The VLDB Journal (1996) 5: 215-228 The VLDB Journal
© Springer-Verlag 1996

Index nesting — an efficient approach to indexing
in object-oriented databases

Beng Chin Oof*, Jiawei Han?, Hongjun Lu?!, Kian Lee Tan!

1 Department of Information Systems and Computer Science, National University of Singapore, Kent Ridge, Singapore 119260;
e-mail: {ooibc,luhj,tank} @iscs.nus.sg
2 School of Computing Science, Simon Fraser University, British Columbia, Canada V5A 1S6; e-mail: han@cs.sfu.ca

Edited by Ron Sacks-Davis. Received December 1992 / Revised May 1994 / Accepted May 1995

Abstract. In object-oriented database systems where theour new associative search index is called the hierarchical
concept of the superclass-subclass is supported, an instantee (H-tree; Low et al. 1992). An H-tree structure is main-
of a subclass is also an instance of its superclass. Cons#ained for each class of a class hierarchy and these trees are
quently, the access scope of a query against a class in genested according to their superclass-subclass relationships.
eral includes the access scope of all its subclasses, unle¥ghen indexing an attribute, the H-tree of the root class of a
specified otherwise. An index to support superclass-subclasdass hierarchy is nested with the H-trees of all its immediate
relationship efficiently must provide efficient associative re- subclasses, and the H-trees of the subclasses are nested with
trievals of objects from a single class or from several classesi-trees of their respective subclasses and so forth. Index-
in a class hierarchy. This paper presents an efficient indeing in this manner forms a hierarchy of index trees. Nesting
called the hierarchical tree (the H-tree). For each class, ahl-trees supports efficient traversal of the nested H-trees (of
H-tree is maintained, allowing efficient search on a singlesubclasses) by enabling traversal of a nested H-tree to start
class. These H-trees are appropriately linked to capture that appropriate subtrees via the links maintained in its su-
superclass-subclass relationships, thus allowing efficient reperclass’s H-tree. In addition, a nested H-tree can also be
trievals of instances from a class hierarchy. Both experi-accessed independent of its superclass’s H-tree. Note that a
mental and analytical results indicate that the H-tree is amueried class does not have to be the root class of the class
efficient indexing structure. hierarchy and therefore searching for instances within a sub-
hierarchy of classes can start at any class as long as they are
Key words: OODB - Indexing structures — Query retrieval indexed on the same attribute. The nested organization pro-
vides a natural and efficient support for superclass-subclass
relationships. The H-tree organization naturally lends itself
to indexing in recursive query processing using semi-naive
evaluations (Low et al. 1993) and indexing multiple sets
1 Introduction (Kilger and Moerkotte 1994). We implemented H-trees and
compared their performance with class hierarchy trees (CH-
Object-oriented database (OODB) systems emerged as a r&#ees; Kim et al. 1989). Both the experimental and analytical
sponse to the requirements of new applications which cannd€sults indicate that the H-tree is an efficient indexing struc-
be efficiently supported by conventional database systemdure.
One of the major concepts supported in OODB is the no- The remainder of this paper is organized as follows. In
tion of generalization/specialization. A class in OODB can Sect. 2, the problem of indexing in OODB is further dis-
be specialized into a number of subclasses. The impact ofussed and related work reviewed. In Sect. 3 the data struc-
such specialization on the semantics of object instantiatiodure and nesting organization of the H-tree indexes are de-
is that the access scope of a query against a class may be tReribed. The algorithms for searching, insertion and deletion
instances of that class or instances of all classes in the clagge presented in Sect. 4. Both analytical and empirical re-
hierarchy rooted at that class. To support the superclasssults on the performance of H-trees are presented in Sect. 5.
subclass relationships efficiently, an associative search inde&onclusions and future directions are presented in Sect. 6.
must facilitate (1) efficient retrieval of instances from a sin-
gle class, and (2) efficient retrieval of instances from classes o
in a class hierarchy. 2 Motivation and related work

In this paper, we study the implication of specialization _ i) ,
and present an index that facilitates query retrievals basefPiect-oriented databases provide new kinds of data seman-

on superclass-subclass relationships. Based omBtheee, tlc_s, such as inheritance and superclass-sut_)class relatl_on-
ships. An instance of a subclass is also an instance of its

The work was in part supported by NUS Research Grant RP910654 superclass. As a result, the access scope of a query against a

216

NUSEmp(name, empno, salary) 2. Instances of a class and all its subclasses. For example,

/ a list of the employees (NUSEmp) who earn more than

\ $30000.
Academic(qualifications) Admin
Based onB*-trees, Kim et al. (1989) proposed an in-

/ dexing scheme called the CH-tree. To index a hierarchy of
classes on a common attribute, typically one of the super-

Lecturer(courses) Researcher(projects) class attributes, a CH-tree maintains only one index tree
a for all the classes of the hierarchy. A search on a class for

instances that satisfy the associative search condition is per-
formed as if the index is maintained solely for that class. In-
stances of classes of no interest to the answer are discarded.

/ NUSEmp \ As a result, the search for instances of a small nhumber of
// \\ classes may not be efficient. The structure of the CH-tree is
/ \ shown in Fig.2. While internal nodes are similar to those
/ \ of B*-trees, leaf nodes contain key values and associated
// A Admin \\ directories. In a leaf node, for each key value, object iden-
/ : \ tities (oids) of objects which have the same indexed value
/ // Academic \ are grouped in a directory based upon objects’ classes.
// / \\ \\ The performance study conducted shows that the index-
Y \ \ ing scheme of one index for all classes in a class hierarchy
[/ kecture esearcen _ _ _ _ _ \ performs better than the indexing scheme that supports one
index for each class. However, a major drawback of the
b CH-tree is that it does not support the superclass-subclass
Fig. 1a,b. Access scopea A class hierarchy of employeeb. The search 'elationship naturally. Searching for values in a single class
space of classes is treated in the same way as searching for values in a hier-

archy of classes. In other words, the same searching strategy
is used for retrieving values in a single class as well as in a

. L hierarchy of classes.
class generally includes not only its instances but also those |, the work of Scheuermann and Ouksel (1982), a dif-

of all its subclasses. A query may also be formulated €X+grent kind of index nesting, the multi-dimension&tree
plicitly against a class and some of its 'subclasses. Indexe, DBT), was proposed for multi-attribute indexing. In an
are necessary to speed up the associative search. In order\gyp1 (Scheuermann and Ouksel 1982; Kriegel 1984%-a

support the superclass-subclass relationship efficiently, thgae is constructed for the first indexed attribute, and for each

index must achieve two objectives. First, the index mustyyyinte value, 83-tree may be attached for indexing on the

support efficient retrieval of instances from a single class.ggcond indexed attribute and so forth. Hence, the number of
Such a retrieval is similar to that of relational DBMS. Sec- B-trees can be very large, arfé-trees maintained for the

ond, it kr)’nustfal?o support e;fllment r:etn](cavrlall of |nstgnce§dfrortr;1$ame attribute are not related.
a number Of Classes In a hierarchy of classes. LONSIder N€ - gq\ a5 other indexing structures were proposed (Ber-

class hierarchy in Fig.1a. The NUSEmp is the root .Class‘t'na and Kim 1989; Kemper and Moerkotte 1990; Maier and
of the class hierarchy and the superclass of Academic an tein 1986; Valduriez et al. 1986). However, these indexes

