
Elastic Stream Processing with Latency Guarantees

Björn Lohrmann
Technische Universität Berlin

Email: bjoern.lohrmann@tu-berlin.de

Peter Janacik
Technische Universität Berlin

Email: peter.janacik@tu-berlin.de

Odej Kao
Technische Universität Berlin
Email: odej.kao@tu-berlin.de

Abstract—Many Big Data applications in science and industry
have arisen, that require large amounts of streamed or event data
to be analyzed with low latency. This paper presents a reactive
strategy to enforce latency guarantees in data flows running on
scalable Stream Processing Engines (SPEs), while minimizing
resource consumption. We introduce a model for estimating
the latency of a data flow, when the degrees of parallelism of
the tasks within are changed. We describe how to continuously
measure the necessary performance metrics for the model, and
how it can be used to enforce latency guarantees, by determining
appropriate scaling actions at runtime. Therefore, it leverages
the elasticity inherent to common cloud technology and cluster
resource management systems. We have implemented our strategy
as part of the Nephele SPE. To showcase the effectiveness of
our approach, we provide an experimental evaluation on a large
commodity cluster, using both a synthetic workload as well as
an application performing real-time sentiment analysis on real-
world social media data.

I. INTRODUCTION

Many Big Data applications from the areas of science and
industry require large amounts of streamed data to be analyzed
in (near) real-time. In these so-called stream processing ap-
plications, data usually arrives from various outside sources
and must be immediately processed to yield quick results.
Examples can be found in the context of market research,
real-time monitoring, financial trading, live media streaming
and many others. Often, stream processing applications are
’under-the-hood’ components of large websites, providing
personalized content- and ad-serving [1], [2] or real-time
recommendations [3]. The definition of real-time depends very
much on the application itself. For an application performing
computation for dashboard-style monitoring, a delay of up to
several seconds may be acceptable. An application that is part
of a user-interactive system, 100 ms (round-trip) is the upper
time limit for the application to be perceived as fluid [4].

Due to the real-time requirements of these applications,
the traditional “process-after-store” model [5] of the estab-
lished batch-style Big Data analytics platforms [6]–[8] is not
a good fit. This has led to the creation of highly scalable
general-purpose Stream Processing Engines (SPEs) [1], [9]–
[18]. These engines efficiently execute data flows with arbitrary
user code in a highly distributed and parallel fashion and
generally are optimized towards low latency. Some of them
are elastic [9]–[14], while some are not (yet) [1], [16]–
[18]. The unelastic ones require permanent peak-load resource
provisioning to remain low latency in the face of varying and
bursty load. In general, elastic systems require a scaling policy,

This paper has been accepted for publication at ICDCS’15. This version is
a preprint identical in content to the version to be published.

that determines when and how much to scale. The elastic
engines mentioned above, either do not specify a policy [9],
[11], or employ a policy that is rate-based [13] or based on
CPU load thresholds [10], [14]. However, which particular
stream rates or CPU load thresholds lead to a particular latency
for a complex UDF-heavy data flow is not in the scope of these
policies.

This paper proposes a strategy to provide latency guaran-
tees in SPEs that execute UDF-heavy data flows. The goal
is to provide latency guarantees while minimizing resource
consumption. We are building on results from one of our
previous publications [16] that introduced (i) semantics for la-
tency constraints as a formalization of an application’s latency
requirements and (ii) techniques to optimize the execution of a
data flow towards constraint fulfillment under the assumption
of a fixed but sufficient resource provisioning. In this paper we
drop this assumption and explore how resource elasticity can
be employed towards the same goal. The contributions of this
paper are as follows:

1) We experimentally motivate the use of elasticity to
provide latency guarantees and the design choices for
our solution.

2) We introduce a model to estimate the latency of a
UDF-heavy data flow, when the data parallelism of
the data flow changes.

3) To minimize resource consumption while maintain-
ing latency guarantees, we introduce an automated
strategy to adjust data parallelism at runtime.

4) We experimentally evaluate the effectiveness of the
scaling strategy on a large commodity cluster with
130 worker nodes, using an application performing
real-time sentiment analysis on real-world social me-
dia data.

The paper is organized as follows. Section II highlights
common design principles of today’s scalable stream process-
ing engines and shows how latency constraints for this class of
systems can be expressed. Section III experimentally motivates
the use of elasticity to guarantee latency constraint fulfillment,
while Section IV describes the details for our reactive scaling
strategy. Section V experimentally evaluates our strategy with
a synthetic as well as a real-world workload from the social
media domain. Section VI summarizes related work and Sec-
tion VII finalizes the paper with a brief conclusion.

II. BACKGROUND

Today’s scalable SPEs [1], [9], [15], [16] are geared at
scalable and fault-tolerant execution of data flows in com-
modity cluster environments and follow similar design prin-
ciples. They differ from the more traditional Data Stream

Management Systems (DSMS) [19]–[21] and Complex Event
Processing (CEP) systems in the following key aspects:

a) UDF-heavy Data flows: They focus on the highly
parallel execution of data flows with embedded User-Defined
Functions (UDFs) and generally do not (yet) provide a more
specialized declarative language to formulate queries. Being
inspired by MapReduce and its descendants, the data flows
are usually directed graphs, as described in Subsection II-A1.

b) Master-Worker: The system architecture usually fol-
lows a master-worker pattern.

c) Producer-Consumer: The engine runtime on the
worker nodes executes the tasks and transfers data between
them, using a producer-consumer pattern, where individual
data items are put into one or more send and receive queues.

A. Stream Processing Jobs with Latency Constraints

For the remainder of the paper, we assume a stream
processing job to be a data flow that is modeled as a Directed
Acyclic Graph (DAG), which is representative for many stream
processing engines. In the following we provide a summary of
the of the relevant concepts and formalisms already used in our
previous work [16].

First, we formally introduce two representations of a stream
processing job, the job graph and the runtime graph. Then
we introduce the formal semantics for latency and latency
constraints.

1) The Job Graph: The job graph is provided by the user
and indicates to the master node which user code to run and
with which degree of parallelism this should be done. It shall
be defined as a DAG JG = (JV, JE) that consists of job
vertices jv ∈ JV connected by directed job edges je ∈ JE.
The user attaches a User-Defined Function (UDF) to each job
vertex and can specify a current, minimum and maximum
degree of parallelism pjv, p

min
jv , pmaxjv ∈ N+. Usually one also

has to specify a wiring pattern (also called “stream grouping”
[9]) that specifies the communication pattern to use (e.g. key-
partitioned, broadcast etc.) when connecting the tasks of two
adjacent job vertices.

2) The Runtime Graph: The runtime graph is a parallelized
version of the job graph to be used during the job’s execution.
It shall be defined as a DAG G = (V,E) where V is a set
of tasks and E is a set of channels. Each task v ∈ V has a
corresponding job vertex and will execute an instance of its
UDF. A channel e = (v1, v2) ∈ E is a communication channel
along which a task v1 can send data items of arbitrary size to
a task v2.

For simplicity of notation we shall sometimes treat a job
vertex jv as a set of tasks jv ⊆ V with |jv| = pjv. Analogous,
each job edge je can be treated as a set of channels je ⊆ E.

3) Task and Channel Latency: Let us assume a task v ∈ V
with an inbound channel ein and an outbound channel eout.
We define the task latency lv(d, ein, eout) incurred by data
item d that is consumed from channel ein by task v as either
Read-Ready or Read-Write task latency.

Read-Ready (RR) task latency is the time difference be-
tween (1) data item d being consumed from channel ein and

Fig. 1. Stream processing job example with and constraint.

