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Abstract. In object-oriented database systems where the
concept of the superclass-subclass is supported, an instance
of a subclass is also an instance of its superclass. Conse-
quently, the access scope of a query against a class in gen-
eral includes the access scope of all its subclasses, unless
specified otherwise. An index to support superclass-subclass
relationship efficiently must provide efficient associative re-
trievals of objects from a single class or from several classes
in a class hierarchy. This paper presents an efficient index
called the hierarchical tree (the H-tree). For each class, an
H-tree is maintained, allowing efficient search on a single
class. These H-trees are appropriately linked to capture the
superclass-subclass relationships, thus allowing efficient re-
trievals of instances from a class hierarchy. Both experi-
mental and analytical results indicate that the H-tree is an
efficient indexing structure.
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1 Introduction

Object-oriented database (OODB) systems emerged as a re-
sponse to the requirements of new applications which cannot
be efficiently supported by conventional database systems.
One of the major concepts supported in OODB is the no-
tion of generalization/specialization. A class in OODB can
be specialized into a number of subclasses. The impact of
such specialization on the semantics of object instantiation
is that the access scope of a query against a class may be the
instances of that class or instances of all classes in the class
hierarchy rooted at that class. To support the superclass-
subclass relationships efficiently, an associative search index
must facilitate (1) efficient retrieval of instances from a sin-
gle class, and (2) efficient retrieval of instances from classes
in a class hierarchy.

In this paper, we study the implication of specialization
and present an index that facilitates query retrievals based
on superclass-subclass relationships. Based on theB+-tree,
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our new associative search index is called the hierarchical
tree (H-tree; Low et al. 1992). An H-tree structure is main-
tained for each class of a class hierarchy and these trees are
nested according to their superclass-subclass relationships.
When indexing an attribute, the H-tree of the root class of a
class hierarchy is nested with the H-trees of all its immediate
subclasses, and the H-trees of the subclasses are nested with
H-trees of their respective subclasses and so forth. Index-
ing in this manner forms a hierarchy of index trees. Nesting
H-trees supports efficient traversal of the nested H-trees (of
subclasses) by enabling traversal of a nested H-tree to start
at appropriate subtrees via the links maintained in its su-
perclass’s H-tree. In addition, a nested H-tree can also be
accessed independent of its superclass’s H-tree. Note that a
queried class does not have to be the root class of the class
hierarchy and therefore searching for instances within a sub-
hierarchy of classes can start at any class as long as they are
indexed on the same attribute. The nested organization pro-
vides a natural and efficient support for superclass-subclass
relationships. The H-tree organization naturally lends itself
to indexing in recursive query processing using semi-naive
evaluations (Low et al. 1993) and indexing multiple sets
(Kilger and Moerkotte 1994). We implemented H-trees and
compared their performance with class hierarchy trees (CH-
trees; Kim et al. 1989). Both the experimental and analytical
results indicate that the H-tree is an efficient indexing struc-
ture.

The remainder of this paper is organized as follows. In
Sect. 2, the problem of indexing in OODB is further dis-
cussed and related work reviewed. In Sect. 3 the data struc-
ture and nesting organization of the H-tree indexes are de-
scribed. The algorithms for searching, insertion and deletion
are presented in Sect. 4. Both analytical and empirical re-
sults on the performance of H-trees are presented in Sect. 5.
Conclusions and future directions are presented in Sect. 6.

2 Motivation and related work

Object-oriented databases provide new kinds of data seman-
tics, such as inheritance and superclass-subclass relation-
ships. An instance of a subclass is also an instance of its
superclass. As a result, the access scope of a query against a
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class generally includes not only its instances but also those
of all its subclasses. A query may also be formulated ex-
plicitly against a class and some of its subclasses. Indexes
are necessary to speed up the associative search. In order to
support the superclass-subclass relationship efficiently, the
index must achieve two objectives. First, the index must
support efficient retrieval of instances from a single class.
Such a retrieval is similar to that of relational DBMS. Sec-
ond, it must also support efficient retrieval of instances from
a number of classes in a hierarchy of classes. Consider the
class hierarchy in Fig. 1a. The NUSEmp is the root class
of the class hierarchy and the superclass of Academic and
Admin, and Academic in turn is the superclass of Lecturer
and Researcher. Attributes in a superclass are inherited by
all its subclasses. For example, the attributesname, empno
andsalary in NUSEmp are inherited by all the subclasses in
the class hierarchy. We will use the termcommon attributes
to refer to attributes inherited by all the classes in the class
hierarchy. An associative query against class NUSEmp on
one of its attributes implicitly includes its subclasses, Ad-
min and Academic, and those of Academic, Researcher and
Lecturer. Figure 1b describes the search space of each class.

Suppose we wish to index the common attribute, say
salary. Ideally, the indexing scheme must support efficient
retrieval of the following:

1. Instances of a particular class not including its sub-
classes. For example, a list of all academic employees
who are neither lecturers nor researchers and who earn
more than $60 000 and a list all lecturers who earn more
than $40 000.

2. Instances of a class and all its subclasses. For example,
a list of the employees (NUSEmp) who earn more than
$30 000.

Based onB+-trees, Kim et al. (1989) proposed an in-
dexing scheme called the CH-tree. To index a hierarchy of
classes on a common attribute, typically one of the super-
class attributes, a CH-tree maintains only one index tree
for all the classes of the hierarchy. A search on a class for
instances that satisfy the associative search condition is per-
formed as if the index is maintained solely for that class. In-
stances of classes of no interest to the answer are discarded.
As a result, the search for instances of a small number of
classes may not be efficient. The structure of the CH-tree is
shown in Fig. 2. While internal nodes are similar to those
of B+-trees, leaf nodes contain key values and associated
directories. In a leaf node, for each key value, object iden-
tities (oids) of objects which have the same indexed value
are grouped in a directory based upon objects’ classes.

The performance study conducted shows that the index-
ing scheme of one index for all classes in a class hierarchy
performs better than the indexing scheme that supports one
index for each class. However, a major drawback of the
CH-tree is that it does not support the superclass-subclass
relationship naturally. Searching for values in a single class
is treated in the same way as searching for values in a hier-
archy of classes. In other words, the same searching strategy
is used for retrieving values in a single class as well as in a
hierarchy of classes.