Admin, and Academic in turn is the superclass of Le(.:turermainly deal with path indexing for nested objects in OODB.
and Researcher. Attributes in a superclass are inherited by . . : . .
The indexing mechanism that we proposed in previous

all its subclasses. For example, the attributasne empno BUANSIE .
andslaryin NUSEp are hrid by all he sublasses in 7 (% #L 8 1952) and frter stued i bis paper s
the class hierarchy. We will use the temammon attributes iergrch of cI:spses The index. called the H-tree. is based
to refer to attributes inherited by all the classes in the clasg] y ' ! ; 1

on the superclass-subclass relationship. Moreover, unlike the

hierarchy. An associative query against class NUSEmp on :
one of its attributes implicitly includes its subclasses, Ad-Work of Scheuermann and Ouksel (1982), indexes are nested

min and Academic, and those of Academic, Researcher ang" the same attrlbu_te. While the CH-tree partitions the data
space based on attributes, the H-tree organizes the data space

Lecturer. Figure 1b describes the search space of each clas) . i
into classes. As a result, it provides superior performance for
Suppose we wish to index the common attribute, sayrange queries on a single class hierarchy, which the CH-tree
salary. Ideally, the indexing scheme must support efficientis unable to provide. Consider, for example, the partition-
retrieval of the following: ing of the data space (i.e., the entries in the leaf nodes of
the index structure) shown in Fig.3 (Chan and Ooi 1994)
for the H-tree and CH-tree. For a single-class query with
1. Instances of a particular class not including its sub-a wide attribute value range (represented by the horizontal
classes. For example, a list of all academic employeesearch area), it is efficiently supported by the H-tree index
who are neither lecturers nor researchers and who ear(Fig. 3a) as it requires only a partial sequential scan of the
more than $60 000 and a list all lecturers who earn mordeaf nodes of a single-class index. However, this query is not
than $40000. well supported by the CH-tree (Fig. 3b) because it involves

217

The internal node structure is the same as
B+ tree'sinterna node.

I C 0] et

7 T~
/ -——_
/ -
/ -
/ ~—_
/ -
/ -~
/ -
’ S~
/ -
’ -~
J entry Tte-lll
rec. overflow| no. | .) no. | .]
length K pointer directory oids oid ... oid | oids od..oid | ... Leaf node structure
no. class <t class
classes |id-1 ofset | id-n offset | Directory structure

Fig. 2. The class hierarchy tree (CH-tree) structures

a long sequential scan of a single large index which is likely3.1 The data structure
to access many irrelevant leaf nodes. For a class hierarchy

query with a narrow attribute value range (represented byrhe H-tree is a dynamic multi-level index that is based on
the vertical search area), it is very efficiently supported byihe g+ tree. However, to facilitate index nesting and to
the CH-tree (F'g; 3b) because it requires a partial sequenspnort superclass-subclass relationships, both the internal
tial scan of theB™-tree index. While it requires traversals anq |eaf nodes of an H-tree contain more information. Fig-

of multiple single-class indexes, the H-tree is also able to,r¢ 4 jllustrates the structure of an H-tree and describes the
deliver good performance. This is because of the nesting of,otations used.

classes that facilitates efficient traversal between the single- |, 51 H-tree leaf node. an entry is a pait (P), where

class indexes. Thus, the H-tree achieves the speed of the iq the indexed value for a fixed-length indexed key and a
one-index one-class scheme for single-class retrievals angyir tength, valugin the case of variable length index values
one_-lndex all-class scheme (cf. CH-trees) for multiple-clas e.g., strings).P consists of a counter and a list of oids,
retrievals. (numberof oids, oid, oid, oid. ..) whose indexed attribute
value isK.
In an internal nodeV, apart from the usual discriminat-
o ing key values,K, and child node pointerd3, we need to
3 The H-tree organization store pointers pointing to subtrees of nested H-trees. We use
L(n) to denote the pointer pointing to a subclass H-tree’s
subtree rooted at node and simply L when the nested
In this section, we describe the structure of the H-tree andsubtree node is not important to the discussion. To reduce
the nesting of H-trees. We ugé. to denote the H-tree of unnecessary traversing of the nested subtree, the minimum
classc. To index the classes in Fig.1 on a class hierar-and maximum values of the nested subtree are maintained
chy rooted at NUSEmp, five H-trees are created, one fotogether with the nested subtree pointer. The range values
each class:Hpecciurers HResearchers HAcademicy Hadmin of a subtree rooted aB; can be derived from its parent’s
and Hyusemp- With the assumption that an instance is entries, sinceB; is contained in &, K;.1] of the parent
stored in only one class, each instance is indexed onlyode. Figure 5 shows an example of a subtree (rootedl at
once in the index of the class it is instantiated. Following of H,,;...s being nested in a nodeV() of Huperciass- AS
the class hierarchylccturer @Nd Hrescarcher are nested — shown in the figure, the values in the nested subtree origi-
iN Hacademic and Hacademic and Haamin are nested in nated at node: must be within the values of 26 and 100.
HNusEmp- For efficiency reasons, we do not alldwpointers in a leaf
For a search on a class hierarchy rooted at Academitiode unless it is also the root.
class, the nesting should enable us to obtain the correct an- In general, all theB*-tree rules apply to H-trees. Each
swer by just performing a full search oH scqqemic and internal node may have up t/; discriminating values and
a partial search o cciurer aNA HRescarcher- The sav- M, + 1 branches B). In an internal node, thé&™ values in
ings can be significant if many internal node pages can behe subtree referenced 8 (j = 1,- - -, M) must be greater
skipped. than K;_, and less than or equal t&;. A node cannot be

218

Set of classes in class hierarchy = {C1, C2, ... Cn}
Range of indexed attribute value = [Vmin, Vmax]

T

[] Leafpage || search area for queryl| J Search area for query 2

\
L

Cn—l‘_}—‘ﬁ F? """ ‘ }%‘

T e e I

-
a | [F== -~ =1 c1
il

@

Fig. 3. Organization of data space man H-tree and a CH-tree

Internal Node
fl
ties ‘ B1| k1| B2| ... Km Bm+].‘ no.pested | g (o .. g:fer o o ‘
N = entry —=i _,,_—”/
Leaf nodes
7 Leaf Node el
no. overflow parent | next node
entries | pointer K1l P1 Ks ptr. ptr.
< entry =i
Notations
pointers pointing to subtrees of a node
index tree

indexed value (or branching value in internal nodes)
range values and pointer to node in nested tree
Maximum number of entries in an internal node
1 number of entries in a leaf node

pointers to objects or oids

.