(2) task v becoming ready to read the next data item from any
of its input channels. This definition is a good match for tasks
with UDFs that perform computation strictly per data item e.g.
map- and filter-like UDFs.

Read-Write (RW) task latency is the time difference be-
tween (1) data item d being consumed from channel ein and
(2) the next time task v writes any data item to eout. This
definition is a good match for tasks with UDFs that perform
computation based on more than one previously consumed data
item, e.g. UDFs performing aggregation over windows.

We expect the UDF to specify, which one of the two
options shall be used to measure its task latency, because UDFs
and the computation they perform are opaque to the engine.

For a channel e = (vi, vj) ∈ E, we define the channel
latency le(d) as the time difference between (1) the data item
d being emitted into the channel by vi and (2) being consumed
from the channel by vj .

4) Sequences and Sequence Latency: A job sequence js
shall be defined as an n-tuple of connected job vertices and
job edges, where both the first and last element can be a job
vertex or a job edge. Each job sequence induces a whole set
of runtime sequences {s1, . . . , sn} within the runtime graph.
Each data item d that enters the runtime sequence si incurs a
latency before being fully processed. We refer to this latency
as the data item’s sequence latency sl(d, si), measured in an
arbitrary but fixed time unit. Sequence latency is defined as the
sum of task and channel latencies of the sequence’s tasks and
channels. Figure 1 shows an example of the graphical notation
we use for jobs and constraints.

5) Latency Constraints: Consider a stream processing job,
where incoming data has to be processed as fast as possible,
e.g. within a few milliseconds. If this job is to be deployed at
scale in an unelastic SPE, one has to permanently provision the
SPE with enough resources to withstand peak load (which may
be unknown or unknowable). As shown later in Section III-C,
given a fixed amount of computational resources, an increase in
input load also increases latency due to queueing effects. Thus,
provisioning for peak load (if known) already requires implicit
knowledge about how much latency a given job can tolerate.
A latency constraint explicitly declares this otherwise implicit
requirement to the SPE. The SPE now has the opportunity
to take automated measures to guarantee the constraint under
varying load without permanent peak-load resource provision-
ing.

Formally, each job can be annotated with multiple latency

constraints. A constraint is a tuple (js, `, t), that expresses a
desired upper bound of ` time units on the mean sequence
latency of all data items passing through all the runtime
sequences {s1, . . . , sn} of js during any given time span of
t time units. More formally, if Dt is the set of data items
entering si during a time span of t time units, then

1

|Dt|
∑
d∈Dt

sl(d, si) ≤ ` (1)

must hold true, in order not to violate the constraint. Note
that a constraint does not make a statement about the latency
incurred by individual data items, which may well be lower or
larger than `. Instead it defines a desired a “statistical” upper
bound for data items within a finite time interval t (e.g. 10 s).
Given the lack of hard real-time capabilities in the commodity
servers, networks and operating systems that we target as the
execution platform, and the complexity of most real-world
setups, we doubt that meaningful hard upper bounds can be
enforced.

III. MOTIVATION: WHY USE ELASTICITY IN LATENCY
CONSTRAINED STREAM PROCESSING?

Today’s SPEs are designed to run on large clusters of
commodity hardware, which commonly also assumes Ether-
net and TCP/IP (or UDP/IP) as networking protocols. It is
well known that in such networks transmission latency and
maximum throughput are linked via the amount of bytes
that are sent per packet [22]. In [16], we have used this
effect to our advantage, by adaptively batching data items,
so that latency constraints are guaranteed without “choking”
throughput. This approach works well, as long as compute
resources are sufficiently provisioned. However, so far we
have only considered a static resource provisioning. In this
section, our goal is to motivate the additional exploitation of
resource elasticity in order to also support workloads, where
such an a-priori static resource provisioning is unknown or
prohibitively expensive. For illustration, we will analyze the
dynamic behavior of a very simple stream-processing job with
static resource provisioning but varying computational load.
We use this simple job to showcase the inherent trade-offs
and difficulties in scalable real-time stream processing.

A. PrimeTester Job Description

1) Job Structure: The PrimeTester job (see Figure 2) is
designed to produce a step-wise varying computational load,
so that a steady-state can be observed at each step. The Source
tasks produce random numbers at a rate that varies over time,
and send them round-robin to Prime Tester tasks, that test
them for probable primeness. The tested numbers are then
again round-robin forwarded to the Sink tasks to collect the
results. Testing for probable primeness is a compute intensive
operation if done many times, thus by controlling the Source
tasks’ sending rate, we control computational load at the Prime
Tester tasks. The job’s runtime is split up into several phases
and phase steps. During each step, all Source tasks send at the
same constant rate. Each step lasts 60s and each phase has at
least one step. The phases are as follows:

Source
p=50

Prime Tester
p=200

Sink
p=50

Worker 1 Worker N

... ...

Runtime vertex (task)

Runtime edge (channel)

Job vertex with parallelism p

Worker node

Latency
Constraint:
ℓ=20ms

Fig. 2. DAG of PrimeTester Job

1) Warm-Up: Numbers are produced at a low rate. This
phase has one step and serves as a baseline reference
point.

2) Increment: Numbers are produced at step-wise in-
creasing rates.

3) Plateau: Numbers are produced at the peak rate of
the previous phase for the duration of one step.

4) Decrement: Numbers a produced at step-wise de-
creasing rates, until the warm-up rate is reached
again.

B. Setup and Metrics

The job was implemented for Apache Storm [9] and our
prototype of the Nephele engine [16], that can enforce latency
constraints. Nephele is the streaming-capable execution engine
of the Stratosphere1 project (now Apache Flink2). Each run
of the job was done on the same commodity cluster (see
Appendix A) and a static resource provisioning of 50 worker
nodes (200 CPU cores). The job consisted of 50 Source, 200
Prime Tester and 50 Sink tasks. It was run four times in total,
with different configurations. We describe each configuration
and classify its optimization goals (latency, throughput, or
trade-off):

• Storm is Apache Storm v0.9.2-incubating with
default settings and without guaranteed message pro-
cessing. We chose Storm as a representative of sys-
tems optimized towards low latency, as it generally
ships data items immediately and individually, i.e.
unbatched.

• Nephele-IF is Nephele configured with instant flush-
ing, thus it employs the same strategy as Storm and
is meant to ensure comparability between Storm and
Nephele, as these have different codebases.

• Nephele-16KiB is Nephele configured to use a fixed
output buffer size of 16KiB on each channel. Each
data item is serialized into the buffer, and the buffer
is only sent when full. Thus, it is optimized towards
maximum throughput by sending data items in large

1http://www.stratosphere.eu/
2http://flink.incubator.apache.org/

Fig. 3. Latency and Throughput of the Prime Tester Job on 50 worker nodes
and 4 PrimeTester tasks per worker.

batches. Larger output buffer sizes than 16KiB had no
measurable impact on throughput.

• Nephele-20ms is Nephele configured to enforce a 20
ms latency constraint between data items leaving the
Source tasks and data items entering the Sink tasks.
This configuration applies adaptive output batching
as described in our previous work [23]. It trades
off latency and maximum throughput, by batching as
much as possible while still guaranteeing the 20 ms
constraint.