In the work of Scheuermann and Ouksel (1982), a dif-
ferent kind of index nesting, the multi-dimensionalB-tree
(MDBT), was proposed for multi-attribute indexing. In an
MDBT (Scheuermann and Ouksel 1982; Kriegel 1984), aB-
tree is constructed for the first indexed attribute, and for each
attribute value, aB-tree may be attached for indexing on the
second indexed attribute and so forth. Hence, the number of
B-trees can be very large, andB-trees maintained for the
same attribute are not related.

Several other indexing structures were proposed (Ber-
tina and Kim 1989; Kemper and Moerkotte 1990; Maier and
Stein 1986; Valduriez et al. 1986). However, these indexes
mainly deal with path indexing for nested objects in OODB.

The indexing mechanism that we proposed in previous
work (Low et al. 1992) and further studied in this paper is
designed to support retrievals of instances from a class or a
hierarchy of classes. The index, called the H-tree, is based
on the superclass-subclass relationship. Moreover, unlike the
work of Scheuermann and Ouksel (1982), indexes are nested
on the same attribute. While the CH-tree partitions the data
space based on attributes, the H-tree organizes the data space
into classes. As a result, it provides superior performance for
range queries on a single class hierarchy, which the CH-tree
is unable to provide. Consider, for example, the partition-
ing of the data space (i.e., the entries in the leaf nodes of
the index structure) shown in Fig. 3 (Chan and Ooi 1994)
for the H-tree and CH-tree. For a single-class query with
a wide attribute value range (represented by the horizontal
search area), it is efficiently supported by the H-tree index
(Fig. 3a) as it requires only a partial sequential scan of the
leaf nodes of a single-class index. However, this query is not
well supported by the CH-tree (Fig. 3b) because it involves
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a long sequential scan of a single large index which is likely
to access many irrelevant leaf nodes. For a class hierarchy
query with a narrow attribute value range (represented by
the vertical search area), it is very efficiently supported by
the CH-tree (Fig. 3b) because it requires a partial sequen-
tial scan of theB+-tree index. While it requires traversals
of multiple single-class indexes, the H-tree is also able to
deliver good performance. This is because of the nesting of
classes that facilitates efficient traversal between the single-
class indexes. Thus, the H-tree achieves the speed of the
one-index one-class scheme for single-class retrievals and
one-index all-class scheme (cf. CH-trees) for multiple-class
retrievals.

3 The H-tree organization

In this section, we describe the structure of the H-tree and
the nesting of H-trees. We useHc to denote the H-tree of
class c. To index the classes in Fig. 1 on a class hierar-
chy rooted at NUSEmp, five H-trees are created, one for
each class:HLecturer, HResearcher, HAcademic, HAdmin

and HNUSEmp. With the assumption that an instance is
stored in only one class, each instance is indexed only
once in the index of the class it is instantiated. Following
the class hierarchy,HLecturer andHResearcher are nested
in HAcademic and HAcademic and HAdmin are nested in
HNUSEmp.

For a search on a class hierarchy rooted at Academic
class, the nesting should enable us to obtain the correct an-
swer by just performing a full search onHAcademic and
a partial search onHLecturer and HResearcher. The sav-
ings can be significant if many internal node pages can be
skipped.

3.1 The data structure

The H-tree is a dynamic multi-level index that is based on
the B+−tree. However, to facilitate index nesting and to
support superclass-subclass relationships, both the internal
and leaf nodes of an H-tree contain more information. Fig-
ure 4 illustrates the structure of an H-tree and describes the
notations used.

In an H-tree leaf node, an entry is a pair (K, P ), where
K is the indexed value for a fixed-length indexed key and a
pair (length, value) in the case of variable length index values
(e.g., strings).P consists of a counter and a list of oids,
(numberof oids, oid, oid, oid,. . . ) whose indexed attribute
value isK.

In an internal nodeN , apart from the usual discriminat-
ing key values,K, and child node pointers,B, we need to
store pointers pointing to subtrees of nested H-trees. We use
L(n) to denote the pointer pointing to a subclass H-tree’s
subtree rooted at noden and simplyL when the nested
subtree node is not important to the discussion. To reduce
unnecessary traversing of the nested subtree, the minimum
and maximum values of the nested subtree are maintained
together with the nested subtree pointer. The range values
of a subtree rooted atBi can be derived from its parent’s
entries, sinceBi is contained in (Ki, Ki+1] of the parent
node. Figure 5 shows an example of a subtree (rooted atn)
of Hsubclass being nested in a node (N ) of Hsuperclass. As
shown in the figure, the values in the nested subtree origi-
nated at noden must be within the values of 26 and 100.
For efficiency reasons, we do not allowL pointers in a leaf
node unless it is also the root.

In general, all theB+-tree rules apply to H-trees. Each
internal node may have up toMi discriminating values and
Mi + 1 branches (B). In an internal node, theK values in
the subtree referenced byBj (j = 1, · · · ,M ) must be greater
thanKj−1 and less than or equal toKj . A node cannot be
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an empty node unless it is also the root node. Readers may
refer to Comer (1979) for a completeB+-tree description.

3.2 Nesting of indexes

An H-tree facilitates efficient retrieval of objects in a class.
For a hierarchy of two classes, two indexesHsuperclass and
Hsubclass are maintained. The superclass indexHsuperclass

is an outer index and the subclass indexHsubclass is an in-
ner or nested index. Linkages are maintained between some
nodes of these two indexes such that a search for values in
the class and its subclass requires only a full search on the
superclass index and a partial search on the subclass index.
When indexHsubclass is nested inHsuperclass, theL point-
ers of the internal nodes ofHsuperclass will be set to point

to the nodes inHsubclass. Referring to the example in Fig. 5,
a subtree (rooted atn) of Hsubclass is being nested in a node
(N ) of Hsuperclass. NodeN of Hsuperclass has a pointer,
L1, that linksHsuperclass andHsubclass.

