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Abstract—Tristimulus display of the abundant information
contained in a hyperspectral image is a challenging task. Pre-
vious visualization approaches focused on preserving as much
information as possible in the reduced spectral space, but ended
up with displaying hyperspectral images as false color images,
which contradicts with human experience and expectation. This
paper proposes a new framework to tackle this problem. It is
based on the fusion of a hyperspectral image and a high-resolution
color image via manifold alignment technique. Manifold learning
is an important tool for dimension reduction. Manifold alignment
projects a pair of two data sets into a common embedding space
so that the pairs of corresponding points in these two data sets
are pairwise aligned in this new space. Hyperspectral image
and high-resolution color image have strong complementary
properties due to the high spectral resolution in the former and
the high spatial resolution in the latter. The embedding space
produced by manifold alignment bridges a gap between the high
dimensional spectral space of hyperspectral image and RGB space
of color image, making it possible to transfer the natural color
and spatial information of a high-resolution color image to a
hyperspectral image to generate a visualized image with natural
color distribution and finer details.

Keywords—Hyperspectral image, visualization, manifold align-
ment, image fusion

I. INTRODUCTION

A hyperspectral imaging sensor acquires images of the
same area using hundreds of bands. It provides high-resolution
spectral information such that more accurate material detec-
tion, classification, and quantification can be achieved. Hyper-
spectral image (HSI) displaying has been a challenging task
because it contains much more bands than can be displayed on
a tristimulus display device [1]. Although the requirements of
HSI visualization are task dependent, there are some common
goals such as information preservation, consistent rendering,
edge salience, and natural palette [2].

HSI visualization can be seen as a specific dimension re-
duction problem where high dimensional spectral space of HSI
is projected into RGB color space. A direct and simple type of
visualization approach is to use interactive tools to manually
pick three spectral bands from HSI and match them to RGB
channels [3], or automatically select the important/informative
bands based on various statistical measures [4]. More so-
phisticated mappings can be created through user-specified
linear combinations of spectral bands [5], or data-dependent
combinations using principle component analysis(PCA) [6].
All these methods are based on the assumption that the HSI
data is embedded almost linearly in the ambient space. In

recent years, some nonlinear dimension reduction methods are
employed in HSI visualization and feature extraction, including
manifold learning [7], Markov random field (MRF) fusion [8],
nonlinear optimization [9], and bilateral filtering [10]. These
approaches aim at discovering the nonlinear structure of the
HSI, and demonstrating better performance in preserving the
intrinsic information of HSI.

Unbounded three-dimensional Euclidean space produced
by dimension reduction is normally not suitable for displaying
because it does not considered the boundaries of the hue,
saturation, and value (HSV) color space. In order to use
the dynamic range of RGB color space, a post-processing
transform is needed to map the original three-dimensional
space to RGB space [9]. However, existing transforms render
the image without taking into account the visual effect of color
distribution. A common practice is using false color to display
the dimension reduced HSI, which contradicts with human
experience and expectation. Furthermore, while mapping the
data to RGB space using techniques such as nonuniform
scaling, standard deviation stretch, and histogram equalization,
information in the original HSI may be distorted.

In this paper, we propose a HSI visualization method
based on manifold alignment with the aid of a high resolution
color image (HRCI). In most cases, we can acquire HSI and
HRCI on the same spot by HSI/HRCI integrated or separated
imaging sensors. The HSI and HRCI have strong complemen-
tary properties for information fusion. Although HSI contains
precise and detailed spectral information, its spatial resolution
is lower than HRCI images. On the other hand, HRCI has
comparatively high spatial resolution. The fusion of different
views of the same input data has been receiving increased
attention [11]. The HSI and panchromatic image (PAN) fusion
based visualization methods [12], [13] take advantage of
the high spatial resolution of PAN in sharpening the HSI
visualization. They are also called pan-sharpening algorithms,
which are not limited to HSI applications [14], [15]. However,
these pan-sharping methods require precise matching between
HSI and PAN, which is not an easy task especially when HSI
and PAN are acquired from different sensors such as airplane-
based and satellite-based systems with different geometrical
distortions. The main merit of the proposed method is that
only a small number of corresponding pixel pairs between
HRCI and HSI are needed rather than the precise registration
between two images, which makes the algorithm very flexible.