For each configuration we were interested in the per-
formance metrics mean latency and mean throughput. Mean
latency measures the mean latency of all data items being
processed within a 10 s period. A particular data item’s latency
is defined as the elapsed time between it being emitted at a
Source task and it being consumed at a Sink task. To reduce
the measurement overhead, we take a random sample of the
data item latencies within each 10 s period and compute the
mean over the sample. Mean throughput measures the mean
rate at which the source tasks have emitted data items during
a 10 s period. We further differentiate between attempted and
effective mean throughput. In case of bottlenecks, a source
task’s attempted throughput, as dictated by the job’s current
phase step, will eventually be throttled down to the effective
throughput due to backpressure. Backpressure is an effect that
starts at bottleneck tasks and propagates backwards through
the DAG via queues and TCP connections.

C. Prime Tester Job Results

Figure 3 shows the results in terms of the previously
defined performance metrics.

In the Warm-Up phase, all configurations can keep up with
the attempted throughput. The configurations with instant data
shipping (Storm and Nephele-IF) provide the lowest latency
of 1-2 ms or less on average. Nephele-20ms batches data

items as necessary to guarantee the 20 ms latency constraint.
Nephele-16KiB has a latency of almost 3 s, because the
16 KiB buffers on each channel take a long time to be
filled. During the first steps of the Increment phase, each
configuration has a step-wise increasing but otherwise steady
queue waiting time between Source and Prime Tester tasks.
With increasing attempted throughput, Prime Testers tasks
eventually turn into bottlenecks and their input queues loose
steady-state and grow until full. At this point backpressure
throttles the Source tasks and the each configuration reaches
its individual effective throughput, that is significantly lower
than the maximum attempted throughput.

Looking at the latency measurements, one can see that
the configurations with instant flushing (Storm and Nephele-
IF) are the first to loose steady-state queue waiting time at
roughly 180 s into the job. They are followed by Nephele-
20ms two increment steps later at 300 s and by Nephele-16KiB
at 360 s. Once bottlenecks have manifested, the latency of a
configuration is mainly affected by how long the input queues
can get. As resources such as RAM are finite, both Nephele
and Storm limit the maximum input queue length. Also, it can
be observed that increasing throughput leads to a super-linear
increase in waiting time of data items at the input queues of
Prime Tester (and Sink) tasks. This effect is present in every
configuration, but dominates latency in configurations geared
towards low latency. It is important to note for Nephele-20ms,
that at the 240 s threshold, Nephele fails to guarantee the 20
ms constraint because adaptive batching cannot compensate
for the increase in steady-state queue waiting time anymore.

When looking at the effective throughput measurements,
one can see that the configurations with instant flushing peak
ca. 40× 103 data items per second. The configurations using
batching show increased effective throughput, as shown by
Nephele-20ms peaking at 52 × 103 data items per second (a
30% improvement), and Nephele-16KiB peaking at 63 × 103

data items per second (a 58% improvement). This is because
batching reduces data shipping overhead in many places of
the architecture (for example lower overhead for ISO/OSI
transport layer headers, reduction of the number of system calls
and hardware interrupts, etc.) This allows the task threads to
spend more time on computation.

In conclusion, output batching has a measurable positive
impact on maximum effective throughput, hence adaptive
batching is an effective tool to enforce latency constraints up
to a certain point. This point is reached when either the steady-
state input queues have become so long, that the resulting
waiting times make the constraint impossible to enforce, or
when queues have lost steady-state and are growing due to
bottlenecks. Thus, a strategy that guarantees latency constraints
has to also address the issue of queue waiting time. Preventing
bottlenecks is equally important, but rather mandatory than
sufficient. Exploitation of elasticity offers an opportunity to
control queue waiting time without resorting to load-shedding.

IV. A STRATEGY FOR ELASTIC STREAM PROCESSING
WITH LATENCY GUARANTEES

This section presents a reactive strategy to enforce latency
constraints under a varying load scenario without permanent
resource provisioning for peak loads. Of the following subsec-
tions, Section IV-A presents the assumptions required for our

strategy to work. Section IV-B gives an overview of the system
architecture, that enforces latency constraints and collects mea-
surement data about the job for this purpose. Then we describe
our strategy bottom-up, starting with Section IV-C, that uses
the measurement data to build a latency model, that allows to
reason about latency under varying degrees of parallelism. The
two techniques Rebalance and ResolveBottlenecks presented
in Section IV-D and Section IV-E use the latency model to
find appropriate scaling actions. Section IV-F finalizes the
description of the strategy, by showing when and how to
employ Rebalance and ResolveBottlenecks.

A. Assumptions

For the remainder of the paper, we assume the following
conditions to be true, in order to be able to effectively enforce
latency constraints under varying load:

a) Homogeneous Worker Nodes: Worker nodes execut-
ing the same UDF must be sufficiently similar in their main
performance properties, i.e. number of CPU cores, CPU core
speed and NIC bandwidth. Worker nodes that are significantly
slower than their peers will introduce hot spot tasks that lag
behind other tasks executing the same UDF.

b) Effective Load-Balancing: Exploitation of data par-
allelism is common in today’s scalable SPEs and requires a
way of balancing the load of the data parallel tasks execut-
ing the same UDF. We consider a load-balancing effective,
if it avoids hot spot tasks that incur a significantly higher
computational load than other tasks executing the same UDF.
In our setting, load-balancing is achieved via partitioning the
data stream, so that each data item is assigned to one or
more partitions. Simple partitioning strategies are round-robin
and key-based partitioning. The latter may suffer from data
skew, therefore special care needs to be taken to manage
skew. Load balancing strategies are not in the scope of this
work. For an example see [21], that presents a dynamic load-
balancing approach for data parallel relational operators such
as windowed joins and aggregates.

c) Elastically Scalable UDFs: We consider a UDF
elastically scalable, when changing the number of data parallel
tasks executing it does not impact the correctness of the result
values. In particular, during a scaling action stream partitions
need to be ad-hoc remapped to consumer tasks. For UDFs with
round-robin stream partitioning, this is not an issue. However,
UDFs expecting a key partitioning, e.g. grouped aggregations,
usually depend on it to maintain application semantics. Again,
we consider this out of the scope of this paper. Solutions for
the domain of continuous SQL-style queries can be found in
[21]. For stateful UDFs, [10], [12], [14] demonstrate solutions
to the management of key-partitioned task state in the face of
elastic scaling.

B. System Architecture

The first objective of the architecture is to continuously
measure latency and other aspects of running tasks and their
channels. This data is used to build a predictive latency model
in Section IV-C. The second objective is to determine appro-
priate scaling actions to enforce latency constraints (using the
latency model) and to and to execute these actions.

Master

LM ES

QR

QR QR

QR

Worker

v
QM

obl(v ,v):=Xa b

scale(jv , +2)a

Scheduler

start(v)i
start(v)j

Partial
Summaries

QR QR
Worker

QM

QR QR
vi vj

Global
Summary

X

QM QoS Manager

QR QoS Reporter

Measurement data (thickness
indicates summarization)

LM Latency Model

ES Elastic Scaler
obl(): Define output batch latency

for channel

Actions to enforce constraint:

v Active Task v

scale(): Scale a job vertex
start(): Start a task

Measurement Data
(see Table I)

Fig. 4. System architecture for elastic scaling with latency guarantees.