We define two rules for nesting a subclass indexHsubclass

in a superclass indexHsuperclass. These rules ensure that the
data can be retrieved correctly using the index. They are:

(C1) If noden is referenced by nodeN , the range values of
the subtree rooted atn must be within the range values
of nodeN , except whenN is also the root node of
Hsuperclass. The root node ofHsuperclass is assumed
to cover the range ofHsubclass.

(C2) All the leaf nodes inHsubclass must be covered by
Hsuperclass. This means that all the leaf nodes in
Hsubclass must be reachable fromHsuperclass.
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Rule C1 ensures that subtrees of subclass H-trees are
defined where they are nested so that they can be reached
via the correct path. Rule C2 ensures that all the nodes
in Hsubclass can be queried through its superclass index
Hsuperclass. An example of illegal nesting of indexes is
shown in Fig. 6, where subtrees ofHsubclass reachable from
Hsuperclass are enclosed with dotted lines. In this example,
n5 is not reachable fromHsuperclass, and hence rule C2 is
violated. Figure 7 shows a complete coverage of the leaf
nodes in a nested index.

To increase the efficiency of the index, the following
rules are introduced.

(E1) For each leaf node inHsubclass, there exists only one
path to reach the node fromHsuperclass.

(E2) Suppose the immediate child nodes ofn aren1, · · · , nj .
If nodesn1, · · · , nj are referenced fromN , then node
n should be referenced fromN instead. This rule is to
avoid unnecessary overflows.

(E3) The subtrees inHsubclass referenced byHsuperclass

should be as small as possible. For example, suppose
the immediate child nodes ofn aren1, . . . , nj andn
is referenced fromN . If there existsNi, a child node
of N , that can referenceni, . . . , ni+k, thenNi should
be set to referenceni, . . . , ni+k, andN set to reference
n1, . . . , ni−1, ni+k+1, . . . , nj .

Rule E1 is essential to ensure that a node inHsubclass

can only be referenced by a node inHsuperclass and hence
no multiple search paths.

Rules E2 and E3 appear contradicting, but they are sub-
tly different. Rule E3 aims to reduce the search in nested
subtrees, while rule E2 reduces unnecessary overflow ofL
pointers in theHsuperclass. A special case of rule E3 is when
a nodeN and its childNi can both cover the range values of
noden. This is whenn1, . . . , ni−1, ni+k+1, . . . , nj is empty.
In an earlier publication (Low et al. 1992), this special case
of rule E3 was named rule E4.

4 Operations in H-trees

In this section, we present the outline of the algorithms for
accessing (search operation) and updating (insert and delete
operations) H-trees.

4.1 Searching

An H-tree can be searched under three situations:

1. Starting from the root node, the tree is searched as an
index for instances of the indexed class.

2. Starting from the root node, the tree is searched as the
root class of a class hierarchy and the links to (some
or all of) its subclass H-trees are followed to search for
instances in its subclasses.

3. Starting from an internal node via the link maintained in
the superclass H-trees, the tree is searched.

The first case is a single-class search and the second and
third cases are multiple-class searches. To search on a single
class for instances which satisfy the search condition, the
H-tree is searched like aB+-tree by ignoring the nested tree
pointers. Consider the example in Fig. 5, to search on class
Hsuperclass for its instances with indexed attribute value 40
we go down the subtree that is between 30 and 60, ignoring
theL1 pointer. A multiple-class search begins the search on
the H-tree of the root class and follows theL pointers to
search the nested subtrees of classes of interest to the query.
In this example, since the access scope includesHsubclass,
indexHsubclass is searched starting at noden.

The search strategy is outlined below. We assume that
the search classes contains the subclasses whose indexes
are to be searched, which is an empty set for a search on a
single class. When searching a class, if none of the classes
in search classes is its subclass, its index search will be
treated as a single-class search.

Algorithm Search

SEARCH (cnode, v1, v2)
Input: cnode – root node of tree/subtree to search.

v1 – lower bound of range search values.
v2 – upper bound of range search values.
v2 = v1 for exact match search.

Output:list oids whose indexed attribute values fall within [v1, v2].

1. Single-class search

A. If cnode is a leaf node, search the node and for all
indexed values fall within [v1, v2], add the oids to the
answer. Search the next leaf node and follow the chain
till an indexed value greater thanv2 is encountered or
till the last leaf node in the chain.

B. If cnode is an internal node, traverse down the first
branch ifK1 > v1, else traverse down theith branch
for the smallesti whereKi−1 < v1 ≤ Ki. If none of
the discriminating valuesKi is greater thanv1, traverse
down the right-most branch.

2. Multiple-class search

A. If cnode is an internal node, search the subtree if its
range intersects [v1, v2] and search the nested trees for
all Ls whose class is insearch class and range inter-
sects [v1, v2], calling SEARCH (L, v1, v2). If cnode
is reached viaL link of another class, check its node
bitmap to see if any of its ancestor nodes containL
pointers to classes of interest. If the corresponding bit
is set, traverse upwards and check the links.

B. If cnode is a leaf node, retrieve all data items that fall
within [v1, v2].
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In the above algorithm, the search of an H-tree starts at
its root and traverses its subtrees before the nested subtrees.
When searching a nested tree, not the whole tree is searched,
only the subtrees nested in the nodes of the search path
have to be searched. Subtrees not nested in the nodes of the
search path are not searched because the search values are
not within the search range.

Searching for values from a single class is similar to
that inB+-trees. To search for instances whose indexed key
values fall within the search range [v1, v2], the algorithm
searches forv1 on the H-tree of the queried class. Once a
leaf node is reached, the leaf nodes are scanned sequentially
until a key value larger than the maximum search value (v2)
is encountered. For multiple class search, theL pointers of
appropriate subclass H-trees are followed. When a subtree of
an H-tree is searched via theL pointer in the superclass H-

tree, we have to check whether there are any ancestor nodes
that containL pointers to its subclass H-trees. To facilitate
such upward traversal, a bitmap, a bit for each subclass,
is used to indicate the existence ofL links in the ancestor
nodes. For a class with eight subclasses, a byte is allocated
for such purposes.