Manifold alignment is one of the important frames for
transfer learning [16]. It builds connections between two or
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more disparate data sets by aligning their underlying manifolds
and enables knowledge transfer across the data sets [17], [18].
We treat HSI visualization with the help of HRCI as a transfer
learning problem. The goal is to transfer the natural color
distribution and fine spatial information of HRCI to HSI. To
achieve this goal, these two types of images are connected
by the corresponding pixels and are aligned to a common
embedding space. The embedding space bridges the gap be-
tween the high dimensional space of HSI and RGB space of
HRCI, making it possible to transfer the knowledge between
them. Compared to other dimensionality reduction based HSI
visualization methods, the proposed approach projects the HSI
directly to RGB space, so that no additional technique is
required to fit the dynamic range of the tristimulus display
and human visual habit. Furthermore, mutual compensation of
HSI and HRCI in spatial and spectral spaces is also embodied
in the visualization result.

This paper is organized as follows. Section II provides
the background knowledge of manifold alignment. In Sec-
tion III, manifold alignment based HSI visualization approach
are presented. The experiments and results are discussed in
Section IV. Conclusions are drawn in Section V.

II. MANIFOLD ALIGNMENT

Given two data sets that are represented by the matrices
S ∈ Rns×ps and T ∈ Rnt×pt where ns and nt are the numbers
of samples, and ps and pt are the numbers of features. Assume
that partial correspondence information are given in the form
of paired samples xi

s ∈ S ↔ xj
t ∈ T . Manifold alignment

uses the corresponding sample pairs between two data sets to
find two transformation functions fs : Rps → Rq and ft :
Rpt → Rq, which leads to implicit alignment of different data
manifolds in the mutual embedding space Rq.

To achieve this goal, we firstly construct the weighted
graph that represents two input manifolds and their correspon-
dences. In the graph of each data set, the nodes/samples i and j
are connected by an edge if i is among the k nearest neighbors
of j or j is among the k nearest neighbors of i. The weight
of an edge can be calculated by a heat kernel

W (i, j) = e
−‖xi−xj‖

2

σ (1)

Now we combine these two individual graphs into a joint graph
by constructing the edges between nodes i and j from different
data sets. Typically, W (i, j) = 1 if samples xi and xj form
a corresponding pair. As a result, the size of the weighted
adjacency matrix of this joint graph is (ns + nt)× (ns + nt),
and the entries of W are defined as

W (i, j) =

⎧⎪⎪⎨
⎪⎪⎩

α1Wij xi and xj are from the same dataset
α2Wij xi and xj are corresponding pair

from two datasets respectively
0 otherwise

(2)

The cost function for manifold alignment is defined as

H(fs, ft) =
∑
i�=j

‖fs(x
i
s)− fs(x

j
s)‖

2 × α1Ws(i, j)

+
∑
m �=n

‖ft(x
m
t )− ft(x

n
t )‖

2 × α1Wt(m,n)

+
∑
i�=m

‖fs(x
i
s)− ft(x

m
t )‖2 × α2Wst(i,m)

(3)

In this equation, the first two terms on the right-hand side
ensure that two similar samples from the same data set
maintain their similarity in the common space, and the last
term ensures that the corresponding pairs from different data
sets stay close in the common space.

By constructing the joint adjacency graph W , two man-
ifolds are treated as a joint manifold. The alignment goal
turns to finding an optimal mapping function to reduce the
dimensionality of the joint structure. Thus Equation (3) can be
rewritten as a general loss function defined as

H(fst) =
∑
i�=j

‖fst(xi)− fst(xj)‖
2W (i, j) (4)

where fst is the joined function of fs and ft that are applied
to data sets S and T respectively, and W is the joint adjacency
matrix. The summation is taken over all pairs of pixels from
these two data sets. Equation (4) will derive a simplified form
by the joint graph Laplacian L = D−W where D is a diagonal
matrix with D(i, i) =

∑
j W (i, j).

H(fst) = tr(F ′LF ) (5)

where F is an (ns + nt) × q matrix that represents two data
sets in the embedding space, and F ′ is the transpose of F .
When the manifold projection is linear, fs and ft are two
transformation matrices Fs and Ft with the size of ps× q and
pt × q respectively, i.e., fs(xi) = xiFs and ft(xi) = xiFt.
Therefore, the cost function for the linear manifold alignment
is described as

H(fst) =
∑
i,j

‖xiF − xjF‖
2W (i, j) (6)

where F = [Fs;Ft] is the joint matrix of Fs and Ft with size
(ps + pt)× q. The cost function Equation (6) is simplified as

H(fst) = tr(F ′X ′LXF ) (7)

where X is is an (ns + nt)× (ps + pt) joint data matrix with
S on the upper left corner, T on the lower right corner and
zero on the other entries. This optimization problem can be
solved by Laplacian eigenmaps, i.e., F is constructed by the
eigenvectors which correspond to the q minimum eigenvalues
of the generalized eigenvector problem.

