the chain has reached its stationary distribution, we collect B samples
and construct an approximate predictive distribution. Again, this distribution is
an average of the predictive distributions for each of the collected samples. The
predictive distribution for a particular sample is:

p(xN+1 | z,x, α, λ) =
K
∑

k=1

E [θi | γ1, . . . , γk] p(xN+1 | τk), (10)

where E [θi | γ1, . . . , γk] is the expectation of the product of independent beta variables
given in Equation (4). This distribution only depends on z; the other variables are
needed in the Gibbs sampling procedure, but can be integrated out here.

The TDP sampler readily handles non-conjugacy of G0, provided that there is a
method of sampling η∗i from its posterior.

3.3 Placing a prior on the scaling parameter

A common extension to the DP mixture model involves placing a prior on the scal-
ing parameter α, which determines how quickly the number of components grows
with the data. For the urn-based samplers, Escobar and West (1995) place a
Gamma(s1, s2) prior on α and implement the corresponding Gibbs updates with
auxiliary variable methods.

In the TDP mixture, the gamma distribution is computationally convenient be-
cause it is conjugate to Beta(1, α) (see Appendix A). The Gibbs updates for α are
thus:

α | {v, s1, s2} ∼ Gamma

(

s1 + K − 1, s2 −
K−1
∑

i=1

log(1− vi)

)

. (11)
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4 Variational inference for the DP mixture

Variational inference provides an alternative, deterministic methodology for approx-
imating likelihoods and posteriors in an intractable probabilistic model (Wainwright
and Jordan, 2003). We first review the basic idea in the context of the exponential
family of distributions, and then turn to its application to DP mixture models.

Consider the exponential family indexed by the natural parameter θ:

p(z | θ) = exp{θT t(z)− a(θ)}h(z),

where t(z) is the vector of sufficient statistics. The cumulant generating function
a(θ), also known as the log partition function, is defined as follows:

a(θ) = log

∫

exp{θT t(z)}h(z)dz.

As discussed by Wainwright and Jordan (2003), this quantity can also be expressed
variationally as:

a(θ) = sup
µ∈M

{θT µ− a∗(µ)}, (12)

where a∗(µ) is the Fenchel-Legendre conjugate of a(θ) (Rockafellar, 1970), and M is

the set of realizable expected sufficient statistics : M = {µ : µ =
∫

t(z)p(z)h(z)dz, for some p}.
There is a one-to-one mapping between parameters θ and the interior of M (Brown,
1986). Accordingly, the interior of M is often referred to as the set of mean param-
eters.

Let θ(µ) be a natural parameter corresponding to the mean parameter µ ∈ M;
thus Eθ [t(Z)] = µ. Let q(z | θ(µ)) denote the corresponding density. Given µ ∈ M,
a short calculation shows that a∗(µ) is the negative entropy of q:

a∗(µ) = Eθ(µ) [log q(Z | θ(µ))] . (13)

Given its definition as a Fenchel conjugate, the negative entropy is convex.
In many models of interest, a(θ) is not feasible to compute because of the com-

plexity of M or the lack of any explicit form for a∗(µ). However, we can bound a(θ)
using Equation (12):

a(θ) ≥ µT θ − a∗(µ), (14)

for any mean parameter µ ∈ M. Moreover, the tightness of the bound is measured
by a Kullback-Leibler divergence expressed in terms of a mixed parameterization:

D(q(z | θ(µ)) || p(z | θ)) = Eθ(µ) [log q(z | θ(µ))− log p(z | θ)]

= θ(µ)T µ− a(θ(µ))− θT µ + a(θ)

= a(θ)− θT µ + a∗(θ(µ)). (15)
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Mean-field variational methods are a special class of variational methods that are
based on maximizing the bound in Equation (14) with respect to a subset Mtract

of the space M of realizable mean parameters. In particular, Mtract is chosen so
that a∗(θ(µ)) can be evaluated tractably and so that the maximization over Mtract

can be performed tractably. Equivalently, given the result in Equation (15), mean-
field variational methods minimize the KL divergence D(q(z | θ(µ)) || p(z | θ)) with
respect to its first argument.

