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Resource Allocation for Personalized Video
Summarization

Fan Chen, Christophe De Vleeschouwer and Andrea Cavallaro

Abstract—We propose a hybrid personalized summarization the inclusion of the most significant moments and the con-
framework that combines adaptive fast-forwarding and conent  tinuity of the summaries. We encapsulate these requiresment
truncation to generate comfortable and compact video sum- into three propertiescompletenesgevaluating the amount of

maries. We formulate video summarization as a discrete opti learl ted ts of int tin th fort
mization problem, where the optimal summary is determined ty ~Cl€@rly presented events of interest in the summarymfor

adopting Lagrangian relaxation and convex-hull approximaion ~ (Which decreases in the presence of flickering and abrupt sto
to solve a resource allocation problem. To trade-off playbek transitions) andeffectivenessf time allocation (the relevance
speed and perceptual comfort we consider information assated  of the playback time assignment).

to the still content of the scene, which is essential to evate the Video browsing can be seen as an information commu-
relevance of a video, and information associated to the scen . . . .
activity, which is more relevant for visual comfort. We perform nication progess between th.e video producer a”‘?' the audi-
C||p_|eve| fast_forwarding by se|ecting the playback Spaés from ence. TWO k|ndS Of |nf0rmat|on need tO be COI’]SIdeI’ed fOI’
discrete options, which naturally include content truncafon as producing semantically relevant and enjoyable summaries,
special case with infinite playback speed. We demonstrate éh namely information associated to the still content of thensc
proposed summarization framework in two use cases, namely 5,4 information associated to the scene activity. Infoionat

summarization of broadcasted soccer videos and surveillae iated to thatill tentof th hel luati
videos. Objective and subjective experiments are perfornte to associated 1o thetill contentor the scene helps evaluating

demonstrate the relevance and efficiency of the proposed ntead.  the importance of frames for producing semantically retva
summaries. Information associated to theene activityis
Index Terms—Personalized Video Summarization, Resource associated to the visual stimulus offered to the audience.
Allocation, Adaptive Fast-Forwarding An audience will get bored with a video with few stimuli
(e.g., a long surveillance video without events), and waél b
overstressed with a video with an amount of stimuli beyond
his visual comfort limits. This information is thus imponta
Video summarization techniques are relevant for various ap determining the attraction and enjoyment of summaries.
plications, such as TV program/movie production, suraeitie Conventional content-truncation-based methedsuch as
and e-learning [1] and may address different purposesjdAcl presenting a sequence of key frames or a sequence of mov-
ing fast browsing [2], information retrieval [3][4], behaur ing images (video skimming), mainly maximize the trans-
analysis [5] and entertainment [6]. In order to generatenfroferred information associated to the still content during a
the source video(s) a well-organized and concise versian ticonstrained browsing period (e.g., using fast-browsing of
best satisfies the interest of a user, the most importantreequhighlights [7][8]). However, information extracted frontills
ment of summarization is comprehensibility. Other impiorta contents cannot model complex story-telling with strong de
criteria to judge summarization quality are personal@ati pendency in its contents when the summary is presented as
visual comfort and the quality of story-telling. Persomation a video. As for visual comfort, an attractive and entertagni
is essential for satisfying various user tasks and nagativideo content cannot be produced by simply collecting the
preferences. Visual comfort increases when the flickerimgost significant key frames. The amount of stimuli during
caused by abrupt scene transitions is reduced. The quationtinuous browsing of naive key frames would be too large
of story-telling depends on the integrity of the story witllue to significant frame differences [7]. Video skimming
provides more visually comfortable results by reducing the
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TABLE |
COMPARISON OF STATEOF-THE-ART METHODS FOR VIDEO SUMMARIZATION
Content Presentation Task Principles Approach Ref. Canfgpe
Unsupervised Clustering [13]
Feature-based Indexing Fuzzy Clustering [2] Generic
Fast-browsing Discriminative Analysis [14]
" Semantic-based Indexing Attention-based [15] Generic
Key-frame extraction Sub-sampling for Min. Distortion ~ MINMAX Optimization [816] Generic
Feature-based Indexing Compressed Domain Retrieval — [17] enefic
Content-retrieval Object-based Indexing Spatial/Temporal Sampling [3] Sillance
Semantic-based Indexing Multi-modal Meta-data [18] Socce
Behaviour analysis Object-based Indexing Action Key Poses [18] Human Action
Fixed Skimmed Length Motion Attention [19] Generic
. Rule-based Creation Audio/Video Skimming [20] Generic
Fast-browsing Filtering-based Creation Priority Curve Algorithm [21] Ser
Story-based Creation Semantic Relation Graph [22] Generic
Video skimmin Feature-based Indexing Shot-classification 23] BroadcdaBlews
9 Content-retrieval Object-based Indexing Region Association in a Shot [24] ddien
Semantic-based Indexing Lexicon-driven Retrieval [25] n&e
Behaviour analysis Pattern Classification Tactic Analysis [5] Soccer
Video Eniovment Temporal Alignment Audio/Video Synchronization [6] Socce
joy Rule-based Creation Cinematic Rules [26] Soccer
] } . Optical-flow-based [9] .
Eastbrowsin Feature-based Sub-sampling Information-theory-based [10] Surveillance
Fast-forwarding 9 Rule-based Sub-sampling Smart-player [27] Generic
Sub-sampling for Min. Distortion  Key-frame-based [28] @en
Content-retrieval Sub-sampling for Max. Similarity — Geatére-model-based [29] Generic
Ribbon Carving [30]
Video condensation Browsing/Retrieval Optimal Space @dt@n Video Synopsis [31] Surveillance
Online Video Condensation [32]
Video skimming and  Browsing/Enjoyment ~ Optimal Allocation Resource Allocation Proposed Surveillance
fast-forwarding of Playback Time Method  /Team-sport
have even lower limits than non-attentional processedifwit Section VIl concludes the paper.
target selectivity) [12]. Under the request of a highly cacip
summarization, less relevant contents will need to be ptesde Il. RELATED WORK
with too high playback speeds thus producing annoying Visua We classify video summarization methods in three cate-
artifacts, such as flickering [9] [10]. gories, based on their content presentation techniques: re

To overcome these limitations, we propose an approach tigahization of story-telling, video condensation and aidept
truncates contents with intolerable playback speeds avessafast-forwarding.
time resources for better rendering the remaining contentsReorganization of story-tellingruncates less relevant con-
We design a hybrid summarization method combining conteteint or changes its temporal order. Most methods based on
truncation and adaptive fast-forwarding to provide camtin key-frame extraction and video skimming belong to this cate
ous and complete summaries with improved visual comfogory [8][13]. Early techniques extract a short video segqeen
Moreover, we provide a new perspective in understanding a desired length to maximize the included information,
the motivations behind truncation-based and fast-forimgrd which results in minimizing the loss due to the skipped frame
based summarization techniques. We select playback speaad/or segments. These methods generally differ in the defi-
from a set of discrete options, and introduce a hierarchiaation of the similarity between the summary and the origina
summarization framework to find the optimal allocation ofideo, and in the techniques used to maximize this simjlarit
time resources into the summary, which performs nonline@hey include methods to cluster similar frames/shots ip k
computation of overall information in the summary and erframes [2][7], and methods for constrained optimization of
ables various story-telling patterns for flexible pers@a objective functions [8][16]. Other methods measure pienis
video summarization. Other contributions include suldject and recall rates of different events in soccer based on Gtiem
observations on suitable playback speeds and a methodtfor ales [26] or sound analysis [33]. Fast-forwarding methibes
spot detection by automatic extraction of group interangio perform conventional key-frame extraction by minimizirg t
from surveillance videos. reconstruction error also belong to this category [28].c8in