X ′LXF̂ = λX ′DXF̂ (8)

Linear alignment sacrifices the ability to align arbitrarily
warped manifolds, but it is much faster than nonlinear align-
ment. In this paper, linear method is used in all experiments.
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Fig. 1. The process of the proposed visualization method.

III. MANIFOLD ALIGNMENT BASED HYPERSPETRAL
IMAGE VISUALIZATION

Given an HSI with high spectral resolution but low spatial
resolution and a HRCI with high spatial resolution in RGB
color space, the main goal of our approach is to inject the
HRCI’s natural color as well as its spatial information into the
visualized HSI to achieve better visual effects and finer detail
information. Fig. 1 summarizes the process of the manifold
alignment based visualization. Firstly, the corresponding pairs
are found between a HSI and a HRCI that are acquired
on the same spot, which builds the connection between the
two manifolds from different spaces. Secondly, the manifold
alignment aligns these two manifolds to a common embedding
space by projection functions fs and ft respectively, where fs
is the mapping function from HSI space to the embedding
space and ft is the one from RGB space to the embedding
space. Finally, the HSI in the embedding space is mapped to
RGB space by the inverse projection function of ft.

The overall visualization algorithm can be summarized as
follows:

1) Create the weighted adjacency matrices Ws and Wt

of HSI and HRCI using k nearest neighbors and heat
kernel.

2) Find the corresponding points between HSI and
HRCI using SIFT based feature matching.

3) Construct the joint weighted adjacency matrix W
using Ws and Wt along with the corresponding pixel-
pairs, and then obtain its Laplacian matrix L.

4) Solve the optimization problem by eigenmaps to get
the linear transformation matrices Fs and Ft.

5) Calculate the mapping function F−1

t that is the
inverse transform of Ft. It maps the data from the
embedding space to RGB space.

6) Map the embedded HSI data to RGB space by F−1

t .

Using the notations in section II, the HSI Is and HRCI
It are represented in their original spaces respectively by two
matrices S and T . The numbers of rows in S and T are ns and
nt, which are their image sizes respectively, and the numbers
of columns of S and T are ps and pt, which are their color
dimensions respectively. Since HRCI is in RGB space, pt = 3.

In step 1, we use different distance measures to calculate
the similarity between a pair of pixels for HSI and HRCI
respectively. As the material reflectance or radiance differs in

scale in different bands, the spectral angle distance (SAD) are
commonly used to measure the difference of a pair of pixels
in HSI. Thus, the weighted adjacency matrix Ws of HSI is
defined as

Ws(i, j) = e
−SAD(xi,xj)

σ (9)

where
SAD(xi, xj) = arccos(

xi · xj

‖xi‖‖xj‖
) (10)

As HRCI is in RGB space, Wt is calculated by Equation (1)
using Euclidean distance in the heat kernel.

Step 2 is to find some correspondences between the HSI
and HRCI which are used to align two manifolds. The scale-
invariant feature transform (SIFT) feature is widely used to find
the corresponding pixels due to its robustness under changes in
scale, orientation and illumination [19], and has been applied
for image registration and stitching. As SIFT keypoints are
located at the extrema of difference of Gaussian (DoG), simply
performing SIFT keypoint matching may lead to the result that
the corresponding pixels are found only in the sharp regions.
However, the color distribution in the homogeneous regions
in HRCI such as water, flat ground, etc. are also essential to
HSI visualization. On the other hand, only using SIFT feature
to find the corresponding pixels is not precise, because the
geometric structure of image is not taken into account. Here,
we propose a two-stage method that first coarsely estimate an
affine transform for image registration, and then finely match
some pixels by neighborhood searching.

In the registration stage, an affine transformation matrix H

with the size of 3 × 3 is estimated that coarsely maps each
pixel in the HSI to a pixel in the HRCI [20].

(x′, y′, a)T = H3×3(x, y, 1)
T (11)

where (x, y) is a pixel coordinate in the HSI, and (x′/a, y′/a)
is its coarse corresponding pixel in the HRCI. To estimate
H, we firstly extract SIFT features for all spectral band
images of HSI, and for all RGB channels of HRCI, respec-
tively. Then the SIFT key points between HSI and HRCI are
matched, and finally the transformation matrix H is estimated
using least squares optimization and random sample consensus
(RANSAC) based outlier removal. As we know, affine function
is too simple to represent many real geometric transforms such
as inevitable non-linear geometric distortion in the HSI imag-
ing process, so this registration cannot accurately match two
images. If we directly use this registration result to build the
correspondences between HSI and HRCI, some corresponding
pixel pairs may have very different appearances. However, after
the coarse registration, it is with very large probability to find
an accurate matching pixel near the current matching one.
Therefore, in the fine matching stage, we use neighborhood
searching to find the accurate matching pixels.

