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Resource Allocation for Personalized Video
Summarization

Fan Chen, Christophe De Vleeschouwer and Andrea Cavallaro

Abstract—We propose a hybrid personalized summarization
framework that combines adaptive fast-forwarding and content
truncation to generate comfortable and compact video sum-
maries. We formulate video summarization as a discrete opti-
mization problem, where the optimal summary is determined by
adopting Lagrangian relaxation and convex-hull approximation
to solve a resource allocation problem. To trade-off playback
speed and perceptual comfort we consider information associated
to the still content of the scene, which is essential to evaluate the
relevance of a video, and information associated to the scene
activity, which is more relevant for visual comfort. We perform
clip-level fast-forwarding by selecting the playback speeds from
discrete options, which naturally include content truncation as
special case with infinite playback speed. We demonstrate the
proposed summarization framework in two use cases, namely
summarization of broadcasted soccer videos and surveillance
videos. Objective and subjective experiments are performed to
demonstrate the relevance and efficiency of the proposed method.

Index Terms—Personalized Video Summarization, Resource
Allocation, Adaptive Fast-Forwarding

I. I NTRODUCTION

Video summarization techniques are relevant for various ap-
plications, such as TV program/movie production, surveillance
and e-learning [1] and may address different purposes, includ-
ing fast browsing [2], information retrieval [3][4], behaviour
analysis [5] and entertainment [6]. In order to generate from
the source video(s) a well-organized and concise version that
best satisfies the interest of a user, the most important require-
ment of summarization is comprehensibility. Other important
criteria to judge summarization quality are personalization,
visual comfort and the quality of story-telling. Personalization
is essential for satisfying various user tasks and narrative
preferences. Visual comfort increases when the flickering
caused by abrupt scene transitions is reduced. The quality
of story-telling depends on the integrity of the story with
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the inclusion of the most significant moments and the con-
tinuity of the summaries. We encapsulate these requirements
into three properties:completeness(evaluating the amount of
clearly presented events of interest in the summary),comfort
(which decreases in the presence of flickering and abrupt story
transitions) andeffectivenessof time allocation (the relevance
of the playback time assignment).

Video browsing can be seen as an information commu-
nication process between the video producer and the audi-
ence. Two kinds of information need to be considered for
producing semantically relevant and enjoyable summaries,
namely information associated to the still content of the scene
and information associated to the scene activity. Information
associated to thestill content of the scene helps evaluating
the importance of frames for producing semantically relevant
summaries. Information associated to thescene activityis
associated to the visual stimulus offered to the audience.
An audience will get bored with a video with few stimuli
(e.g., a long surveillance video without events), and will be
overstressed with a video with an amount of stimuli beyond
his visual comfort limits. This information is thus important
in determining the attraction and enjoyment of summaries.

Conventional content-truncation-based methods, such as
presenting a sequence of key frames or a sequence of mov-
ing images (video skimming), mainly maximize the trans-
ferred information associated to the still content during a
constrained browsing period (e.g., using fast-browsing of
highlights [7][8]). However, information extracted from still
contents cannot model complex story-telling with strong de-
pendency in its contents when the summary is presented as
a video. As for visual comfort, an attractive and entertaining
video content cannot be produced by simply collecting the
most significant key frames. The amount of stimuli during
continuous browsing of naive key frames would be too large
due to significant frame differences [7]. Video skimming
provides more visually comfortable results by reducing the
amount of stimuli at the cost of sacrificing the information
associated to less relevant events.

Conventionalfast-forwarding-based methodsmainly sub-
sample frames based on information associated to scene ac-
tivity, defined via optical flow [9] or the histogram of pixel
differences [10]. By only evaluating changes in the scene, it
is difficult to assure the semantic relevance of the summary.
The application of pure fast-forwarding-based methods is also
constrained by the fact the highest tolerable playback speed
is bounded [11]. According to the observations in visual
perception, attentional processes (defined by target selectivity,
e.g., identifying a suspicious person in surveillance) usually
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TABLE I
COMPARISON OF STATE-OF-THE-ART METHODS FOR VIDEO SUMMARIZATION

Content Presentation Task Principles Approach Ref. Content Type

Key-frame extraction

Fast-browsing
Feature-based Indexing

Unsupervised Clustering [13]
GenericFuzzy Clustering [2]

Discriminative Analysis [14]
Semantic-based Indexing Attention-based [15] Generic
Sub-sampling for Min. Distortion MINMAX Optimization [8][16] Generic

Content-retrieval
Feature-based Indexing Compressed Domain Retrieval [17] Generic
Object-based Indexing Spatial/Temporal Sampling [3] Surveillance
Semantic-based Indexing Multi-modal Meta-data [18] Soccer

Behaviour analysis Object-based Indexing Action Key Poses [18] Human Action

Video skimming

Fast-browsing

Fixed Skimmed Length Motion Attention [19] Generic
Rule-based Creation Audio/Video Skimming [20] Generic
Filtering-based Creation Priority Curve Algorithm [21] Soccer
Story-based Creation Semantic Relation Graph [22] Generic

Content-retrieval
Feature-based Indexing Shot-classification [23] Broadcasted News
Object-based Indexing Region Association in a Shot [24] Generic
Semantic-based Indexing Lexicon-driven Retrieval [25] Generic

Behaviour analysis Pattern Classification Tactic Analysis [5] Soccer

Video Enjoyment
Temporal Alignment Audio/Video Synchronization [6] Soccer
Rule-based Creation Cinematic Rules [26] Soccer

Fast-forwarding
Fast-browsing

Feature-based Sub-sampling Optical-flow-based [9] Surveillance
Information-theory-based [10]

Rule-based Sub-sampling Smart-player [27] Generic
Sub-sampling for Min. Distortion Key-frame-based [28] Generic

Content-retrieval Sub-sampling for Max. Similarity Generative-model-based [29] Generic

Video condensation Browsing/Retrieval Optimal Space Allocation
Ribbon Carving [30]

SurveillanceVideo Synopsis [31]
Online Video Condensation [32]

Video skimming and
fast-forwarding

Browsing/Enjoyment Optimal Allocation
of Playback Time

Resource Allocation Proposed
Method

Surveillance
/Team-sport

have even lower limits than non-attentional processes (without
target selectivity) [12]. Under the request of a highly compact
summarization, less relevant contents will need to be presented
with too high playback speeds thus producing annoying visual
artifacts, such as flickering [9] [10].

To overcome these limitations, we propose an approach that
truncates contents with intolerable playback speeds and saves
time resources for better rendering the remaining contents.
We design a hybrid summarization method combining content
truncation and adaptive fast-forwarding to provide continu-
ous and complete summaries with improved visual comfort.
Moreover, we provide a new perspective in understanding
the motivations behind truncation-based and fast-forwarding-
based summarization techniques. We select playback speeds
from a set of discrete options, and introduce a hierarchical
summarization framework to find the optimal allocation of
time resources into the summary, which performs nonlinear
computation of overall information in the summary and en-
ables various story-telling patterns for flexible personalized
video summarization. Other contributions include subjective
observations on suitable playback speeds and a method for hot-
spot detection by automatic extraction of group interactions
from surveillance videos.

