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OUTLINE
 Introduction:  

Normally-off (N-off) Processor (from ver.0 to ver.1. )

 Key Point 1: Advanced STT-MRAM 

 Key Point 2: Decrease in power for short CPU standby 
state by applying new memory cell design

 Key Point 3: Power Decrease for long CPU standby state 
by Ultra-Fast- Power Gating

 Conclusions Towards N-off ver 2.
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Normally-Off Computer  Ver.0 （2001）
(FED journal Japan, 2001)
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Proposed by K. Ando,  AIST, Japan

History of Concept on Normally-Off Computer

The same Ver.0 concept presented by T. Kawahara,  ASP-DAC 2011.

(based on MRAM)
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Attention:  
-Active power (write power) of nonvolatile memory is so large! 
-Speed of NV-Memory is much slower than that of SRAM.
(CPU core power and performance is largely degraded by Ver.0!)
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Active power is dominant.

Standby power is dominant.

Ver.0 (All Nonvolatile Memory Hierarchy) is not suitable for 
decreasing power ..

Power

Time

Rethink Normally-off Concept Ver.0
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Normally-Off Computer  Ver.0 （2001）
(FED journal Japan, 2001)

volatile
Non-

Volatile
Memory
(MRAM) 

Register files

ALU/
FlipFlop

Cache (L2) 

Main memory

Storage

Cache (L1) 

non-volatile 

Memory Hierarchy
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History of Concept on Normally-Off Computer (2)

Ver.0 (2011)  T. Kawahara, ASP-DAC 2011.
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K. Abe, S. Fujita et al., 
Toshiba,    SSDM 2010.
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CPU core power 
and performance is 
largely degraded!

Ver.1 （2010）

CPU core power 
and performance is 
largely degraded!

Ultra low power applications
such as Sensor Networks 
etc.
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Capacitance of Cache Memory in CPU is increasing, 
which increases standby power of processors!

<Background>
•Increase performance not by increasing clock frequency.
•Multi-core.
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More cache,
More Leakage..

Why nonvolatile L2 , L3, LL Cache?
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Consumed Energy Caused by Leakage Power of Last Level Cache (L2$) 

Especially for Mobile-Processor, 
not Standby Power but Leakage Power is Dominant!

(Evaluation from 
one-day use case.)
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STT-MRAM is the best in NVM, but..

Its operation speed 
is slow
and its power is 
high 
for cache memory.
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Active power
Increases
drastically!

Standby power is  low, 
but active energy is extremely higher than 
that of SRAM even using conventional STT-MRAM.
“Dilemma of Nonvolatile Memory! “

General STT-MRAM
Standby power
Decreases
largely!
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OUTLINE
 Introduction:  New Design Concept

Normally-off (N-off) Processor (from ver.0 to ver.1. )

 Key Point 1: Advanced STT-MRAM 

 Key Point 2: Decrease in power for short CPU standby 
state (in CPU active state) by applying new memory cell 
design

 Key Point 3: Power Decrease for long CPU standby state 
by Ultra-Fast- Power Gating

 Conclusions Towards N-off ver 2.
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Breakthrough Breakthrough 
by Toshibaby Toshiba’’s advanced STTs advanced STT--MRAMMRAM
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Access Time Measurements
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Embedded Memory Integration (by Toshiba N-off PJ)
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H. Noguchi et al., VLSI circuit 
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High speed STT-MRAM is NOT for high CPU performance, 
but for lower power CPU!
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CMOS

配線層

CMOS

STT-MRAM

Development of “STT-MRAM-top Integration”

Cross section image

Conventional CMOS Process
(in-house fab, foundry..)

Specific MRAM Integration Process

Pool -top construction 
(Marina Bay Sands Hotel)

To be presented in VLSI-TSA 2014.
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OUTLINE
 Introduction:  New Design Concept

Normally-off (N-off) Processor (from ver.0 to ver.1. )

 Key Point 1: Advanced STT-MRAM 

 Key Point 2: Decrease in power for short CPU standby 
state (in CPU active state) by applying new memory cell 
design (normally-off type design)

 Key Point 3: Power Decrease for long CPU standby state 
by Ultra-Fast- Power Gating

 Conclusions Towards N-off ver 2.
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Short Standby
Leakage power

From “Normally-On Type Memory with Power Gating”
to “Normally-Off Type Memory without Power Gating”

(1) SRAM and Nonvolatile SRAM without Power Gating
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NV-SRAM for High  Speed!
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Short standby
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From “Normally-On Type Memory with Power Gating”
to “Normally-Off Type Memory without Power Gating”