TEzhxaw

Fig. 4. The H-tree structure

an empty node unless it is also the root node. Readers map the nodes i ,,;.1455- REfEITiNg to the example in Fig. 5,
refer to Comer (1979) for a complefé*-tree description. a subtree (rooted at) of H,,pc1455 IS Deing nested in a node
(N) of Hsuperclass- Node N of Hsuperclass has a pOinteri
. . le that IinkSHsuperclass and Hsubclass-
3.2 Nesting of indexes We define two rules for nesting a subclass ind&x,cq.s
in a superclass indel s,perciass. These rules ensure that the

An H-tree facilitates efficient retrieval of objects in a class. data can be retrieved correctly using the index. They are:

For a hierarchy of two classes, two indeX€s,erciass and
Hubelass are maintained. The superclass ind€x,perciass (C1) If noden is referenced by nod#’, the range values of
is an outer index and the subclass ind€X,;.;.ss IS an in- the subtree rooted at must be within the range values
ner or nested index. Linkages are maintained between some of node N, except whenV is also the root node of
nodes of these two indexes such that a search for values in Hgyperciass- The root node o syperciass iS assumed
the class and its subclass requires only a full search on the to cover the range o s, pciass-

superclass index and a partial search on the subclass inde§C2) All the leaf nodes inHg,p0ss Must be covered by
When indexH s peiass 1S Nested inH gy perciass, the L point- Hguperclass- This means that all the leaf nodes in
ers of the internal nodes Q¥ s, perciass Will be set to point Hsubelass Must be reachable frof sy perciass-

219

Index Hypercrass 4.1 Searching

IR p.
/

JEIN
1. Starting from the root node, the tree is searched as an
node 30| 60

‘ Y ‘ / index for instances of the indexed class.
J L Afsffod] -] |
\

subclass

] ‘ ‘ An H-tree can be searched under three situations:

T s

2. Starting from the root node, the tree is searched as the
root class of a class hierarchy and the links to (some

~ ‘ ‘ ‘ H ‘ ‘ or all of) its subclass H-trees are followed to search for
/ 45|, 90 instances in its subclasses.
V \ node n 3. Starting from an internal node via the link maintained in

the superclass H-trees, the tree is searched.
Fig. 5. Nesting part of an index)))
The first case is a single-class search and the second and

third cases are multiple-class searches. To search on a single

Rule C1 ensures that subtrees of subclass H-trees a@ass for instances which satisfy the search condition, the
defined where they are nested so that they can be reachétitree is searched like B*-tree by ignoring the nested tree
via the correct path. Rule C2 ensures that all the nodegointers. Consider the example in Fig. 5, to search on class
iN Hyupelass Can be queried through its superclass indexHsuperciass fOr its instances with indexed attribute value 40
Hyperciass- An example of illegal nesting of indexes is we go down the subtree that is between 30 and 60, ignoring
shown in Fig. 6, where subtrees Hf, ;.. reachable from the L1 pointer. A multiple-class search begins the search on
Huperciass are enclosed with dotted lines. In this example, the H-tree of the root class and follows ttiepointers to
ns is not reachable fronH s, perciass, @nd hence rule C2 is search the nested subtrees of classes of interest to the query.
violated. Figure 7 shows a complete coverage of the leafn this example, since the access scope includes,.iass,

nodes in a nested index. index Hgypeiass 1S Searched starting at node
To increase the efficiency of the index, the following The search strategy is outlined below. We assume that
rules are introduced. the search classes contains the subclasses whose indexes

are to be searched, which is an empty set for a search on a

(E1) For each leaf node ifl,,pc1qs5, there exists only one _single class. Wher_1 ;earching a class_, if none of the 'classes
path to reach the node frofs,perciass- in search classes is its subclass, its index search will be
(E2) Suppose the immediate child nodesi@frens, - --,n;. treated as a single-class search.
If nodesny, - - -, n; are referenced fronV, then node
n should be referenced frolV instead. This rule isto Algorithm Search
avoid unnecessary overflows.
(E3) The subtrees itHypeiass referenced byHyperciass SEARCH (cnode, vy, v2)
should be as small as possible. For example, suppose Input: cnode — root node of tree/subtree to search.

. . .] v1 — lower bound of range search values.
the immediate child nodes of areny,...,n; andn vz — upper bound of range search values.

is referenced fromV. If there exists/V;, a child node v = vy for exact match search.
of N, that can reference;, ..., n;+«, thenN; should
be set to reference;, . .., n;+x, andN set to reference Outputiist oids whose indexed attribute values fall withia, [v;].
Ny - ee s =1, Mkt - - -5 5 1. Single-class search
. . A. If cnode is a leaf node, search the node and for all
Rule E1 is essential to ensure that a nodefiniciass indexed values fall withiny, v], add the oids to the
can only be referenced by a nOdeBh‘uperclass and hence answer. Search the next leaf node and follow the chain
no multiple search paths. till an indexed value greater tham is encountered or
Rules E2 and E3 appear contradicting, but they are sub- till the last leaf node in the chain.
tly different. Rule E3 aims to reduce the search in nested B. I cnode is an intemnal node, traverse down the first
subtrees, while rule E2 reduces unnecessary overflow of fborf‘?:: S'fnﬁl”ezﬁvlﬁh‘zrseega"efe d°<W?<t“ff ngf;”‘;?
; ; ; ; W i—1 < V1 S K.
pOIntjerS n tge.Hsulﬁ.Tlala”' A Sgecr:al case f?f rule E3 |S|Whenf the discriminating value; is greater tham, traverse
ando eN z;n _|ts% ildV; can both cover the range values o down the right-most branch.
noden. This is whemny, ..., n;_1, Ni+k+1, - - -, 15 IS €EMPLY. 2. Multiple-class search

In an earlier publication (Low et al. 1992), this special case

of rule E3 was named rule E4. A. If cnode is an internal node, search the subtree if its

range intersectsuf, v,] and search the nested trees for
all Ls whose class is isearch class and range inter-
sects p1, vy], calling SEARCH (, vi, v2). If cnode
4 Operations in H-trees is reached viaL link of another class, check its node
bitmap to see if any of its ancestor nodes contain
pointers to classes of interest. If the corresponding bit
In this section, we present the outline of the algorithms for is set, traverse upwards and check the links.
accessing (search operation) and updating (insert and delete B. If cnode is a leaf node, retrieve all data items that fall

operations) H-trees. within [vg, vp].

220

Index H gperclass IndeX Hgpglass
R
n2 "’A(né
i @ b 5 6 g n8
- M? Sl ; TR TR I L TR
J X R R R R R AR
Fig. 6. Incomplete nesting of indeX ;,pciass IN Hsuperclass
Index Hg perclass Index H g pgass
n2
IR O O -

vy IR IR R

Fig. 7. Complete nesting of indeXl sypciass IN Heuperclass

| ndex H tree, we have to check whether there are any ancestor nodes
that containLZ pointers to its subclass H-trees. To facilitate
such upward traversal, a bitmap, a bit for each subclass,
is used to indicate the existence bflinks in the ancestor
nodes. For a class with eight subclasses, a byte is allocated
for such purposes.