Figure 4 provides an overview of the main architectural
elements. The collection of measurement data is carried out
by QoS Reporters and QoS Managers (see Section IV-C for
details). QoS Reporters measure the basic task and channel
performance metrics listed in Table I and report these to
QoS Managers3 once per measurement interval (e.g. once
per second). Once per adjustment interval (e.g. once very
10 seconds), each QoS Manager scans the measurement data
it has received for constraint violations and configures the
adaptive output batching of channels as necessary to enforce
the constraint. Adaptive output batching enforces an upper
limit on the time data items wait before being shipped and
has been discussed in our previous work [16]. Additionally,
each QoS Manager computes a so-called partial summary of
its collected measurement data and sends it to the master
node. The master node aggregates the partial summaries into
a global summary, and uses the global summary to initialize
the latency model described in Section IV-C. Then the Elastic
Scaler on the master node uses the initialized latency model to
optimize the job’s data parallelism so that latency constraints
are guaranteed while minimizing the resource footprint. As a
consequence, it may issue scaling actions to the Scheduler,
that decides which tasks to start and stop on which worker
nodes.

Accordingly, we have different degrees of summarization
of the measurement data in Table I. For scalability reasons,
each QoS Manager only collects measurement data for a subset
of all latency constrained tasks and channels. Hence a QoS
Manager’s summary is partial and by itself not useful for
controlling parallelism. The master node merges the partial
summaries into a global one, that can be used to initialize the
latency model.

Hence, latency constraints are enforced on two levels. First,
by QoS Managers that control adaptive output batching, which
is still the primary mean to enforce constraints, while resources
are sufficiently provisioned. Second, the Elastic Scaler adjusts
job vertex parallelism (i.e. the resource provisioning), to both

3Where to run QoS Managers and how to assign QoS Reporters to them
has been discussed in our previous work [16].

TABLE I. PERFORMANCE MEASUREMENT DATA OF THE RUNTIME
GRAPH.

Symbol Description

Measured by random sampling

lv Mean task latency (see Section II-A3) of the data items
consumed by task v. Whether this is read-ready or read-
write latency depends on what is requested by the task’s
UDF.

Sv , V ar(Sv) Mean and variance of task v’s service time. Service time
is the queueing theoretic notion of how long a task is busy
with a data item. Coincidentally, service time is equivalent
to the notion of read-ready task latency. Sv is a random
variable with an unknown probability distribution.

Av , V ar(Av) Mean and variance of task v’s data item interarrival time.
Av is a random variable with an unknown probability
distribution.

le Channel e’s mean channel latency (see Section II-A3), i.e.
the mean time between a data item being emitted producer-
side and it being processed consumer-side.

oble Channel e’s mean output batch latency, i.e. the mean
time data items wait due to batching before being actually
shipped. Therefore obl(e) < l(e) always holds.

Derived using above measurements.

cX =

√
V ar(X)

X
Coefficient of variation of X ∈ {Sv, Av}.

λv = 1
Av

Data item arrival rate at task v.

µv = 1
Sv

Service rate of task v, i.e. its maximum processing rate.

ρv = λSv Utilization of task v.

enable adaptive output batching and exert control over queue
waiting times, the necessity of which has already been moti-
vated in Section III-C.

C. Latency Model

In this section we will explain the structure of the master
node’s latency model and how it relates to the raw measure-
ment data obtained from QoS Reporters.

1) Measurement Data and Global/Partial Summaries: Let
us assume a constrained job sequence js. Each summary,
whether global or partial, contains tuples

(ljv, Sjv, cSjv , Ajv, cAjv , λjv) ∀jv ∈ V (js)

(lje, oblje) ∀je ∈ E(js).

where V (js) and E(js) are the job vertices and job edges
within the job sequence js. These job vertex (job edge) values
are averages over the measurement values of their respective
tasks and channels. See Table I for an overview of what
we measure for tasks and channels. For example, Sjv is the
average service time of the currently running tasks in job
vertex jv and defined as

Sjv =
1

pjv

∑
v∈jv

[
1

m

∑
t=1,...,m

S
(t)
v

]
, (2)

where pjv is the parallelism of jv and S
(i)
v with i =

1, . . . ,m are the past m service time measurements for the
tasks v ∈ jv. The other values in the global summary are also
averages over their task/channel counterparts. For reasons of
brevity we omit their formulae as they are structurally identical
to Equation 2.

All partial summaries are structurally identical to the global
summary. However each QoS Manager has measurement data
only for a subset of all constrained tasks and channels and
computes its partial summary from that data. The master node
merges the partial summaries to obtain the global summary
defined above.

2) The Latency Model: We consider each task within a job
vertex to be a single-server queueing system. Our assumptions
of homogeneous worker nodes and effective load balancing
minimize the differences between tasks of the same job vertex.
Hence we can apply the available formulae from queueing
theory to the values in the global summary. This enables us
to estimate the queue waiting time for different degrees of
parallelism of the job vertex. Specifically, we model each
task to be a GI/G/1 queueing system, i.e. the probability
distributions of data item interarrival and service times are
generally unknown. For this case, Kingman’s formula [24]
approximates the actual queue waiting time of the average
task in job vertex jv as

WK
jv =

(
ρjv/µjv
1− ρjv

)(
c2Ajv

+ c2Sjv

2

)
, (3)

where each input value is either from the global summary
or derived using values from the global summary with the
respective formulae from Table I. The actual queue waiting
time of the tasks within job vertex jv is

Wjv = lje − oblje
= ejvW

K
jv ,

where le and oble are the average channel and output buffer
latency of the ingoing job edge je of jv in the job sequence
js. The newly introduced coefficient ejv is therefore

ejv =
lje − oblje
WK
jv

. (4)

Less formally, we use the coefficient ejv to “fit” Kingman’s
approximation to the last measurement data obtained for job
vertex jv and job edge je. The core idea of the latency
model is to predict Wjv when jv’s degree of parallelism
changes. In this context, ejv ensures that we at least obtain the
currently measured queue waiting time for the current degree
of parallelism. Without ejv the model might recommend a
scale-down, when a scale-up would actually be necessary.

From our assumptions follows that changing the data
parallelism of a job vertex, anti-proportionally changes the
average data item arrival rate λjv. Hence the utilization ρjv
becomes a function

ρjv(p
∗
jv) = λjvSjv

pjv
p∗jv

(5)

where pminjv ≤ p∗jv ≤ pmaxjv is a valid degree of parallelism
for jv, and pjv is the current degree of parallelism for which
we have measurements in the global summary. Since the
utilization ρjv is part of the Kingman formula, Wjv can be
expressed as a function of p∗jv, too.

Without loss of generality we assume all constrained job
vertices jv1, . . . , jvn in js to be elastically scalable and by
p∗1, . . . , p

∗
n we shall denote valid degrees of parallelism for

them. The total queue waiting time in js can therefore be
modeled as

Wjs(p
∗
1, . . . , p

∗
n) =

n∑
i=1

Wi(p
∗
i)

=

n∑
i=1

ei

(
λiSi

2
pi

p∗i − λiSipi

)(
c2Ai

+ c2Si

2

)
.

We can now use Wjs as a rough predictor of queue
waiting time in job sequence js, when varying the degrees
of parallelism of the job vertices within.

Note, that we assume the average service time Si and its
coefficient of variation cSi to be unaffected by the change in
parallelism for each job vertex. We make the same assumption
for cAi

. One might argue that since by changing the data item
interarrival time Ai, its coefficient of variation cAi

will also
change. We will for now neglect this effect and reserve it for
future work.

D. The Rebalance Technique

Using the latency model, the Rebalance technique chooses
new degrees of parallelism for the constrained job vertices of
a running job. The goal is to modify parallelism in such a
way that resource consumption is minimized, while latency
constraints are satisfied. It is applicable at any point in time
where we have a fresh global summary and no bottlenecks
exist, i.e. each constrained job vertex’s utilization is sufficiently
smaller than 1. See Section IV-E for a discussion of bottlenecks
and their removal.