The paper is organized as follows. After a brief review ahey attempt to preserve the initial content as much as Iplessi
previous video summarization methods in Section I, in Setliese methods are well suited to support efficient browsing.
tion 1ll we discuss a criterion that trades-off fast-fordengy The motivation of end-users in viewing summaries is not
and visual comfort. In Section IV we introduce the proposdimited to fast browsing of all clips in the whole video conte
summarization framework, along with the optimization techA summary can also be organized to provide information
niques for global story organization. Section V discus$es tto special users, such as helping the coach to analyse the
application of the summarization framework to two use casdshaviour of players from their trajectories [5]. Summatian
Finally, we present experimental results in Section VI vélasr is also used for organizing music soccer sport videos, based
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on the synchronization between video and music content [6].the ¢! frame. Givenu” as the user-specified constraint on
Continuity of clips is important for story-telling [21]. &ty the summary length, we formulate the summarization process
organization is also considered via a graph model for maas finding a sequenc®¥ = {(I;,s)|t = 1,--- ,N;s; €
aging semantic relations among concept entities [22]. For 1]} subject toztl\i1 s; = u". s; is the adjusted temporal
broadcasted soccer videos, personalized story-tellimybea distance (i.e. the inverse of playback speed) between the
organized by assigning event significance [34] and extigcti(t — 1)t andt'" frames, and is normalized by the unit sample
specified view types [35]. Summarization framework exists f interval in the source videa; = 0 stands for infinite playback
enhanced personalization of story-telling to satisfy bo#in- speed, which is equivalent to content truncation.
rative (including continuity, redundancy and prohibitdédrg Conventional content truncation only allows to takerom
organization) and semantic audience preferences (i.eufde {0, 1}, and searches for a subset of frames that maximizes the
events/objects) [36][37]. Personalized summarizatioals overall information
implemented as a "query” function to extract objects/esent N N
preferred by the user, via textual descriptors and, opligna VE = arg maXZ Sefr, S't'z sp = ub, 1)
with interaction [3][4]. AVA—) =1

Video condensatiorconsiders the efficient rendering ofyhere , is the information associated to the still content in
object activities in summaries by embedding sequences tﬂfe #h frame.
video objects into the seams of the v_|deo. A rlbbon-carvmg-Adalotive fast-forwarding allows real values of from
based method considers just the moving objects (ratherahap, 11 ot ;. pe the information associated to scene activity

whole frame) as the smallest processing unit [30]. MOVINg yhe sih frame of the source video. Adaptive fast-forwarding
objects are first isolated from the videos and put into g4q;, that makes the adjusted informatierys, proportional

object database. According to the requirements of the US§Sy,q e specified target strength with the highest congfer
interesting objects are picked up from the database [31] [10]:

created on-line [32], and their activities are rendered in a a

synopsis video. However, video condensation fails to puese Vi, -4 o Cy = s1 x - 2)

the temporal order and relationship of multi-object atigg. St
Adaptive fast-forwardingondenses the video by adjustingrhis maximizes the visual comfort during video browsing in

the playback speeds. An intuitive consideration in adaptitferms ofCy, and is computationally equivalent to

fast-forwarding is to equalize the motion complexity innber N 1/2 N

of optical flow in the summaries [9]. A fast-forwarding metho v — argmaxz [ﬁ} (542, s.t.z si=ub, (3)

based on the normalized intensity of motion vectors was v o LOF oy

also considered along with user specified target playback . . o

speeds [27]. However, motion vectors are not always ccemiistWherel/Q. assures linear proporﬂoqahty n Eq_.2. .

with scene complexity because of different zoom factors andThe criterion in Eq.1 only considers the information as-

because of the noise generated in the motion estimatr%?\dated to still content and fails to handle the redundancy

phase. Summarization can also be interpreted as a qu' uplicated content and does not consider visual comfort.
process, where the playback speed is adjusted accordin & criter_io_n in E_q.3_ considers the infgrmation aSSOCintd
the similarity between the frame and the target content. [Z%rgene activity, which is not always consistent with the satina

Adaptive fast-forwarding can be considered from the IC)er_levance of the summary. Hence, it is necessary to include

spective of information theory, with the goal of equalizin%8tn:]f;[jyr%esleOij3];g:}2‘:3:”r‘;[('aosr1 t\?\/gr?hiurgfosrgm?Qt'gzgyt:]eelemwm
the scene complexity, represented by the statistical riista ' Prop 9

(alpha-divergence) between the frame difference and drete unified crlterlonN N
noise model [10]. Various visualization techniques fortfas . a; 192
forwarded sur[nm]aries can be used [38]. Pure fast-forwarding = arg%ﬂfﬂz £ [C_tc] st st si=ut. (4)
is not suitable for highly compact summarization (e.g., a 10 M ! =1
minute summary of a 24-hour surveillance video), due fdote that both Eq.1 and Eq.3 are abbreviated special cases of
the maximum tolerable playback speed upper-bounded by the above criterion.
limitations of both visual perception and memory [11]. Without loss of generality, letv; = as = « to simplify
Table | presents a summary of related works based #i¢ discussion. For simplicity of notation, 16 = f;z:.
content presentation, task, approaches and target cappest In Fig. 1(a), we show the behaviour of the above criterion
underu™ = 1,a = 0.5 and various3, in an example
case of N = 3 frames with different information values
0, = 1,05 = 2,605 = 3 to investigate the distribution &f. For
B < 0, it reaches infinity whers; approache$, which takes
In this section, we discuss video summarization and derigéace when contents are truncated, and becomes constant at
the corresponding mathematical criterion that enablesous & = 0, which makes the summarization problem irrelevant. A
balance playback speed and visual comfort. longer s; will be assigned to frames with higher information
Let a source videdv be a sequence oV frames evenly when0 < 5. Wheng > 1, it forms a convex function. In this
sampledV = {L;|t = 1,--- , N}. I, represents the image datecase, it will simply assigrs; = 1 to frames in the descending

IIl. A CRITERION TOBALANCE PLAYBACK SPEED AND
VISUAL COMFORT
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Complete Story V ] :video clips

X :Play Speed

Video Segments
Construct Construct Construct Construct
Y. Y.

Candidate
ub-summaries

Benefits ",Costs"

0 1 Generated Summary %

Fig. 2. Conceptual diagram of the overall proposed summtioiz process
envisioned in a divide and conquer paradigm.

which implicitly includes the video stimuli, by assumingath
the original video is already optimal in its strength of siims;

2) LetVt, Cy = C°, which forces all frames to have equalized
target stimuli, whereCf is included into the normalization
term in Eq.6. The former choice is more suitable for profes-
sionally produced videos by experts (e.g., broadcastesbgid
but fails in controlling visual stimuli in unedited videos.g.,
surveillance videos with sparse activities). In order tolude
video stimuli explicitly, we adopt the latter choice.

