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Abstract

The paper describes a new type of evolving connectionist systems (ECOS) called evolving spatio-temporal data machines
based on neuromorphic, brain-like information processing principles (eSTDM). These are multi-modular computer sys-
tems designed to deal with large and fast spatio/spectro temporal data using spiking neural networks (SNN) as major
processing modules. ECOS and eSTDM in particular can learn incrementally from data streams, can include ‘on the
fly’ new input variables, new output class labels or regression outputs, can continuously adapt their structure and func-
tionality, can be visualised and interpreted for new knowledge discovery and for a better understanding of the data
and the processes that generated it. eSTDM can be used for early event prediction due to the ability of the SNN to
spike early, before whole input vectors (they were trained on) are presented. A framework for building eSTDM called
NeuCube along with a design methodology for building eSTDM using it is presented. The implementation of this frame-
work in MATLAB and in PyNN is presented, the latter facilitating the use of neuromorphic hardware platforms to run
the eSTDM. Selected examples are given of eSTDM for pattern recognition and early event prediction on EEG data,
fMRI data, multisensory seismic data, ecological data, climate data, audio-visual data. Future directions are discussed,
including extension of the NeuCube framework for building neurogenetic eSTDM and also new applications of eSTDM.

Keywords: Spatio/spectro temporal data, Evolving Connectionist Systems, Evolving Spiking Neural Networks,
Computational Neurogenetic Systems, Quantum inspired spiking neural networks, evolving spatio-temporal data
machines, NeuCube.

1. Introduction: Spatio & Spectro Temporal Data
and the Challenges for Information Sciences

Most problems in nature require spatio- and/or spectro-
temporal data (SSTD) that include measuring spatial
or/and spectral variables over time. SSTD is described by
a triplet (X,Y, F ), where: X is a set of independent vari-
ables measured over consecutive discrete time moments t;
Y is the set of dependent output variables, and F is the
association function between whole segments (‘chunks’) of
the input data, each sampled in a time window ∆t, and
the output variables belonging to Y , such that

F : X(∆t)→ Y (1)
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where X(t) = (x1(t), x2(t), . . . , xn(t)) and t = 1, 2, . . . ,m.

It is important for a computational model to capture
and learn whole spatio- and spectro-temporal patterns
from data streams in order to most accurately predict fu-
ture events in or from new input data. Examples of prob-
lems involving SSTD are: brain cognitive state evaluation
based on spatially distributed EEG electrodes (Kasabov
et al., 2013b); fMRI data (Mitchell et al., 2003; Chu
et al., 2011; Doborjeh et al., 2015; Kasabov and Doborjeh,
2015; Just, 2001; N. Murli et al., 2014); moving object
recognition from video data (Delbruck and Lichtsteiner,
2007); evaluating risk of disease, e.g. heart attack, stroke
(Kasabov et al., 2014); evaluating response of a disease
to treatment based on clinical and environmental vari-
ables; modelling the progression of a neuro-degenerative
disease, such as Alzheimer’s Disease; modelling and prog-
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nosis of the establishment of invasive species in ecology.
The prediction of events in geology, astronomy, economics
and many other areas also depend on accurate SSTD mod-
elling.

The most commonly used models for dealing with
temporal information, based on Hidden Markov Models
(HMM) and traditional artificial neural networks (ANN),
have limited capacity to achieve the integration of com-
plex and long temporal spatial/spectral components be-
cause they usually either ignore the temporal dimension
or over-simplify its representation. A new trend in ma-
chine learning is currently emerging and is known as deep
machine learning (Schmidhuber, 2014). Most of the pro-
posed models still learn SSTD by entering single time point
frames rather than learning whole SSTD patterns. They
are also limited in addressing adequately the interaction
between temporal and spatial components in SSTD.