The paper is organized as follows. After a brief review of
previous video summarization methods in Section II, in Sec-
tion III we discuss a criterion that trades-off fast-forwarding
and visual comfort. In Section IV we introduce the proposed
summarization framework, along with the optimization tech-
niques for global story organization. Section V discusses the
application of the summarization framework to two use cases.
Finally, we present experimental results in Section VI whereas

Section VII concludes the paper.

II. RELATED WORK

We classify video summarization methods in three cate-
gories, based on their content presentation techniques: reor-
ganization of story-telling, video condensation and adaptive
fast-forwarding.

Reorganization of story-tellingtruncates less relevant con-
tent or changes its temporal order. Most methods based on
key-frame extraction and video skimming belong to this cate-
gory [8][13]. Early techniques extract a short video sequence
of a desired length to maximize the included information,
which results in minimizing the loss due to the skipped frames
and/or segments. These methods generally differ in the defi-
nition of the similarity between the summary and the original
video, and in the techniques used to maximize this similarity.
They include methods to cluster similar frames/shots into key
frames [2][7], and methods for constrained optimization of
objective functions [8][16]. Other methods measure precision
and recall rates of different events in soccer based on cinematic
rules [26] or sound analysis [33]. Fast-forwarding methodsthat
perform conventional key-frame extraction by minimizing the
reconstruction error also belong to this category [28]. Since
they attempt to preserve the initial content as much as possible,
these methods are well suited to support efficient browsing.
The motivation of end-users in viewing summaries is not
limited to fast browsing of all clips in the whole video content.
A summary can also be organized to provide information
to special users, such as helping the coach to analyse the
behaviour of players from their trajectories [5]. Summarization
is also used for organizing music soccer sport videos, based
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on the synchronization between video and music content [6].
Continuity of clips is important for story-telling [21]. Story
organization is also considered via a graph model for man-
aging semantic relations among concept entities [22]. For
broadcasted soccer videos, personalized story-telling can be
organized by assigning event significance [34] and extracting
specified view types [35]. Summarization framework exists for
enhanced personalization of story-telling to satisfy bothnar-
rative (including continuity, redundancy and prohibited story
organization) and semantic audience preferences (i.e. favourite
events/objects) [36][37]. Personalized summarization isalso
implemented as a ”query” function to extract objects/events
preferred by the user, via textual descriptors and, optionally,
with interaction [3][4].

Video condensationconsiders the efficient rendering of
object activities in summaries by embedding sequences of
video objects into the seams of the video. A ribbon-carving-
based method considers just the moving objects (rather thana
whole frame) as the smallest processing unit [30]. Moving
objects are first isolated from the videos and put into an
object database. According to the requirements of the users,
interesting objects are picked up from the database [31] or
created on-line [32], and their activities are rendered in a
synopsis video. However, video condensation fails to preserve
the temporal order and relationship of multi-object activities.

Adaptive fast-forwardingcondenses the video by adjusting
the playback speeds. An intuitive consideration in adaptive
fast-forwarding is to equalize the motion complexity in terms
of optical flow in the summaries [9]. A fast-forwarding method
based on the normalized intensity of motion vectors was
also considered along with user specified target playback
speeds [27]. However, motion vectors are not always consistent
with scene complexity because of different zoom factors and
because of the noise generated in the motion estimation
phase. Summarization can also be interpreted as a query
process, where the playback speed is adjusted according to
the similarity between the frame and the target content [29].
Adaptive fast-forwarding can be considered from the per-
spective of information theory, with the goal of equalizing
the scene complexity, represented by the statistical distance
(alpha-divergence) between the frame difference and the learnt
noise model [10]. Various visualization techniques for fast-
forwarded summaries can be used [38]. Pure fast-forwarding
is not suitable for highly compact summarization (e.g., a 10-
minute summary of a 24-hour surveillance video), due to
the maximum tolerable playback speed upper-bounded by the
limitations of both visual perception and memory [11].

Table I presents a summary of related works based on
content presentation, task, approaches and target contenttypes.

III. A C RITERION TO BALANCE PLAYBACK SPEED AND

V ISUAL COMFORT

In this section, we discuss video summarization and derive
the corresponding mathematical criterion that enables us to
balance playback speed and visual comfort.

Let a source videoV be a sequence ofN frames evenly
sampled,V = {It|t = 1, · · · , N}. It represents the image data

in the tth frame. GivenuL as the user-specified constraint on
the summary length, we formulate the summarization process
as finding a sequencêV = {(It, st)|t = 1, · · · , N ; st ∈
[0 1]} subject to

∑N
t=1 st = uL. st is the adjusted temporal

distance (i.e. the inverse of playback speed) between the
(t−1)th andtth frames, and is normalized by the unit sample
interval in the source video.st = 0 stands for infinite playback
speed, which is equivalent to content truncation.

Conventional content truncation only allows to takest from
{0, 1}, and searches for a subset of frames that maximizes the
overall information

V̂
∗
C = argmax

V̂

N
∑

t=1

stft, s.t.
N
∑

t=1

st = uL, (1)

whereft is the information associated to the still content in
the tth frame.

Adaptive fast-forwarding allows real values ofst from
[0 1]. Let at be the information associated to scene activity
in the tth frame of the source video. Adaptive fast-forwarding
findsst that makes the adjusted informationat/st proportional
to the pre-specified target strength with the highest comfort Cc

t

[9][10]:

∀t,
at
st

∝ Cc
t ⇒ st ∝

at
Cc

t

. (2)

This maximizes the visual comfort during video browsing in
terms ofCc

t , and is computationally equivalent to

V̂
∗
F = argmax

V̂

N
∑

t=1

[

at
Cc

t

]1/2

[st]
1/2

, s.t.
N
∑

t=1

st = uL, (3)

where1/2 assures linear proportionality in Eq.2.
The criterion in Eq.1 only considers the information as-

sociated to still content and fails to handle the redundancy
in duplicated content and does not consider visual comfort.
The criterion in Eq.3 considers the information associatedto
scene activity, which is not always consistent with the semantic
relevance of the summary. Hence, it is necessary to include
both types of information to produce semantically relevantand
comfortable summaries. We therefore propose the following
unified criterion

V̂
∗ = argmax

V̂

N
∑

t=1

[ft]
α1

[

at
Cc

t

]α2

sβt , s.t.
N
∑

t=1

st = uL. (4)

Note that both Eq.1 and Eq.3 are abbreviated special cases of
the above criterion.

Without loss of generality, letα1 = α2 = α to simplify
the discussion. For simplicity of notation, letθt = ft

at

Cc
t
.

In Fig. 1(a), we show the behaviour of the above criterion
under uL = 1, α = 0.5 and variousβ, in an example
case ofN = 3 frames with different information values
θ1 = 1, θ2 = 2, θ3 = 3 to investigate the distribution ofst. For
β < 0, it reaches infinity whenst approaches0, which takes
place when contents are truncated, and becomes constant at
β = 0, which makes the summarization problem irrelevant. A
longerst will be assigned to frames with higher information
when0 < β. Whenβ ≥ 1, it forms a convex function. In this
case, it will simply assignst = 1 to frames in the descending
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(a) Criterion values underα = 0.5, uL = 1
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(b) Optimal solutions of{st} underβ = 0.5, uL ∈ (0, 3]

Fig. 1. The behaviour of our criterion in a simple case of three frames
θ1 = 1, θ2 = 2, θ3 = 3. a) a balanced distribution of playback time is
achievable under0 < β < 1. The rectangle plane is for

∑
3

t=1
st = uL = 1

with the color being the benefit value; b) the distribution can be controlled
by tuning α and β. Each dot in the curve plane is one optimal solution of
playback time{s1, s2, s3}, with the color being its correspondingα;

order ofθt, until the time constraintuL is reached, which in
fact implements the conventional key-frame extraction (e.g.,
Eq.1). Only when0 < β < 1, it forms a concave optimization
function, and distributes the playing time well into frames.