If the distribution of interest is a posterior, then a(θ) is the log likelihood. Con-
sider in particular a latent variable probabilistic model with hyperparameters θ,
observed variables x = {x1, . . . , xN}, and latent variables z = {z1, . . . , zM}. The
posterior can be written as:

p(z |x, θ) = exp{log p(z,x | θ)− log p(x | θ)}, (16)

and the bound in Equation (14) applies directly. We have:

log p(x | θ) ≥ Eq [log p(x,Z | θ)]− Eq [log q(Z)] . (17)

This equation holds for any q via Jensen’s inequality, but, as our analysis has shown,
it is useful specifically for q of the form q(z | θ(µ)) for µ ∈Mtract.

A straightforward way to construct tractable subfamilies of exponential fam-
ily distributions is to consider factorized families, in which each factor is an ex-
ponential family distribution depending on a so-called variational parameter. In

particular, let us consider distributions of the form q(z |ν) =
∏M

i=1 q(zi | νi), where

ν = {ν1, ν2, ..., νM} are variational parameters. Using this class of distributions, we
simplify the likelihood bound using the chain rule:

log p(x | θ) ≥ log p(x | θ)+
M
∑

m=1

Eq [log p(Zm |x, Z1, . . . , Zm−1, θ)]−
M
∑

m=1

Eq [log q(Zm | νm)] .

(18)
To obtain the best approximation available within the factorized subfamily, we now
wish to optimize this expression with respect to νi.

To optimize with respect to νi, reorder z such that zi is last in the list. The
portion of Equation (18) depending on νi is:

`i = Eq [log p(zi | z−i,x, θ)]− Eq [log q(zi | νi)] . (19)

Given our assumption that the variational distribution q(zi | νi) is in the exponential
family, we have:

q(zi | νi) = h(zi) exp{νT
i zi − a(νi)},
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and Equation (19) simplifies as follows:

`i = Eq

[

log p(Zi |Z−i,x, θ)− log h(Zi)− νT
i Zi + a(νi)

]

= Eq [log p(Zi |Z−i,x, θ)]− Eq [log h(Zi)]− νT
i a′(νi) + a(νi),

because Eq [Zi] = a′(νi). The derivative with respect to νi is:

∂

∂νi

`i =
∂

∂νi

(Eq [log p(Zi |Z−i,x, θ)]− Eq [log h(Zi)])− νT
i a′′(νi). (20)

Thus the optimal νi satisfies:

νi = [a′′(νi)]
−1

(

∂

∂νi

Eq [log p(Zi |Z−i,x, θ)]−
∂

∂νi

Eq [log h(Zi)]

)

. (21)

The result in Equation (21) is general. In many applications of mean field meth-
ods, a further simplification is achieved. In particular, when the conditional distri-
bution p(zi | z−i,x, θ) is an exponential family distribution2, we have:

p(zi | z−i,x, θ) = h(zi) exp{gi(z−i,x, θ)T zi − a(gi(z−i,x, θ))},

where gi(z−i,x, θ) denotes the natural parameter for zi when conditioning on the
remaining latent variables and the observations. This yields simplified expressions
for the expected log probability of Zi and its first derivative:

Eq [log p(Zi |Z−i,x, θ)] = E [log h(Zi)] + Eq [gi(Z−i,x, θ)]T a′(νi)− Eq [a(gi(Z−i,x, θ))]

∂

∂νi

Eq [log p(Zi |Z−i,x, θ)] =
∂

∂νi

Eq [log h(Zi)] + Eq [gi(Z−i,x, θ)]T a′′(νi).

Using the first derivative in Equation (21), the maximum is attained at:

νi = Eq [gi(Z−i,x, θ)] . (22)

We define a coordinate ascent algorithm based on Equation (22) by iteratively updat-
ing νi for i ∈ {1, . . . , N}. Such an algorithm finds a local maximum of Equation (17)
by Proposition 2.7.1 of Bertsekas (1999), under the condition that the right-hand

2Examples in which p(zi | z−i,x, θ) is an exponential family distribution include Kalman filters,
hidden Markov models, mixture models, hierarchical Bayesian models with conjugate and mixture
of conjugate priors, and the hierarchical nonparametric Bayesian models which are the focus of this
paper.
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side of Equation (19) is strictly convex. Further perspectives on algorithms of this
kind can be found in Xing et al. (2003) and Beal (2003).