(1) SRAM and Nonvolatile SRAM with Power Gating

(2) Normally-off Type Memory without Power Gating

WL

BL /BL
Leakage path

No Leakage path,   No power gating switch.
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New design: “Normally-off Type”
(Next page)

Normally-On Type

Overhead of power gating switch
is much large! 
(Delay and Power overhead also )

Power gating switch

SRAM

NV-SRAM 
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a
SRAM

x2 ~x4
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power gating
switch

STT-MRAM 

STT-MRAM cell is much smaller than SRAM cell.
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(a) D-MRAM (b) 3T-2MTJ (c) 2T-2MTJ
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H. Noguchi  et al.
VLSI Circuit 2013
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(d) 4T-2MTJ

C. Tanaka  et al.
SSDM 2013
(Toshiba)

Various kinds of Normally-off Type Memory Cell designs
using advanced p-STT-MRAM presented by Toshiba.

As there are No Leakage paths like SRAM,   no power gating 
switch is needed in the memory arrays.
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Processors
# of cores 1
Frequency 1GHz

Issue width 1(out of 
order)

ISA ARMv7

Memory

L1 cache 32+32kB, 4- way, 64B line, 
Write-back, 1 read/write port, 1ns latency

L2 cache 1MB, 8- way, 64B line, 

-

-
Write-back,1 read/write port

Execution
Warm-up 1M inst.
Execution 10M inst.

-

--SRAM
(Reference)

3ns / 50uA
(Advanced p-MTJ)2MTJ-6T

25ns / 120uA
(Reference p-MTJ)2MTJ-4T

3ns / 50uA
(Advanced p-MTJ)

MTJ device
Write Time / Current

D-MRAM
(1MTJ-3T, 
This work)

Cell Type

--SRAM
(Reference)

3ns / 50uA
(Advanced p-MTJ)2MTJ-6T

25ns / 120uA
(Reference p-MTJ)2MTJ-4T

3ns / 50uA
(Advanced p-MTJ)

MTJ device
Write Time / Current

D-MRAM
(1MTJ-3T, 
This work)

Cell Type

CPU-Simulation
(ARM core, Linux-OS)

Processor benchmark sets: SPEC2006
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Results of  Power of Cache Memory
(Short standby state)

(case study: (a) D-MRAM) 
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Normally-Off memory cell design using advanced
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comparable to that of SRAM.

Processor performance
(Short standby state) 

(case study: Normally-off STT-MRAM) 
SRAM case = 1
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OUTLINE
 Introduction:  New Design Concept

Normally-off (N-off) Processor (from ver.0 to ver.1. )

 Key Point 1: Advanced STT-MRAM 

 Key Point 2: Decrease in power for short CPU standby 
state (in CPU active state) by applying new memory cell 
design

 Key Point 3: Power Decrease for long CPU standby state
by Ultra-Fast- Power Gating

 Conclusions Towards N-off ver 2.
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Recovery time 
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Power
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a) Conventional  PG (Power Gating)

b) Ultra-fast PG+NV-cache
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Case 1 Case 2 Case 3
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Case studies: Decrease in average power of processor by 
ultra-fast PG with nonvolatile-L2 cache.
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dominant, 
Case2:    Moderate,
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Normally-off Processor

(Concept Ver.2) from 2012
Normally-off Processor
(Concept Ver.1) 2010

Volatile Rethink!
Nonvolatile/
Volatile
Hybrid

CPU 
core

Nonvolatile

L2, L3 Cache

L1 Cache
Register file
Registers

Nonvolatile  

Volatile  

CPU 
core

Volatile  

Conclusion
•For HP-mobile processors, we proposed N-off processor ver.1; volatile L1-
cache/ nonvolatile L2,LLC. 
•To realize N-off processor ver.1, advanced STT-MRAM, normally-off type 
memory cell design, ultra-fast power gating are three key points.
•By applying new memory cell designs without leakage paths,  not only CPU 
standby power but CPU active power has been effectively reduced.
• Average power reduction by 29 to 90% can be expected with little 
degradation of CPU performance.
• N-off processor concept shifting Ver.1 to Ver.2 has been in progress.

Ex.

L2 (256kB)
SRAM/ 
STT-MRAM

L3 (16MB)
High density
STT-MRAM

L2 (1MB)
STT-MRAM 

CPU
Core
(Big)

CPU
Core

(LITTLE)
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Thank you!