For a single latency constraint (js, `, t) with job vertices
jv1, . . . , jvn ∈ V (js), this problem can be formulated as
an optimization problem, with a linear objective function
and several side conditions. We must choose new degrees of
parallelism p∗1, . . . , p

∗
n ∈ N so that the total parallelism

F (p∗1, . . . , p
∗
n) =

n∑
i=1

p∗i (6)

is minimized and the side conditions

Fig. 5. Degrees of parallelism p1, p2, p3 of three exemplary job vertices, so
that p3 is minimal for given p1, p2 while W (p1, p2, p3) ≤ Ŵ .

Wjs(p
∗
1, . . . , p

∗
n) ≤ Ŵjs (7)
p∗i ≤ pmaxi ,∀i = 1, . . . , n (8)
p∗i ≥ pmini ,∀i = 1, . . . , n (9)

hold, where Ŵjs is a chosen queue wait limit for js
(see Section IV-F). Since each Wi(p

∗
i) is a monotonically

decreasing function, the same holds true for Wjs(p
∗
1, . . . , p

∗
n).

The optimal solution is among a set of solution candidates,
where decreasing any degree of parallelism p∗i would violate
one of the side conditions. For n = 3, an exemplary set of
solution candidates is plotted as a 3D surface in Figure 5.
The lighter the coloration of the surface, the lower the total
parallelism F (p∗1, . . . , p

∗
n). As we can see from the example,

multiple optima may exist. We may also have the case that
the optimization problem cannot be solved due to the side
conditions.

To solve the optimization problem for a single latency con-
straint, we propose to use the Rebalance technique described
in Algorithm 1. It is given a constrained job sequence js
and a maximum allowed queue waiting time Ŵjs for vertices
inside the sequence. Additionally, it is handed a set Pmin
that can contain a minimum required parallelism for vertices
of the sequence. If we have to deal with multiple latency
constraints with overlapping sequences on the same job graph,
individual Rebalance invocations should be done for them. In
this case, Pmin ensures that the chosen degrees of parallelism
of a Rebalance(js1, ...) invocation, are not overwritten with
lower degrees of parallelism by another Rebalance(js2, ...)
invocation (see Section IV-F).

Algorithm 1 implements a gradient descent with variable
step size. It first determines whether it is actually possible
to solve the optimization problem by testing if (7) can be
fulfilled at maximum scale out. If so, it starts searching for a

Algorithm 1 Rebalance(js, Ŵjs, Pmin)

Require: A job sequence js, a total queue wait limit Ŵjs and
minimum degrees of parallelisms Pmin.

1: pi ← pmaxjvi
for ∀jvi ∈ V (js)

2: if Wjs(p1, . . . , pn) ≤ Ŵjs then
3: pi ← p for ∀(jvi, p) ∈ Pmin
4: while Wjs(p1, . . . , pn) > Ŵjs do
5: C = {i|i = 1, . . . , n where pi < pmaxi }
6: ∆i ←Wi(pi + 1)−Wi(pi) for ∀i ∈ C
7: c1 ← min{i ∈ C|∆i = min{∆j}}
8: if |C| > 1 then
9: c2 ← min{i ∈ C|i 6= c1,∆i = min{∆j |j 6= c1}}

10: pc1 ← min(pmaxc1 , P∆(c1,∆c2))
11: else
12: w ← Ŵjs −Wjs(p1, . . . , pn) +Wc1(pc1)
13: pc1 ← PW (c1, w)
14: end if
15: end while
16: end if
17: return {(jvi, pi)|jvi ∈ V (js)}

lower cost solution, starting with the minimum scale out. For
each iteration of the while loop, the general idea is to increase
parallelism for the job vertex that yields the highest decrease
in queue waiting time. More formally, a specific job vertex
jvc1 is chosen, so that increasing jvc1 ’s parallelism yields the
highest decrease in queue waiting time ∆c1 . If there is a jvc2
yielding the second highest decrease in queue waiting time,
then P∆(c1,∆c2) picks a new degree of parallelism for jvc1
that is high enough so that jvc2 will become the jvc1 in the
next iteration of the while loop. This is the “step-size”, which
is computable as

P∆(i, δ) =

2bi − 1

2
+

√(
1− 2bi

2

)2

− ai + δ(b2i − bi)
δ

 ,
where ai = λiSi

2
pi

(
c2Ai

+c2Si

2

)
and bi = λiSipi. Other-

wise, if there is no jvc2 , this means we are at the last iteration.
In this case, PW (c1, w) picks a new degree of parallelism for
jvc1 that is just high enough so that Wc1(pc1) ≤ w. This can
be computed as

PW (i, w) =
⌈ai
w

+ bi

⌉
.

Implementations of Rebalance can exploit the fact that all
but one value of C and ∆i can be reused between iterations of
the while loop. This enables implementations to use standard
data structures such as sorted sets, that offer add/remove/peek
operations with log(n) complexity. Hence, Rebalance can be
implemented with O(n log(n)m) complexity, where n is the
number of job vertices in js and m is their highest degree
of parallelism. In practice, due to the variable step size of the
gradient descent method, we will require significantly less than
m steps for each job vertex.

E. The ResolveBottlenecks Technique

The previously presented Rebalance technique is only
applicable, if no bottlenecks exist. The goal of the Resolve-
Bottlenecks technique is to resolve the bottleneck by scaling
out, so that Rebalance becomes applicable again at a later point
in time. It is applicable at any point in time, where we have
a fresh global summary, at least one bottleneck exists and the
bottleneck is resolvable by scaling out. The latter may not be
the case for fully scaled out or non-elastic job vertices, or if no
more resources are available for scale out. In either of those
cases, the user needs be informed and take appropiate actions,
e.g. make more cluster resources available.

Given a constrained job sequence js with vertices
jv1, . . . , jvn, the condition for jvi to be a bottleneck is to
have a utilization ρi ≥ ρmax, where ρmax is a value close to
1. For each such vertex jvi we will choose a new degree of
parallelism

p∗i = min{pmaxi ,max{2pi, 2λipiSi}}. (10)

The general idea of ResolveBottlenecks is to be a last resort.
A consumer-side bottleneck first causes input queue growth,
that eventually leads to backpressure throttling producer side
tasks. During input queue growth, a producer task emits data
items at a rate higher than the consumer task’s service rate.
This leads to an artificially high consumer side utilization of
≥ 1, rendering the queueing formulae of the latency model
unusable (see Equation 3). Once intermediate queues are full,
backpressure sets in and forces the producer task to wait
before sending. This manifests itself in an artificial increase
of producer side service time. In both cases, Rebalance is
either not applicable or will exhibit erratic scaling behavior,
as accurate values in the global summary are not available.
Hence, ResolveBottlenecks will at least double the bottlenecks’
degree of parallelism, hopefully resolving them.

F. Putting it all together: ScaleReactively

Based on Rebalance and ResolveBottlenecks, we can now
define a coherent strategy, that reacts to latency constraint
violations with appropriate scaling actions, while keeping the
total resource consumption low.

Algorithm 2 provides an overview of the strategy. For each
constrained sequence js, hasBottleneck(js) tests the bottle-
neck preconditions and applies the ResolveBottlenecks tech-
nique described in Section IV-E. Otherwise, the Rebalance
technique is used. Pmin for Rebalance is initialized in such
a way, that later invocations of Rebalance can only increase
the degrees of parallelism chosen by earlier Rebalance invo-
cations. For simplicity, Ŵjs is chosen as 20% of time available
for data item shipping. The remaining 80% are reserved
for adaptive batching, employing the techniques presented
in our previous work [16]. After all constraints have been
considered, the scaling actions resulting from the new degrees
of parallelism are triggered with doScale().