One major limitation of the criterion in Eq. 4 (also in
Eq.1 and EQ.3) is its basic assumption on the linear addi-
tivity of information F', which does not always hold (e.g.,

S when handling complicated story-telling with strong imtir

(b) Optimal solutions of s;} underj3 = 0.5, u* € (0, 3] dependency or considering the emotional involvement of the
Fig. 1. The behaviour of our criterion in a simple case of ¢hfames audiences), and thus constraints its applications. ldstda
0n = 1,0, = 2,03 = 3. a) a balanced distribution of playback time isdirectly summarizing the video based on Eq.4, we propose

achievable unded < 8 < 1. The rectangle plane is f@le st=u-=1 ; ;
with the color being the benefit value; b) the distributiom d& controlled a resource allocation framework, which takes Eq.4 as the

by tuning o and 3. Each dot in the curve plane is one optimal solution oPase criterion but introduces the non-linearity by perfioign
playback time{s1, s2, s3}, with the color being its corresponding; a hierarchical summarization, as discussed in the nexiosect

order ofé,, until the time constraint" is reached, which in
fact implements the conventional key-frame extractiony.(e. _ )
Eq.1). Only wherd) < 3 < 1, it forms a concave optimization Our resource-allocation-based framework interprets the
function, and distributes the playing time well into frames Summarization problem as finding the optimal allocationwf d

We rewrite Eq.4 into an unconstrained form with a Lagrang@tion resources™ into video segments, according to various
user preferences. We design the whole process using titedivi

IV. RESOURCEALLOCATION FRAMEWORK

multiplier ~ k : _ g
N N and conquer paradigm (Fig.2(a)). The whole video is first cut
S a “ 5 L into short clips by using a shot-boundary detector. Theset sh
V= argénax Lz_:l [ft th] St | T 7(; sp—u’). (5) clips are then organized into video segments. A sub-summary

or local story defines one way to select clips within a segment
By partially differentiating it w.r.t. eacts; and setting it t0 geveral sub-summaries can be generated from a segment: not
zero, we derive the optimal solution ef under0 < 5 <1 as gnly the content, but also the narrative style of the summary
a, ] T can be adapted to user requirements. By tuning the benefit
St X [ft_] . (6) and the cost of sub-summaries, we balance in a natural and
Cs . . .
personal way the semantics (what is included in the summary)
Using the above example, we plot the relationship betwéen and the narrative (how it is presented to the user) of the
and its optimal distribution of; under different values in  summary. The final summary is formed by collecting non-
Fig. 1(b). Whena = 1 — 5 (e.g., Eq.3), the optimad; will be overlapping sub-summaries to maximize the overall benefit,
linearly proportional tod;, as shown by the three projectionsinder the user-preferences and duration constraint.
on XY, YZ, XZ planes. Whem > 1 — g, the criterion favours  This hierarchical framework also helps to overcome the
assigning highes; to frames with a highe#;. The highere, limitation posed by the linear additivity of informatior@befit.
the closer the vertical axis;. Whena < 1 — g, the criterion Each segment is complete in describing an activity/eveme. T
provides more even distribution in all frames. The smaller information/benefits of the segments are supposed to be lin-
the closer the ling; = s, = s3 (Fig. 1(b)). early additive. The video clip is our minimum summarization
There are two possible choices to specifyin Eq.4 without unit, which means that its frames are handled together. Non-
the need to explicitly know its exact value: 1) L€f = a;, linear accumulation of information among clips is processe
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with our non-linear local story organization described iwith

Section IV-B. Non-linear accumulation of information wiith e

a clip is computed by its ben_efit as Qiscussed in Section V. b = Z (frae)® (12)
The proposed framework is applicable to any segmented

videos with information values forf; and a;, independent

from the detailed definition and implementations of those twbeing the base benefit of clip BY ; (a,.;;) evaluates the extra

notions. We first discuss the summarization framework Henefits by satisfying specific preferences:

assuming the availability of video segments and infornmatio P 50 Oy C CrF

values. Specific methods for video segmentation and inferma Buni@mk) =P (ki ) Py (47) P (13)

tion computation will be given along with its application inP© (v, u?) is the extra gain obtained by including the user’s

two use cases in the Section V. favourite object:©, specified through an interactive interface,

—+S
t=t7

_ uOexists i
PO (g, u0) = { ¢y Vg < 00,3t € Cy,uPexists iy, (14)

A. Preliminaries 1.0, otherwise.

Let the video be cut intaV® clips, with thei'" clip C;  ¢(> 1.0) is a parameter to control the strength of emphasizing
beingC; = {t[t =17, ,tF}. £ andt¥ are the indices of its the favourite object in the summary. We favour a continuous
starting and ending frames. These video clips are grouged iBtory-telling by definingP® ., (u®)

M segments. A set of candidate sub-summaries is consideredC c c

for each segment, from which at most one sub-summary Emi(u~) =1 +u~(2— 5%7’7);(”1) 0 5%%1(1_71) o), (15)
selected into the resulting summary. We denote AHesub-

summary of them'™ segmentS,, asa,,,, which is a set o

f whered,, is the Kronecker delta function, and” is fixed
playback speeds for all its clips, i.e; = {vili € S to 0.1 in our experiments. Satisfaction of general production

i is the playback speed assigned to tHe clip if the%th principles is also evaluated throug®f,,, which takes 1 for

sub-summang,..;; is adopted. The summary is then denotegormal case and.001 for forbidden cases (or a value that
asV = uM J_LGS ((fsr 50 = 1)t € C;) is small enough to suppress this case from being selected),
— Ym=1 “1€om ’ - 7 7

Let by, — {bili € Sn} be the list of base benefits for alto avoid unpleasant visual/story-telling artifacts (ge.tpo-

clips in S,,,. Our major task is to find the set of sub-summarieyortincomplete local stories). In summary, th? currM—
that maximizes the total pay-off work supports user preferences on time duratibpfavourite

) objectu® and story continuity:C.
V* = argmax B({am }[{bm}), (7)
Y " C. Global Story Organization
The global-duration resource is allocated among the avail-
able sub-summaries to maximize the aggregated benefit(Eq.7
R Under strict constraints, the problem needs to rely on kéari
_ ti — methods or dynamic programming to be solved. However,
L EDS : (8) ; amm _ _
Vki when relaxation of constraints is allowed, Lagrangian -opti

_ _ ) mization and convex-hull approximation can be consideoed t
The overall benefit of the whole summary is defined agjit the global optimization problem in a set of simple toc

subject tOZ%:1|amk| < ul. We definela,,| as the overall
length of summanga,,,,

1€ESm

accumulated benefits of all selected sub-summaries: based decision problems [39][40]. The convex-hull approxi
M mation restricts the eligible summarization options foctea

B({ami}{bm}) = > Bm(ams), (9) sub-summary to the (benefit, cost) points sustaining theupp
m=1 convex hull of the available (benefit, cost) pairs of the segm

with B’m(a'mk) being defined as a function of the user prefeﬁlObal Optimization is obtained by allocating the avai@bl

ences, of the highlighted moments, and of the playback spe&dration among the individual segment convex-hulls [4isT
as described in the following. results in a computationally efficient solution that coestd

a set of candidate sub-summaries with various descriptive

levels for each segment. Fig.3 summarizes the summarnizatio

process based on solving a resource allocation problem.
One major advantage of the resource allocation frameworkwe solve this resource allocation problem by using the

is that it allows highly personalized story organizatiomiehh |agrangian relaxation [41]: i is a non-negative Lagrangian

is achieved via flexible definition of benefits. We define thaultiplier and {£*} is the optimal set that maximizes

benefit of a sub-summary as

M M
Bon(am) = Y Bi(vri) Bl (am), (10) LH{EY) =Y Bu(ame) =AY lamk] (16)

iES, m=1 m=1

over all possible {k}, then {a,x-} maximizes

S0 B (i) over all {ay} such thaty-2_fa <

Y m—1lamk+|. Hence, if {k*} solves the unconstrained
Bi(vki) = bi(l/vki)ﬁ, (11) problem in Eq.16, then it also provides the optimal solution

B. Local Story Organization

which includes accumulated benefits of selected clif6uy; )
computes the base benefit of climt playback speedy;,
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Segment-wise generation of sub-summary and computation of benefitcost Lo~
! All possible sub-summaries 0.8
Clip 1 (I1x) | pi=] )
- g 2 1
Clip 2 (1.5x)+Clip 3(1x) R R Eo.e -