Suppose we have a class hierarchy of three levels and
we have to perform a range search on the root class and
all its subclasses. To simplify the explanation, we shall only
consider one class at a level, with H-treesH, H ′, H ′′ re-
spectively at the root, second, and third level. A subtree,S,
in H ′ is searched via theL link in H. When searching for
v1 in S terminated, andH ′′ is not reached at all, it does not
mean that subtrees ofH ′′ within the range [v1, v2] are not
nested inH ′. It could be possible that the nesting occurs
at a level higher thanS. One such example is illustrated in
Fig. 8. Therefore, moving up the tree from the current class
nested node is essential. The node’s bitmap is used to avoid
unnecessary checking. An alternative solution to moving up
the tree is to modify the nesting rules to nest only subtrees
whose parent nodes have noL pointers. This way, when
searching the subtree of a nested index, searching for nested
subclass nodes is avoided as there is noL pointers in the
ancestor nodes ofnL. However, searching may not be effi-
cient as additional page accesses are incurred because of less
efficient nested tree pruning. We adopt the first approach in
our implementation and strictly enforce rules E3 and E4 to
reduce upward search.
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4.2 H-tree construction

4.2.1 Index nesting

When indexing a common attribute, the indexes are created
bottom-up from the most specialized classes to the most
general class; indexes for the subclasses are created before
the index for the superclass. To index the class hierarchy in
Fig. 1 on attributesalary, we first built the indexes for classes
Lecturer, Researcher and Admin. The index for class Aca-
demic is then created, nesting the indexes of its subclasses,
Lecturer and Researcher. The index for class NUSEmp is
created last, nesting the indexes for Academic and Admin.

The nesting algorithm outlined below ensures that the
rules defined in Sect. 3.2 are satisfied.RangeV alues(N )
returns the range values of a nodeN .

Algorithm Nest

Nest (N , n)
Input: N – node of the superclass H-tree.

n – node of the subclass H-tree to be nested.

if N is not the root
Exit if N is a leaf node;
Exit if RangeV alues(n) is not contained
in RangeV alues(N );

if N is a leaf and the root node /* link noden to N */
let N.Lk be the emptyL pointer;
setN.Lk(n);

else if the immediate child nodes ofN are leaf nodes
let N.Lk be the next emptyL pointer;
setN.Lk(n);

else
let N1 . . . Nt (t ≤M + 1) be

the immediate child nodes of nodeN ;
if there existsNi such that
RangeV alues(n) ⊆ RangeV alues(Ni)

call Nest (Ni, n); /* nestn in Ni,
a child node ofN : enforce a special case of E3*/

else/* n cannot be nested in node belowN ,
try to nest the child nodes ofn instead. */
let n1 . . . ns (s ≤M + 1) be

the immediate child nodes of noden;
for eachnj (j = 1 . . . s)

call Nest (N , nj ); /* enforce E3 */
if none ofnj is nested in any ofN ’s child nodes,
link noden to N

let N.Lk be the next emptyL pointer;
setN.Lk(n); /* E2 */

else/* some ofn’s child nodes are nested
in N ’s child node,

so nest the remaining unnestedni
in the current node */ for each unnestedni

let N.Lk be the next emptyL pointer;
setN.Lk(ni);

end Nest

To nest a subclass’ H-tree in its superclass’ H-tree, we
traverse both trees simultaneously and try to push theL links
down both trees as deeply as possible. For example, to nest
an H-tree rooted at noden in its superclass’ H-tree rooted
at nodeN , we first attempt to nest the child nodes ofn in
the child nodes ofN . If this is not possible, then only do
we nestn in N .

Creating an H-tree index for a class without subclasses
is similar to creating aB+-tree. For a superclass without any

instances, an empty root node is created to nest the indexes
of its subclasses. In a way, range values of a superclass
assume the range values of its subclasses, and the initial
nested structure would be a linked list of root nodes.

4.2.2 Insertions

Inserting a new entry into an H-tree index is similar to that
of the B+-tree; as a new entry is added to a leaf node, an
overflowed leaf node is split, and the split may propagate up
the tree. Letoidnew be the object to be inserted intoH, and
its indexed attribute value bevnew. The insertion algorithm
is outlined below.

Algorithm Insert

INSERT (vnew, oidnew, H)
Input: vnew – value of new object to insert.

oidnew – oid of new object to insert.
H – index to insert the new object.

1. Traverse indexH to the leaf node that may containvnew.
2. For secondary key indexing, the leaf node may already have

vnew, in which caseoidnew is added to the oid list of the
indexedvnew. To insert the new entry into the leaf node, get
the location of the new entry and shuffle the existing entries to
make room for the new entry. If the leaf node does not have
enough room for the new entry, call SPLITNODE (leaf node
to be split,vnew, oidnew).

A node is split if overflow occurs. LikeB+-trees, a split
may propagate upwards. In the splitting of a noden, the
ranges of two resultant nodes,n1 and n2, are likely to be
smaller than that ofn. If there isL(n) in the superclass H-
tree, it has to be substituted withL(n1) andL(n2). The new
Ls, for their smaller ranges, may be pushed further down
the superclass index because of rule E4. However, violation
of this rule does not affect the correctness of the H-tree
operations. If there areL links maintained in noden, during
the split, those that cannot be covered byn1 and n2 are
promoted to their parent.

The node splitting algorithm is outlined below, which
is designed to ensure that the H-trees obey rules defined in
Sect. 3.2.

Algorithm Split Node

SPLIT NODE (lnode, vnew, oidnew)
Input: lnode – node to split.

vnew – value of new object to insert.
oidnew – oid of new object to insert.

1. If lnode is a leaf node, then uselnode as the left node and
create a new leaf nodelnodenew as the right node. Distribute
the entries inlnode plus the new entry among the left and
right nodes. If there existsL(lnode) in N of Hsuperclass,
addL(lnodenew) to N . Update the parent node oflnode to
include the branch to the new node using the largest indexed
value of the left node as the new branching value.