V. EXPERIMENTAL EVALUATION

This section provides an experimental evaluation of our
reactive scaling strategy based on our prototypical implemen-
tation inside the Nephele SPE. The engine was configured with

Algorithm 2 ScaleReactively(LC)
Require: A set of latency constraints LC

1: P ← EmptyMap()
2: for all (js, `,) ∈ LC do
3: if hasBottleneck(js) then
4: P ∗ ← ResolveBottlenecks(js)
5: else
6: Pmin ← {(jvi,max(pminjv , P.jv))|jv ∈ V (js)}
7: Ŵjs ← 0.2

(
`−

∑
jv∈V (js) ljv

)
8: P ∗ ← Rebalance(js, Ŵjs, Pmin)
9: end if

10: P.jv ← max(P.jv, p∗) for ∀(jv, p∗) ∈ P ∗
11: end for
12: doScale(P)

a measurement interval of 1 s and an adjustment interval of
5 s, i.e. every 5 s a global summary was available on the
master node. Nephele’s scheduler interfaces with Nephele’s
own resource manager that leases and releases worker nodes
as required. Using cluster resource managers such as YARN4

or Mesos5 is possible but left to future work. The same holds
for IaaS clouds such as Amazon EC2, however rapid scale-
ups may be hindered by VM startup times in the minute
range, thus requiring a pool of preallocated VMs. Spinning
up new tasks via Nephele’s scheduler is a fast operation (1-2
s), and can be done in large batches. However, scale-ups need
some time to have the desired effect on the measurement data.
Furthermore, starting new tasks may initially worsen measured
channel latency, because new TCP/IP connections need to be
established. For these reasons, we added an inactivity phase of
2 adjustment intervals after scale-ups, e.g. the Elastic Scaler
remains inactive for 10 s after starting new tasks. Scale-down
operations take longer to be completed, because intermediate
queues need to be drained and each task shutdown needs
to signaled to and confirmed by upstream/downstream tasks.
However, no inactivity phase is required afterwards.

We evaluated the scaling strategy using two jobs. First,
the previously introduced PrimeTester job, and second, the
TwitterSentiment job, that performs a sentiment analysis on
social media data. Both jobs were run on the cluster described
in Appendix A with the full pool of 130 workers available for
elastic scaling. Section V-A describes the results of running the
PrimeTester job with elastic scaling. Section V-B describes the
TwitterSentiment job and its results.

A. PrimeTester Job Setup and Results

We ran the Nephele-20ms PrimeTester job (see Sec-
tion III-B) with 32 Source tasks and an elastic number of
Prime Tester tasks ranging from pmin = 1 to pmax = 520. As
a baseline for comparison, we also ran the unelastic Nephele-
16KiB PrimeTester job with 32 Source tasks and 175 Prime
Tester tasks. The fixed parallelism of 175 tasks was manually
determined to be as low as possible, while at the same time
not leading to overload with backpressure at peak rates. Each
configuration was run multiple times with similar results.

4http://hadoop.apache.org/
5http://mesos.apache.org/

Reactive Scaling with 20 ms constraint

thin(timestamp)

10
0

10
1

10
2

10
3

10
4

La
te

nc
y

[m
s]

Mean Latency
95th Latency Percentile

Unelastic with 16 KiB fixed buffers

thin(timestamp)

lo
g(

th
in

(m
ea

nL
at

en
cy

),
 b

as
e

=
 1

0)

Mean Latency
95th Latency Percentile

timestamp

0
2

4
6

8

T
hr

ou
gh

pu
t [R

ec
or

ds
×

10
3

s]

timestamp

th
ro

ug
hp

ut
/1

00
00

timestamp

50.8 task hours

0
50

10
0

20
0

30
0

P
rim

eT
es

te
r

P
ar

al
le

lis
m

timestamp

do
p

49 task hours

Mean: 65.9 %

0 200 400 600 800 1000

Job Runtime [s]

0
20

40
60

80
10

0

M
ea

n
P

rim
eT

es
te

r
Ta

sk
 C

P
U

 U
til

.

ut
il

Mean: 54.1 %

0 200 400 600 800 1000

Job Runtime [s]

Fig. 6. Result of running the PrimeTester job with and without reactive
scaling.

Figure 6 shows the results of both configurations. For the
elastic Nephele-20ms, the constraint could be enforced ca. 91%
of all adjustment intervals. There is one significant constraint
violation when the Source task emission rate doubles from
104 to 204 data items per second, while transitioning from the
Warm-Up to the Increment phase. The reason for this is that
during the Warmup phase, the PrimeTester parallelism dropped
to 36 tasks, which is a desired effect of the Rebalance()
operation, as it is designed to minimize resource consumption
while still fulfilling the constraint. All other Increase phase
steps resulted in less severe and much shorter constraint
violations that were quickly addressed by scale-ups, because
the relative increase in throughput decreases with each step.
Since we have designed a reactive scaling strategy the con-
straint violations resulting from large changes in emission rate
cannot be avoided. Most such scale-ups are slightly larger than
necessary, as witnessed by subsequent scale-downs correcting
the degree of parallelism. The overscaling behavior is caused
by the facts that (1) the queueing formula we use is an
approximation and most importantly (2) the error coefficient
(see Equation 4) can become overly large when bursts of data
items increase measured queue latency. However, we would
argue that this behavior is useful, because it helps to resolve
constraint violations quickly, albeit at the cost of temporary
over-provisioning.

The 95th latency percentile is ca. 30 ms once scale-ups
have resolved temporary queue build-up, and is naturally much
more sensitive to changes in emission rate than the mean
latency. Since most of the latency is caused by (deliberate)

Fig. 7. Job and runtime graph structure of the TwitterSentiment job with
elastic vertices.

output batching, 30 ms is within our expected range. Rerunning
the job with reduced output batching improved the 95th latency
percentile, but also resulted in configurations that were not able
to reach the peak emission rate due to increased overhead in
data shipping.

The unelastic but manually provisioned baseline system
Nephele-16KiB is optimized towards maximum throughput
and tuned to withstand peak load with minimal resource
consumption. In consequence, both mean latency and the
95th latency percentile are much higher and do not go lower
than 348 ms and 564 ms respectively. We measure resource
consumption in “task hours”, i.e. the amount of running tasks
over time. Despite manual tuning, the amount of consumed
task hours is almost equal to the elastic Nephele-20ms config-
uration. While the two configurations are at par in this respect,
choosing a higher latency constraint of 30/40/50/100 ms for
elastic scaling, yielded improved task hour consumption of
46.4/44.3/41.8/37.6, while still providing much lower latency.

B. TwitterSentiment Job and Results

The TwitterSentiment job processes tweets arriving from
outside the data flow. The job identifies popular topics that
people are tweeting about, and computes a sentiment6 (pos-
itive, neutral, negative) for each tweet concerning a popular
topic. As input we replay a 69 GB dataset of JSON-encoded,
chronologically ordered English tweets from North America
logged via the public Twitter Streaming API during a two-
week period in August 2014. The rate of tweets is variant
with significant daily highs and lows (see Throughput plot in
Figure 8).