Notice the interesting relationship of this algorithm to the Gibbs sampler. In
Gibbs sampling, we iteratively draw the latent variables zi from the distribution
p(zi | z−i,x, θ). In mean-field variational inference, we iteratively update the vari-
ational parameters of zi to be equal to the expected value of the parameter gi of
the conditional distribution p(zi | z−i,x, θ), where the expectation is taken under the

variational distribution.3

4.1 Variational inference for DP mixtures

We develop a mean-field variational algorithm for the DP mixture based on the stick-
breaking representation of the DP mixture in Figure 1. Using this representation,
the bound on the likelihood given in Equation (17) becomes:

log p(x |α, λ) ≥Eq [log p(V |α)] + Eq [log p(η∗ |λ)]

+
N
∑

n=1

(Eq [log p(Zn |V)] + Eq [log p(xn |Zn)])

− Eq [log q(Z,V,η∗)] .

(23)

The issue that we must face to make use of this bound is that of constructing an
approximation to the distribution of the infinite-dimensional random measure G,
expressed in terms of the infinite sets V = {V1, V2, . . .} and η

∗ = {η∗1, η
∗
2, . . .}. Our

approach is based on using truncated stick-breaking representations for the varia-
tional distributions. Thus, we fix a value T and let q(vT = 1) = 1. As in the
truncated Dirichlet process, under the truncated variational distribution, the mix-
ture proportions θt are equal to zero for t > T and we can thus ignore the parameters
η∗t for t > T .

The factorized distribution that we propose to use as a basis for mean-field vari-
ational inference is thus of the following form:

q(v,η∗, z, T ) =
T−1
∏

t=1

q(vi | γi)
T
∏

t=1

q(η∗t | τt)
N
∏

n=1

q(zn |φn), (24)

where γn are the parameters for a beta distribution, τt are natural parameters for
the distributions of η∗t , and φn are parameters for a multinomial distribution.

3This relationship has inspired the software package VIBES (Bishop et al., 2003), which is a

variational version of the popular BUGS package (Gilks et al., 1996).
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Notice that in the model of Figure 1, the variables V, η
∗, and Z are each iden-

tically distributed, whereas, under the variational distribution, there is a different
parameter for each variable. For example, the choice of the mixture component zn for
the nth data point is governed by a multinomial distribution indexed by a variational
parameter φn that depends on n. This reflects the conditional nature of variational
inference.

We emphasize the difference between role that truncation plays in our variational
method and the role that it plays in the blocked Gibbs sampler of Ishwaran and
James (2001) (see Section 3.2). The blocked Gibbs sampler estimates the posterior
of a truncated approximation to the DP. In contrast, we use a truncated stick-
breaking distribution to approximate the true posterior of a full DP mixture model—
the posterior itself is not truncated. The truncation level T is a variational parameter
which can be freely set; it is not a part of the prior model specification.

4.2 Coordinate-ascent algorithm

We now derive a coordinate-ascent algorithm for optimizing the bound in Equa-
tion (23) with respect to the variational parameters. The third term in the bound is
the only term that requires attention, as all of the other terms in the bound involve
standard computations in the exponential family. We rewrite the third term using
indicator random variables:

Eq [log p(Zn |V)] = Eq

[

log
(

∏T

i=1(1− Vi)
1[Zn>i]V

Zi
n

i

)]

=
∑T

i=1 q(zn > i)E [log(1− Vi)] + q(zn = i)E [log Vi] ,

where:

q(zn = i) = φn,i

q(zn > i) =
∑K

j=i+1 φn,j

E [log Vi] = Ψ(γi,1)−Ψ(γi,1 + γi,2)

E [log(1− Vi)] = Ψ(γi,2)−Ψ(γi,1 + γi,2).

(Note that Ψ is the digamma function arising from the derivative of the log normal-
ization factor in the beta distribution.)

We now use the general expression in Equation (21) to derive a mean-field coor-
dinate ascent algorithm. Computing the derivatives with respect to the variational
parameters, the bound in Equation (23) is optimized via the following set of updates,
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for t ∈ {1, . . . , T} and n ∈ {1, . . . , N}:

γt,1 = 1 +
∑

n φn,t (25)

γt,2 = α +
∑

n

∑T

j=t+1 φn,j (26)

τt,1 = λ1 +
∑

n φn,txn (27)

τt,2 = λ2 +
∑

n φn,t. (28)

φn,t ∝ exp(S), (29)

where:

S = E [log Vt | γt] + E [ηt | τt]
T Xn − E [a(ηt) | τt]−

T
∑

j=t+1

E [log(1− Vj) | γj] .

Iterating these updates optimizes Equation (23) with respect to the variational pa-
rameters defined in Equation (24). That is, we find q(v,η∗, z) which, when plugged
in to the factored expression displayed in Equation (24), yield a distribution that is
a mean-field approximation to the true posterior.