—-0.2

0.4+

|

I

I

|

| Clip 1 (1 +Clip 3 (15 @
| :

|

|

I

1

Benefit/Cost . Create — 0.4
H Graph ’ Convex Set 02— —_ Bzg.g
: / 1 —_—
Clip 1(1x)+ Clip 2(1x) ++++Clip N(1x) | 00 B=1.0 0
o1 - T T T T
e Lengh - @ Length, 00 02 04,06 08 10 00 02 04, 06 08 10
Summarization by solving constrained resource allocation problem_ __ _ _ N7 _ __ a) Base benefit under various p b) Base benefit under various b,
Segment 1 Segment i Segment K N
£ E z Fig. 4. Clip benefit (Eq.12) also complies with convex-hydipeoximation
g g 5 ; = and the greedy algorithm adopted for solving the resoutoeatlon problem.

from the convex-hulls of the sub-segments, which provides
accurate results when we omit the benefit defined in Eq.13,
O .. . <1 -'according to Theorem 4.1. Now we check the terms defined

Fig. 3. Lagrangian relaxatipn and convex—hull appr‘oxim_a_t'are adopted i EQ-13-P(Uki uO) is an extra Weight Computed individually
to solve the resource allocation problem, which restriet éfigible summa- ’

. A . C
rization options to the convex hulls of benefit-to-cost esrof the segments, for (_aaCh Cllp, WhICh is dividable into SUbfsegm_eﬂrﬁki (u )
where the collection of points from all convex-hulls with an®e slopex  assigns extra weights when consecutive clips are selected,

produces one optimal solution under the corresponding samnfength. which could be divided into two cases: consecutive CIipS
within each sub-segment are computed first; then connective
clips between different sub-segments are considered along
with PY . when merging the sub-segments.

I
|
|
i 2 b
i
|
1
1

to the constrained problem in Eq.7, with = Z%=1|a;‘nk|.

Since the contributions to the benefit and cost of all segsne

are independent and additive, we can write Definition Let the benefit-length curve of thet" segment be
M M M B(r) = max|,, =z Bm(amk). Its convex envelop is defined
> Bu(@mk) =AY [amk| =Y (Bm(ame) = Mami|). (17) asB(z), which satisfies

m=1 m=1 m=1 o Envelop:

From the curves of53,,(a,,,) with respect to their corre- R

sponding summary lengtta,..;|, the collection of points Vr,B(x) > B(x); (18)
maximizing B, (an.) — Alan.x| with a same slopa produces Bla) = argmm/ B(z) — B(x)|dz: (19)
one unconstrained optimum. Different choicesofead to Bz) Jao ’
different summary lengths. If we construct a set of convex )

hulls from the curves of3,,(a,,;) with respect to|a,,x|, o Convexity:Vay <z, 22 >z,

we can use a greedy algorithm to search for the optimum . To— T A T — T A

under a given constraint“. The approach is depicted in Fig.3 B(z) = Ty — 11 B(z1) + Ty — 11 B(zs). (20)

and explained in details in [40]. In short, for each point in A
each convex hull, we first compute the forward (incrementa point z* is called a support point at the convex hil(x)
differences in both benefits and summary-lengths. We th#rit satisfies B(z*) = B(z*).
sort the points of all convex-hulls in decreasing order\of
i.e. of the increment of benefit per unit of length. Given
length constraint.™, ordered points are accumulated_unul th at the support pointz*, we haveB(z*) — B(z*) —
summary length gets larger or equahtb. Selected points on Bo(x%) + By(x}), thena* anda; are also support points in
each convex-hull define the sub-summaries for each segm%@tt.h Cfsub—segnl;e,nts “ b
Fig.4 shows the clip benefi§;(v) w.r.t. 1/v under various Proof: Assumin.g thatz* is not a support point in the
(£ andb; values, so as to analyse the behaviour the clip interest : a

defined in Eq.11 in the above optimization process. Fig.4(%13mveX hull 0fB, (2"), we havedza, < 23, a2 > 23,

Theorem 4.1:Assume that we have a dividable benefit
ﬂmctionB(m), i.6.B(x) = Bo(wa) +Bp(wp) With x = x4+,

reveals that the whole curve is convex wiea 5 < 1, which Ba(zX) < AaBa(ta1) + (1 — Ao)Balza2),  (21)
thus enables various options of playback speeds to appear in Loy — I
the benefit/cost convex hulls. In Fig.4(b), we found that the Aa = ———* (22)

Ta2 — Tal
clip with a higher base intere$t has the same slope value ? !

at a slower playback speed. Accordingly, in the above greetgnce, we have

algorithm, slower playback speeds will be first assigned to , ., N N

semantically more important clips in the sense of both high B@™) = Balwy)+ Bylzy) .

information level and high complexity. AaBa(za1) + (1 — Xa)Ba(a2) + Bo(z})
Inclusion of fast-forwarding options significantly inceees XaB(xa1 + x5) + (1 — Xa) B(a2 + 23)

the numbgr of possmle_ sub—summarle_s. Qompared to [36][3_7] < )\aé(xal +a)+(1— )\a)g(%Q +27),(23)

where naive enumeration of all combinations in a segment is

adopted, we consider a sub-optimal way to build the convesich is contradictory to its convexity. Therefore, all papt

hulls. Specifically, we consider the possibility to dividéoag points in the convex hull3(z) must be constructed from

segment into shorter sub-segments, and build the conviéx-fsupport points in the convex hulls, (z,) andBy(z). [J®

A
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We focus on two use cases: the summarization of unedited .-~ M

. ! . Low Speed Medium'\gpeed Rapid Move S12Mmplementation
videos captured by fixed cameras (surveillance); and the sum . . .
(a) Velocity-dependent Interest for Performing Interawti
: o ——

—>Speed Vector <Z:\; Main Interest Map ~:::: Side Interest Map
N, \

V. UsSeCASES

5.12m

marization of produced contents with moving cameras and var Index fSource Object @
ious shot types (broadcasted sport). Unlike previous nastho ‘
that considered low-level features only, e.g., motion @excf9]
or frame differences [10], we consider video tracking antd ho 0 02 66 06 aeB 6 -
Spot detection on surveillance Videos, and the combinatfon Table of Mutual Interests Resultant Grouping Dcktcctcd Unnlt Intcraction
player tracking with detection of camera motions and vaiou (h) Graph-theory based Extraction of Unit Interaction
production actions for processing broadcasted soccepside Fig. 5. Continuous spatial proximity among moving objecteitracted as
group interactions. a) When moving faster, an object getfeped directions
of interaction; b) We model the mutual interest among midtigbjects with

a graph, and extract the units of interacting objects by figdhe maximum
weight spanning tree.