Suppose we have a class hierarchy of three levels and
we have to perform a range search on the root class and
all its subclasses. To simplify the explanation, we shall only
consider one class at a level, with H-treBs H', H" re-
spectively at the root, second, and third level. A subtiee,
in H' is searched via thé& link in H. When searching for
v1 in S terminated, and?” is not reached at all, it does not
mean that subtrees df” within the range {1, v,] are not
nested inH’. It could be possible that the nesting occurs
Fig. 8. Example of a search path, starting from the root of index H at a level higher thay. One such example is illustrated in

Fig. 8. Therefore, moving up the tree from the current class
nested node is essential. The node’s bitmap is used to avoid

In the above algorithm, the search of an H-tree starts atinnecessary checking. An alternative solution to moving up
its root and traverses its subtrees before the nested subtredge tree is to modify the nesting rules to nest only subtrees
When searching a nested tree, not the whole tree is searcheghose parent nodes have o pointers. This way, when
only the subtrees nested in the nodes of the search paﬁi,earchlng the subtree of a nested index, searching for nested
have to be searched. Subtrees not nested in the nodes of tRabclass nodes is avoided as there isInpointers in the
search path are not searched because the search values @pgestor nodes of,. However, searching may not be effi-
not within the search range. cient as additional page accesses are incurred because of less

Searching for values from a single class is similar tc)eff|C|ent nested tree pruning. We adopt the first approach in

that in B*-trees. To search for instances whose indexed ke)?ur implementation and strictly enforce rules £3 and E4 to

values fall within the search range;[v,], the algorithm reduce upward search.
searches fow; on the H-tree of the queried class. Once a

leaf node is reached, the leaf nodes are scanned sequentially

until a key value larger than the maximum search valyg (

is encountered. For multiple class search, thpointers of

appropriate subclass H-trees are followed. When a subtree of

an H-tree is searched via tlepointer in the superclass H-

I ndex H

Index H’

Index H” is nested in H' and index H'’ is nested in H.
The numbers in the nodes are the search sequence of the nodes.

221

4.2 H-tree construction instances, an empty root node is created to nest the indexes
of its subclasses. In a way, range values of a superclass
assume the range values of its subclasses, and the initial

_))) nested structure would be a linked list of root nodes.
When indexing a common attribute, the indexes are created

bottom-up from the most specialized classes to the most
general class; indexes for the subclasses are created befof& 5 |nsertions
the index for the superclass. To index the class hierarchy in

Fig. 1 on attributesalary, we first built the indexes for classes Inserting a new entry into an H-tree index is similar to that

Lecturer, Researcher and Admin. The index for class Aca ¢ ,q B*-tree; as a new entry is added to a leaf node, an

demic is then created, nesting the indexes of its subclasse . : :
Lecturer and Researcher. The index for class NUSEmp i%:’: ?;Ig(\a/vel_del&zf nOdbeeltheprjz.gg téhgesmger:]t?é ?rzgz? asr?ée up

created Iast,_nestmg t_he mdex_es for Academic and Admln'its indexed attribute value be,.,,. The insertion algorithm
The nesting algorithm outlined below ensures that theis outlined below
rules defined in Sect.3.2 are satisfid@langeV alues(N) '

4.2.1 Index nesting

returns the range values of a node

Algorithm Nest

Nest(N, n)
Input: N — node of the superclass H-tree.
n — node of the subclass H-tree to be nested.

if N is not the root
Exit if N is a leaf node;
Exit if RangeV alues(n) is not contained
in RangeV alues(N);
if N is a leaf and the root node /* link nodeto N */
let N.L;. be the emptyL pointer;
setN.Lg(n);
else ifthe immediate child nodes a¥ are leaf nodes
let N.L;, be the next empty. pointer;
setN.Lg(n);
else
let Ni... Ny (t < M +1) be
the immediate child nodes of nod¥;
if there existsV; such that
RangeV alues(n) C RangeV alues(N;)
call Nest (V;, n); /* nestn in N;,
a child node ofN : enforce a special case of E3*/
else/* n cannot be nested in node belaw,
try to nest the child nodes of instead. */
letni...ns (s < M +1)be
the immediate child nodes of node
for eachn; (j=1...s)
call Nest (V, n;); /* enforce E3 */
if none ofn; is nested in any ofV's child nodes,
link noden to N
let N.L;, be the next empty. pointer;
setN.Lg(n); I* E2 */
else/* some ofn’s child nodes are nested
in N's child node,
S0 nest the remaining unnesteg
in the current node */ for each unnesteg
let N.L; be the next empty. pointer;
setN.Lg(n;);
end Nest

To nest a subclass’ H-tree in its superclass’ H-tree, we
traverse both trees simultaneously and try to push.theks
down both trees as deeply as possible. For example, to nest
an H-tree rooted at node in its superclass’ H-tree rooted
at nodeN, we first attempt to nest the child nodesoin
the child nodes ofV. If this is not possible, then only do

we nestn in N.

Creating an H-tree index for a class without subclasses
is similar to creating a3*-tree. For a superclass without any

Algorithm Insert

INSERT (vVnew, 0tdnew, H)

Input: vpew — value of new object to insert.
oidnew — 0id Of Nnew object to insert.
H — index to insert the new object.

1. Traverse index{ to the leaf node that may contain,c., .

2. For secondary key indexing, the leaf node may already have
Unew, IN Which caseoid,.., iS added to the oid list of the
indexeduvn,c.,. TO insert the new entry into the leaf node, get
the location of the new entry and shuffle the existing entries to
make room for the new entry. If the leaf node does not have
enough room for the new entry, call SPLNODE (leaf node
to be split,vnew, 0tdnew)-

A node is split if overflow occurs. Like3*-trees, a split
may propagate upwards. In the splitting of a nodethe
ranges of two resultant nodes; and ny, are likely to be
smaller than that ofi. If there is L(n) in the superclass H-
tree, it has to be substituted wift{n;) and L(n,). The new
Ls, for their smaller ranges, may be pushed further down
the superclass index because of rule E4. However, violation
of this rule does not affect the correctness of the H-tree
operations. If there aré links maintained in node, during
the split, those that cannot be covered hy and n, are
promoted to their parent.

The node splitting algorithm is outlined below, which
is designed to ensure that the H-trees obey rules defined in
Sect. 3.2.

Algorithm Split Node

SPLIT NODE (lnode, vnew, 0idnew)

Input: Inode — node to split.
vnew — Value of new object to insert.
oidnew — 0id Of Nnew object to insert.

1. If lnode is a leaf node, then udeode as the left node and
create a new leaf nod@odeneq as the right node. Distribute
the entries inlnode plus the new entry among the left and
right nodes. If there exist& (Inode) in N of Hgyperciass:
add L(Inodenew) to N. Update the parent node biode to
include the branch to the new node using the largest indexed
value of the left node as the new branching value.

2. If the parent node: overflows, split the parent node.

If n is the root node, create a new internal node and
make it the parent node of.

Create a new internal nodg,.,,. Let the middle
branching value be¥,,;441.. Move all the entries on
the right of K,,,;441¢ t0 the right nodeny,eq, .

222

C. Distribute existingL, entries inn amongn and ny,eqw
based upon their minimum and maximum values; the
minimum and maximum indexed values of the subtree
pointed by L must be enclosed by the minimum and
maximum indexed values of the nesting node. Move
the L entries which do not fit in neithet nor n,,e., to
their parent node.

