Novel Nonvolatile Memory Hierarchies to Realize "Normally-Off Mobile Processors" ASP-DAC 2014

Shinobu Fujita, Kumiko Nomura, Hiroki Noguchi, Susumu Takeda, Keiko Abe

> Toshiba Corporation, R&D Center Advanced LSI technology laboratory

Acknowledgement

This work was partly supported by Normally-off Computing PJ (NEDO) in Japan.

OUTLINE

Introduction:

Normally-off (N-off) Processor (from ver.0 to ver.1.)

- Key Point 1: Advanced STT-MRAM
- Key Point 2: Decrease in power for short CPU standby state by applying new memory cell design
- Key Point 3: Power Decrease for long CPU standby state by Ultra-Fast- Power Gating
- Conclusions Towards N-off ver 2.

History of Concept on Normally-Off Computer

The same Ver.0 concept presented by T. Kawahara, ASP-DAC 2011.

Rethink Normally-off Concept Ver.0

Attention:

-Active power (write power) of nonvolatile memory is so large! -Speed of NV-Memory is much slower than that of SRAM. (CPU core power and performance is **largely degraded** by Ver.0!)

History of Concept on Normally-Off Computer (2)

Why nonvolatile L2 , L3, LL Cache?

Especially for Mobile-Processor,

not Standby Power but Leakage Power is Dominant!

STT-MRAM is the best in NVM, but..

Standby power is low, but active energy is extremely higher than that of SRAM even using conventional STT-MRAM. "Dilemma of Nonvolatile Memory! "

OUTLINE

 Introduction: New Design Concept Normally-off (N-off) Processor (from ver.0 to ver.1.)

- Key Point 1: Advanced STT-MRAM
- Key Point 2: Decrease in power for short CPU standby state (in CPU active state) by applying new memory cell design
- Key Point 3: Power Decrease for long CPU standby state by Ultra-Fast- Power Gating
- Conclusions Towards N-off ver 2.

Advanced STT-MRAM has been developed!

Breakthrough by Toshiba's advanced STT-MRAM

Power down ogramming current (μΑ

Embedded Memory Integration (by Toshiba N-off PJ)

H. Noguchi et al., VLSI circuit symposium, 2013

Access time < 4ns

High speed STT-MRAM is NOT for high CPU performance, _ but for lower power CPU!

Development of "STT-MRAM-top Integration"

To be presented in VLSI-TSA 2014.

OUTLINE

- Introduction: New Design Concept Normally-off (N-off) Processor (from ver.0 to ver.1.)
- Key Point 1: Advanced STT-MRAM
- Key Point 2: Decrease in power for <u>short CPU standby</u> <u>state</u> (in CPU active state) by applying new memory cell design (normally-off type design)
 - Key Point 3: Power Decrease for long CPU standby state by Ultra-Fast- Power Gating
 - Conclusions Towards **N-off ver 2**.

From "Normally-On Type Memory with Power Gating" to "Normally-Off Type Memory without Power Gating"

From "Normally-On Type Memory with Power Gating" to "Normally-Off Type Memory without Power Gating"

STT-MRAM cell is much smaller than SRAM cell.

Various kinds of **Normally-off Type Memory Cell designs** using advanced p-STT-MRAM presented by Toshiba.

As there are No Leakage paths like SRAM, no power gating switch is needed in the memory arrays.

CPU-Simulation (ARM core, Linux-OS)

Processors		Execution					
# of cores	1	Warmup	1M inst.	Cell Ty	'ne	MTJ device Write Time / Current	
Frequency		Execution		SRAM	M		
Issue width	order)			(Referer	nce)		
ISA	ARMv7			2MTJ-	6T	3ns / 50uA (Advanced p-MTJ)	
Memory				2MTJ-	4T	25ns / 120uA (Reference p-MTJ)	
L1 cache	rite-back, 1 read/write port, 1ns latency		D-MRAM (1MTJ-3T, This work)		3ns / 50uA (Advanced p-MTJ)		
L2 cache	L2 cache 1MB , 8 way, 64B line, Write-back.1 read/write port						

Processor benchmark sets: SPEC2006

Results of Power of Cache Memory (Short standby state) (case study: (a) D-MRAM)

Normally-Off memory using low-power and advanced p-STT-MRAM can reduce the cache power the most effectively.

Normally-Off memory cell design using advanced p-MTJ(STT-MRAM) has the best performance comparable to that of SRAM.

OUTLINE

- Introduction: New Design Concept Normally-off (N-off) Processor (from ver.0 to ver.1.)
- Key Point 1: Advanced STT-MRAM
- Key Point 2: Decrease in power for short CPU standby state (in CPU active state) by applying new memory cell design

 Key Point 3: Power Decrease for <u>long CPU standby state</u> by Ultra-Fast- Power Gating

• Conclusions Towards **N-off ver 2**.

Conventional Power Gating	Clock	L1-\$	L2-\$	Others	Recovery time to active-state
Active state					
Clock gated state	OFF				~1ns
CPU core sleep (L2-Cache retention)	OFF	OFF			10 μs
CPU core Sleep (L2-Cache decay)	OFF	OFF	decay		20 μs
Deep power- down state (DPS)	OFF	OFF	OFF	OFF except State SRAM	100 μs
High-speed PG with NV-cache	Clock	L1-\$	L2-logic +prepheral	L2-memory	Recovery time to active-state
Active state				Normally OFF	
Clock gated state	OFF			Normally OFF	~1ns
CPU core sleep; Deep power-down state (DPS)	OFF		OFF	Normally OFF	~10ns
Deeper power- down state	OFF	OFF	OFF	Normally OFF	~100ns

State transition policy for long time standby state: Conventional power gating (PG) vs. Ultra-fast PG with NV-L2-cache

— Case studies: Decrease in average power of processor by ultra-fast PG with nonvolatile-L2 cache.

Case1:CPU active state dominant, Case2: Moderate, Case3: CPU idle state dominant.

Conclusion

•For HP-mobile processors, we proposed N-off processor ver.1; volatile L1cache/ nonvolatile L2,LLC.

•To realize N-off processor ver.1, advanced STT-MRAM, normally-off type memory cell design, ultra-fast power gating are three key points.

•By applying new memory cell designs without leakage paths, not only CPU standby power but CPU active power has been effectively reduced.

- Average power reduction by 29 to 90% can be expected with little degradation of CPU performance.
- N-off processor concept shifting Ver.1 to Ver.2 has been in progress.

Thank you!