We rewrite Eq.4 into an unconstrained form with a Lagrange
multiplier γ

V̂
∗ = argmax

V̂

[

N
∑

t=1

[

ft
at
Cc

t

]α

sβt

]

+ γ(

N
∑

t=1

st − uL). (5)

By partially differentiating it w.r.t. eachst and setting it to
zero, we derive the optimal solution ofst under0 < β < 1 as

st ∝

[

ft
at
Cc

t

]
α

1−β

. (6)

Using the above example, we plot the relationship betweenuL

and its optimal distribution ofst under differentα values in
Fig. 1(b). Whenα = 1−β (e.g., Eq.3), the optimalst will be
linearly proportional toθt, as shown by the three projections
on XY, YZ, XZ planes. Whenα > 1−β, the criterion favours
assigning higherst to frames with a higherθt. The higherα,
the closer the vertical axiss3. Whenα < 1− β, the criterion
provides more even distribution in all frames. The smallerα,
the closer the lines1 = s2 = s3 (Fig. 1(b)).

There are two possible choices to specifyCc
t in Eq.4 without

the need to explicitly know its exact value: 1) LetCc
t = at,

:video clipsComplete Story 

Video Segments

Candidate 
Sub-summaries

Generated Summary

Construct

CostsBenefits

Construct Construct Construct
21 13
3 2

2 23 1
2 2 1 2 2 1

1 2 31 22 31 4 1

3 12

221

x x

2 1
3 2 2 2 3 1

1 2 3 3
1 2

13 3
1 1 2

:Play Speedx

V

V
Fig. 2. Conceptual diagram of the overall proposed summarization process
envisioned in a divide and conquer paradigm.

which implicitly includes the video stimuli, by assuming that
the original video is already optimal in its strength of stimulus;
2) Let ∀t, Cc

t = Cc, which forces all frames to have equalized
target stimuli, whereCc

t is included into the normalization
term in Eq.6. The former choice is more suitable for profes-
sionally produced videos by experts (e.g., broadcasted videos)
but fails in controlling visual stimuli in unedited videos (e.g.,
surveillance videos with sparse activities). In order to include
video stimuli explicitly, we adopt the latter choice.

One major limitation of the criterion in Eq. 4 (also in
Eq.1 and Eq.3) is its basic assumption on the linear addi-
tivity of information F , which does not always hold (e.g.,
when handling complicated story-telling with strong internal
dependency or considering the emotional involvement of the
audiences), and thus constraints its applications. Instead of
directly summarizing the video based on Eq.4, we propose
a resource allocation framework, which takes Eq.4 as the
base criterion but introduces the non-linearity by performing
a hierarchical summarization, as discussed in the next section.

IV. RESOURCEALLOCATION FRAMEWORK

Our resource-allocation-based framework interprets the
summarization problem as finding the optimal allocation of du-
ration resourcesuL into video segments, according to various
user preferences. We design the whole process using the divide
and conquer paradigm (Fig.2(a)). The whole video is first cut
into short clips by using a shot-boundary detector. These short
clips are then organized into video segments. A sub-summary
or local story defines one way to select clips within a segment.
Several sub-summaries can be generated from a segment: not
only the content, but also the narrative style of the summary
can be adapted to user requirements. By tuning the benefit
and the cost of sub-summaries, we balance in a natural and
personal way the semantics (what is included in the summary)
and the narrative (how it is presented to the user) of the
summary. The final summary is formed by collecting non-
overlapping sub-summaries to maximize the overall benefit,
under the user-preferences and duration constraint.

This hierarchical framework also helps to overcome the
limitation posed by the linear additivity of information/benefit.
Each segment is complete in describing an activity/event. The
information/benefits of the segments are supposed to be lin-
early additive. The video clip is our minimum summarization
unit, which means that its frames are handled together. Non-
linear accumulation of information among clips is processed
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with our non-linear local story organization described in
Section IV-B. Non-linear accumulation of information within
a clip is computed by its benefit as discussed in Section V.

The proposed framework is applicable to any segmented
videos with information values forft and at, independent
from the detailed definition and implementations of those two
notions. We first discuss the summarization framework by
assuming the availability of video segments and information
values. Specific methods for video segmentation and informa-
tion computation will be given along with its application in
two use cases in the Section V.

A. Preliminaries

Let the video be cut intoNC clips, with the ith clip Ci
beingCi = {t|t = tSi , · · · , t

E
i }. tSi andtEi are the indices of its

starting and ending frames. These video clips are grouped into
M segments. A set of candidate sub-summaries is considered
for each segment, from which at most one sub-summary is
selected into the resulting summary. We denote thekth sub-
summary of themth segmentSm as amk, which is a set of
playback speeds for all its clips, i.e.amk = {vki|i ∈ Sm}.
vki is the playback speed assigned to theith clip if the kth

sub-summaryamk is adopted. The summary is then denoted
asV̂ = ∪M

m=1 ∪i∈Sm
{(ft, st = 1/vki)|t ∈ Ci}.

Let bm = {bi|i ∈ Sm} be the list of base benefits for all
clips inSm. Our major task is to find the set of sub-summaries
that maximizes the total pay-off

V̂
∗ = argmax

V̂

B({amk}|{bm}), (7)

subject to
∑M

m=1|amk| ≤ uL. We define|amk| as the overall
length of summaryamk,

|amk| =
∑

i∈Sm

tEi − tSi
vki

. (8)

The overall benefit of the whole summary is defined as
accumulated benefits of all selected sub-summaries:

B({amk}|{bm}) =

M
∑

m=1

Bm(amk), (9)

with Bm(amk) being defined as a function of the user prefer-
ences, of the highlighted moments, and of the playback speeds
as described in the following.

B. Local Story Organization

One major advantage of the resource allocation framework
is that it allows highly personalized story organization, which
is achieved via flexible definition of benefits. We define the
benefit of a sub-summary as

Bm(amk) =
∑

i∈Sm

Bi(vki)B
P
mi(amk), (10)

which includes accumulated benefits of selected clips.Bi(vki)
computes the base benefit of clipi at playback speedvki,

Bi(vki) = bi(1/vki)
β , (11)

with

bi =

tEi
∑

t=tS
i

(ftat)
α (12)

being the base benefit of clipi. BP
mi(amk) evaluates the extra

benefits by satisfying specific preferences:

BP
mi(amk) = PO(vki, u

O)PC
mki(u

C)PF
mk. (13)

PO(vki, u
O) is the extra gain obtained by including the user’s

favourite objectuO, specified through an interactive interface,

PO(vki, u
O) =

{

φ, vki <∞, ∃t ∈ Ci, u
Oexists inIt,

1.0, otherwise.
(14)

φ(> 1.0) is a parameter to control the strength of emphasizing
the favourite object in the summary. We favour a continuous
story-telling by definingPC

mki(u
C)

PC
mki(u

C) = 1 + uC(2− δ 1
vkivk(i+1)

,0 − δ 1
vkivk(i−1)

,0), (15)

where δa,b is the Kronecker delta function, anduC is fixed
to 0.1 in our experiments. Satisfaction of general production
principles is also evaluated throughPF

mk, which takes 1 for
normal case and0.001 for forbidden cases (or a value that
is small enough to suppress this case from being selected),
to avoid unpleasant visual/story-telling artifacts (e.g., too-
short/incomplete local stories). In summary, the current frame-
work supports user preferences on time durationuL, favourite
objectuO and story continuityuC.