As video surveillance aims to monitor the activities o¥We cut the video into short clips at the boundaries of group
objects in the scene, the larger the number of moving ohjedtsteractions, and then group clips containing the samea-inte
the more relevant the scene is expected to be; with eqaations as a segment. The two kinds of information intttie
number of objects, the closer the objects, the slower tframe are defined as
playback speed should be. We are thus motivated to link group
interactions, defined as stable and continuous spatialmityx foo = Ikl (25)
between objects, to the adaptive fast-forwarding. Assgmin ar = L =T (26)
that all objects intend to keep their individual moving stat
as long as possible [42], group interactions also providescuB. Summarization of Broadcasted Soccer Videos
to locate spatial-temporal hot-spot events, which fat#is the  We divide the soccer video into clips, according to the
clip division and video segmentation as well as assignméntdetected production actions, such as position of repldyat; s
clip benefits. We detect group interactions from trajee®ri boundaries and view types. Instead of using (complex) se-
extracted by video tracking. mantic scene analysis tools, we segment the video based

Let us denote the object on th&" trajectory at thet'™ on the monitoring of production actions by analysing the
frame with o, = {a;,xi}. ai is for the availability of a view-structure [37]: We detect replays from producer-gfec
trajectory, which takes 1 when it appears in the presentdratogos [44], extract shot-boundaries with a detector pregos
and takes 0 otherwisey; is its position. At thet*® frame, we in [45] to better deal with smooth transitions, and recogniz
group all moving objects a§: = {oj|a;r = 1}. We assume the view-type by using the method in [26]. As in [36], we
that the movement of each object is driven by the intentiGuutomatically locate hot-spots by analysing audio sig[8§
to interact with other objects, and define his interest Wwhose (change of) intensity is correlated to the semantic
interacting with an object at positienas a velocity-dependentimportance of each video segment. We consider the average
function Z;;(x) shown in Fig.5(a). The group interaction isinformation associated to still contenfs and that associated
then defined as the behaviour of multiple objects motivaied ko scene changing; evaluated on the clip level. Accordingly,
unidirectional/mutual interests, and is modelled by aal#eé we compute the approximated form of clip benefit in Eq.12,
graph, with the edges being the mutual interests, as shown E LS| [\ @
in Fig.5(a). For objects having no high interests on other bi = 7 -8 (fim) (27)
objects, we simply let it focus on a virtual objeat’ with Beyond a chronological and complete (using far views)
fixed interestZr. Limiting each object to mainly focus onpresentation of the game, the professionals also attempt to
only one target object, we solve the object grouping in eaghvolve the audience emotionally by highlighting the doanih
frame by finding the spanning tree of this graph with thglayer with close-up views and emphasizing the most exgitin
maximum interests. Inspired by online object tracking, weoment with replays [47]. The benefit of each framaithin
obtain group interactions in three steps: Grouping objetts each segment is thus evaluated from its relevance to the game
unit interactions at each frame; temporal association @f uryG and its level of emotional involvement®. The frame
interactions; and refinement of detected interactions kst-poinformation f; is computed as
smoothing [43]. B G

Let g;; be the index of the group interaction that belongs fe =025f"4+0.75f". (28)

to andg;; = 0 if oy is not joining any interaction. At Fhéh We use the above fixed weight to favour game related contents
frame, we form a L-dimensional vector for all the L trajedésr in the summary. In practice, it is very complicated to define

1 2 3 4 5 6
0.00, 012 0.04 0.11 0.43 0.62
0.32 0.00 0.00 0.05 0.73 0.50
0.04 0.00 0.00 0.75 0.00 0.01
0.14 0.04 0.56 0.00 0.04 0.50

Index of Target Object
d v mwN e

A. Summarization of Surveillance Videos

I, = [Iy|l = 1,---, L], wherel, is the overall interest it the P and f¢ metrics. This could for example be done by
receives from all interacting neighbours identifying the dominant player from a set of consecutive
B close-up views or by confirming the replay to its correspogdi
an |1+ g"""ig” amiTome (1) |2 g1t £ 0, far-view clips taken at different camera positions. Indtese

Ly = omt€Gr\ou (24)  consider an heuristic approach that roughly distributes th
a, g = 0. importance of detected hot-spots into the clips in a segment
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S ¢ A P~ & Soccer Video } Average Motion
. m ' m 3 m m L m—— I Vectors
O SCENE 3 : PL. 3 0 SCENE 1 EPLA — et e | ‘ Compute
. ‘ CLOSE ‘ CLOSE ‘MEDIUM‘ FAR + . ‘MED\UM‘ CLOSE ‘ CLOSE } . ‘ CLOSE ‘REPLAY‘REPLA v+ . ' Standard Deviation Weighted
I | ] ]
T T Y T of Camera Moton Sum
EMOTIONAL PART GAME PART EMOTIONAL PART GAME REPLAY PART L .
L . A v ) Direction in a Clip
KICK-OFF TYPE EVENT NON KICK-OFF TYPE EVENT ) 2
EMOTIONAL LEVEL DISTRIBUTION N ETaTe
1.0 Grassland i e
4 Blob-tracking | stimulus
osk”” ‘ Extraction 7 | | compute Standard of the clip
EMOTIONAL LEVEL DISTRIBUTION f g Deviation of

Players Moving
Direction in a Clip

1.0

o_sﬁ‘
GAME RELEVAN CE DISTRIBUTION

10 Fig. 7. We evaluate the average stimulus in a far-view clipebfimating

0_5~$ information associated to scene activity from camera motmd player

GAME RELEVAN CE DISTRIBUTION motion, which are computed on average motion vector in thegjand region

10 /-—-l—/—— and tracked player positions.
0.5

Fig. 6. The base benefit of a clip is evaluated from the ganevaste and Organization. If time resources to render a replay are alvk|

emotional level, defined as functions of clip view-typeseTecaying process e present the action in the clearest way.
is modelled by hyperbolic tangent functiotf; , tfL, t& are starting times of
game play, hero scene, and replay in th&" segment, respectively.

VI. EXPERIMENTAL RESULTS

based on the general production rules: The dominant playen. Experimental Setup
usually the last to be presented before an important adtian,

) o : We use a broadcasted soccer video and two surveillance
the first to be shown after an action; The close-up views and .
. : . —videos to validate the performance of our framework. The
replays are usually inserted right after an important actio

which suggests that the closer a far view is to the close-gaccer video i3 hours long with a list of50 automatically

. . o eRtracted audio hot-spots. The two surveillance videos in-
view or the replay clip, the more relevant it is [47]. Hence . : : :

G B : - Clude a 7-minute indoor surveillance video from the JAIST
we definef;” and f* by propagating the significance of the

. . dataset [50] and a 14-minute outdoor surveillance videmfro
detected hot-spot event according to the view type straatfir . . A
. R ; the Behave dataset [51], both with various group activities
the segment, as depicted in Fig.6. The decaying process

a . . . i
modelled by using the hyperbolic tangent function, becatus Etween multiple persons. Seven different speed optigs, |

e .
is bounded and is integrable, thus simplifying the companat 1x, 2x, 4x, 6.X’ 8x, 10x, anc_sIJroo (for °°’_“e”t truncatiod), .

— . . re enabled in the current implementation, so as to provide
of f,. Since our allocation of resources directly depends

on the proposed model, our experimental results tend (igmparatlve flexibility in fast-forwarding control to thes

confirm the relevance of the adopted model indirectly via U}rgethods with continuous playback speeds. Hevestands

S . : or the a times of the normal playback speed. In the multi-
subjective assessment of users satisfaction about theagede . .

. . view JAIST dataset, we performed conventional trackingraft
summaries. Note that if a more accurate model was develo%e . : .
regarding the emotional and game interest of a video, e etection methods and achieved accurate9(’) tracking
bagse | og the affoctive som ut?n terature [48][49]. ituldb sults [52][53]. Detailed quantitative results and derideus

buting ' can be found in [54]. In the single view Behave dataset,

be stra|ghtforward.to mtegrat(_a I W'thm the fram_ework]lqwg we use the trajectories provided by the dataset, where many
as the model assigns benefits in a way that is additive over

) . : g onventional tracking methods are also available [55].
video segments (i.e. the benefit associated to a segment 1 . . o
. he proposed framework aims at focusing on summarization
independent from other segments).