Practical applications of variational methods must address initialization of the
variational distribution. While the algorithm yields a bound for any starting values
of the variational parameters, poor choices of initialization can lead to local maxima
that yield poor bounds. We initialize the variational distribution by incrementally
updating the parameters according to a random permutation of the data points. In
a sense, this is a variational version of sequential importance sampling. We run the
algorithm multiple times and choose the final parameter settings that give the best
bound on the marginal likelihood.

Given a (possibly locally) optimal set of variational parameters, the approximate
predictive distribution is:

p(xN+1 | z,x, α, λ) =
T
∑

t=1

Eq [θt |γ] Eq [p(xN+1 | τt)] . (30)

This approximation has a form similar to the approximate predictive distribution
under the blocked Gibbs sampler in Equation (10). In the variational case, however,
the averaging is done parametrically via the variational distribution rather than by
a Monte Carlo integral.

When G0 is not conjugate, a simple coordinate ascent update for τi may not be
available if p(η∗i | z,x, λ) is not in the exponential family. However, if G0 is a mixture
of conjugate priors, then a simple coordinate ascent algorithm is available.
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Finally, we extend the variational inference algorithm to posterior updates for
the scaling parameter α with a Gamma(s1, s2) prior. Using the exact posterior of α
in Equation (11), the variational posterior Gamma(w1, w2) distribution is:

w1 = s1 + T − 1

w2 = s2 −
T−1
∑

i=1

Eq [log(1− Vi)]),

and we replace α with its expectation Eq [α |w] = w1/w2 in the updates for γt,2 in
Equation (26).

4.3 Discussion

Qualitatively, variational methods offer several potential advantages over Gibbs sam-
pling. They are deterministic, and have an optimization criterion given by Equa-
tion (23) that can be used to assess convergence. In contrast, assessing convergence
of a Gibbs sampler—namely, determining when the Markov chain has reached its
stationary distribution—is an active field of research. Theoretical bounds on the
mixing time are of little practical use, and there is no consensus on how to choose
among the several empirical methods developed for this purpose (Robert and Casella,
1999).

Furthermore, in this context, the variational technique provides an explicit esti-
mate of the infinite-dimensional parameter G by using the truncated stick-breaking
construction. The best Gibbs samplers (e.g., the collapsed Gibbs sampler) marginal-
ize out G and rely on the Pólya urn scheme representation (Neal, 2000). This pre-
cludes computation of quantities, such as quantiles, which cannot be expressed as
expectations of G. (See Gelfand and Kottas (2002) for a method which combines
urn-based sampling and TDP-based blocked sampling to compute such quantities.)

But there are several potential disadvantages of variational methods as well. First,
variational methods are deterministic optimization procedures that can fall prey to
local minima. Local minima can be mitigated with restarts, or removed via the in-
corporation of additional variational parameters, but these strategies may slow the
overall convergence of the procedure and nullify the advantage over MCMC. Second,
any given fixed variational representation yields only an approximation to the pos-
terior. There are methods for considering hierarchies of variational representations
that approach the posterior in the limit, but these methods may again incur serious
computational costs. Lacking a theory by which these issues can be evaluated in the
general setting of DP mixtures, we turn to experimental evaluation.
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Figure 2: The approximate predictive distribution given by variational inference at
different stages of the algorithm. The data are 100 points generated by a Gaussian
DP mixture model with fixed diagonal covariance.

5 Empirical comparison

We studied the performance of the variational algorithm of Section 4 and the Gibbs
samplers of Section 3 in the setting of Gaussian DP mixtures. Thus, likelihood is
Gaussian with fixed covariance matrix Λ and the Dirichlet process mixes over the
mean of the Gaussian. The base measure for the DP is Gaussian, with covariance
given by Λ/λ2, which is conjugate to the likelihood.

Figure 2 provides an illustrative example of the variational inference algorithm on
a small problem involving 100 data points sampled from a two-dimensional Gaussian
DP mixture with diagonal covariance. Each panel in the figure illustrates the data
and the predictive distribution given by the variational inference algorithm, with
truncation level 20. As seen in the first panel, the initialization of the variational
parameters yields a largely flat distribution on the data. After one iteration, the
algorithm has found the modes of the predictive distribution and, after convergence,
it has further refined those modes. Even though 20 mixture components are repre-
sented in the variational distribution, the fitted approximate posterior only uses five
of them.