2. If the parent noden overflows, split the parent node.

A. If n is the root node, create a new internal node and
make it the parent node ofn.

B. Create a new internal nodennew. Let the middle
branching value beKmiddle. Move all the entries on
the right ofKmiddle to the right nodennew.
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C. Distribute existingL entries inn amongn andnnew
based upon their minimum and maximum values; the
minimum and maximum indexed values of the subtree
pointed byL must be enclosed by the minimum and
maximum indexed values of the nesting node. Move
theL entries which do not fit in neithern nornnew to
their parent node.

D. If there existsL(n) in N of Hsuperclass, addL(nnew)
to N and readjust.

E. Insert a new entry withKmiddle as the branching value
to the parent node ofn. nnew becomes the right child
of Kmiddle. Repeat step 2 if overflow occurs. This
process may recur till the root node.

4.3 Deletion

A deletion of an entry may cause a leaf node to underflow.
In other words, the space utilization is less than the thresh-
old value. The threshold value is typically half of the page
capacity, which can be, however, tuned for performance pur-
poses. When an internal node is underflowed, it is merged
with either its left or right sibling. The merging requires
readjustment of the links, which sometimes may result in
pushing up the links in the parent index. The outline of the
deletion algorithm is given below.

Algorithm Delete
DELETE (vdelete, H, oids)
Input: vdelete – indexed value to delete.

oids – list of objects to be deleted.
H – index to delete from.

1. Traverse indexH to the leaf node that contains the value
vdelete. Let the leaf node becnode. Delete theoids and
remove the indexed entry withK = vdelete if its P is empty.

2. If the deletion is to remove all the indexed valuevdelete in
H and its nested indexes, search through the nested entries
as in the algorithm SEARCH to delete all the indexed values
with K = vdelete.

3. If cnode underflows after removing the entry: Merge it with
its sibling nodenodesibling . Let the resultant node becnode.
Redistribute the entries amongcnode and nodesibling if
overflow occurs.

4. A. If resplit occurs, if there areL(nodesibling) and
L(cnode) in its superclass’ H-tree, a simple readjust-
ment is enough; check if they are required to be moved
up or down.
If there exists only one link, sayL(cnode), in N of
Hsuperclass, then use Nest to re-nest all child nodes
of cnode in N .
Check also if theL links in both nodes need to be
readjusted.

B. Otherwise, if there areL(nodesibling) andL(cnode)
in its superclass’ H-tree among these two nodes, put
L(cnode) in the node whose range provides better cov-
erage of the range ofcnode. Delete oldL(nodesibling)
andL(cnode). Check if cnode is covered properly; if
not, move theL(cnode) up.
If there is only one link, sayL(cnode), use the Nest
algorithm to renest all child nodes ofcnode to the node
that containsL(cnode).
Check the parent node if there are any links to a sub-
class that could be pushed down tocnode.

5. If a node is deleted, the corresponding entry in the parent
node must be deleted. If the parent node is the root node and
has one entry after the deletion, make its child the new root.
If it is not the root and the node underflows, repeat step 3
with parent node ascnode.
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a Case 1
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. . .

. . .

. . .S3

. . .

. . .

. . .
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Fig. 9a–c.Dangling nodes in deletions

Like theB+-trees, merging of leaf nodes may propagate
upward to the root node. If a node underflows, the node
will be merged with its sibling (either left or right) node.
A resplit is necessary if the resultant node is overflowed.
This is always the case if the threshold value is more than
half of the page capacity. When two nodes are merged and
the resultant node is resplit,L links pointing to adjusted
nodes must be readjusted. Due to their smaller ranges, the
corresponding links in the superclass index pointing to two
resplit nodes are more likely to be pushed down rather than
being pushed up. For the same reason, theL links pointing
to subclass H-trees may be pushed up to the parent node.
When two nodes are merged, the resultant node has a bigger
range and theL links in its parent node may be moved down.

In the Delete algorithm, the checking and relocation of
L pointers can be achieved using the Nest algorithm. How-
ever, this is not efficient. In what follows, we analyze various
cases where links must be rearranged. Figure 9 shows three
possible cases in merging nodesN1 andN2 of H ′. We first
consider the case where resplit is not necessary and we use
Nr to denote the merged node. In the first case, the link on
the higher superclass node is used to link the merged node,
and pushing down of the link is performed if necessary.
Since the link toN2 is in a subtree of the nodeS1, the range
of N2 must also be covered by the range ofS1. In the sec-
ond case, mergingN1 andN2 results in a node with a larger
range, which cannot be covered by either RangeValues(S1)
or RangeValues(S2). The most immediate common parent
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Table 1. Parameters used in analysis

Control parameters
Term Description

N Total number of objects in the class hierarchy
Lmax Number of levels in the class hierarchy
NV Number of contiguous values in a range query

Number of values in the domain
× 100%

f Fanout at each level of the class hierarchy
p Probability of an object belonging to a level

in the class hierarchy
ne Number of entries in a node
r Occupancy rate

of S1 andS2 must be found and the link toNr is inserted.
The search for the parent is optimized using the information
in the bitmap of a node; that is, a search for the immediate
common parent using a node higher up in the tree. Appropri-
ate pushing down is performed to tightly contain the range
of Nr. In the third case, one of the merging nodes (N1 in
our example) has links from the superclass to its child node.
The link fromS2 to N2 is deleted, and the Nest algorithm is
used to nest the childrenN2 in H starting fromS2. This is
sufficient since by definition, all leaf nodes ofH ′ must be
fully covered byH, implying that all child nodes ofN1 are
covered byH.

In the case where resplit is necessary, the links fromH
to N1 andN2 are merely readjusted in cases 1 and 2. In the
third case, the process is similar to that without split.

Both insertion and deletion algorithms are designed to
ensure the effectiveness of inter H-tree linkage. In an H-
tree, the links to subclass H-trees are optimized such that
they are near the leaves. Furthermore, records have been
partitioned into subclasses, reducing the number of records
in each H-tree. With a reasonable page size (typically 2–
4 KB), the realistic page height is not large.