1) TwitterSentiment Job Description: Figure 7 gives an
overview of the job’s structure. It consists of six distinct job
vertices, half of which are elastically scalable. The Tweet-
Source (TS) task replays JSON-encoded tweets at the correct
historic rates or a multiple thereof. We use it to replay two
weeks worth of tweets within the 100 minute time frame of
the experiment. Each tweet is forwarded twice by the TS. The
first copy is sent round-robin to a HotTopics (HT) task, that
extracts popular topics such as hashtags from the tweet. Each

6We use the LingPipe library: http://alias-i.com/lingpipe/

thin(thin(lat2$timestamp))

10
1

10
2

10
3

10
4

La
te

nc
y

[m
s]

Constraint 1 (215 ms, mean)
Constraint 1 (215 ms, 95th Percentile)

Constraint 2 (30 ms, mean)
Constraint 2 (30 ms, 95th Percentile)

thin(stat1$timestamp)

2
3

4
5

6
7

T
hr

ou
gh

pu
t [T

w
ee

ts
×

10
2

s]

thin(stat2$timestamp)

0
5

10
15

20
25

30
35

P
ar

al
le

lis
m

HotTopics
Sentiment
Filter

Mean: 55.7 %
45

50
55

60
65

70
75

0 1000 2000 3000 4000 5000 6000

A
vg

 C
P

U
 U

til
iz

at
io

n

Job Runtime [s]

Fig. 8. Result of running the TwitterSentiment job with reactive scaling.

HT task maintains its own partial list of currently popular
topics, sorted by popularity, and periodically forwards this list
to the HotTopicsMerger (HTM) task. HT tasks perform time-
based window aggregation with 200 ms windows. The HTM
task merges all partial lists into a global one and broadcasts it
to all Filter (F) tasks. We therefore define Constraint (1) with
` = 215 ms for the job sequence (e4, HT, e5, HTM, e6, F).
The TS sends the second copy of each tweet round-robin to
a Filter task that matches it with its current list of popular
topics. Only if the tweet concerns a currently popular topic, it
is forwarded to a Sentiment (S) task, that attempts to determine
the tweet’s sentiment on the given topic. The result of the
sentiment analysis is then forwarded to the Sink (SI) task,
that tracks the overall sentiment on each popular topic. We
define Constraint (2) with ` = 30 ms for the job sequence
(e1, F, e2, S, e3). Three vertices (F, S and HT) are elastically
scalable, each one with pmin = 1 and pmax = 100.

2) TwitterSentiment Job Results: Figure 6 shows the result
of running the TwitterSentiment job. Constraint (1) with ` =
215 ms was fulfilled in 93% of all adjustment intervals. The
95th latency percentile stays close to the constraint throughout
the job, because the constraint leaves little room for output
batching. The parallelism of the HT task is frequently adjusted
to variations in the tweet rate. Due to two reasons both mean
and 95th percentile latency on the constraint’s sequence are
relatively insensitive to tweet rate variations. First, the fixed
task latency caused by the window aggregation dominates this
sequence. Second, bursts in tweet rates are fully absorbed by
HT tasks due to their time-based windowing behavior.

Constraint (2) with ` = 30 ms was fulfilled 96% of
all adjustment intervals, however there are significant spikes
caused by tweet bursts. Outside of such bursts, the 95th latency
percentile stays close to 25 ms. The tendency to slightly over-
provision with respect to what would actually be necessary to
fulfill the constraint can be observed in this benchmark as well.
Here, the reason is the highly variant tweet rate, that often
changes faster than the scaling strategy can adapt. Because
scale-ups are fast and scale-downs take time, the system stays
slightly over-provisioned. This is further evidenced by a mean
task CPU utilization of 55.7%. Again, choosing a higher
latency constraint would trade off utilization and resource
consumption against latency.

The tweet rate varies heavily between day and night,
peaking with 6734 tweets per second at around 2400 s into
the job. Most notable about the peak is that its tweets seemed
to affect one or very few topics, resulting in a significant
load spike for the Sentiment vertex. The resulting violation of
Constraint (2) was mitigated by a significant Sentiment scale-
up with ca. 28 new tasks. Other vertices were not scaled up
to the same extent, because their relative change in load was
not as high.

VI. RELATED WORK

Distributed stream processing has been the subject of vivid
research over the past decade. We roughly categorize the
existing systems along the criterion of streaming language.

A. Systems for Declarative Continuous Queries

Continuous processing of declarative queries was the focus
of early distributed SPEs like Aurora* [19]. Aurora* exploits
pipeline and to some extent data parallelism, but its scalability
is limited by its load-balancing approach (box splitting), where
a whole data stream has to pass through a single node. It
selectively drops tuples (“load-shedding”) if the system load
gets too high. The use of load-shedding, is governed by user-
specified QoS functions, that model the effect of dropped
tuples, latency and other factors on QoS. Borealis [20] extends
Aurora* and refines its strategies for load-shedding, where the
effects on QoS can be computed at every point in the data flow.
Finally, StreamCloud [21] extends Borealis by improving its
query parallelization and load-balancing strategies, avoiding
the limitations of box-splitting. StreamCloud can also exploit
cloud elasticity and dynamically change the parallelism of
query operators at runtime. Its elastic reconfiguration pro-
tocol takes special care of stateful operators with sliding-
window semantics (e.g. a windowed aggregate). The goal of
StreamCloud’s scaling policy is to avoid bottlenecks by evenly
balancing CPU load. The authors of FUGU [25] optimize
operator placement towards a target host CPU utilization, by
using reinforcement learning to control the operator migration
at runtime. In [26] FUGU is extended to reduce the latency
spikes caused by migration of stateful operators, towards
fulfilling an end-to-end latency constraint. In this work, we
do not look at the problem of operator/task placement, hence
we consider it orthogonal to our approach.

B. Systems for UDF-heavy data flows

Scalable general-purpose SPEs focus on the execution
of UDF-heavy data flows on large clusters or clouds and

generally exploit pipeline, task and data parallelism. SEEP
[14], Millwheel [10] and ChronoStream [12] are highlighted
by their explicit management of key-partitioned UDF state
for elastic and fault tolerant execution of stateful dataflows.
SEEP checkpoints UDF state to upstream nodes, while Mill-
wheel checkpoints it to a replicated highly-available datastore.
ChronoStream replicates the state of each UDF to a peer node,
i.e. a node that executes another instance of the same UDF.
The scaling policies of SEEP and Millwheel prevent overload
by scaling out when tasks cross a CPU utilization threshold.
ChronoStream is highlighted by its support for vertical scaling
(adjusts worker process threading level) and its lightweight
UDF state reconstruction scheme, that exploits state replica
locality and does not require state repartitioning. Timestream
[11] is highlighted by tracking output and state dependencies
to restore the state of LINQ operators during faults and scaling,
but delegates the scaling policy to applications. In System
S [27], which has been commercialized as IBM Infosphere
Streams, applications are specified with the declarative SPL
language that enables the heavy use of user-defined operators.
In [28] a scaling policy and state management scheme for SPL
applications is proposed. The scaling policy is driven by a
control algorithm that adjusts data parallelism to prevent over-
load, by adapting to congestion and throughput measurements
performed at runtime. Operator state is local to each stream
partition the operator receives and a incremental migration
protocol is proposed, that minimizes the amount of state
transfer between hosts. Storm [9] is an elastic open-source SPE
that provides at-least-once processing. Storm supports elastic
scaling, but triggering scaling actions is up to users7. Recently,
Storm has added the Trident API that checkpoints the state
of aggregation-type operators for fault tolerance. The reactive
scaling strategy of our prototype is orthogonal to the fault tol-
erance and state management protocols of these systems. Their
scaling policies are designed to prevent overload/bottlenecks,
conversely our policy is designed to minimize the violation
of user-defined latency constraints, which includes bottleneck
prevention.