To compare the variational inference algorithm to the Gibbs sampling algorithms,
we conducted a systematic set of experiments in which the dimensionality of the data
was varied from 5 to 50. In each case, we generated 100 data from a Gaussian DP
mixture model of the chosen dimensionality and generated 100 additional points as
held-out data. In testing on the held-out data, each point is treated as the 101st
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Figure 3: (Left) Convergence time across ten datasets per dimension for variational
inference, TDP Gibbs sampling, and the collapsed Gibbs sampler (grey bars are stan-
dard error). (Right) Average held-out log likelihood for the corresponding predictive
distributions.

data point in the collection.
The covariance matrix was given by the autocorrelation matrix for a first-order

autogressive process, chosen so that the components are highly dependent (ρ = 0.9).
The base measure was a zero-mean Gaussian with covariance appropriately scaled
for comparison across dimensions. The scaling parameter α was set equal to one.

We ran all algorithms to convergence and measure the computation time.4 Con-
vergence was assessed in the following way. For the Gibbs samplers, we assess conver-
gence to the stationary distribution with the diagnostic given by Raftery and Lewis
(1992), and collect 25 additional samples to estimate the predictive distribution (the
same diagnostic provides an appropriate lag at which to collect uncorrelated sam-
ples). The TDP approximation and variational posterior approximation are both
truncated at 20 components. For the variational inference algorithm we measure
convergence by the relative change in the likelihood bound, stopping the algorithm
when it is less than 1e−10. Note that there is a certain inevitable arbitrariness in
these choices; in general it is difficult to envisage measures of computation time that
allow stochastic MCMC algorithms and deterministic variational algorithms to be

4All timing computations were made on a Pentium III 1GHZ desktop machine.
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Figure 4: Held-out likelihood as a function of iteration of the variational inference
algorithm for a 50-dimensional simulated dataset. The relative change in likelihood
bound is labeled at selected iterations.

compared in a standardized way. Nonetheless, we have made what we consider to be
reasonable, pragmatic choices. Note in particular that the choice of stopping time
for the variational algorithm is quite conservative, as illustrated in Figure 4.

Figure 3 (left) illustrates the average convergence time across ten datasets per
dimension, for dimensions ranging from 5 to 50. With the caveats in mind regarding
convergence time measurement, it appears that the variational algorithm is quite
competitive with the MCMC algorithms. The variational algorithm was faster and
exhibited significantly less variance in its convergence time. Moreover, there is little
evidence of an increase in convergence time across dimensionality for the variational
algorithm.

Note that the collapsed Gibbs sampler converged faster than the TDP Gibbs
sampler. Though an iteration of collapsed Gibbs is slower than an iteration of TDP
Gibbs, the TDP Gibbs sampler required a longer burn-in and greater lag to obtain
uncorrelated samples. This is illustrated in the example autocorrelation plots of Fig-
ure 5. Comparing the two MCMC algorithms, we find no advantage to the truncated
approximation.

Figure 3 (right) illustrates the average log likelihood assigned to the held-out
data by the approximate predictive distributions. First, notice that the collapsed DP
Gibbs sampler assigned the same likelihood as the posterior from the TDP Gibbs
sampler—an indication of the quality of a TDP for approximating a DP. More im-
portantly, however, the predictive distribution based on the variational posterior
assigned a similar score as those based on samples from the true posterior. Though
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Figure 5: Autocorrelation plots on the size of the largest component for the truncated
DP Gibbs sampler (left) and collapsed Gibbs sampler (right) in an example dataset
of 50-dimensional Gaussian data.

it is based on an approximation to the true posterior, the resulting predictive distri-
butions are very accurate for this class of DP mixtures.

6 Image analysis

Finite Gaussian mixture models are widely used in computer vision to model natural
images for the purposes of automatic clustering, retrieval, and classification (Barnard
et al., 2003; Jeon et al., 2003). These applications are often large-scale data analysis
problems, involving thousands of data points (images) in hundreds of dimensions
(pixels). The appropriate number of mixture components to use in these problems is
generally unknown, and DP mixtures would seem to provide an attractive extension
of current methods. This deployment of DP mixtures in such problems requires,
however, inferential methods that are computationally efficient. To demonstrate
the applicability of our variational approach to DP mixtures in the setting of large
datasets, we analyzed a collection of 5000 images from the Associated Press under
the assumptions of a Gaussian DP mixture model.