C. Global Story Organization

The global-duration resource is allocated among the avail-
able sub-summaries to maximize the aggregated benefit (Eq.7).
Under strict constraints, the problem needs to rely on heuristic
methods or dynamic programming to be solved. However,
when relaxation of constraints is allowed, Lagrangian opti-
mization and convex-hull approximation can be considered to
split the global optimization problem in a set of simple block-
based decision problems [39][40]. The convex-hull approxi-
mation restricts the eligible summarization options for each
sub-summary to the (benefit, cost) points sustaining the upper
convex hull of the available (benefit, cost) pairs of the segment.
Global optimization is obtained by allocating the available
duration among the individual segment convex-hulls [41]. This
results in a computationally efficient solution that considers
a set of candidate sub-summaries with various descriptive
levels for each segment. Fig.3 summarizes the summarization
process based on solving a resource allocation problem.

We solve this resource allocation problem by using the
Lagrangian relaxation [41]: ifλ is a non-negative Lagrangian
multiplier and{k∗} is the optimal set that maximizes

L({k}) =

M
∑

m=1

Bm(amk)− λ

M
∑

m=1

|amk| (16)

over all possible {k}, then {amk∗} maximizes
∑M

m=1Bm(amk) over all {amk} such that
∑M

m=1|amk| 6
∑M

m=1|amk∗ |. Hence, if {k∗} solves the unconstrained
problem in Eq.16, then it also provides the optimal solution



IEEE TRANS. ON MULTIMEDIA, VOL. XX, NO. 1, JANUARY 20XX 6

Create 
Convex Set

Be
ne

fit

Length Length

Be
ne

fit

Clip 2 (1.5x)+Clip 3(1x)

Clip 1 (1x)

Clip 1 (1x) + Clip 3 (1.5x)

Clip 1(1x)+ Clip 2(1x) +¡­+Clip N(1x)

All possible sub-summaries

Benefit/Cost
Graph

Summarization by solving constrained resource allocation problem

Segment-wise generation of sub-summary and computation of benefit/cost

Be
ne

fit

Length

Segment 1

Be
ne

fit

Length

Segment i

Be
ne

fit

Length

Segment K

Fig. 3. Lagrangian relaxation and convex-hull approximation are adopted
to solve the resource allocation problem, which restrict the eligible summa-
rization options to the convex hulls of benefit-to-cost curves of the segments,
where the collection of points from all convex-hulls with a same slopeλ
produces one optimal solution under the corresponding summary length.

to the constrained problem in Eq.7, withuL =
∑M

m=1|a
∗
mk|.

Since the contributions to the benefit and cost of all segments
are independent and additive, we can write

M
∑

m=1

Bm(amk)−λ

M
∑

m=1

|amk| =

M
∑

m=1

(Bm(amk)−λ|amk|). (17)

From the curves ofBm(amk) with respect to their corre-
sponding summary length|amk|, the collection of points
maximizingBm(amk)−λ|amk| with a same slopeλ produces
one unconstrained optimum. Different choices ofλ lead to
different summary lengths. If we construct a set of convex
hulls from the curves ofBm(amk) with respect to|amk|,
we can use a greedy algorithm to search for the optimum
under a given constraintuL. The approach is depicted in Fig.3
and explained in details in [40]. In short, for each point in
each convex hull, we first compute the forward (incremental)
differences in both benefits and summary-lengths. We then
sort the points of all convex-hulls in decreasing order ofλ,
i.e. of the increment of benefit per unit of length. Given a
length constraintuL, ordered points are accumulated until the
summary length gets larger or equal touL. Selected points on
each convex-hull define the sub-summaries for each segment.

Fig.4 shows the clip benefitBi(v) w.r.t. 1/v under various
β andbi values, so as to analyse the behaviour the clip interest
defined in Eq.11 in the above optimization process. Fig.4(a)
reveals that the whole curve is convex when0 < β < 1, which
thus enables various options of playback speeds to appear in
the benefit/cost convex hulls. In Fig.4(b), we found that the
clip with a higher base interestbi has the same slope value
at a slower playback speed. Accordingly, in the above greedy
algorithm, slower playback speeds will be first assigned to
semantically more important clips in the sense of both high
information level and high complexity.

Inclusion of fast-forwarding options significantly increases
the number of possible sub-summaries. Compared to [36][37]
where naive enumeration of all combinations in a segment is
adopted, we consider a sub-optimal way to build the convex
hulls. Specifically, we consider the possibility to divide along
segment into shorter sub-segments, and build the convex-hull

a) Base benefit under various  b) Base benefit under various

Fig. 4. Clip benefit (Eq.12) also complies with convex-hull approximation
and the greedy algorithm adopted for solving the resource allocation problem.

from the convex-hulls of the sub-segments, which provides
accurate results when we omit the benefit defined in Eq.13,
according to Theorem 4.1. Now we check the terms defined
in Eq.13.P(vki, u

O) is an extra weight computed individually
for each clip, which is dividable into sub-segments.PC

mki(u
C)

assigns extra weights when consecutive clips are selected,
which could be divided into two cases: consecutive clips
within each sub-segment are computed first; then connective
clips between different sub-segments are considered along
with PF

mk when merging the sub-segments.

Definition Let the benefit-length curve of themth segment be
B(x) = max|amk|=x Bm(amk). Its convex envelop is defined
as B̂(x), which satisfies

• Envelop:

∀x, B̂(x) ≥ B(x); (18)

B̂(x) = argmin
B̂(x)

∫

x

|B̂(x)− B(x)|dx; (19)

• Convexity:∀x1 < x, x2 > x,

B̂(x) ≥
x2 − x

x2 − x1
B̂(x1) +

x− x1
x2 − x1

B̂(x2). (20)

A point x∗ is called a support point at the convex hullB̂(x)
if it satisfiesB̂(x∗) = B(x∗).

Theorem 4.1:Assume that we have a dividable benefit
functionB(x), i.e.B(x) = Ba(xa)+Bb(xb) with x = xa+xb.
If at the support pointx∗, we have B̂(x∗) = B(x∗) =
Ba(x

∗
a) + Bb(x

∗
b ), thenx∗a andx∗b are also support points in

both sub-segments.
Proof: Assuming thatx∗a is not a support point in the

convex hull ofBa(x
∗), we have∃xa1 < x∗a, xa2 > x∗a,

Ba(x
∗
a) < λaBa(xa1) + (1− λa)Ba(xa2), (21)

λa =
xa2 − x∗a
xa2 − xa1

. (22)

Hence, we have

B̂(x∗) = Ba(x
∗
a) + Bb(x

∗
b )

< λaBa(xa1) + (1− λa)Ba(xa2) + Bb(x
∗
b )

= λaB(xa1 + x∗b ) + (1 − λa)B(xa2 + x∗b )

≤ λaB̂(xa1 + x∗b ) + (1 − λa)B̂(xa2 + x∗b ), (23)

which is contradictory to its convexity. Therefore, all support
points in the convex hullB̂(x) must be constructed from
support points in the convex hullŝBa(xa) andB̂b(xb).
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V. USE CASES

We focus on two use cases: the summarization of unedited
videos captured by fixed cameras (surveillance); and the sum-
marization of produced contents with moving cameras and var-
ious shot types (broadcasted sport). Unlike previous methods
that considered low-level features only, e.g., motion vectors [9]
or frame differences [10], we consider video tracking and hot-
spot detection on surveillance videos, and the combinationof
player tracking with detection of camera motions and various
production actions for processing broadcasted soccer videos.