Hadoop Online [29] and the Muppet system [18] (now
mupd8) provide a MapReduce-like programming abstraction
for streamed data. mupd8 is highlighted by persisting task
state in a key-value store to mitigate the effects of its lossy
failover strategy. The S4 [1] engine has been influential in
the development of the current SPEs and is highlighted by its
decentralized architecture. Spark Streaming [15] proposes the
D-Streams programming model that unifies batch and stream
computation by processing incoming data in MapReduce-
style mini-batches. D-Streams is further highlighted by its
fault tolerance based memory-resident resilient distributed
datasets, that can efficiently recover data lost due to failures
by recomputation. In [30] fixed-point iteration is used to
adaptively minimize the end-to-end latency of the mini-batch
model. Elf [31] proposes a novel design for a fault-tolerant
stream processing engines with a DHT-based many-masters
architecture to support running large numbers of data flows
that perform batch or stream computation, can share data and
whose functionality can be changed at runtime.

7http://storm.apache.org/documentation/Command-line-client.html

VII. CONCLUSION

We have presented an elastic strategy to enforce constraints
over average latencies in scalable general-purpose stream pro-
cessing engines, while minimizing the resource footprint. For
this purpose we have introduced a queueing theoretic latency
model, that suits itself well to optimization. Using the model,
our strategy minimizes data parallelism, so that a given set
of latency constraints is fulfilled. Frequent repetition of this
process yields a system that enforces latency constraints by
quickly adapting to changes in load. We have prototypically
implemented our strategy in the Nephele engine. An experi-
mental evaluation with a microbenchmark and a more complex
job processing real-world social media data, showed good
results, as our strategy enforced latency constraints as low
as 20 ms over 90% of the time. In comparison to unelastic
stream processing engines, no permanent peak load provision-
ing is required to consistently obtain low latency. Further, the
ability to declare a application-specific latency constraint to
an elastic stream processing engine, addresses the often tricky
problems of resource provisioning and parallelization in stream
processing. For future work we intend to focus on improving
the prediction quality of our latency model and to improve
efficiency by reducing the number of scaling actions.

APPENDIX

A. Description of commodity cluster used in experiments

The cluster consists of a master node and 130 worker
nodes. Each worker node is equipped with a 2012 Intel Xeon
E3-1230 V2 3.3 GHz processor (four physical CPU cores)
and 16 GB RAM. All nodes worker nodes are connected via
1 GBit Ethernet in a single-switch star topology. Each node
ran Gentoo Linux (kernel version 3.6.11) and Java 1.7.0.13.

REFERENCES

[1] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in 2010 IEEE International Conference
on Data Mining Workshops (ICDMW). IEEE, 2010.

[2] “Yahoo Talks Apache Storm: Real-Time Appeal,” http:
//www.informationweek.com/big-data/big-data-analytics/
yahoo-talks-apache-storm-real-time-appeal/d/d-id/1316840, Oct.
2014.

[3] “How Spotify Scales Apache Storm,” https://labs.spotify.com/2015/01/
05/how-spotify-scales-apache-storm/, Jan. 2015.

[4] J. Nielsen, Usability engineering. Elsevier, 1994.
[5] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 requirements of

real-time stream processing,” ACM SIGMOD Record, vol. 34, no. 4,
2005.

[6] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, 2008.

[7] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets,” in Proc. of the 2nd
USENIX conference on Hot topics in cloud computing. USENIX,
2010.

[8] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske,
A. Heise, O. Kao, M. Leich, U. Leser, V. Markl et al., “The stratosphere
platform for big data analytics,” The VLDB Journal, 2014.

[9] “Storm, distributed and fault-tolerant realtime computation,” http://
storm.apache.org/, Jan. 2015.

[10] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Millwheel:
fault-tolerant stream processing at internet scale,” Proc. of the VLDB
Endowment, vol. 6, no. 11, 2013.

[11] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and
Z. Zhang, “Timestream: Reliable stream computation in the cloud,”
in Proc. of the 8th ACM European Conference on Computer Systems.
ACM, 2013.

[12] Y. Wu and K.-L. Tan, “Chronostream: Elastic stateful stream computa-
tion in the cloud,” in 2015 IEEE 31st International Conference on Data
Engineering (forthcoming), 2015.

[13] K.-U. Sattler and F. Beier, “Towards elastic stream processing: Patterns
and infrastructure.” in BD3@ VLDB, 2013.

[14] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating scale out and fault tolerance in stream processing using
operator state management,” in Proc. of the 2013 ACM SIGMOD
International Conference on Management of Data. ACM, 2013.

[15] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at scale,”
in Proc. of the 24th ACM Symposium on Operating Systems Principles.
ACM, 2013.

[16] B. Lohrmann, D. Warneke, and O. Kao, “Nephele streaming: stream
processing under QoS constraints at scale,” Cluster computing, vol. 17,
no. 1, 2014.

[17] “Apache Flink: Home,” http://flink.apache.org/, Jan. 2015.
[18] W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri, and A. Doan,

“Muppet: Mapreduce-style processing of fast data,” Proc. of the VLDB
Endowment, vol. 5, no. 12, 2012.

[19] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. Zdonik, “Scalable distributed stream
processing,” in Proc. of the 1st Biennial Conference on Innovative
Data Systems Research, 2003.

[20] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,
J. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina et al., “The
design of the borealis stream processing engine,” in Second Biennial
Conference on Innovative Data Systems Research, 2005.

[21] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and
P. Valduriez, “Streamcloud: An elastic and scalable data streaming sys-
tem,” IEEE Transactions on Parallel and Distributed Systems, vol. 23,
no. 12, 2012.

[22] J. Nagle, “Congestion control in ip/tcp internetworks,” http://tools.ietf.
org/html/rfc896, 1984.

[23] D. Warneke and O. Kao, “Exploiting dynamic resource allocation for
efficient parallel data processing in the cloud,” IEEE Transactions on
Parallel and Distributed Systems, vol. 22, no. 6, Jun. 2011.

[24] J. F. C. Kingman, “The single server queue in heavy traffic,” in
Mathematical Proceedings of the Cambridge Philosophical Society,
vol. 57, no. 04. Cambridge University Press, 1961.

[25] T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer, “Auto-scaling
techniques for elastic data stream processing,” in 2014 IEEE 30th
International Conference on Data Engineering Workshops. IEEE,
2014.

[26] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Latency-aware
elastic scaling for distributed data stream processing systems,” in Proc.
of the 8th ACM International Conference on Distributed Event-Based
Systems. ACM, 2014.

[27] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and C. Venka-
tramani, “Design, implementation, and evaluation of the linear road
bnchmark on the stream processing core,” in Proc. of the 2006 ACM
SIGMOD international conference on Management of data. ACM,
2006.

[28] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for
data stream processing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 6, 2014.

[29] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears, “Mapreduce online,” in Proc. of the 7th USENIX symposium
on Networked systems design and implementation. USENIX, 2010.

[30] T. Das, Y. Zhong, I. Stoica, and S. Shenker, “Adaptive stream processing
using dynamic batch sizing,” in Proc. of the ACM Symposium on Cloud
Computing. ACM, 2014.

[31] L. Hu, K. Schwan, H. Amur, and X. Chen, “Elf: efficient lightweight
fast stream processing at scale,” in Proc. of the 2014 USENIX Annual
Technical Conference. USENIX, 2014.