Each image is reduced to a 192-dimensional real-valued vector given by an 8× 8
grid of average red, green, and blue values. The overall mean is subtracted to yield a
dataset with mean zero. We fit a model which is a DP mixture in which the mixture
components are Gaussian with mean µ and covariance matrix σ2I. The base measure
G0 is a product measure—Gamma(4,2) for σ2 and N (0, 5σ2) for µ. Furthermore, we
place a Gamma(1,1) prior on the DP scaling parameter α, as described in Section 4.1.
We use a truncation level of 150 for the variational distribution.

The variational algorithm required approximately 4 hours to converge. The re-
sulting approximate posterior uses 79 mixture components to describe the collec-
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Figure 6: Four sample clusters from a DP mixture analysis of 5000 images from
the Associated Press. The left-most column is the posterior mean of each cluster
followed by the top ten images associated with it. These clusters capture patterns in
the data, such as basketball shots, outdoor scenes on gray days, faces, and pictures
with blue backgrounds.

tion. Figure 7 (Left) illustrates the expected number of images allocated to each
component. Figure 6 illustrates the ten pictures with highest approximate posterior
probability associated with each of four of the components. These clusters appear
to capture pictures with basketball shots, outdoor scenes on gray days, faces, and
pictures with blue backgrounds.

Figure 7 (Right) illustrates the prior for the scaling parameter α as well as the
approximate posterior given by the fitted variational distribution. We see that the
approximate posterior is peaked and rather different from the prior, indicating that
the data have provided information regarding α. Moreover, the peak is centered
around a large value of α, suggesting that the parametric model is inadequate in this
case.

7 Conclusions

Bayesian nonparametric models based on the Dirichlet process are powerful tools for
flexible data analysis. They offer the inferential strengths of the Bayesian approach
together with a degree of robustness that is not always associated with the Bayesian
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Figure 7: (Left) The expected number of images allocated to each component in
the variational posterior. The posterior uses 79 components to describe the data.
(Right) The prior for the scaling parameter α and the approximate posterior given
by its variational distribution.

approach. For these benefits to be realized, however, the computational issues asso-
ciated with Bayesian inference must remain a significant part of the research agenda.
MCMC methods have become the leading paradigm for computational Bayesian in-
ference, but long convergence times can hinder their usefulness, particularly in the
context of large collections of multivariate and highly-correlated data. It would be
wise to explore a variety of methods for fitting Bayesian nonparametric models.

We have developed a mean-field variational inference algorithm for the Dirichlet
process mixture model and demonstrated its applicability to the kinds of multivariate
data for which Gibbs sampling algorithms can exhibit slow convergence. Variational
inference was faster than Gibbs sampling in our simulations, and its convergence
time was independent of dimensionality for the range which we tested.

Both variational and MCMC methods have strengths and weaknesses, and it is
unlikely that one methodology will dominate the other in general. While MCMC
sampling provides theoretical guarantees of accuracy, variational inference provides
a fast, deterministic approximation to otherwise unattainable posteriors. Moreover,
both MCMC and variational inference are computational paradigms, providing a
wide variety of specific algorithmic approaches which trade off speed, accuracy and
ease of implementation in different ways. We have investigated the deployment of
the simplest form of variational method for DP mixtures—a mean-field variational
algorithm—but it worth noting that other variational approaches, such as those
described in Wainwright and Jordan (2003), are also worthy of consideration in the
nonparametric context.
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A A conjugate prior for the scaling parameter

In this appendix we show that a gamma prior for the scaling parameter α is conjugate
to the stick lengths in the stick-breaking representation of the Dirichlet process.

Recall that the Vn are distributed as Beta(1, α):

p(v |α) = α(1− v)α−1.

Writing this in the canonical exponential family form:

p(v |α) = (1/(1− v)) exp{α log(1− v) + log α},

we see that h(v) = 1/(1− v), t(v) = log(1− v), and a(α) = − log α. Thus, we need
a distribution in which t(α) = 〈α, log α〉.

Consider the gamma distribution for α with shape parameter s1 and inverse scale
parameter s2:

p(α | s1, s2) =
ss1

2

Γ(s1)
αs1−1 exp{−s2α}.

25



In its canonical form the distribution on α is:

p(α | s1, s2) = (1/α) exp{−s2α + s1 log α− a(s1, s2)},

which is conjugate to Beta(1, α). The log normalizer is:

a(s1, s2) = log Γ(s1)− s1 log s2,

and the posterior parameters conditional on data {v1, . . . , vK} are:

ŝ2 = s2 −
K
∑

i=1

log(1− vi)

ŝ1 = s1 + K.
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