Given a set of user defined or randomly selected pixels in
HSI, we attempt to find their corresponding pixels in the HRCI.
Consider a pixel (x, y) in the HSI, we first calculate its coarse
corresponding point (x′, y′) by the transform function H. Then
we performs a finer search to find the exact corresponding pixel
(u′, v′) in the neighborhood of (x′, y′) according to the SIFT
similarity. One benefit of manifold alignment is that, only a
few corresponding pairs are required to transfer knowledge
between the two manifolds, so that exact registration between
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HSI and HRCI is not necessary, which is very helpful for real
applications.

After the correspondences are found, the joint adjacency
matrix W is constructed in step 3. Step 4 projects and aligns
HSI and HRCI to a common embedding three-dimensional
space. We denote the HSI and HRCI in the common space as
Sc = SFs and Tc = TFt respectively. In step 5, the visualized
HSI is acquired by mapping Sc in the embedding space back to
RGB space. Since Ft is a linear mapping function from RGB
space to the three-dimensional embedding space, its inverse
function can map the image in the embedding space back to
RGB space. The visualized HSI Srgb can be obtained by

Srgb = ScF
−1

t = SFsF
−1

t (12)

The proposed visualization method not only transfers color
from HRCI to the visualized HSI, but also fuses the geometric
structures of HSI and HRCI into the visualized result.

It is worth to mention that, the loss function in Equation (6)
only preserves local geometries but not the global geometries
of the manifold. In other words, it only encourages similar
pixels in the original space to be neighbors in the embedding
space, but does not prevent dissimilar pixels in the original
space to be neighbors in the embedding space. However, by
using linear manifold learning, the problem can be avoided
in practice because two dissimilar pixels can always maintain
their difference after linear transformation.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of the pro-
posed visualization algorithm on the remote sensing HSI and
ground-based HSI, and compare it with three popularly used
methods random band selection [3], PCA [6] and Laplacian
Eigenmaps [7]. The impact of parameters (the number of
corresponding pairs and the weight of the correspondence in
the joint adjacency matrix W ) on the performance is also
discussed.

The first experiment is on a real remote sensing HSI
taken over Washington D.C. mall by the hyperspectral digital
imagery collection experiment (HYDICE) sensor. The data
consists of 191 bands with the size of 1208 × 307. Fig. 2
displays the data by selecting three bands (1, 95, 191) and
mapping them to RGB space. The random band selection
ignores the different importance of each band. Fig. 3 shows the
RGB image created by PCA. It is a global transformation, so
that some important local structures are lost. Fig. 4 displays the
HSI using Laplacian Eigenmaps. It preserves local information
of HSI better than PCA. For PCA method, because many of
the pixel’s coordinates in the new three-dimensional space are
negative, we translate the coordinate axis to get positive values
by subtracting each value with the minimum of the data. Then
the positive data are globally and linearly mapped to the range
of 0−255 for display. For Laplacian Eigenmaps method, after
projecting the HSI data to three-dimensional space, we map
them to RGB space in the same way as what has been done
to PCA. However, all of these methods use the false color to
represent the materials in the scene, which brings poor visual
effects and makes the image hard for human to understand.
For example, the grass are displayed with red color and the
buildings are displayed with green color, which contradicts
with human normal understanding.

Fig. 2. HSI visualization via band selection, band 1, band 95 and band 191.

Fig. 3. HSI visualization via PCA.

In our method, the HRCI of Washington DC Mall was
obtained from Google maps with a high spatial resolution of
5160 × 1640, which is shown in Fig. 5. In this experiment,
we randomly selected 20 pixels in HSI, and then found their
corresponding pixels in the HRCI by SIFT feature matching. In
manifold alignment algorithm, the parameters α1 and α2 were
set to 1 and 500 respectively. Fig. 6 and Fig. 7 present the data
of HSI and HRCI in the common embedding space as images.
These two images have high similarity in color, indicating
that two manifolds are successfully aligned. After the HSI
in the embedding space are mapped back to RGB space, the
visualized HSI image in Fig. 8 can be obtained. This image is
similar to the HRCI in color, which make it easier for human to
comprehend. Also, other two main goals of HSI visualization:
consistent rendering and edge preservation are successfully
reached. Consistent rendering claims that a spectra is always
displayed as the same color value so that it can be easily
recognized across different positions, and edge preservation
demands that the edges of the original HSI are represented
faithfully in the visualization. This success mainly relies on
manifold alignment that not only fuses the HRCI information
into visualization, but also retains the inherit structure of HSI.