The human brain has the amazing capacity to learn and
recall patterns from SSTD at different time scales, rang-
ing from milliseconds, to years, and possibly to millions
of years (i.e. genetic information, accumulated through
evolution). Thus, the brain is the ultimate inspiration for
the development of new machine learning techniques for
SSTD modelling. Indeed, brain-inspired Spiking Neural
Networks (SNN) (Gerstner et al., 2012, 1997; Buonomano
and Maass, 2009) have the potential to learn SSTD by
using trains of spikes (binary temporal events) transmit-
ted among spatially located synapses and neurons. Both
spatial and temporal information can be encoded in an
SNN as locations of synapses and neurons and time of
their spiking activity, respectively. Spiking neurons send
spikes via connections that have a complex dynamic be-
haviour, collectively forming an SSTD memory. Some
SNN employ specific learning rules such as Spike-Time-
Dependent-Plasticity (STDP) (Song et al., 2000) or Spike
Driven Synaptic Plasticity (SDSP) (Fusi, 2003).

Organisation of this paper:

In Section 2 we introduce classical evolving connection-
ist systems, the conceptual predecessor of this work, in-
cluding the evolving spiking neural network which this
work is based around. The primary contribution of this pa-
per is established in Section 3, where our design methodol-
ogy for eSTDMin the NeuCube computational framework
is proposed. An immersive visualisation for this frame-
work is discussed in Section 4. In the following sections
we apply this methodology to build example eSTDM for
case studies, in: eSTDM for brain data, including EEG
and fMRI (Section 5); neurogenetic models (Section 5.3);
personalised modelling, including stroke prediction (Sec-
tion 6), environmental applications, including invasive pest
population prediction (Section 7); video data (Section 8;
and general spectro-temporal data, including radioastron-
omy and audo data (Section 9) are presented. An imple-
mentation of the framework for neuromorphic hardware is
discussed in Section 10.

2. Principles of Evolving Connectionist Systems
and their Development

2.1. Principles of ECOS

The human brain uniquely combines low level neuronal
learning in the neurons and the connections between them,
and higher level rule abstraction leading to adaptive learn-
ing and abstract concept formation. This is the ultimate
inspiration for the development of intelligent evolving con-
nectionist systems (ECOS) where specially constructed ar-
tificial neural networks (NN) are trained on data, so that
after training abstract knowledge representation can be de-
rived that explains the data and can be further interpreted
as a knowledge-based system.

ECOS are modular connectionist based systems that
evolve their structure and functionality in a continuous,
self-organised, on-line, adaptive, interactive way from in-
coming data (Kasabov, 1998, 2007). They can process
both data and knowledge in a supervised and/or unsuper-
vised way. ECOS learn local models from data through
clustering of the data and associating a local output func-
tion for each cluster represented in a connectionist struc-
ture. They can learn incrementally single data records or
chunks of data and also incrementally change their input
features. ECOS further develops some connectionist infor-
mation processing principles already introduced in classi-
cal NN models, such as SOM, RBF, FuzyARTMap, Grow-
ing Neural Gas, Neuro-Fuzzy Systems, or RAN (Kasabov,
2007).

ECOS perform adaptive local learning – neurons are al-
located as centres of data clusters and the system cre-
ates local models in these clusters. The clustering used in
ECOS is on-line, one-pass, evolving clustering, which is in
contrast to the traditional fuzzy clustering methods that
use pre-defined number of clusters and many iterations
(Bezdek, 1987; Yager and Filev, 1994).

The following are the main principles of ECOS as stated
in Kasabov (1998):

1. Fast learning from large amount of data, e.g. using
‘one-pass’ training, starting with little prior knowl-
edge;

2. Adaptation in a real time and in an on-line mode
where new data is accommodated as it comes based
on local learning;

3. ‘Open’, evolving structure, where new input variables
(relevant to the task), new outputs (e.g. classes), new
connections and neurons are added/evolved ‘on the
fly’;

4. Both data learning and knowledge representation is
facilitated in a comprehensive and flexible way, e.g.
supervised learning, unsupervised learning, evolving
clustering, ‘sleep’ learning, forgetting/pruning, fuzzy
rule insertion and extraction;

5. Active interaction with other ECOSs and with the
environment in a multi-modal fashion;
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6. Representing both space and time in their different
scales, e.g.: clusters of data, short- and long-term
memory, age of data, forgetting, etc.;

7. System’s self-evaluation in terms of behaviour, global
error and success and related knowledge representa-
tion.

2.2. ECOS Development: EFuNN, DENFIS, eSNN

The development of ECOS, as a trend in neural net-
works and computational intelligence that started in 1998
(Kasabov, 1998) continued as many improved or new com-
putational methods that use the ECOS principles have
been developed along many applications.