5 Performance analysis

In the work of Low et al. (1992), we presented the best case
analysis of the H-tree in terms of the storage space require-
ment and page accesses of range queries. The performance
of the H-tree was compared with that of the CH-tree. In
this section, we shall present the average case analysis of
the H-tree based on an object distribution model and some
experimental results. Table 1 defines the parameters we will
use in our discussion and analysis.

5.1 The H-tree access complexity

The H-trees for a class hierarchy are a complex structure
involving inter-relations among a hierarchy ofB+-trees. The
H-trees could be viewed as a non-height balancedB+-tree,
by treating the H-tree for the root class as the mainB+-tree
and the others as subtrees. The nesting level of the subclasses
depends very much on the distribution of the key attribute
value and the distribution of objects in the various levels in
the class hierarchy.

To perform a search for data distributed across multiple
classes, we have to traverse an H-tree from the root and

Relatively sparser
Superclass

Relatively denser
Subclass

All classes have objects with key attribute values uniformly
distributed over a fixed interval.

node in the super class

Subtree in the subclass covering the
same range of attributes as the node 
in the super class.

Links LinksLinksLinks

Fig. 10. Best case ‘nesting’ of a subclass into its superclass

the others through the links via the first H-tree. In order to
calculate the mean access time, we express it in terms of the
number of link and node traversals. To make the average
case analysis possible, we make the following assumptions
on the distribution of data.

1. The distribution of the key attribute values in all the
classes are uniformly distributed over a fixed interval.

2. The distribution of the key attribute values is independent
of the designation of objects into the classes.

3. The number of objects at each level of the class hierarchy
follows a suitable geometric progression.

The first two assumptions are important as they form the
basis to relate the height of a nested subtree to the relative
sizes of the classes, without which analysis would be almost
impossible. By these two assumptions, we observe that dur-
ing a ‘nesting’ of a subclass into its superclass, each last
level internal node in the superclass covers an equal portion
of the subclass. That is, there is a link from each last level
internal node in the superclass to the root of a subtree in the
subclass (Fig. 10). Given a large enough number of objects
in a class, the height of these subtrees do not differ signifi-
cantly. By assuming a reasonable distribution of objects with
adjustable parameters, we allow the analytical result to be
adjusted according to specific applications.

On the aspect of the data structure, the size of each node
in each H-tree is assumed to be the same, and an average
occupancy rate is assumed for internal nodes of H-trees. To
simplify the analysis, we also assume that the fanout of a
class, the number of subclasses, is the same for all classes
except those at the leaf level which have zero fanout.

In OODB, objects with the same properties and struc-
ture are grouped into one class. These objects may further
be classified or grouped according to some more specified
properties. Objects that cannot find a suitable subclass stay
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with the current class where they are structurally best de-
scribed. In practice, subclasses are defined to better define
the roles of objects and, as such, classes with subclasses
have less objects than those classes at the leaf level of the
class hierarchy. Therefore, when a class is specialized to a
number of subclasses, instances migrate from the existing
class to its subclasses which better describe their charac-
teristics. Hence, more instances are distributed at the lower
level. To better reflect such distribution, we can define the
probability of instances being distributed at different levels,
with the lowest level having the highest probability. We fix
the probability of an instance being distributed at the lowest
level to bep and the probability of an instance getting stored
at level i to be:

P (i) =

{
(1− p)Lmax−i, if i = 1
p(1− p)Lmax−i, otherwise

Here, the level of the root is taken as 1. With the above
probability, we now define the distribution of objects into
the ith level of the class hierarchy to be:

NP (i)(= Npk(1− p)Lmax−i)

wherek is 0 for i = 1, and 1 otherwise.
Intuitively, this method of distribution allows us to vary

the way objects are distributed into the different levels of
the class hierarchy in a simple way with just one parame-
ter (p). To illustrate this, Fig. 11 shows the probabilities of
objects belonging to the various levels of a hierarchy with
p = 0.7. In this example, classes in level 8 will have 70%
of the objects and the next higher level (level 7) will have
21% of the objects. This is logical since as a class is special-
ized into multiple subclasses, the objects are distributed to
these subclasses. Only objects that do not fit the description
of subclasses are stored in the original class. Depending on
the class-hierarchy fanout and distribution probabilityp, a
class which is nearer to the root may have fewer number of
instances. Consider the example in Fig. 1, once Lecturer and
Researcher have been defined, it is most likely that classes
that better describe academic positions will be defined. If
this is such a case, most of the objects in Academic class
will be distributed to its subclasses. For such a data distribu-
tion with highp, the H-trees at the lower levels of the class
hierarchy are bigger than the H-trees at the higher level.
With the assumption that the distribution of attribute values
within the classes is uniform and over the same fixed inter-
val, the height of the subtree to be nested is logarithmically
in proportion to the size of the subtree. The height of the
subtree in a subclass nested in its superclass is therefore in-
versely related to the ratio of the size of the superclass to
the subclass.

Let the number of objects in the superclass and subclass
beNu andNl respectively. Then the number of leaf nodes
in the superclass

=
Nu

ne×r .

The H-tree stores the links (L pointers) only at the internal
nodes, and therefore the nodes at the level just before the
leaf level provides the most efficient subclass coverage. The
number of nodes at the level before the leaf level

Fig. 11. Probabilities of objects belonging to different levels of the class
hierarchy withp = 0.7

Fig. 12. A 3D histogram of the distribution of objects into each of the
classes at different levels of the hierarchy with different values ofp fixing
Lmax = 5

=
Nu

(ne×r)2 ,

and the number of objects in the subclass within the interval
covered by each of these nodes

=
Nl×(ne×r)2

Nu
.

The number of nodes at the base of the subtree that contains
Nl×(ne×r)2

Nu
objects

=
Nl×ne×r

Nu
.

The height of the subtree withNl×ne×r
Nu

leaf nodes

= blogne×r
Nl×ne×r

Nu
c + 1 .

The cost of traversal from the root of the tree at the top of the
class hierarchy to theith level class,Cost(i), is calculated
as below.

Cost(i) = height of first tree

+ height of subsequent subtrees in the lower levels

of the class hierarchy.