D. [Ifthere existsL(n)in N of Hyyperclass, @ddL(nnew)
to N and readjust.

E. Insertanew entry witli,,,; 4; @s the branching value
to the parent node af. n,e, becomes the right child H
of K,iqd1e- Repeat step 2 if overflow occurs. This
process may recur till the root node.

4.3 Deletion /

\

\
A deletion of an entry may cause a leaf node to underflow./:\] \\\ By \L
In other words, the space utilization is less than the thresh-
old value. The threshold value is typically half of the page PN
capacity, which can be, however, tuned for performance pur? €ase 2
poses. When an internal node is underflowed, it is merged
with either its left or right sibling. The merging requires
readjustment of the links, which sometimes may result in
pushing up the links in the parent index. The outline of the

deletion algorithm is given below.

Algorithm Delete

DELETE (vgeiete, H, 0ids)
Input:

vgelete — INdexed value to delete.
oids — list of objects to be deleted.
H - index to delete from.

1. Traverse indext to the leaf node that contains the value

vgelete- LEL the leaf node benode. Delete theoids and
remove the indexed entry WitR' = vgeeqe if its P is empty.

. If the deletion is to remove all the indexed valug,jcie iN

H and its nested indexes, search through the nested entries
as in the algorithm SEARCH to delete all the indexed values
with K = vgeiete-

. If cnode underflows after removing the entry: Merge it with

its sibling nodenode;piin 4. Let the resultant node hgvode.
Redistribute the entries amongrode and nodeg;piing if
overflow occurs.

. A, If resplit occurs, if there areL(nodegpiing) and

L(cnode) in its superclass’ H-tree, a simple readjust-
ment is enough; check if they are required to be moved
up or down.
If there exists only one link, say.(cnode), in N of
Hguperclass, then use Nest to re-nest all child nodes
of cnode in N.
Check also if theL links in both nodes need to be
readjusted.

B. Otherwise, if there ard.(nodeg;piing) and L(cnode)
in its superclass’ H-tree among these two nodes, put
L(cnode) in the node whose range provides better cov-
erage of the range @frode. Delete oldL(nodes;piing)
and L(cnode). Check if cnode is covered properly; if
not, move theL(cnode) up.
If there is only one link, say.(cnode), use the Nest
algorithm to renest all child nodes efode to the node
that containsL(cnode).
Check the parent node if there are any links to a sub-
class that could be pushed downdeode.

. If a node is deleted, the corresponding entry in the parent

node must be deleted. If the parent node is the root node and
has one entry after the deletion, make its child the new root.
If it is not the root and the node underflows, repeat step 3
with parent node asnode.

c Case3
Fig. 9a—c.Dangling nodes in deletions

Like the B*-trees, merging of leaf nodes may propagate
upward to the root node. If a node underflows, the node
will be merged with its sibling (either left or right) node.

A resplit is necessary if the resultant node is overflowed.
This is always the case if the threshold value is more than
half of the page capacity. When two nodes are merged and
the resultant node is resplif, links pointing to adjusted
nodes must be readjusted. Due to their smaller ranges, the
corresponding links in the superclass index pointing to two
resplit nodes are more likely to be pushed down rather than
being pushed up. For the same reason,ltHanks pointing

to subclass H-trees may be pushed up to the parent node.
When two nodes are merged, the resultant node has a bigger
range and th& links in its parent node may be moved down.

In the Delete algorithm, the checking and relocation of
L pointers can be achieved using the Nest algorithm. How-
ever, this is not efficient. In what follows, we analyze various
cases where links must be rearranged. Figure 9 shows three
possible cases in merging nod®s and N, of H'. We first
consider the case where resplit is not necessary and we use
N, to denote the merged node. In the first case, the link on
the higher superclass node is used to link the merged node,
and pushing down of the link is performed if necessary.
Since the link toNV; is in a subtree of the nodg, the range
of N, must also be covered by the range&if In the sec-
ond case, merging/; and N, results in a node with a larger
range, which cannot be covered by either RangeVafij¢s(
or RangeValues{;). The most immediate common parent

223

Table 1. Parameters used in analysis All classes have objects with key attribute values uniformly
distributed over a fixed interval. N
/
Control parameters / \\
Term Description / \\
. . . /

N Total number of o_bjects in the glass hierarchy // \\ Relatively sparser

Lmaz Number of levels in the class hierarchy , \ Superclass

A Number of contiguous values in a range query \

N7 Number of values in the domain % 100% // \

I Fanout at each level of the class hierarchy Vi \

P Probability of an object belonging to a level // de inth | \\

in the class hierarchy node n the Su")e‘r cass N

Ne Number of entries in a node Y A— — 7QX

r Occupancy rate
of S; and S, must be found and the link td/,. is inserted. Links

The search for the parent is optimized using the information
in the bitmap of a node; that is, a search for the immediate
common parent using a node higher up in the tree. Appropri-
ate pushing down is performed to tightly contain the range
of N,. In the third case, one of the merging nod@§ (n

Relatively denser
Subclass

our example) has links from the superclass to its child node. e = B

i i i i Subtree in the subclass covering the
The link from S5 to Ng is de[eted, and_ the Nest algorllth.m is Same 1ange of altibates a6 e pode
used to nest the childrelN, in H starting fromS,. This is in the super class.

sufficient since by definition, all leaf nodes &f must be
fully covered byH, implying that all child nodes ofV; are
covered byH.

In the case where resplit is necessary, the links fldm the others through the links via the first H-tree. In order to
to N1 and N, are merely readjusted in cases 1 and 2. In thegg|culate the mean access time, we express it in terms of the
third case, the process is similar to that without split. number of link and node traversals. To make the average

Both insertion and deletion algorithms are designed tocase analysis possible, we make the following assumptions
ensure the effectiveness of inter H-tree linkage. In an H-gn the distribution of data.

tree, the links to subclass H-trees are optimized such that
they are near the leaves. Furthermore, records have beeh. The distribution of the key attribute values in all the
partitioned into subclasses, reducing the number of records classes are uniformly distributed over a fixed interval.
in each H-tree. With a reasonable page size (typically 2-2. The distribution of the key attribute values is independent
4 KB), the realistic page height is not large. of the designation of objects into the classes.
3. The number of objects at each level of the class hierarchy
follows a suitable geometric progression.