While the classical ECOS such as EFuNN and DENFIS
(Kasabov, 2007) use a simple McCulloch and Pitts model
of a neuron, where data is represented as scalars, the fur-
ther developed evolving spiking neural network (eSNN)
architectures use a spiking neuron model, while applying
the same or similar ECOS principles. eSNN use data rep-
resented as temporal sequences of spikes in a similar mode
as information is represented and processed in the brain.

A single biological neuron and the associated synapses
is a complex information processing machine that involves
short term information processing, long term information
storage, and evolutionary information stored as genes in
the nucleus of the neuron. A spiking neuron model as-
sumes input information represented as trains of spikes
over time. When sufficient input information is accumu-
lated in the membrane of the neuron and the neuron’s post
synaptic potential exceeds a threshold, the neuron emits
a spike at its axon. Some of the-state-of-the-art models
of a spiking neuron include: early models by Hodgkin and
Huxley (Hodgkin and Huxley, 1952); more recent mod-
els by Maas, Gerstner, Kistler, Izhikevich and others, e.g.:
Spike Response Models (SRM); Integrate-and-Fire Model
(IFM) Izhikevich models (Izhikevich, 2004); adaptive IFM;
probabilistic neurogenetic model (Kasabov, 2010).

Based on the ECOS principles, an evolving spiking neu-
ral network architecture (eSNN) was proposed (Kasabov,
2007; Wysoski et al., 2010). It was initially designed as a
visual pattern recognition system. The first eSNNs were
based on the Thorpe’s neural model (Thorpe, 2001), in
which the importance of early spikes (after the onset of a
certain stimulus) is boosted, called rank-order coding and
learning. Synaptic plasticity is employed by a fast super-
vised one-pass learning algorithm.

The main advantage of the eSNN when compared with
other supervised or unsupervised SNN models is that it
is computationally inexpensive and boosts the importance
of the order in which input spikes arrive, thus making the
eSNN suitable for on-line learning with a range of appli-
cations. For a comprehensive study of eSNN see Wysoski
et al. (2010).

Different eSNN models have been developed, including:

• Dynamic eSNN (deSNN) - an architecture that uses
both rank-order and time-based learning methods

Figure 1: A principle diagram of an eSTDM.

Song et al. (2000) to account for spatio-temporal
learning Dhoble et al. (2012); Kasabov et al. (2013a);

• Reservoir-based eSNN for spatio- and spectro-
temporal pattern recognition (for principles of reser-
voir computing, see Verstraeten et al. (2007);

• Specialised architectures for EEG modelling and mov-
ing object recognition systems (Kasabov et al., 2013b)

3. The NeuCube Framework and a Design
Methodology for Evolving Spatio-Temporal
Data Machines (eSTDM)

3.1. General Architecture and Functionality of eSTDM

Our approach here to modelling large and fast stream
SSTD is based on a common architecture of eSTDM as
depicted in Figure 1. The functionality of an eSTDM is
based on the following procedures:

1. Converting multivariable input stream data into spike
sequences;

2. Unsupervised learning of spatio-temporal patterns
from data in a SNN reservoir;

3. Supervised learning of classification/regression output
system for classification/regression problems;

4. Using the evaluated/tested accuracy of the system as
a feedback for improving the performance of this sys-
tem in an iterative way if necessary.

The structure of the eSTDM resembles the structure of a
LSM (Verstraeten et al., 2007), but the methodology for
building such eSTDM in a specially proposed SNN compu-
tational framework called NeuCube departs significantly
the classical neuro-computation and artificial intelligence
approaches.