= blogne×r
N (1− p)Lmax−1

ne×r c + 1

+Σi
j=2(blogne×r

Nj×ne×r
Nj−1

c + 1) .

In the above cost,Nj andNj−1 are respectively the number
of objects in a subclass at levelj and a superclass at level
j − 1 (j > 1). The expected cost overLmax levels is
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Fig. 13. 3D performance graph varyingp andLmax

= ΣLmax

i=1 (P (i)×Cost(i)) .

We note that the H-tree provides a good mean access
time if the distribution of the key attribute values are inde-
pendent and uniform over all the classes, and that the size of
the superclass is similar to that of the subclass. We compute
the expected cost on parameters,N = 5 000 000,ne = 150,
r = 0.67 andf = 3. The distribution of objects into various
classes at different levels is shown in Fig. 12.

As we can see from Fig. 13, the performance of the H-
tree depends on the way the objects are distributed into the
various classes in the different levels of the class hierarchy
and the depth of the hierarchy. The three-dimensional per-
formance surface graph indicates that a gradual increase in
the number of objects in the classes at each level causes
a gradual increase in the number of nodes being traversed.
Databases with more objects in the lower levels of the class
hierarchy tend to distribute their objects into smaller classes
because of the fanout factor of the class hierarchy. With
higherp, more objects are distributed to classes at the lower
level of the class hierarchy. However, due to the fanout of
the class hierarchy, the increase in height of the H-trees at
these levels is not very great. In contrast, if the distribution
is skewed heavily toward classes at the top of the hierar-
chy, the H-trees behave like a single classB+-tree. When
the size of a class and its subclass is comparable, the links
from the class will link to smaller subtrees in the subclass.
Thus, the cost saving comes from such a relationship. This
is especially pronounced when this gradual increase in class
sizes is initiated from a small root class.

In the original scheme, the superclass contains only ob-
jects which do not belong to any of the specialized sub-
classes. Although this idea is intuitive and natural, it does
not maximize the advantage of nesting a subclass as most of
the links will tend to be pointed to subtrees of a relatively
large height. A good alternative is to invert the local struc-
ture by ‘promoting’ a subclass in the role of the parent class
during storage. The choice of the subclass to be ‘promoted’
should be based on the relative size of the subclass to the
rest of the peers. Alternatively, a relatively sparse superclass
may be padded by dummy attribute values of a fraction of
objects inserted in its immediate subclasses. Its efficiency is
yet to be studied.

Table 2. Static parameters

Static parameters values
Labels Values used in exp.Labels Values used in exp.

Size(Page) 4096 Size(Node) Size(Page)
Size(K) 4 Size(PageAddr)12
Size(B) Size(PageAddr) Size(Oid) 12
Size(ClassId)4 Size(Counter) 2
Size(Offset) 2

5.2 Experiments

Both H-trees and CH-trees were implemented in C. For the
H-tree, two-thirds of an internal node is allocated for the
entries (K andB), and one-third is allocated for the nested
tree pointers (L) and backward links to the nodes of super-
classes. The space is fully utilized for entries in the CH-tree,
and hence a CH-tree internal node contains about one-third
more entries than an H-tree node. Table 2 describes the val-
ues of the parameters used.

The distribution of the key values across the classes of a
class hierarchy has a significant impact on the performance
of attribute-based indexes. For instance, if the key values
of an indexed attribute are confined to instances of a single
class, then an index like the H-tree which supports a single-
class retrieval will perform better than an index like the
CH-tree where instances of all classes in a class hierarchy
are indexed in the same index. The distribution of indexed
values can take one of the following forms:

1. Disjoint – the domain of indexed values of each class in
the class hierarchy is disjoint, i.e., an indexed value is
contained in only one class.

2. Total inclusive – the domain of indexed values is the
same for all classes in the class hierarchy. The proba-
bility of an indexed value appearing in any class is the
same.

3. Partial inclusive – the domains of any two classes are
partially overlapping, i.e., only some of the classes have
objects with a particular indexed value.

The first two distributions are extreme cases and respectively
represent the best and worst cases for an indexing technique.

Like other databases, indexing of data objects within a
class hierarchy is affected by the distribution of data. In
OODB, objects are distributed into classes that best define
their properties. When a new class is created, new objects
are inserted into that class, or objects migrate from existing
classes to it. In the first scenario, a new specialized class is
created for new data that cannot fit the description of existing
classes. Such a case is similar to inserting new records to the
CH-tree and an H-tree. To see the effect of insertion of new
objects into a new class, we fix the number of instances per
class at 10 000 instances and we gradually vary the number
of classes from 2 to 50, one at a time, and fix the domain size
at 10 000 values. As a result, the total number of instances
increases from 20 000 (2 classes) to 500 000 (50 classes).
The number of levels of classes in the class hierarchy varies
from 2 to 3. Figure 14 shows the storage requirements of
both H-trees and CH-trees. For all three distributions, both
indexes are fairly competitive in storage requirements. The
number of classes with objects containing certain attribute
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Fig. 14a–c.Storage requirement with addition of classes and objects.a
Disjoint distribution.b Total inclusion distribution.c Partial inclusion dis-
tribution

values is the smallest for disjoint distribution, and the highest
for total inclusive distribution. The CH-tree requires more
space as the number of classes per attribute value increases.
This is due to the increase in the directory size in its leaf
nodes. While the CH-tree storage requirement is affected by
the directory size kept in the leaf nodes, the H-tree storage
requirement is affected by the number of classes involved
and the height of each index. The storage requirement of H-
trees is not highly affected by distribution of indexed values.
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Fig. 15. The effect of object migration on storage requirement

In the second scenario, a more specialized subclass is
created to better reflect the general characteristics of a sub-
group of existing data. The support of such kind of incremen-
tal modeling requires an index to be able to adapt dynami-
cally to migration of data. When a new subclass is created,
data from existing classes within the same class hierarchy
may migrate to it. Addition of a new class will cause the
increase of the number of leaf nodes of the CH-tree since
more class identities have to be stored. For the H-tree index-
ing scheme, a new H-tree must be created and more internal
nodes will be used for indexing. In Fig. 15 we present the
storage requirement for the total inclusive distribution with
object migration. For the CH-tree, as the number of classes
increases, the directory size in the leaf nodes also increases.
The fact that an increase in the number of classes decreases
the number of oids per class only causes a slight increase in
storage space requirement. For the H-tree, when the num-
ber of classes increases, the storage space required increases
more sharply due to an increase in the number of root nodes
and smaller H-trees.