Fig. 10. Best case ‘nesting’ of a subclass into its superclass

5 Performance analysis
The first two assumptions are important as they form the

In the work of Low et al. (1992), we presented the best casdasis to relate the height of a nested subtree to the relative
analysis of the H-tree in terms of the storage space requiresizes of the classes, without which analysis would be almost
ment and page accesses of range queries. The performanicepossible. By these two assumptions, we observe that dur-
of the H-tree was compared with that of the CH-tree. Ining a ‘nesting’ of a subclass into its superclass, each last
this section, we shall present the average case analysis tgvel internal node in the superclass covers an equal portion
the H-tree based on an object distribution model and somef the subclass. That is, there is a link from each last level
experimental results. Table 1 defines the parameters we wilhternal node in the superclass to the root of a subtree in the
use in our discussion and analysis. subclass (Fig. 10). Given a large enough number of objects

in a class, the height of these subtrees do not differ signifi-

cantly. By assuming a reasonable distribution of objects with
5.1 The H-tree access complexity adjustable parameters, we allow the analytical result to be

adjusted according to specific applications.
The H-trees for a class hierarchy are a complex structure On the aspect of the data structure, the size of each node
involving inter-relations among a hierarchy Bf -trees. The in each H-tree is assumed to be the same, and an average
H-trees could be viewed as a non-height balanB&etree, occupancy rate is assumed for internal nodes of H-trees. To
by treating the H-tree for the root class as the mafiatree simplify the analysis, we also assume that the fanout of a
and the others as subtrees. The nesting level of the subclasselass, the number of subclasses, is the same for all classes
depends very much on the distribution of the key attributeexcept those at the leaf level which have zero fanout.
value and the distribution of objects in the various levels in In OODB, objects with the same properties and struc-
the class hierarchy. ture are grouped into one class. These objects may further

To perform a search for data distributed across multiplebe classified or grouped according to some more specified

classes, we have to traverse an H-tree from the root angroperties. Objects that cannot find a suitable subclass stay

224

P(1) = 1.0*0.3*0.3*0.3*0.3*0.3*0.3*0.3

AN

with the current class where they are structurally best de- AN

scribed. In practice, subclasses are defined to better define 72\ P@=07%03%03*0.3¥03%03%03
the roles of objects and, as such, classes with subclassésrels) 3\ P(3)=07%03%0.3*0.3%03%03
have less objects than those classes at the leaf level of the 4 \ P(4) = 0.7%0.3*%0.3*%0.3%0.3
class hierarchy. Therefore, when a class is specialized to a T s\ P(5)=07%0.3%0.3%0.3
6
7
8

number of subclasses, instances migrate from the existing N\ P(6)=0.7%03%0.3
class to its subclasses which better describe their charac- N P()=07%03
teristics. Hence, more instances are distributed at the lower ~ N P@)=07
level. To better reflect such distribution, we can define the :
probability of instances being distributed at different levels, Fig. 11. Probabilities of objects belonging to different levels of the class
with the lowest level having the highest probability. We fix hierarchy withp = 0.7

the probability of an instance being distributed at the lowest
level to bep and the probability of an instance getting stored

at leveli to be: 700000

—)\omae—i jf ;= 500000

P(i) = (1-p) Lonan—i i=1 500000
p(1 — p)=~me=—"_otherwise

.) Humber of 400000
Here, the level of the root is taken as 1. With the above objects 3gppon L4

probability, we now define the distribution of objects into 200000 g
the ith level of the class hierarchy to be: 100000

NP(i)(= Npb(L — p)lmes—)

Class level

I
o

08

wherek is O fori = 1, and 1 otherwise.

Intuitively, this method of distribution allows us to vary
the way ObjECtS are distributed into the different levels of Fig. 12. A 3‘D histogram of the d‘istribution ‘Of O_bjectS into eac_h_of the
the class hierarchy in a simple way with just one parame_classei%t different levels of the hierarchy with different valueg fiting
ter (p). To illustrate this, Fig.11 shows the probabilities of ~™*" ~
objects belonging to the various levels of a hierarchy with
p = 0.7. In this example, classes in level 8 will have 70% _ N,
of the objects and the next higher level (level 7) will have (n, xr)?’
21% of the objects. This is logical since as a class is SpeCIaIémd the number of objects in the subclass within the interval
ized into multiple subclasses, the objects are distributed t%overed by each of these nodes
these subclasses. Only objects that do not fit the description
of subclasses are stored in the original class. Depending on Ny x(nexr)?
the class-hierarchy fanout and distribution probabifitya - N,
class which is nearer to the root may have fewer number o .
instances. Consider the example in Fig. 1, once Lecturer an ?S(Qeuxrgperb(_)f nodes at the base of the subiree that contains
Researcher have been defined, it is most likely that classes N. objects
that better describe academic positions will be defined. If y,xn, xr
this is such a case, most of the objects in Academic class
will be distributed to its subclasses. For such a data distribu-
tion with high p, the H-trees at the lower levels of the class The height of the subtree with"*"<*" leaf nodes
hierarchy are bigger than the H-trees at the higher level.

With the assumption that the distribution of attribute values= |log,,. .
within the classes is uniform and over the same fixed inter- Ny
val, the height of the subtree to be nested is logarithmicallyThe cost of traversal from the root of the tree at the top of the
in proportion to the size of the subtree. The height of theclass hierarchy to théth level classCost(i), is calculated
subtree in a subclass nested in its superclass is therefore ias below.

versely related to the ratio of the size of the superclass t
the subclass.

Probability p

u

leneX’I“J +1.

Cost(i) = height of first tree

Let the number of objects in the superclass and subclass + height of subsequent subtrees in the lower levels
be N, and N, respectively. Then the number of leaf nodes of the class hierarchy.
in the superclass N(1 — p)emaz—1

= |_l09ne><r (P J +1

Ny Ne XT
T nexr ; NjXnexr

© +E}=2(I_Zogne Xr N, J + 1) .
The H-tree stores the linkd.(pointers) only at the internal i1

nodes, and therefore the nodes at the level just before thi the above costlV; andN;_; are respectively the number
leaf level provides the most efficient subclass coverage. Thef objects in a subclass at levgland a superclass at level
number of nodes at the level before the leaf level j—1(> 1). The expected cost ovér,,,, levels is

225

e T e Table 2. Static parameters

10pei
g Static parameters values
8 Labels Values used in exp.Labels Values used in exp.
g Size(Page) 4096 Size(Node) Size(Page)
Page accesees 5 Size(K) 4 Size(PageAddr)12
4 Size(B) Size(PageAddr) Size(Oid) 12
3 Size(Classld)4 Size(Counter) 2
% Size(Offset) 2
<]
0
0.4 0.45 0s B 4 Levels
" 05508 pes o4 075 3 5.2 Experiments
Probability p 208
Fig. 13.3D performance graph varyingand Lmax Both H-trees and CH-trees were implemented in C. For the

H-tree, two-thirds of an internal node is allocated for the
entries (K and B), and one-third is allocated for the nested
tree pointers L) and backward links to the nodes of super-
= EiL:T“(P(i)xCost(z’)) . classes. The space is fully utilized for entries in the CH-tree,
and hence a CH-tree internal node contains about one-third
more entries than an H-tree node. Table 2 describes the val-

We note that the H-tree provides a good mean accesges Of the parameters used.
time if the distribution of the key attribute values are inde- The distribution of the key values across the classes of a
pendent and uniform over all the classes, and that the size §fass hierarchy has a significant impact on the performance
the superclass is similar to that of the subclass. We computgf attribute-based indexes. For instance, if the key values
the expected cost on parametei= 5000000, = 150, of an indexed gttnbupe are confined to instances of a _smgle
r = 0.67 andf = 3. The distribution of objects into various class, then an index like the H-tree which supports a single-
classes at different levels is shown in Fig. 12. class retrieval will perform better than an index like the