A. Summarization of Surveillance Videos

As video surveillance aims to monitor the activities of
objects in the scene, the larger the number of moving objects,
the more relevant the scene is expected to be; with equal
number of objects, the closer the objects, the slower the
playback speed should be. We are thus motivated to link group
interactions, defined as stable and continuous spatial proximity
between objects, to the adaptive fast-forwarding. Assuming
that all objects intend to keep their individual moving status
as long as possible [42], group interactions also provide cues
to locate spatial-temporal hot-spot events, which facilitates the
clip division and video segmentation as well as assignment of
clip benefits. We detect group interactions from trajectories
extracted by video tracking.

Let us denote the object on thelth trajectory at thetth

frame with olt = {alt,xlt}. alt is for the availability of a
trajectory, which takes 1 when it appears in the present frame
and takes 0 otherwise.xlt is its position. At thetth frame, we
group all moving objects asGt = {olt|alt = 1}. We assume
that the movement of each object is driven by the intention
to interact with other objects, and define his interest in
interacting with an object at positionx as a velocity-dependent
function Ilt(x) shown in Fig.5(a). The group interaction is
then defined as the behaviour of multiple objects motivated by
unidirectional/mutual interests, and is modelled by a directed
graph, with the edges being the mutual interests, as shown
in Fig.5(a). For objects having no high interests on other
objects, we simply let it focus on a virtual objectoV with
fixed interestIT. Limiting each object to mainly focus on
only one target object, we solve the object grouping in each
frame by finding the spanning tree of this graph with the
maximum interests. Inspired by online object tracking, we
obtain group interactions in three steps: Grouping objectsinto
unit interactions at each frame; temporal association of unit
interactions; and refinement of detected interactions by post-
smoothing [43].

Let glt be the index of the group interaction thatolt belongs
to andglt = 0 if olt is not joining any interaction. At thetth

frame, we form a L-dimensional vector for all the L trajectories
It = [Itl|l = 1, · · · , L], where Itl is the overall interest it
receives from all interacting neighbours

Itl =











alt

[

1 +
gmt=glt
∑

omt∈Gt\olt

amtImt(xlt)

]

, glt 6= 0,

alt, glt = 0.

(24)

Speed Vector Main Interest Map

Low Speed Medium Speed Rapid Move

Side Interest Map

Implementation

1.35m
/s

5.12m

5.1
2m

(a) Velocity-dependent Interest for Performing Interaction
1          2          3       4        5       6

1       0 .00,    0.12     0 .04    0 .11    0 .43   0 .62    
2       0 .32     0 .00     0 .00    0 .05    0 .73   0 .50 
3       0 .04     0 .00     0 .00    0 .75    0 .00   0 .01
4       0 .14     0 .04     0 .56    0 .00    0 .04   0 .50
5       0 .48     0 .60     0 .00    0 .02    0 .00   1 .38 
6       0 .59     0 .32     0 .00    0 .03    1 .13   0 .00
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(b) Graph-theory based Extraction of Unit Interaction
Fig. 5. Continuous spatial proximity among moving objects is extracted as
group interactions. a) When moving faster, an object gets preferred directions
of interaction; b) We model the mutual interest among multiple objects with
a graph, and extract the units of interacting objects by finding the maximum
weight spanning tree.

We cut the video into short clips at the boundaries of group
interactions, and then group clips containing the same inter-
actions as a segment. The two kinds of information in thetth

frame are defined as

ft = |It|, (25)

at = |It − It−1|. (26)

B. Summarization of Broadcasted Soccer Videos

We divide the soccer video into clips, according to the
detected production actions, such as position of replays, shot-
boundaries and view types. Instead of using (complex) se-
mantic scene analysis tools, we segment the video based
on the monitoring of production actions by analysing the
view-structure [37]: We detect replays from producer-specific
logos [44], extract shot-boundaries with a detector proposed
in [45] to better deal with smooth transitions, and recognize
the view-type by using the method in [26]. As in [36], we
automatically locate hot-spots by analysing audio signals[46],
whose (change of) intensity is correlated to the semantic
importance of each video segment. We consider the average
information associated to still contentsft and that associated
to scene changingat evaluated on the clip level. Accordingly,
we compute the approximated form of clip benefit in Eq.12,

bi = |tEi − tSi |
(

ftat
)α
. (27)

Beyond a chronological and complete (using far views)
presentation of the game, the professionals also attempt to
involve the audience emotionally by highlighting the dominant
player with close-up views and emphasizing the most exciting
moment with replays [47]. The benefit of each framet within
each segment is thus evaluated from its relevance to the game
fG
t and its level of emotional involvementfE

t . The frame
informationft is computed as

ft = 0.25fE
t + 0.75fG

t . (28)

We use the above fixed weight to favour game related contents
in the summary. In practice, it is very complicated to define
the fE

t and fG
t metrics. This could for example be done by

identifying the dominant player from a set of consecutive
close-up views or by confirming the replay to its corresponding
far-view clips taken at different camera positions. Instead, we
consider an heuristic approach that roughly distributes the
importance of detected hot-spots into the clips in a segment
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Fig. 6. The base benefit of a clip is evaluated from the game relevance and
emotional level, defined as functions of clip view-types. The decaying process
is modelled by hyperbolic tangent function.tGm, tHm, tRm are starting times of
game play, hero scene, and replay in themth segment, respectively.

based on the general production rules: The dominant player is
usually the last to be presented before an important action,but
the first to be shown after an action; The close-up views and
replays are usually inserted right after an important action,
which suggests that the closer a far view is to the close-up
view or the replay clip, the more relevant it is [47]. Hence,
we definefG

t and fE
t by propagating the significance of the

detected hot-spot event according to the view type structure of
the segment, as depicted in Fig.6. The decaying process was
modelled by using the hyperbolic tangent function, becauseit
is bounded and is integrable, thus simplifying the computation
of ft. Since our allocation of resources directly depends
on the proposed model, our experimental results tend to
confirm the relevance of the adopted model indirectly via the
subjective assessment of users satisfaction about the generated
summaries. Note that if a more accurate model was developed
regarding the emotional and game interest of a video, e.g.,
based on the affective computing literature [48][49], it would
be straightforward to integrate it within the framework, aslong
as the model assigns benefits in a way that is additive over
video segments (i.e. the benefit associated to a segment is
independent from other segments).

Information associated to scene changingat is defined on
the fluctuation of the camera view or the diversified movement
of multiple players. Given a clip, the fluctuation of its camera
view τM is evaluated by the average standard deviation of the
motion vectors in the clip, while the complexity of diversified
player movementsτP is defined as the average standard
deviation of players’ moving speeds in the clip. As shown in
Fig.7, the average informationat is then defined as a weighted
sum of the above two terms,

at ∝

{

τM + τP, far view
τM, otherwise

(29)

which is normalized to[0 1] for far-view and non-far-view
clips independently. Using the standard deviation avoids the
need of accurate compensation of player speed with respect
to camera motions.