3.2. NeuCube: A Framework for eSTDM

The latest development in the direction of eSNN sys-
tems was proposed as a new architecture of an evolving
spatio-temporal data machine (eSTDM) called NeuCube
(Kasabov, 2014). It was initially proposed for spatio-
temporal brain data modelling, but then it was further
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Figure 2: A block diagram of the NeuCube architecture initially proposed for brain data modelling but later used for a
wide range of SSTD (Kasabov, 2014).

developed for other types of data as presented in this pa-
per

A block diagram of the NeuCube architecture is pro-
vided in Figure 2. It consists of the following modules:

• Input information encoding module;

• Input mapping module;

• 3D SNN module (the Cube);

• Output classification/regression module;

• Gene regulatory network (GRN) module (Optional);

• Parameter optimisation module; and a

• Visualisation and knowledge extraction module.

The input module transforms input data into trains of
spikes. Spatio-temporal data (such as EEG, fMRI, cli-
mate) is entered into the main module – the 3D SNNcube
(SNNc). Different types of data can used. This data is
entered into pre-designated spatially located areas of the
SNNc that correspond to the spatial location of the origin
where data was collected (if such a location exists.)

Learning in the SNN is performed in two stages:

1. Unsupervised training, where spatio-temporal data is
entered into relevant areas of the SNNc over time.
Unsupervised learning is performed to modify the ini-
tially set connection weights. The SNNr will learn to
activate same groups of spiking neurons when similar

input stimuli are presented, also known as a polychro-
nization effect (Izhikevich, 2004).

2. Supervised training of the spiking neurons in the out-
put module, where the same data that was used
for unsupervised training is now propagated again
through the trained SNN and the output neurons are
trained to classify the spatio-temporal spiking pattern
of the SNNc into pre-defined classes (or output spike
sequences). As a special case, all neurons from the
SNN are connected to every output neuron. Feed-
back connections from output neurons to neurons in
the SNN can be created for reinforcement learning.
Different SNN methods can be used to learn and clas-
sify spiking patterns from the SNNc, including the
deSNN (Kasabov et al., 2013b) and SPAN models
(Mohemmed and Kasabov, 2012). The latter is suit-
able for generating motor control spike trains in re-
sponse to certain patterns of activity of the Cube.

In an eSTDM similar activation patterns (called ‘poly-
chronous waves’) can be generated in the SNNc with recur-
rent connections to represent short term memory. When
using STDP learning, connection weights change to form
LTP or LTD, which constitute long-term memory.

Results of the use of the NeuCube suggest that the
NeuCube architecture can be explored for learning long
spatio-temporal patterns and to be used as associative
memory. Once data is learned, the SNNc retains the con-
nections as a long-term memory. Since the SNNc learns
functional pathways of spiking activities represented as
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structural pathways of connections, when only a small ini-
tial part of input data is entered the SNNc will ‘synfire’
and ‘chain-fire’ learned connection pathways to reproduce
learned functional pathways. Thus a NeuCube can be used
as an associative memory and as a predictive system for
event prediction when only some initial new input data is
presented.

3.3. Design Methodology of eSTDM in NeuCube

In order to design an appropriate eSTDM for a given
data source, a number of factors must be taken into con-
sideration. Here, we identify these considerations.

• Which input transformation function do we use to
encode the data as trains of spikes?

• Which input variable mapping into the SNNc? Is
there some a-priori information we can use to spa-
tially locate these?

• Which learning method do we use in the SNNc?

• Which output function is appropriate? In this, do we
desire classification or regression?

• How to visualize an eSTDM for an improved under-
standing?

• Which parameter optimisation method will we apply?

For rapid prototyping and exploration of the NeuCube
model, a version has been implemented in MATLAB. An
up-to-date version of the NeuCube system accompanied
with a detailed user manual can be freely obtained from
our website1.