CH-tree where instances of all classes in a class hierarchy

As we can see from Fig. 13, the performance of the H-are indexed in the same index. The distribution of indexed
tree depends on the way the objects are distributed into th@ajues can take one of the following forms:
various classes in the different levels of the class hierarchy
and the depth of the hierarchy. The three-dimensional per-1. Disjoint —the domain of indexed values of each class in
formance surface graph indicates that a gradual increase in the class hierarchy is disjoint, i.e., an indexed value is
the number of objects in the classes at each level causes contained in only one class.
a gradual increase in the number of nodes being traversed?. Total inclusive — the domain of indexed values is the
Databases with more objects in the lower levels of the class same for all classes in the class hierarchy. The proba-
hierarchy tend to distribute their objects into smaller classes bility of an indexed value appearing in any class is the
because of the fanout factor of the class hierarchy. With same.
higherp, more objects are distributed to classes at the lower3. Partial inclusive — the domains of any two classes are
level of the class hierarchy. However, due to the fanout of partially overlapping, i.e., only some of the classes have
the class hierarchy, the increase in height of the H-trees at objects with a particular indexed value.
these levels is not very great. In contrast, if the distribution

is skewed heavily toward classes at the top of the hierar:I'he first two distributions are extreme cases and respectively

chy, the H-trees behave like a single cla@&tree. When represent the best and worst cases for an indexing technique.
the size of a class and its subclass is comparable, the link L'kﬁ. otherhda_taba;fses, (|jndbeX|rr]19 cg‘. da}La QbJethS c\lethlnl a
from the class will link to smaller subtrees in the subclass.S/ass hierarchy is aftected by the distribution of data. In

Thus, the cost saving comes from such a relationship. Thi@ODB. objects are distributed into classes that best define
@elr properties. When a new class is created, new objects

is especially pronounced when this gradual increase in class . :) . o
sizes is initiated from a small root class. are inserted into that class, or objects migrate from existing
classes to it. In the first scenario, a new specialized class is
In the original scheme, the superclass contains only obereated for new data that cannot fit the description of existing
jects which do not belong to any of the specialized sub-classes. Such a case is similar to inserting new records to the
classes. Although this idea is intuitive and natural, it doesCH-tree and an H-tree. To see the effect of insertion of new
not maximize the advantage of nesting a subclass as most abjects into a new class, we fix the number of instances per
the links will tend to be pointed to subtrees of a relatively class at 10000 instances and we gradually vary the number
large height. A good alternative is to invert the local struc- of classes from 2 to 50, one at a time, and fix the domain size
ture by ‘promoting’ a subclass in the role of the parent classat 10 000 values. As a result, the total number of instances
during storage. The choice of the subclass to be ‘promotedincreases from 20000 (2 classes) to 500000 (50 classes).
should be based on the relative size of the subclass to th€he number of levels of classes in the class hierarchy varies
rest of the peers. Alternatively, a relatively sparse superclasBom 2 to 3. Figure 14 shows the storage requirements of
may be padded by dummy attribute values of a fraction ofboth H-trees and CH-trees. For all three distributions, both
objects inserted in its immediate subclasses. Its efficiency indexes are fairly competitive in storage requirements. The
yet to be studied. number of classes with objects containing certain attribute

226

Index Size vs Nunber of classes -- Disjoint distribution

Total
nunber

of
nodes,

x 1073

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

Nunber of classes

Index Size vs Nunber of classes -- Total distribution

Total
nunber
of
nodes,
x 10°3

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

Number of classes

Index Size vs Nunber of classes -- Partial distribution
X

Total
nunber

nodes
X 10"3

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

Nunber of classes

Cc

Fig. 14a—c. Storage requirement with addition of classes and objects.
Disjoint distribution.b Total inclusion distributionc Partial inclusion dis-

tribution

Index Size vs Nunber of classes -- Total distribution

2.4 4

Total 184
nunber
of
nodes,
x 10°3

— T —
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

Nunber of cl asses

Fig. 15. The effect of object migration on storage requirement

In the second scenario, a more specialized subclass is
created to better reflect the general characteristics of a sub-
group of existing data. The support of such kind of incremen-
tal modeling requires an index to be able to adapt dynami-
cally to migration of data. When a new subclass is created,
data from existing classes within the same class hierarchy
may migrate to it. Addition of a new class will cause the
increase of the number of leaf nodes of the CH-tree since
more class identities have to be stored. For the H-tree index-
ing scheme, a new H-tree must be created and more internal
nodes will be used for indexing. In Fig. 15 we present the
storage requirement for the total inclusive distribution with
object migration. For the CH-tree, as the number of classes
increases, the directory size in the leaf nodes also increases.
The fact that an increase in the number of classes decreases
the number of oids per class only causes a slight increase in
storage space requirement. For the H-tree, when the num-
ber of classes increases, the storage space required increases
more sharply due to an increase in the number of root nodes
and smaller H-trees.

The distribution of data over classes in the class hierar-
chy affects the size and height of indexes and hence their
performance. For the disjoint distribution, a class can be
identified for a given range and therefore a small portion of
the database needs to be searched. Such a query is biased
towards indexes that support an index for each individual
class, as the number of respective indexes need to search
can be rather small. Searching one H-tree is much more
efficient than searching the CH-tree, since an H-tree is com-
paratively much smaller than the CH-tree. Unless the data is
very skewed to a particular class or the query range is very
large, the H-trees are expected to perform better than the CH-
trees. For the total inclusive distribition, both H-trees and the
CH-tree require the most amount of storage space among
the three distributions. To study the performance of both
indexes, a database of 500000/() instances following

values is the smallest for disjoint distribution, and the highestthe total inclusive distribution is created. The instances are
for total inclusive distribution. The CH-tree requires more randomly generated over the domain of [1, 10000] and dis-
space as the number of classes per attribute value increasesbuted to 10 classes of a class hierarchy that is 3 levels high.
This is due to the increase in the directory size in its leafThe H-tree indexes use 2842 pages, whereas the CH-tree re-
nodes. While the CH-tree storage requirement is affected byuires 2550 pages. We consider different query ranges and
the directory size kept in the leaf nodes, the H-tree storagelifferent number of classes being queried. While only one re-
requirement is affected by the number of classes involvedrieval is performed for a full search range/% '=100%), up

and the height of each index. The storage requirement of Hto 1000 retrievals are performed for the other search ranges
trees is not highly affected by distribution of indexed values.(./Z" < 100%). For ranges with more than one retrieval, an

227

to the large amount of node space we reserved forlthe
pointers, which could be tuned to further improve the effi-
ciency of H-trees. The results indicate that the H-tree is an
efficient indexing structure for associative search in OODB.
The H-tree can be used in conjunction with other indexes to
provide support on path indexing.