We only allow normal speed for a replay clip in local story

Average Motion 
Vectors

Soccer Video

Grassland 
Extraction

Blob-tracking
Compute Standard 

Deviation of 
Players Moving 

Direction in a Clip

Compute 
Standard Deviation 
of Camera Moton 
Direction in a Clip

Weighted 
Sum

Average 
stimulus 
of the clip

Fig. 7. We evaluate the average stimulus in a far-view clip byestimating
information associated to scene activity from camera motion and player
motion, which are computed on average motion vector in the grassland region
and tracked player positions.

organization. If time resources to render a replay are available,
we present the action in the clearest way.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

We use a broadcasted soccer video and two surveillance
videos to validate the performance of our framework. The
soccer video is3 hours long with a list of50 automatically
extracted audio hot-spots. The two surveillance videos in-
clude a 7-minute indoor surveillance video from the JAIST
dataset [50] and a 14-minute outdoor surveillance video from
the Behave dataset [51], both with various group activities
between multiple persons. Seven different speed options, i.e.
1x, 2x, 4x, 6x, 8x, 10x, and+∞ (for content truncation1),
are enabled in the current implementation, so as to provide
comparative flexibility in fast-forwarding control to those
methods with continuous playback speeds. Here,ax stands
for the a times of the normal playback speed. In the multi-
view JAIST dataset, we performed conventional tracking after
detection methods and achieved accurate (∼ 95%) tracking
results [52][53]. Detailed quantitative results and demo videos
can be found in [54]. In the single view Behave dataset,
we use the trajectories provided by the dataset, where many
conventional tracking methods are also available [55].

The proposed framework aims at focusing on summarization
with adaptive fast-forwarding and semantically relevant and
personalized story telling. Its performance is explored through
a comparative analysis with state of the art methods. Espe-
cially, we compared the behaviour of our proposed method to
three methods, i.e.Peker et al.[9], Höferlin et al. [10] and
Naive fast-forwarding.

Peker et al. [9] achieve adaptive fast-forwarding via constant
activity sub-sampling

s∗t =
rt

rtarget
st, (30)

where the complexity of activityrt is measured by average
motion vector magnitude. We estimated the motion vector by
the Horn-Schunck method as originally applied by Peker et
al., and used the implementation in OpenCV.

1When content truncation is not desired in some surveillancesystems, we
could also replace+∞ with the maximum fast-forwarding playback speed
allowed in the deployed system, e.g.,64x.
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Fig. 8. Compared to exhaustive combination, our approximated computation
provides the same convex hulls on two tested segments, with significantly less
tested combinations. The top of each sub-figure gives the view structure of the
segment along with the clip boundaries. Each vertical bar inthe middle and
bottom of the sub-figure represents one considered combination. The resultant
convex hull is marked in the red curve, and the support sub-summaries in red
circles. Five speed options are considered, namely, 1x, 2x,4x, 8x, and +∞.

Höferlin et al. [10] determine the activity level by computing
the alpha-divergence between the luminance difference of two
consecutive frames and the estimated noise model. A bigger
divergence value stands for a larger distance between the
current frame difference and those caused by the background
noise. The adjusted sampling intervals∗t is then set to be
linearly proportional to the activity level. We learnt the noise
model from several training clips of background scenes with-
out moving foreground objects and camera motions. Alpha
was set to1, which results in the Kullback-Leibler divergence
and was most discussed in [10].

Naive fast-forwarding simply assigns a uniform playback
speeds to all frames.

We only provide representative results directly related tothe
summarization performance here. The corresponding videos
and additional experimental results are available in the sup-
plemental materials associated to this paper [56].

B. Behaviour of the proposed method

In Fig.8, we compared convex-hulls of sub-summaries from
exhaustive combination and our approximated computation
on two long segments with multiple clips. When computing
the convex-hull for a segment withC clips (where each
clip could takeS different speeds), we haveSC different
combinations in exhaustive enumeration. If we divide the long
segment into short sub-segments ofC2 clips, we only need
(C/C2)(S

C2 +K2) times of enumerations.K is the average
number of support points in a convex-hull, which empirically
is around20 whenC2 ≤ 7. The approximated computation
provided the same convex hull as the exhaustive combination,
with significantly less tested combinations, which is used in
the following experiments.

Lagrangian relaxation provides optimal solutions when the
generated summary duration is equal to the user-imposed
duration constraintuL [40]. We evaluate the potential sub-
optimality induced by Lagrangian relaxation by investigating
the difference between the length of the resultant summary to
its target duration, i.e.|uL −

∑N
t=1 st|, in Fig.9(a) (averaged

a) Difference between resultant and target durations

2 3 4 5 6 7 8 9 10
10-4

10-3

10-2

10-1

100

101

102

 

C
om

pu
ta

tio
n 

Ti
m

e 
(s

ec
on

d)

Number of Speed Options

 Behave
 JAIST
 Soccer

b) Computational time w.r.t. numbers of speed options
Fig. 9. Behaviours of our proposed method in terms of optimality and
computational cost.

over differentα values). Since the durations of the summaries
generated based on convex-hull operating points are close to
the constraint (with averaged difference around1s), the sub-
optimality is negligible.

Since meta-data collection can be performed off-line as
preprocessing, we mainly discuss the computation cost in
producing the summary, which is more relevant in online
summarization service of pre-recorded videos. Fig.9(b) shows
the computational time for summarizing the three videos by
a single threaded implementation running on a Core i7 CPU
(2.3Ghz), under speed options varying from 2 to 10. For a short
segment ofC2 clips, increasing the number of speed options
by one slows the enumeration process by[1 + 1/S]C2, which
gradually saturates to1 whenS increases. WhenC2 = 5 and
S ≥ 6 (i.e. [1+1/S]C2 < 2.17), the overall computational time
almost doubles when one playback option is added (Fig.9(a)),
i.e. the approximated computation successfully linearized the
computation between short segments. The computation of
normalized inverse linear proportion in [9] and [10] costs about
2ms (JAIST:1.62±0.20ms, Behave:2.31±0.30ms and Soccer:
2.46±0.03ms. Averaged after20 trials). Although slower, the
proposed method can still be regarded as real-time responsive,
if the viewers can get the generated summary in1 ∼ 2
seconds after inputting their preferences, according to the
limits of response times found in usability engineering [57].
Note that the computation can be further accelerated by
parallel optimization of the local story organization in different
segments, which is a straightforward extension in our divide
and conquer framework.

C. Objective Evaluation

The summaries for objective evaluation are generated from
the whole videos of both the JAIST and Behave Datasets
and the period of1020s-2030s in the soccer video, by
varying the compaction ratio (defined asN/uL) from 2 to
20. We denote the set of ground truth events asE

GT =
{eGT

q |q = 1, · · · , NGT}. Each event has three elements,
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e
GT
q = (τGT

q , CGT
q ,GGT

q ), corresponding to its type, temporal
period and related member objects. Letθq be the importance
value of theqth event. The ground-truth includes27 events
for the soccer video,51 events for the JAIST video and52
events for the Behave video, which are classified into four
tiers according to their relative importance (Table II). We
compare the above methods with multiple objective criteria
for investigating the following behaviours:

1) Adaptive fast-forwarding for semantic event browsing.
Given the summarŷV = {(It, st)|t = 1, · · · , N, st ∈ [0 1]},
we define the first criterionL1 as the normalized information
density of its frames

L1 =

∑N
t=1 st

∑NGT

q=1 ψq(t)θq
∑N

t=1

∑NGT

q=1 ψq(t)θq
/

∑N
t=1 st
N

, (31)

which is plotted in Fig.10(a).ψq(t) determines whether the
qth event occurs at thetth frame.