3.3.1. Data Encoding

There are different coding schemes in SNN, primarily
rate (information as mean firing rates) or temporal (infor-
mation as temporally significant) coding. For NeuCube,
we use temporal coding to represent information. So far
four different spike encoding algorithms have been inte-
grated into the existing implementation of the NeuCube,
namely the Ben’s Spiker Algorithm (BSA), Address Event
Representation (AER), Step-Forward Spike Encoding Al-
gorithm (SF) and Moving-Window Spike Encoding Algo-
rithm (MW). Figure 3 shows different results of the same
SSTD, in this case an EEG signal, encoded by these four
algorithms.

Different spike encoding algorithms have distinct char-
acteristics when representing input data. BSA is suitable
for high frequency signals and because it is based on the
Finite Impulse Response technique, the original signal can
be recovered easily from the encoded spike train. Only pos-
itive (excitatory) spikes are generated by BSA, whereas all
other techniques mentioned here can also generate nega-
tive (inhibitory) spikes. AER was originally implemented

1http://www.kedri.aut.ac.nz/

in hardware (Delbruck and Lichtsteiner, 2007) in the ar-
tificial silicon retina. It represents significant changes in
signal intensity over a given threshold, where the ON and
OFF events are dependent on the sign of the changes.
However if the changes of the signal intensity vary dra-
matically, it may not be possible to recover the original
signal using the encoded spike train generated by AER.
Therefore, we propose here an improved spike encoding
algorithm, SF, to better represent the signal intensity.

For a given signal S(t) where (t = 1, 2, . . . , n), we define
a baseline B(t) variation during time t with B(1) = S(1).
If the incoming signal intensity S(t1) exceeds the base-
line B(t1−1) plus a threshold defined as Th, then a posi-
tive spike is encoded at time t1, and B(t1) is updated as
B(t1) = B(t1−1) + Th; and if S(t1) <= B(t1−1) − Th,
a negative spike is generated and B(t1) is assigned as
B(t1) = B(t1−1) − Th. In other situations, no spike is
generated and B(t1) = B(t1−1).

As to the Moving-Window Spike Encoding Algorithm,
the baseline B(t) is defined as the mean of previous signal
intensities within a time window T , thus this encoding
algorithm can be robust to certain kinds of noise.

Before choosing a proper spike encoding algorithm, we
need to figure out what information the spike trains shall
carry for the original signals, like AER for significant
changes. After that, the underlying spike patterns in the
spike trains will be better understood.

3.3.2. Input Variable Mapping

Mapping input variables into spatially located spiking
neurons in the SNNc is a new approach towards modelling
SSTD and a unique feature of the eSTDM. The main prin-
ciple is that if spatial information about the input vari-
ables is known it can help in a) building more accurate
models of the SSTD collected through these variables and
b) a much better interpretation of the model and a bet-
ter understanding of the SSTD. This is very important for
data such as brain data such as EEG (see Kasabov (2014);
Kasabov and Capecci (2015)) and for fMRI data (see Fig-
ures 9 and 10) where patterns of interaction of brain signals
can be learned and discovered. In some implementations
we have used the Talairach brain template, mapped spa-
tially into the SNNc (see Figure 2. Another way of map-
ping, when there is no spatial information available for the
input variables, is to measure the temporal similarity be-
tween the variables to map variables with similar patters
into closer neurons in the SNNc. In way this is the vector
quantisation principle, where by ‘vector’ here we use time
series, not necessarily with the same length.

3.3.3. Learning

Learning in a eSTDM is a two-phase process as it was de-
scribed in the NeuCube framework (cf. Section 3.2). The
accuracy of a NeuCube model depends a great deal with
the SNNc learning parameters and the classifier/regressor
parameters. Optimisation procedures are discussed in Sec-
tion 3.3.5.
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Figure 3: Spike trains generated by four different spike encoding algorithms in NeuCube with corresponding recovery
signals. The blue(red) lines in (b),(c),(d),(e) are positive(negative) spikes, and the blue lines in (f),(g),(h),(i) are the
original signals while the red dash lines are the signals reconstructed by corresponding spike trains.