The distribution of data over classes in the class hierar-
chy affects the size and height of indexes and hence their
performance. For the disjoint distribution, a class can be
identified for a given range and therefore a small portion of
the database needs to be searched. Such a query is biased
towards indexes that support an index for each individual
class, as the number of respective indexes need to search
can be rather small. Searching one H-tree is much more
efficient than searching the CH-tree, since an H-tree is com-
paratively much smaller than the CH-tree. Unless the data is
very skewed to a particular class or the query range is very
large, the H-trees are expected to perform better than the CH-
trees. For the total inclusive distribition, both H-trees and the
CH-tree require the most amount of storage space among
the three distributions. To study the performance of both
indexes, a database of 500 000 (N ) instances following
the total inclusive distribution is created. The instances are
randomly generated over the domain of [1, 10 000] and dis-
tributed to 10 classes of a class hierarchy that is 3 levels high.
The H-tree indexes use 2842 pages, whereas the CH-tree re-
quires 2550 pages. We consider different query ranges and
different number of classes being queried. While only one re-
trieval is performed for a full search range (NV =100%), up
to 1000 retrievals are performed for the other search ranges
(NV < 100%). For ranges with more than one retrieval, an
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Fig. 16a,b.Query efficiency.a The effect of query ranges.b The effect of
the number of queried classes

average is taken. For the 100% search range ([1, 10 000]), al-
though a direct sequential scan of leaf nodes is possible, we
search the indexes using the searching routine. The results
are summarized in Fig. 16.

In the first experiment (Fig. 16a), the percentage of
queried values [v1, v2] over the domain ranges varies from
10% (e.g., [1, 1000], [1001, 2000], etc.) to 100% ([1,
10 000]) and the queries are for all 10 classes. The results
show that the CH-tree performance degrades faster than that
of the H-tree as the queried range increases. More impor-
tantly, the results show that the 10 H-trees give an effect
of a single index without storing the class identities in their
leaf nodes.

In the second experiment (Fig. 16b), the number of
classes involved in the range queries varies from 1 to 10,
with NV fixed at 20% and 100%. As expected, the H-tree
is a much more efficient indexing structure when the number
of classes involved is small. With the increase in the number
of classes, more links have to be followed and more internal
nodes have to be searched. The performance of the CH-tree
is independent of the number of classes being queried, since
for a given range, all data, regardless of their classes falling
within the range, must be retrieved.

Both empirical results exhibit the same behavior to that
obtained using the best case cost models reported by Low
et al. (1992). In these experiments, no overflowed internal
nodes of H-trees have been recorded. This is largely due

to the large amount of node space we reserved for theL
pointers, which could be tuned to further improve the effi-
ciency of H-trees. The results indicate that the H-tree is an
efficient indexing structure for associative search in OODB.
The H-tree can be used in conjunction with other indexes to
provide support on path indexing.

Sreenath and Seshadri (1994) studied the performance
of the H-tree and the CH-tree. In this study, one of the
experiments varies the number of classes being queried from
1 to 10, and the range of range queries from 1% to 40%.
For complete overlap distribution of data (cf. Table 1 of
Sreenath and Seshadri (1994)), the H-tree was shown to be
more efficient than the CH-tree for queries referencing up
to 6 classes and on all ranges. As the number of classes
gets larger, the performance of the two indexes becomes
comparable. For point queries over all classes, the H-tree
did not perform well in comparison to the CH-tree. This
is expected since the CH-tree traverses a single path from
the root to a leaf node and accesses a small number of leaf
pages, whereas for the H-tree we need to follow all links to
individual H-trees. The saving from reading additional leaf
pages, as in the case of range queries, is now offset by the
number of links the H-tree has to follow. For point queries,
a hash table would be the most efficient indexing structure.
A performance study on the CH-tree and H-tree was also
conducted by Niu et al. (1994), and the results exhibit fairly
similar behavior to that reported by Sreenath and Seshadri
(1994).

6 Conclusions

In an OODB, retrieval of objects based on their key values
and on their classes is very common. Such search can also
be used to facilitate retrieval of component (or aggregate)
objects based on certain key values of the component (or
aggregate) objects. Support for efficient associative search is
important. The H-tree provides a natural support for OODB
where objects are stored in their proper classes.

In this paper, we have presented the structure of the
H-tree and a case study of its deletion algorithm. The H-
tree supports efficient associative search on instances of a
single class, and instances of a class and some or all of
its subclasses. Two access methods that can be efficiently
implemented using H-trees are: (1) scanning for all instances
of a class and its subclasses and (2) scanning for instances of
a class and some select subclasses. By not following the path
to the nested index of irrelevant classes, the condition where
the instances are not members of those classes is naturally
satisfied.

Experiments on the H-tree and CH-tree were conducted
to evaluate the performance of the H-tree and CH-tree. The
results show that the H-tree is an efficient structure both in
terms of storage requirements and query efficiency. To pro-
vide the average case analysis of the H-tree, we presented
a model for data distribution within a class hierarchy. The
average cost model shows that the structure of the H-trees is
suitable for applications where more objects are distributed
to classes at the leaf level of the class hierarchy. In general,
the study so far indicates that index nesting is an efficient
approach to indexing multiple sets of data of the same data
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type. The index nesting concept has been studied by Kilger
and Moerkotte (1994) as an index for indexing set-tuples,
and by Low et al. (1993) as an index for facilitating query
processing in deductive databases. Like other indexes, fur-
ther fine-tuning of the H-tree is required to overcome its
weaknesses and to further exploit its strengths. With the use
of multiple indexes, the degree of concurrency should im-
prove and it is of interest to study such an improvement.
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