Information associated to scene changings defined on with adaptive fast-forwarding and semantically relevant a

the fluctuation of the camera view or the diversified movemtat[r)ftarsonal'ZQ(.j story telll_ng. !ts performance is exploraduigh
. . : . . a comparative analysis with state of the art methods. Espe-
of multiple players. Given a clip, the fluctuation of its camme

view 7™ is evaluated by the average standard deviation of t |éally, we compared the behaviour of our proposed method to

motion vectors in the clip, while the complexity of diversii ;?vee ?;esttr_]% ?\i;alr';i]eker et al.[9], Hoferlin et al. [10] and
player movements? is defined as the average standary Peker et al. [9] ach?eve adaptive fast-forwarding via canist
deviation of players’ moving speeds in the clip. As shown inctivit sub—s.am lin P 9
Fig.7, the average informatiamn is then defined as a weighteda y ping
% T

sum of the above two terms, sf = Ttartga 5, (30)
(29) where the complexity of activity; is measured by average

motion vector magnitude. We estimated the motion vector by
which is normalized td0 1] for far-view and non-far-view the Horn-Schunck method as originally applied by Peker et
clips independently. Using the standard deviation avors t&l-» and used the implementation in OpenCV.

need of accurate compensation of player speed with respeq\tNh fent ¢ tion is not desired i il
. n ntent trun n n I n m I m
to camera motions. en conte uncation Is not desired in some surveillaystems, we

o could also replacet-oo with the maximum fast-forwarding playback speed
We only allow normal speed for a replay clip in local storyllowed in the deployed system, e.g4x.

_— ™ 4 7P far view
t v .
™, otherwise
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o
=
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) Video Time B /V
—— All Tested Subsummaries —O— Subsummaries on Convex Hull = - /1
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<

Benefit Benefit
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2 — B 12 16 20 24 28 2 N
54f Convex HUIl from Sub-optimal Computation '~ 5o o T L‘—T y
1.68) OO0 /,/
é e UG I vl
4 8 12 1 20 24 28 "
Length of Sub-Summary / —a— Behave
10° .
Fig. 8. Compared to exhaustive combination, our approxthabmputation f :7 JS‘:LEL
provides the same convex hulls on two tested segments, igitifisantly less 10° : : : : : : -
tested combinations. The top of each sub-figure gives tive siiricture of the 2 3 8 0 10

4 5 6 7
segment along with the clip boundaries. Each vertical bahénmiddle and Number of Speed Options

bottom of the sub-figure represents one considered conidrindthe resultant b) Computational time w.r.t. numbers of speed options
convex hull is marked in the red curve, and the support satrsaries in red

circles. Five speed options are considered, namely, 1x42x8x, and bo. Fig. 9. 'Behaviours of our proposed method in terms of opiynaind
computatlonal cost.
Hoferlin et al. [10] determine the activity level by commg

the alpha-divergence between the luminance differenceof tover differento values). Since the durations of the summaries
consecutive frames and the estimated noise model. A biggenerated based on convex-hull operating points are ctose t
divergence value stands for a larger distance between the constraint (with averaged difference arous), the sub-
current frame difference and those caused by the backgrowpdimality is negligible.

noise. The adjusted sampling intervgl is then set to be Since meta-data collection can be performed off-line as
linearly proportional to the activity level. We learnt theise preprocessing, we mainly discuss the computation cost in
model from several training clips of background scenes-witproducing the summary, which is more relevant in online
out moving foreground objects and camera motions. Alplsammarization service of pre-recorded videos. Fig.9(bysh
was set tal, which results in the Kullback-Leibler divergencghe computational time for summarizing the three videos by

and was most discussed in [10]. a single threaded implementation running on a Core i7 CPU
Naive fast-forwarding simply assigns a uniform playbacfk.3Ghz), under speed options varying from 2 to 10. For atshor
speeds to all frames. segment ofCs clips, increasing the number of speed options

We only provide representative results directly relatetheo by one slows the enumeration process[by- 1/5]¢2, which
summarization performance here. The corresponding videgr@dually saturates tb when.S increases. Whed; = 5 and
and additional experimental results are available in the suS > 6 (i.e.[1+1/5]“? < 2.17), the overall computational time

plemental materials associated to this paper [56]. almost doubles when one playback option is added (Fig,9(a))
i.e. the approximated computation successfully linedrites
B. Behaviour of the proposed method computation between short segments. The computation of

normalized inverse linear proportion in [9] and [10] codtsat

In Fig.8, we compared convex-hulls of sub-summaries frog1mS (JAIST:1.62-0.20ms, Behave2.31-£0.30ms and Soccer:
exhaustive combination and our approximated computatign " ) ' X i !

on two lona seaments with multiole clios. When computin 46 +0.03ms. Averaged afte20 trials). Although slower, the
9 s€g pie Clips. P %roposed method can still be regarded as real-time resgmnsi
the convex-hull for a segment witld' clips (where each

. . . if the viewer n h ner mmarylin~ 2
clip could take S different speeds), we hav8® different the viewers ca get t € gene ated summary :
o . . : - seconds after inputting their preferences, according ® th
combinations in exhaustive enumeration. If we divide theglo . > . . . . .
. . limits of response times found in usability engineering][57
segment into short sub-segments@f clips, we only need .
C o 1 . , Note that the computation can be further accelerated by
(C/C5)(S“? + K*) times of enumerationds is the average o RPN
S . 2~ parallel optimization of the local story organization irfffelient
number of support points in a convex-hull, which empirigall

is around20 when C, < 7. The approximated computationsegmems’ which is a straightforward extension in our @ivid

. . o an nquer framework.
provided the same convex hull as the exhaustive combmatlgnd cohquer framewo

with significantly less tested combinations, which is used i o .
the following experiments. C. Objective Evaluation

Lagrangian relaxation provides optimal solutions when the The summaries for objective evaluation are generated from
generated summary duration is equal to the user-impogbeé whole videos of both the JAIST and Behave Datasets
duration constraint.™ [40]. We evaluate the potential sub-and the period 0f1020s-2030s in the soccer video, by
optimality induced by Lagrangian relaxation by investiggt varying the compaction ratio (defined &é/u") from 2 to
the difference between the Ien]\gth of the resultant sumnmary20. We denote the set of ground truth events BST =
its target duration, i.elu™ — 37, s/, in Fig.9(a) (averaged {e{T|g = 1,---,N%T}. Each event has three elements,
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TABLE I
MANUALLY ANNOTATED EVENTS AND RELATIVE IMPORTANCE
GT _ GT »GT GT H i

e/ = (Tq ,Cy 59, ), corres_pondmg to its type, temporal =g Soccer AT Behave 0,
period and related member objects. Bgtbe the importance =7 Goal Fight, StealBag Fight 2
value of theq'™™ event. The ground-truth includey events 2 Foul FallDown Split
for the soccer video51 events for the JAIST video anib Shoot ExchangeBag Approach

ts for the Behave video, which are classified into four 3 PlaceKick, Comer  DragBag,Pickup  RunTogether ,
(—:_‘VGI’] S ] g ! : Clearance StopAndChat InGroup
tiers according to their relative importance (Table I). We Kickoff
compare the above methods with multiple objective criteria 4 BallBacktoCourt Following WalkTogether 1

for investigating the following behaviours: BalloutofCourt

1) Adaptive fast-forwarding for semantic event browsing
Given the summaryV = {(I;,s;)[t =1,--- ,N,s; € [0 1]}, _ _ _ _ o
we define the first criteriot,; as the normalized information compaction ratio, all clips will be rendered with intoletab

density of its frames speeds. Furthermore, the high fluctuation level in [9]
ar and [10] stands for frequent and severe playback speed
S s Zé\le Pg()8g SN s changes in the summary. In contrast, our proposed method
Li = ZN ZNGT ba(£)0 / N (31) is able to maintain a lower playback speéd by truncating
t=1 ceq=1 TR the less important contents and has much lower fluctuation
which is plotted in Fig.10(a)y,(t) determines whether thelevel L3 because of clip-based summarization.
¢™ event occurs at the™ frame. 3) Adaptive fast-forwarding for narrative story organiza-
1 te(or tion. Compared to the linear playback speed control in [9]
Uq(t) Z{ O: othe?wise. (32) and [10], our framework allows flexible personalization of