3.3.4. Output Classification or Regression

An eSNN evolves its structure and functionality in an
on-line manner, from incoming information. For every new
input data vector, a new output neuron is dynamically al-
located and connected to the input neurons. The neuron’s
connections are initially established using the RO rule for
the output neuron to recognise this vector (frame, static
pattern) or a similar one as a positive example. The weight
vectors of the output neurons represent centres of clusters
in the problem space and can be represented as fuzzy rules
(Soltic and Kasabov, 2010).

In some implementations neurons with similar weight
vectors are merged based on the Euclidean distance be-
tween them. That makes it possible to achieve a very
fast learning (only one pass may be sufficient), in both su-
pervised and unsupervised modes (Kasabov et al., 2013a).
When in an unsupervised mode, the evolved neurons rep-
resent a learned pattern (or a prototype of patterns). The
neurons can be labelled and grouped according to their
class membership if the model performs a classification
task in a supervised mode of learning – an example is
shown in Figure 4.

During a learning phase, for each M-dimensional train-
ing input pattern (sample, example, vector) Pi a new
output neuron i is created and its connection weights
wj,i(j = 1, 2, . . . ,M) to the input (feature) neurons are ini-
tially calculated based on the order of the incoming spikes
on the corresponding synapses using the RO learning rule:

wi,j = αmodorder(j,i) (2)

where: α is a learning parameter (in a partial case it is
equal to 1); mod is a modulation factor that defines how
important the order of the first spike is; wj,i is the synaptic
weight between a pre-synaptic neuron j and the postsy-
naptic neuron i; order(j, i) represents the order (the rank)
of the first spike at synapse j, i ranked among all spikes
arriving from all synapses to the neuron i; order(j, i) = 0
for the first spike to neuron i and increases according to
the input spike order at other synapses.

Figure 4: Example of an eSNN for classification using pop-
ulation RO coding of inputs (Soltic and Kasabov, 2010).
Each input is connected to several feature neurons repre-
senting overlapping Gaussian receptive fields and produc-
ing spikes according to how much the current input vari-
able value belongs to the receptive field: the higher the
membership degree, the earlier a spike is generated and
forwarded to the output neurons for learning or recall. A
pool of output neurons representing different input vectors
or prototypes is evolved for each class.
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While the input training pattern (example) is presented
(all input spikes on different synapses, encoding the in-
put vector are presented within a time window of T time
units), the spiking threshold Θ of the neuron i is defined to
make this neuron spike when this or a similar pattern (ex-
ample) is presented again in the recall mode. The thresh-
old is calculated as a fraction (C) of the total PSPi (de-
noted as PSPmax

i ) accumulated during the presentation
of the input pattern:

PSPmax
i =

∑
j

modorder(j,i) (3)

Θ = C PSPmax
i (4)

If the weight vector of the evolved and trained new neuron
is similar to the one of an already trained neuron (in a
supervised learning mode for classification this is a neuron
from the same class pool), i.e. their similarity is above a
certain threshold Sim, the new neuron will be merged with
the most similar one, averaging the connection weights and
the threshold of the two neurons (Kasabov, 2007; Wysoski
et al., 2010). Otherwise, the new neuron will be added to
the set of output neurons (or the corresponding class pool
of neurons when a supervised learning for classification
is performed). The similarity between the newly created
neuron and a training neuron is computed as the inverse
of the Euclidean distance between weight matrices of the
two neurons. The merged neuron has weighted average
weights and thresholds of the merging neurons.

While an individual output neuron represents a single
input pattern, merged neurons represent clusters of pat-
terns or prototypes in a transformed spatial – RO space.
These clusters can be represented as fuzzy rules (Soltic and
Kasabov, 2010) that can be used to discover new knowl-
edge about the problem under consideration.

The eSNN (deSNN) learning is adaptive, incremental,
theoretically ‘lifelong’, so that the system can learn new
patterns through creating new output neurons, connecting
them to the SNNc neurons, and possibly merging the most
similar ones. The eSNN implement the 7 ECOS principles
from Section 1.