ψq(t) =

{

1, t ∈ CGT
q

0, otherwise.
(32)

Both [9] and [10] obtain lowL1 values, which suggests that
they failed to correctly measure the intensity of scene activities
or the importance of the events. In the soccer video, grasslands
in the far view lead to motion vectors of lower magnitude
and less noticeable frame differences. Since the events are
annotated on far-view clips, the fact that [9] and [10] have even
lower L1 values than the naive fast-forwarding suggests that
more time resources are allocated to close-up views2, although
close-up views are reported to tolerate higher playback speeds
than far-views in the subjective tests presented in Fig.11.
For surveillance videos without camera motions, both the
optical flow and the alpha divergence become less sensitive in
reflecting the activities in the scene. In contrast, our method
achieves higherL1 values than other methods, which shows
that the proposed method is more semantically relevant to the
annotated events, by assigning slower playback speeds to clips
with both higher event importance and scene activities.

2) Adaptive fast-forwarding for visually comfortable sum-
marization. A comfort summary need to be played back
slowly enough (supported by the subjective tests presented
in Section VI-D), and the speeds should vary gradually so
as to avoid annoying flickering. The comfort is evaluated
by both the average playback speedL2 and the fluctuation
level of playback speeds between consecutive framesL3. We
consider the non-truncated content, i.e. sub-sequenceV̂

∗ =
{(It, st)|t = 1, · · · , N∗; st > 0} ⊂ V̂, and defineL2,L3 as

L2 = E[1/si] =
N∗

∑N∗

t=1 si
, (33)

L3 = σ[∆(1/st)] =

√

√

√

√

∑N∗

t=2 st(
1
st

− 1
st−1

)2

∑N∗

t=2 st
, (34)

which are shown in Fig.10(b)(c). When the length of target
summary changes, playback speeds of different clips in [9]
and [10] maintain the same ratio. Accordingly, under a high

2This is confirmed by the plotted distribution of the playbacktime and the
highlight curve in the supplemental material.

TABLE II
MANUALLY ANNOTATED EVENTS AND RELATIVE IMPORTANCE

Tier Soccer JAIST Behave θq

1 Goal Fight,StealBag Fight 4

2
Foul FallDown Split

3Shoot ExchangeBag Approach

3 PlaceKick, Corner DragBag,Pickup RunTogether 2
Clearance StopAndChat InGroup

4
Kickoff

Following WalkTogether 1BallBacktoCourt
BallOutofCourt

compaction ratio, all clips will be rendered with intolerable
speeds. Furthermore, the high fluctuation levelL3 in [9]
and [10] stands for frequent and severe playback speed
changes in the summary. In contrast, our proposed method
is able to maintain a lower playback speedL2 by truncating
the less important contents and has much lower fluctuation
level L3 because of clip-based summarization.

3) Adaptive fast-forwarding for narrative story organiza-
tion. Compared to the linear playback speed control in [9]
and [10], our framework allows flexible personalization of
story organization by tuning the time durationuL and the con-
trolling parameters(α, β) (Eq.6). We can suppress redundant
contents in the replays for higher compaction, consider story
continuity, and remove very short clips to avoid flickering.Our
framework can further satisfy the user preferences on favourite
objects/events. We defineL4 as the normalized density of
information related to a specified object in the summary

L4 =

∑N
t=1 st

∑NGT

q=1 χq(t, u
O)θq

∑N
t=1

∑NGT

q=1 χq(t, uO)θq
/

∑N
t=1 st
N

, (35)

and plot L4 of the summaries of the JAIST video under
variousφ values (Eq.14) and compaction ratio8 in Fig.10(d).
χq(t, u

O) determines whether objectuO is involved in theqth

event at thetth frame.

χq(t, u
O) =

{

1, t ∈ CGT
q , uO ∈ GGT

q

0, otherwise.
(36)

When an object is specified, higher weights will be assigned
to its related clips, by results in a largerL4 value.

D. Subjective Evaluation

The purpose of our subjective evaluation test is not limited
to comparing the performances of the methods, but also to ex-
plore possible future improvements through detailed inspection
of unnatural story/visual artifacts in the summarization results.
Accordingly, we have designed and performed three subjective
tests to collect the related opinions of the audiences.

1) The first subjective evaluation evaluates the suitableplay-
back speeds(Fig.11). 25 participants (including 11 females
and 14 male, age from 20-40) were asked to specify their
highest tolerable playback speed, comfortable playback speeds
and the most comfortable playback speed when presented five
groups of video samples from both broadcasted soccer videos
and surveillance videos with various playback speeds.

For the soccer video, the highest tolerable speed for far
views is lower than that of the close-up views. We consider
this as a result that understanding far-view need attentional
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Fig. 10. We plot the results of multiple criteria for objective evaluation of
the behaviour of the proposed system (β = 0.5).

perception to follow the players. For surveillance video, it
could tolerate even higher speed, mainly because the fixed
camera view makes the selective perception much easier. Most
participants cannot tolerate a speed over 4x (i.e. 6FPS in
a 25FPS video), which coincides with the observations in
previous researches that perception on higher-order motion,
word recognition, acceleration/direction change will require
a playback speed around or even below 8 FPS [11]. In
both cases, audiences still feel comfortable in faster playback
speeds, which is the base of adaptive fast-forwarding. As for
the most comfortable speed, most audiences prefer the original
speed selected and produced by experts in the soccer video.
For surveillance video, audiences prefer a faster playback
speed (2x or 4x), due to low stimuli in the original video.

2) The second subjective test collects theglobal impres-
sion of audiences in comparatively evaluating the generated
summaries. We asked 23 participants (including 10 females
and 13 males, age from 20-40) to give their opinions on the
preferred result when presented a group of three summaries
generated by the methods under analysis (in random order)
for completeness, comfort, andeffectivenessof time allocation.
We plot the results of evaluating six-groups of summaries from
three source videos under two different compaction ratios (i.e.
8 and 4) along with the questions in Fig.12. Besides the overall
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Fig. 11. Results of subjective evaluation from 25 participants on their
feedback under various fast-forwarding speeds when browsing five video
samples from both broadcasted soccer video and surveillance video. The six
playback speed options for soccer videos are 1x, 2x, 3x, 4x, 5x and 6x, while
that for surveillance videos are 1x, 2x, 4x, 8x, 16x and 32x.

conclusion that our method performs the best especially under
the high compaction ratio (8), we observed that:

a) Our method outperforms the other two methods in gener-
ating complete summaries for highly compact summarization
(8), which supports our idea of introducing content truncation
to save time resources for presenting key events in a clearer
way. With the lowering of the compaction ratio, the average
playback speed becomes tolerable or even comfortable, where
the viewers could realize the existence of truncated contents
and assign a lower completeness value to our method, which is
considered to be the reason why [9] outperforms our method
in summarizing the Behave dataset under compaction ratio 4.