Now we turn to study how the parameters affect the
performance of the proposed approach and how to set suitable
parameters to achieve a reasonable visualization result. In the
proposed algorithm, if we fix α1 = 1, there are only two

Fig. 4. HSI visualization via Laplacian Eigenmaps.

Fig. 5. HRCI on the same spot as HSI remote sensing data.
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Fig. 6. HRCI projected to the common embedding space.

Fig. 7. HSI projected to the common embedding space.

free parameters, which are the number of corresponding pairs,
and the weighting factor α2 to control the alignment. To
analyze the impact of α2, we set up α2 = 30, 100, 500, and
the number of the corresponding pairs is set to 20. Fig. 9
displays the visualized HSI corresponding to different values
of α2. From this figure we observed that, as α2 becomes
larger, the visualized HSI become more similar in color with
the HRCI. However, when α2 is very large, the role of the
corresponding pairs becomes to be very critical. In this case,
if a few corresponding pairs are not correctly matched, the
color transfer will produce very large error. Therefore, based
on the experiments, we can always achieve reasonable results
by setting α2 to be 200− 500.

Next we analyze the impact of the number of corresponding
pairs on the performance of visualization. In this experiment,
we fix α1 = 1 and α2 = 500. Fig. 10(a) is the result
by randomly selecting 5 pixels in the HSI and then using
SIFT feature to find their corresponding pairs in the HRCI.
We observed that only 5 corresponding pairs can make the
visualized image appears very naturally. When the number of
corresponding pair is set to 30, the visualization result is shown
in Fig. 10(b), in which the color is very similar to the HRCI.
In fact, the two parameters we discussed above have some
relations. In the experiments, we have found that when the
corresponding pair number become larger, α2 should be turned
down to achieve reasonable results. This is probably because
a balance between preserving each manifold’s structure and
aligning two manifolds (which is controlled by α2 and the
number of corresponding pairs) is needed when creating the
joint adjacency matrix W of manifold alignment.

In order to further evaluate the proposed method, other
two HSI data acquired by ground-based HSI camera were
used in the experiments. Their corresponding HRCI data were
acquired by traditional SLR digital camera. The HSI data have

Fig. 8. Visualization result by the proposed method.

(a) α1 = 1, α2 = 30

(b) α1 = 1, α2 = 100

(c) α1 = 1, α2 = 500

Fig. 9. The impact of correspondence weight on the proposed visualization
algorithm.

(a) corresponding pair number=5

(b) corresponding pair number=30

Fig. 10. The impact of corresponding pair number on the proposed
visualization algorithm.

a resolution of 480 × 640 × 18, and the HRCI data have a
resolution of 2592 × 3872 × 3. The results of random band
selection (here 1th,10th,18th bands are selected), PCA, eigen-
maps, and manifold alignment methods (α1 = 1, α2 = 300,
corresponding pair number=20) are given in Fig. 11. The
experimental results demonstrate that the proposed method is
a very effective HSI visualization technique.

V. CONCLUSIONS

This paper presents a new approach to visualize HSI in
natural color. Based on manifold alignment between HSI and
HRCI, the proposed algorithm is able to find a projection
function that maps the HSI directly from high-dimensional
space to RGB space. The corresponding pixels between the
HSI and the HRCI act as a bond to transfer the color
information as well as local geometric information from the
HRCI to HSI. The main advantage of the proposed algorithm
is that only a few corresponding pairs are required to achieve
a satisfied result. In other words, no exact image registration
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(a) Band selection (b) PCA (c) Laplacian Eigenmaps (d) Corresponding HRCI (e) Manifold alignment

(f) Band selection (g) PCA (h) Laplacian Eigenmaps (i) Corresponding HRCI (j) Manifold alignment

Fig. 11. The visualization results on two HSI data captured by ground-based .

is needed to find the corresponding pairs. By projecting the
HSI directly to RGB space, our algorithm also avoid spectral
distances distortion that other methods suffered while adjusting
data range to the dynamic range of the display. One future
work is to visualize HSI by align it with the HRCI from other
spots which share similar features with the spot where the
HSI was captured. Another work will focus on developing an
interactive framework that allow users to assign corresponding
pairs between HSI and HRCI.
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