During the recall phase, when a new spike sequence is
presented, the spiking pattern is submitted to all created
neurons during the learning phase. An output spike is
generated by neuron i at a time l if the PSPi(l) becomes
higher than its threshold Thi. After the first neuron spikes,
the PSP of all neurons are set to an initial value (e.g. 0)
to prepare the system for the next pattern for recall or
learning.

The postsynaptic potential PSPi(l) of a neuron i at time
l is calculated as:

PSPi(l) =
∑

t=0,1,2,...,l

∑
j

ej(t)modorder(j,i) (5)

where: ej(t) = 1 if there is a first spike at time t on synapse
j; order(j, i) is the rank order of the first spike at synapse
j among all spikes to neuron i for this recall pattern.

The parameter C, used to calculate the threshold of a
neuron i, makes it possible for the neuron i to emit an
output spike before the presentation of the whole learned
pattern (lasting T time units) which the neuron was ini-
tially trained to respond to. As a partial case C = 1. This
is an important property of eSNN that can be utilized to
train an eSNN on whole temporal input patterns and to
recall the eSNN on a partial input pattern, e.g. only ini-
tial input data, so that the eSNN can predict an outcome
earlier.

An alternative recall procedure implies the creation of
a new output neuron for each recall pattern, in the same
way as the output neurons were created during the learning
phase, and then – comparing the connection weight vec-
tor of the new one to the already existing neurons using
Euclidean distance. The closest output neuron in terms of
synaptic connection weights is the ‘winner’. This method
uses the principle of transductive reasoning and nearest
neighbour classification in the connection weight space. It
compares spatially distributed synaptic weight vectors of a
new neuron that captures a new input pattern and existing
ones. This model is denoted as eSNNs.

In one version of eSNN (the so-called deSNN) the con-
nection weights, initially established with the RO learning
rule, are modified based on the following spikes on the
same synapse (Dhoble et al., 2012; Kasabov et al., 2013a).

3.3.5. Parameter Optimisation of NeuCube Models

eSTDM behaviours can be easily manipulated by
changes in their large number of parameters. For exam-
ple, differing neuron reset voltages can lead to a number
of different spiking dynamics, and differing encoding pa-
rameters can significantly change the information density
of the spike trains. To this end, a parameter search is
usually performed in order to extract the best performace.
Two primary techniques are discussed here; Grid Search,
and the Quantum-Inspired search.

Grid Search. Grid search is a straighforward but effective
method to tune parameters. Suppose there are P param-
eters that have to be optimized simutaneously. For each
parameter there are three hyperparameters to be specified
manually: the minimal value m and the maximal value
M of the searching interval, and the searching step size
s. Given these three hyperparameters of each opimizing
parameter, we first create a P -dimension matrix, each di-
mension of which corresponding to a optimzing parame-
ter, from m to M divided into (M −m)/s entries. In this
case, each entry of the matrix corresponds to a group of
values of the optimizing parameters. Figure 5a shows a
2-dimension matrix, as a example of optimizing two pa-
rameters. Then we randomly split the training set into
two equal-size parts, a training part and a validation part.
For a specific group of values, we run the NeuCube system
in a two-fold cross-validation way and the error rate of the
cross-validation is added to the entry of the P -dimension
matrix corresponding to that group of parameter values.
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This process is repeated 10 times for each group of param-
eter values and the optimisation stops after all the groups
of values corresponding to the whole matrix entries are
evaluated.

Instead of directly choosing the group of parameter val-
ues corresponding to the minimal entry in the matrix, we
adopt another more robust method to determine the op-
timal parameters. We first apply a low pass filter by re-
placing each matrix entry with the average of its adjacent
neighboring entries, and then, after all entries are filtered,
we choose the group of parameter values corresponding to
the minimal entry of the filtered matrix as the optimal
one. The adjustification is that the performance surface of
the system varies smoothly in parameter space, and after
filtering some highly unstable points (entry whose value is
extremly larger or smaller than its all adjacent neighboring
entries, as shown in Figure 5c) will be reduced. Thus the
minimal value of the matrix can capture the general trend
of the performance surface, as illustrated in Figure 5b.