b) Our method produces more comfortable summaries from
the broadcasted soccer video, where both 8 and 4 are too
high for an adaptive fast-forwarding method to produce a
comfortable video without truncating some contents. In order
to slow down a key event, we have to raise the playback
speed of other contents to a much higher level in exchange
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for the equivalent time resource, which results in flickering
and lowers the visual comfort of the summary. Our method
also outperforms the other two methods in summarizing the
JAIST video, where the close and dense group activities in
the scene make the evaluation easier. The difference is less
obvious in the Behave dataset due to two major reasons:
i) The activities in the video are sparse and simpler; ii)
We did not tell the viewers our definition of key-events in
order to avoid a biased evaluation towards group-interaction
events. The Behave dataset recorded some movements of
cars, bicycles and irrelevant pedestrians without providing the
corresponding trajectories, which might have distracted the
viewers’ attentions.

c) Our method is evaluated to be the most effective in allo-
cating playback speeds for presenting the actions of interest,
especially under a high compaction ratio.

d) Although [10] was a recent method proposed for summa-
rizing surveillance videos, it fails to outperform [9], especially
in summarizing the Behave dataset, mainly due to the difficulty
in learning the noise model. Although we have prepared neat
training video clips for noise estimation which include no
foreground activities and are close to the testing video in terms
of lighting conditions, both the noise in the JAIST dataset
captured indoor with full HD cameras or the insignificant
foreground activities in the Behave dataset captured from a
far viewpoint through the window could cause a large bias to
the alpha-divergence.

3) The third subjective evaluation is based on a detailed
inspection of the generated summaries. Each viewer is asked
to point and click via an interface to any kind of visual or
story-telling artifacts. The timestamp of clicking is automat-
ically recorded by the tool. We do not ask viewers to input
detailed comments after each clicking, because interruption
during video playing might distract viewers from focusing on
the story evolving in the summary, which should especially
be avoided for better evaluating the optimal fast-forwarding
speed. As a consequence, we have to find out the reason
behind each clicking by analysing the aggregation of clickings,
a posteriori. We estimate the density of clickings at each video
time by using the Parzen-window function to compensate
the delay between the occurrence of story artifacts and the
corresponding clicking, where a rectangular window of width
2 seconds is applied to the left side of each clicking. Note
that the proposed resource allocation framework does not de-
pend on user clicking for adaptive fast-forwarding (and video
skipping). We collect data from 16 participants (including5
females and 11 males, age from 20-40) and plot them in
Fig.13. In each sub-figure, we present the view-structure and
the allocated playback speed of the generated summary on
the top with the vertical bars for pointing out the positions
of content truncations. In the bottom, we give the number
of viewers who sensed an artifact at each moment. As an
overall evaluation, there is only one artifact that received the
recognition of more than half of all viewers in all the three
tested summaries, which partially proves that the proposed
method could provide visually comfortable summaries to
satisfy most of the audiences.

We divide artifacts labelled by more than 1/3 of reviewers

Soccer SoccerJAIST JAISTBEHAVE BEHAVE
High Compaction Ratio (8) Low Compaction Ratio (4)

Completeness:  
 1.  Which video reproduces clearly most of actions in the scene?

Soccer SoccerJAIST JAISTBEHAVE BEHAVE
High Compaction Ratio (8) Low Compaction Ratio (4)

Comfort:  
 2.   Which video is most comfortable to watch (e.g. less flickering 
and intelligibility of events)?

Soccer SoccerJAIST JAISTBEHAVE BEHAVE
High Compaction Ratio (8) Low Compaction Ratio (4)

Effectiveness:  
 3.  Which video presents the actions of interest with the most 
reasonable playback rates?

Fig. 12. Results of the second subjective evaluation test from 23 viewers,
by collecting their global impression on the summaries, in the sense of
completeness, comfort and effectiveness of time allocation.
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(c) Visual/Story artifacts in the Behave summary
Fig. 13. Labelled visual/story-telling artifacts in the third subjective eval-
uation test by 16 viewers. We present the view structure and the playback
speed in the top part of each sub-figure, where the vertical bars present the
position of content truncations. In the bottom, we show the aggregated times
of artifacts labelled.

into three groups: i) Those correspond to a moment with
both a high playback speed and content truncation, including
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21s,48s,170s in soccer video, 20s, 30s and 34s in the JAIST
video, and 54s, 66s and 92s in the Behave video; ii) Those
correspond to a moment with only a high playback speed,
including 55s, 177s in the soccer video, 9s, 40s, 55s and 67s
in the JAIST video; iii) Those correspond to a moment with
only content truncation, including 225s in the soccer videoand
92s in the Behave video. We have the following observations:

a) The viewers are more sensitive to high playback speed
than to content truncation, given the fact that most of the
above artifacts are related to high playback speeds. We are
not surprised with the result, because the playback speed in
those artifacts is higher than the comfortable speed revealed in
our preliminary subjective evaluation in Fig.11. However,this
suggests that content truncation could provide more comfort-
able summaries than fast-forwarding with a over-fast playback
speed, which reinforce our conviction that hybrid summariza-
tion with both content truncation and fast-forwarding is the
path to follow in the future. In a real application, we could
remove these artifacts by limiting the playback speed options
within the tolerable range.

b) We notice that clips of high playback speeds usually
gather around content truncations. Important clips usually
locate in the middle of a segment with neighbouring clips,
which is intentionally designed to assure the continuity and
completeness of story-telling. We intend to suppress those
artifacts in Group 1 by truncating the clips with over-fast
playback speeds, and inserting a fixed length transition clip
to help the audiences to reorient themselves after truncation.

VII. C ONCLUSIONS

We proposed a framework for producing personalized sum-
maries that enables both content truncation and adaptive fast-
forwarding. We regard adaptive fast-forwarding as a process
to tune the stimuli during the information transferring in video
browsing, which is important to generate visually comfortable
summaries. The limitation of visual perception on the maxi-
mum tolerable playback speeds motivated us to consider the
hybrid of content truncation and adaptive fast-forwardingto
reach a better balance between temporal compression ratio and
comfort. Instead of a rigid determination of the fast-forwarding
speed, we efficiently select the optimal combination from
candidate summaries, which is solved efficiently as a resource-
allocation problem. Subjective experiments demonstrate the
proposed system by evaluating summaries from both surveil-
lance videos and broadcasted soccer videos.

The proposed framework has the following advantages:
1) higher temporal compression is achievable by increasing
the playback speeds to host more content while preserving
story-telling continuity; 2) both semantic relevance and vi-
sual comfort of the summary are considered by including
information associated to still content and scene activity; 3)
playback speeds are maintained under a tolerable level by
naturally including content truncation in the adaptive fast-
forwarding framework; 4) flexible personalization of story-
telling is allowed by enabling non-linear story organization
in a hierarchical summarization process.

The subjective tests also highlight the direction of further
improvements. The audiences could feel comfortable under

a faster playback speed, which supports our fast-forwarding
based summarization. A too-fast playback speed is found to
be even more annoying than content truncation, which drives
us to further extend our hybrid method of content truncation
and adaptive fast-forwarding. Both information associated to
the still contents and scene activity are important in producing
a semantically relevant and visually comfort summary. We will
thus consider both types of information in our future work.
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