) , story organization by tuning the time duratioh and the con-
Both [9] and [10] obtain lowL, values, which suggests thatyqjing parametersa, 3) (Eq.6). We can suppress redundant
they fa_lled to correctly measure the intensity of §cene/m|ﬂs contents in the replays for higher compaction, considenysto
or the importance of the events. In the soccer video, gmssla ., ninuity, and remove very short clips to avoid flickeri@yr
in the far view lead to motion vectors of lower magnitudgamework can further satisfy the user preferences on fiteou

and less noticeable frame differences. Since the events 8fects/events. We defing, as the normalized density of
annotated on far-view clips, the fact that [9] and [10] havere ,ormation related to a specified object in the summary
lower L, values than the naive fast-forwarding suggests that

more time resources are allocated to close-up Vigalthough Zi\il St Zflvch Xq(t, u®)b, SN s
close-up views are reported to tolerate higher playbackdpe Ly = ZN ZNGT (1, u0)0 / N (35)
than far-views in the subjective tests presented in Fig.11. t=12uq=1 Xa\"¥")0

For surveillance videos without camera motions, both thend plot L, of the summaries of the JAIST video under
optical flow and the alpha divergence become less sensitivevarious¢ values (Eg.14) and compaction ratidn Fig.10(d).
reflecting the activities in the scene. In contrast, our meéth y,(¢,u°) determines whether objeaf’ is involved in theg'"
achieves highel.; values than other methods, which showevent at thet® frame.
that the proposed method is more semantically relevanteo th 1, te ST 4O ¢ gaT
. . . O ’ ’

annotated events, by assigning slower playback speedp$o cl Xq(t,u™) = { 0 otherwise ?
with both higher event importance and scene activities. ’ '

2) Adaptive fast-forwarding for visually comfortable sumWhen an object is specified, higher weights will be assigned
marization A comfort summary need to be played backo its related clips, by results in a largég value.
slowly enough (supported by the subjective tests presented
in Section VI-D), and the speeds should vary gradually §9 sypjective Evaluation
as to avoid annoying flickering. The comfort is evaluated
by both the average playback speéd and the fluctuation
level of playback speeds between consecutive framedNe
consider the non-truncated content, i.e. sub-sequafice=
{(I,s))|t =1,--- ,N*;s, > 0} c V, and defineL,,Ls as

(36)

The purpose of our subjective evaluation test is not limited
to comparing the performances of the methods, but also to ex-
plore possible future improvements through detailed iospe
of unnatural story/visual artifacts in the summarizatiesuits.
Accordingly, we have designed and performed three suligecti

Ly = E[l/sj]= JJ\\[* , (33) tests to collect the related opinions of the audiences.
Doty Si 1) The first subjective evaluation evaluates the suitplag-
- 1 L g back speedgFig.11). 25 participants (including 11 females
Ly = o]A(1/s,)] = D=2 St(s_t B sH) (34) and 14 male, age from 20-40) were asked to specify their
i\’z’; St ’ highest tolerable playback speed, comfortable playbaekdp

and the most comfortable playback speed when presented five

which are shown in Fig.10(b)(c). When the length of target., hs of video samples from both broadcasted soccer videos
summary changes, playback speeds of different clips in [}y syrveillance videos with various playback speeds.

and [10] maintain the same ratio. Accordingly, under a high For the soccer video, the highest tolerable speed for far

2This is confirmed by the plotted distribution of the playbairke and the VIEWS iS lower than that of the close-up views. We consider
highlight curve in the supplemental material. this as a result that understanding far-view need attealtion
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Fig. 10. We plot the results of multiple criteria for objeetievaluation of ested Video Samples
the behaviour of the proposed systef= 0.5). c) Results on the most comfortable playback speeds

perception to follow the players. For surveillance videD, Fig. 11. Results of subjective evaluation from 25 partioigaon their
could tolerate even higher speed, mainly because the fiXeetback under various fast-forwarding speeds when bngwéive video
camera view makes the selective perception much easiet. I\/Igfgygfcsl(f;g':egoggﬁgrrf’:?gf:i‘i go\zgee;!‘;fg f‘;%i%‘f&ﬁ%;rﬁhﬁg
participants cannot tolerate a speed over 4x (i.e. 6FPS gt for surveillance videos are 1x, 2x, 4x, 8x, 16x and 32x.
a 25FPS video), which coincides with the observations in
previous researches that perception on higher-order motio
word recognition, acceleration/direction change will uizg cONclusion that our method performs the best especiallgund
a playback speed around or even below 8 FPS [11]. #e high compaction ratio (8), we observed that:
both cases, audiences still feel comfortable in fasterhglay @) Our method outperforms the other two methods in gener-
speeds, which is the base of adaptive fast-forwarding. As fating complete summaries for highly compact summarization
the most comfortable speed, most audiences prefer thenatigi(8), which supports our idea of introducing content truiwat
speed selected and produced by experts in the soccer videcsave time resources for presenting key events in a clearer
For surveillance video, audiences prefer a faster playbasRy. With the lowering of the compaction ratio, the average
speed (2x or 4x), due to low stimuli in the original video. playback speed becomes tolerable or even comfortable ewher
2) The second subjective test collects tiebal impres- the viewers could realize the existence of truncated cositen
sion of audiences in comparatively evaluating the generatéfd assign a lower completeness value to our method, which is
summaries. We asked 23 participants (including 10 female@nsidered to be the reason why [9] outperforms our method
and 13 males, age from 20-40) to give their opinions on thie summarizing the Behave dataset under compaction ratio 4.
preferred result when presented a group of three summaried) Our method produces more comfortable summaries from
generated by the methods under analysis (in random ordiém® broadcasted soccer video, where both 8 and 4 are too
for completenesgomfort andeffectivenessf time allocation. high for an adaptive fast-forwarding method to produce a
We plot the results of evaluating six-groups of summariesfr comfortable video without truncating some contents. Ineord
three source videos under two different compaction raties (to slow down a key event, we have to raise the playback
8 and 4) along with the questions in Fig.12. Besides the dlverspeed of other contents to a much higher level in exchange
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for the equivalent time resource, which results in flickgrin ?Owﬂl?eﬁes? o leatly most of actions i the scenc?
and lowers the visual comfort of the summary. Our method . ‘}’,refiguse,\ﬁ’egm}‘;?Preziou:’;egod[cm]o@m;iﬁ&od
also outperforms the other two methods in summarizing the ¢ ' o ' I '
JAIST video, where the close and dense group activities in:2°*
the scene make the evaluation easier. The difference is les&os
obvious in the Behave dataset due to two major reasons:gno/;
i) The activities in the video are sparse and simpler; ii) 8.,

o
=

We did not tell the viewers our definition of key-events in 2,
order to avoid a biased evaluation towards group-intevacti
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events. The Behave dataset recorded some movements oComfort:

cars, bicycles and irrelevant pedestrians without progdhe 2. Which video is most comfortable to watch (e.g. less flickering
corresponding trajectories, which might have distracteel t and intelligibility of events)?

Previous Method [9] Previous Method [10] m Proposed Method

viewers' attentions.