Sreenath and Seshadri (1994) studied the performance
of the H-tree and the CH-tree. In this study, one of the
experiments varies the number of classes being queried from
1 to 10, and the range of range queries from 1% to 40%.
For complete overlap distribution of data (cf. Table 1 of
0 @ % oo 0 o s m Sreenath and Seshadri (1994)), the H-tree was shown to be

e e more efficient than the CH-tree for queries referencing up
to 6 classes and on all ranges. As the number of classes
gets larger, the performance of the two indexes becomes
comparable. For point queries over all classes, the H-tree
did not perform well in comparison to the CH-tree. This
is expected since the CH-tree traverses a single path from
the root to a leaf node and accesses a small number of leaf
pages, whereas for the H-tree we need to follow all links to
individual H-trees. The saving from reading additional leaf
pages, as in the case of range queries, is now offset by the
number of links the H-tree has to follow. For point queries,
a hash table would be the most efficient indexing structure.
A performance study on the CH-tree and H-tree was also
conducted by Niu et al. (1994), and the results exhibit fairly
Lo 20 50 46 50 50 70 5.0 50 100 similar behavior to that reported by Sreenath and Seshadri

Nunber of classes searched (1994).

ssssssss

ssssssss

b

Fig. 16a,b.Query efficiencya The effect of query ranges. The effect of 6 Conclusions
the number of queried classes

In an OODB, retrieval of objects based on their key values

] o and on their classes is very common. Such search can also
average is taken. For the 100% search range ([1, 10000]), ale ysed to facilitate retrieval of component (or aggregate)

though a di(ect sequential scan of quf nodes'is possible, WBhjects based on certain key values of the component (or
search the indexes using the searching routine. The resuligygregate) objects. Support for efficient associative search is
are summarized in Fig. 16. important. The H-tree provides a natural support for OODB
In the first experiment (Fig.16a), the percentage ofwhere objects are stored in their proper classes.
queried valuesd, vo] over the domain ranges varies from |y this paper, we have presented the structure of the
10% (e.g., [1, 1000], [1001, 2000], etc.) to 100% ([1, H-tree and a case study of its deletion algorithm. The H-
10000]) and the queries are for all 10 classes. The resultgee supports efficient associative search on instances of a
show that the CH-tree performance degrades faster than thaingle class, and instances of a class and some or all of
of the H-tree as the queried range increases. More imporits subclasses. Two access methods that can be efficiently
tantly, the results show that the 10 H-trees give an effecimplemented using H-trees are: (1) scanning for all instances
of a single index without storing the class identities in their of 3 class and its subclasses and (2) scanning for instances of
leaf nodes. a class and some select subclasses. By not following the path
In the second experiment (Fig.16b), the number ofto the nested index of irrelevant classes, the condition where
classes involved in the range queries varies from 1 to 10the instances are not members of those classes is naturally
with 17" fixed at 20% and 100%. As expected, the H-treesatisfied.
is a much more efficient indexing structure when the number Experiments on the H-tree and CH-tree were conducted
of classes involved is small. With the increase in the numbeto evaluate the performance of the H-tree and CH-tree. The
of classes, more links have to be followed and more internatesults show that the H-tree is an efficient structure both in
nodes have to be searched. The performance of the CH-traerms of storage requirements and query efficiency. To pro-
is independent of the number of classes being queried, sinogide the average case analysis of the H-tree, we presented
for a given range, all data, regardless of their classes fallingy model for data distribution within a class hierarchy. The
within the range, must be retrieved. average cost model shows that the structure of the H-trees is
Both empirical results exhibit the same behavior to thatsuitable for applications where more objects are distributed
obtained using the best case cost models reported by Lowo classes at the leaf level of the class hierarchy. In general,
et al. (1992). In these experiments, no overflowed internathe study so far indicates that index nesting is an efficient
nodes of H-trees have been recorded. This is largely duapproach to indexing multiple sets of data of the same data

228

type. The index nesting concept has been studied by Kilgekim et al. 1989kkd:kim Kim W, Kim KC, Dale A (1989) Indexing
and Moerkotte (1994) as an index for indexing set-tuples, techniques for object-oriented database. In: Kim W, Lochovsky FH
and by Low et al. (1993) as an index for facilitating query (eds) Object-o_riented concepts, databases, and applications. Addison-
processing in deductive databases. Like other indexes, fur; esley, Reading, Mass, pp 371-394 . .

. Knuth D (1973) The art of computer programming, vol 3. Sorting and
ther fine-tuning of the H-tree |s_r_eqU|red to overcome its searching. Addison-Wesley, Reading, Mass
weaknesses and to further exploit its strengths. With the USRriegel HP (1984) Performance comparison of index structures for multi-
of multiple indexes, the degree of concurrency should im- key retrieval. In: ACM Proc Intl Conf on Management of Data, Boston,

prove and it is of interest to study such an improvement. Mass, pp 186-196
Low CC, Ooi BC, Lu H (1992) H-trees: a dynamic associative search

index for OODB. In: ACM Proc Intl Conf on Management of Data,

AcknowledgementWe would like to thank Chee Chin Low, Thong Wei San Diego, Calif, pp 134-143
Koh, and Chee Yong Chan for their contribution in implementation and Low CC, Lu H, Ooi BC, Han J (1993) Efficient access methods in deductive
analysis. and object-oriented databases. In: Proc Conf on Deductive and Object-

Oriented Databases, Munich, pp 68-84

Maier D, Stein J (1986) Indexing in an object-oriented DBMS. In: IEEE
Proc Intl Workshop on Object-Oriented Database Systems, Pacific
Grove, Calif, pp171-182

Niu Y, Ozsu MT, Szafron D (1994) An evaluation of indexing techniques
for object base management systems. (Technical report) Department of

References

Bertino E, Kim W (1989) Indexing techniques for queries on nested objects.

IEEE Trans Knowl! Data Eng 1:196-214 . : .
. . . .) Computer Science, University of Alberta, Alberta
Carey M, De"‘."“ D, Richardson J, Sh?k'ta E (1986) Object and file man- gonoj6rmann P, Ouksel M (1982) Multidimensional B-trees for associative
agement in the EXODUS extensible database system. In: Proc Intl searching in database systems. Inf 7:123-137

Conf on Very Large Data Bases, Kyoto, Japan, pp 91-100 Sre : . s iant
. .)) . . enath B, Seshadri S (1994) The hcC-tree: an efficient index structure for
Chan .CY’ Ooi BC (199593‘hz—treg. anew class hl_erarchy mdex.for ObJefCt' object oriented database. In: Proc Intl Conf on Very Large Data Bases,
oriented databases. (Technical Report) National University of Singa- Santiago, Chile, pp 203-213

pore, Singapore
Comer D (1979) The ubiquitous B-tree. ACM Comput Surv 11:121-137
Kemper A, Moerkotte G (1990) Access support in object bases. In: Proc
ACM Intl Conf on Management of Data, Atlantic City, NJ, pp 364—-374
Kilger C, Moerkotte G (1994) Indexing multiple sets. In: Proc Intl Conf on
Very Large Data Bases, Santiago, Chile, pp 180-191

Valduriez P, Khoshafian S, Copeland G (1986) Implementation of tech-
niques of complex objects. In: Proc Intl Conf on Very Large Data
Bases, Kyoto, Japan, pp 101-110