Z10
¢) Our method is evaluated to be the most effective in allo- 4%0_8
cating playback speeds for presenting the actions of isttere 306
especially under a high compaction ratio. ??o i
d) Although [10] was a recent method proposed for summa- qg;‘” |
rizing survgl!lance videos, it fails to outp_erform [91, esm_lly g™ %x\\ nz 1
in summarizing the Behave dataset, mainly due to the difficul ~ “00—> IAIST T BEHAVE  Soccer TAIST  BEHAVE

in learning the noise model. Although we have prepared neat _High Compaction Ratio (8) Low Compaction Ratio (4)
training video clips for noise estimation which include no Effectiveness: , ‘ ,

foreground activities and are close to the testing videeims rzésﬁ:;ﬁ ;llif;%fcrlisfarfs;he actions offinterest with the most

of lighting conditions, both the noise in the JAIST dataset ¢ 77 Previous Method [9] [ Previous Method [10] [ Proposed Method
captured indoor with full HD cameras or the insignificant 2 ' 0 ' o '
foreground activities in the Behave dataset captured from aZ"*
far viewpoint through the window could cause a large bias to “g‘w

the alpha-divergence. 04
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3) The third subjective evaluation is based on a detailed So> o | y§ N | a
inspection of the generated summaries. Each viewer is asked®,,] S N N A Y
. . . . . . Soccer JAIST BEHAVE Soccer JAIST BEHAVE

to point and click via an interface to any kind of visual or High Compaction Ratio (8) Low Compaction Ratio (4)

T‘Story_te”mg artifacts. The timestamp of C|ICk|_ng IS m_ Fig. 12. Results of the second subjective evaluation tesh f23 viewers,
ically recorded by the tool. We do not ask viewers to inpwy collecting their global impression on the summaries, lie sense of
detailed comments after each clicking, because intewnpticompleteness, comfort and effectiveness of time allosatio

during video playing might distract viewers from focusing o

g RRITIT 9T L o 7] i
the story evolving in the summary, which should especially S:Eo 250 s o0 s S0 s 00 s k0
be avoided for better evaluating the optimal fast-forwagdi & g LI LTI/ ] JUIE

. ©n V0 25 50 75 100 125 150 175 200 225 250
speed. As a consequence, we have to find out the reasorgggt T T -
behind each clicking by analysing the aggregation of cligki 5<% 25 s 75 q00 D5 10 1520025250

Summary Video Time (second)

a posteriori. We estimate the density of clickings at eadewi (a) Visual/Story artifacts in the soccer summary

time by using the Parzen-window function to compensate 5 EEL] : ‘ e B

the delay between the occurrence of story artifacts and the'sf T g0

corresponding clicking, where a rectangular window of widt & 3§ AT LI AT I 7 )

2 seconds is applied to the left side of each clicking. Note £ & ] 1 M P 1]
BS Z 70 7 14 21 28 35 42 49 56 63 70

that the proposed resource allocation framework does not de Summary Video Time (second)
pend on user clicking for adaptive fast-forwarding (andead (b) Visual/Story artifacts in the JAIST summary

skipping). We collect data from 16 participants (includifig 3 2 \ I I

females and 11 males, age from 20-40) and plot them in =50 10 20 755 & S e 7w 9 Mo

Fig.13. In each sub-figure, we present the view-structuck an %%30 T e v e N BT

the allocated playback speed of the generated summary ong £ g o 0 o N
= Z 0 11 22 33 44 55 66 77 88 99 110

A%

the top with the vertical bars for pointing out the positions Summary Video Time (second)
of content truncations. In the pottom, we give the number  (c) Visual/Story artifacts in the Behave summary
of viewers Whp sensed _an artifact at _eaCh momen?' As ?'i'a 13. Labelled visual/story-telling artifacts in theirth subjective eval-
overall evaluation, there is only one artifact that recditlee uation test by 16 viewers. We present the view structure aedptayback
recognition of more than half of all viewers in all the thregPeed in the top part of each sub-figure, where the vertiaal pasent the
d . hich iall h h Spo ition of content truncations. In the bottom, we show theregated times

tested summaries, whic .partla y proves that the Proposgdrifacts labelled.
method could provide visually comfortable summaries to
satisfy most of the audiences. into three groups: i) Those correspond to a moment with

We divide artifacts labelled by more than 1/3 of reviewensoth a high playback speed and content truncation, inctudin
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21s,48s,170s in soccer video, 20s, 30s and 34s in the JAI&Taster playback speed, which supports our fast-forwgrdin
video, and 54s, 66s and 92s in the Behave video; ii) Thobased summarization. A too-fast playback speed is found to
correspond to a moment with only a high playback speelde even more annoying than content truncation, which drives
including 55s, 177s in the soccer video, 9s, 40s, 55s and @i&sto further extend our hybrid method of content truncation
in the JAIST video; iii) Those correspond to a moment witAnd adaptive fast-forwarding. Both information assodt®
only content truncation, including 225s in the soccer vided the still contents and scene activity are important in poiaiy
92s in the Behave video. We have the following observatiorssemantically relevant and visually comfort summary. Wi wi
a) The viewers are more sensitive to high playback spe#is consider both types of information in our future work.
than to content truncation, given the fact that most of the
above artifacts are related to high playback speeds. We are
not surprised with the result, because the playback speed in
those artifacts is higher than the comfortable speed redeal [1] B.T. Truong and S. Venkatesh, *Video abstraction: A epsatic review
our preliminary subjective evaluation in Fig.11. Howewbis f’/‘gf ;'?S;'f'lcaggg'?.ACM Trans. Mulimedia Comput. Commun. Appl.
suggests that content truncation could provide more cdmforp) a. Ferman and A. Tekalp, “Two-stage hierarchical videomsnary
able summaries than fast-forwarding with a over-fast phayb extraction to match low-level user browsing preferencéSEE Trans.
speed, which reinforce our conviction that hybrid sumneariz ., Mulimedia vol. 5, no. 2, pp. 244-256, 2003. o
. . . . . [3] G. C. de Silva, T. Yamasaki, and K. Aizawa, “Evaluation atleo
tion with both content truncation and fast-forwarding i® th summarization for a large number of cameras in ubiquitounejbin
path to follow in the future. In a real application, we could ACM MM'05, 2005, pp. 820-828.

; it i~ [4] Y. Takahashi, N. Nitta, and N. Babaguchi, “Video summation for
remove these artifacts by limiting the playback speed ogtio large Sports Video archives” MEME'05, 2005, pp. 1170-1173,
within the tolerable range. [5] G. Zhu, Q. Huang, C. Xu, Y. Rui, S. Jiang, W. Gao, and H. Yao,
b) We notice that clips of high playback speeds usually “Trajectory based event tactics analysis in broadcasttspédeo,” in
gather around content truncations. Important clips uguall ACM MM07, 2007, pp. 58-67. N
. . . . . . [6] J. Wang, C. Xu, E. Chng, L. Duan, K. Wan, and Q. Tian, “Autdin
locate in the middle of a segment with neighbouring clips, ™ generation of personalized music sports videoA@M MM'05, 2005,

which is intentionally designed to assure the continuitd an  pp. 735-744.

completeness of story-telling. We intend to suppress thodé B. Tseng and J. Smith, *Hierarchical video summarizatioased on
context clustering,” ininternet Multimedia Management Systems IV.

artifacts in Group 1 by truncating the clips with over-fast  (Egited by Smith, J.R.; Panchanathan, S.; Zhang, T.) Puiioes of
playback speeds, and inserting a fixed length transitiom cli  the SPIE vol. 5242, 2003, pp. 14-25.

to help the audiences to reorient themselves after trumeati [8] Z- Li, G. M. Schuster, and A. K. Katsaggelos, “Minmax apél video
summarization,”lEEE Trans. Circuits Syst. Video Technalol. 15, pp.
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