Quantum-Inspired Methods. QeSNNs use the principle of
superposition of states to represent and optimize features
(input variables) and gene parameters of an eSNN model
(Kasabov, 2007). They are optimized through quantum
inspired genetic algorithm (Defoin-Platel et al., 2009) or
QiPSO. Features or genes are represented as qu-bits in a
superposition of 1 (selected), with a probability α, and 0
(not selected) with a probability β. When the model has
to be calculated, the quantum bits ‘collapse’ into a state
of either 1 or 0. QeSNN need to be developed further in
terms of both theory and applications.

4. Dynamic and Immersive Visualisation of Neu-
Cube Models

The number of neurons and connections within Neu-
Cube as well as the 3-dimensional structure requires a
visualisation that goes beyond a simple 2D connectiv-
ity/weight matrix or an orthographic 45-degree view of
the volume. We created a specialised renderer for Neu-
Cube datasets using JOGL (Java Bindings for OpenGL)
and GLSL (OpenGL Shading Language) shaders to be able
to render up to 1.5 million neurons and their connections
with a steady framerate of 60 fps. In this view, neurons are
displayed as stylised spheres, and connections are rendered
as lines with green colour for excitatory connections and
red for inhibitory connections. Spiking activity is shown
as signals travelling along the connections.

In conjunction with a 3D stereoscopic HMD (Head
Mounted Display) like the Oculus Rift, it is easy for users
to perceive the spatial structure of the network and the
neuron positions. Furthermore, interaction mechanisms
allow for playback of spiking patterns and the development
of connection weights throughout the learning period. In
addition, the visualization includes analysis functionality
for the usage of connections to find ‘hot paths’, connection
length analysis, and the ability to view the 3D structure

(a) Parameter Space

(b) Unstable Parameter Space

(c) Filtered Parameter Space

Figure 5: Grid search parameter optimisation and perfor-
mance surfaces
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Figure 6: The cursor node can be used to view additional information about a specific neuron and its activity in the
SNNc.

Figure 7: A user navigating through the virtual represen-
tation of the NeuCube network, using an intuitive, hand
position based 3D cursor.

in ‘slices’. A 3D cursor metaphor is employed to look at
neurons individually, their parameters, and their spiking
history (see Figure 6).

The NeuCube visualization can run as a standalone pro-
gram on a PC with a reasonable modern 3D graphics card
and can be used with keyboard and mouse control. How-
ever, the full potential of the visualization is possible in a
motion capture space, where the camera perspective and
the cursor node position and orientation are controlled by
markers that are attached on the actual HMD and a cursor
implement (see Figure 7). This setup makes it possible for
the user to literally walk through NeuCube and point out

individual neurons with the cursor in a natural manner.
In comparison to other scientific visualisation tools for

neural networks such as BrainGazer (Bruckner et al., 2009)
and Neuron Navigator (NNG) (Lin et al., 2011), our solu-
tion differs in that the user can naturally navigate through
the 3D space by simply walking and gesturing instead of
using mouse and keyboard shortcuts.

Closer to our visualisation is the work of von Kapri et al,
who are using a Computer Assisted Virtual Environment
(CAVE) to visualise the spatial structure and activity of
a spiking neural network (von Kapri et al., 2011). How-
ever, due to the limited space within a cave environment,
navigation by simply walking is not possible and requires
indirect ways, e.g., by using a controller.

We have not yet conducted a systematic user study, but
so far, around 50 visitors of the Immersive VR space have
experienced this visualisation. We have observed that, in
general, people quickly start to move around and look at
structures and point out individual neurons using the 3D
cursor. The visualisation and interaction metaphors are
very intuitive for new and experienced users.

5. eSTDM for Spatio-Temporal Brain Data Mod-
elling and Understanding

5.1. eSTDM for EEG STBD

EEG has been used for the study of human neural activ-
ity recorded from the scalp for nearly a century. It can re-
trieve functional changes in the brain that occur over a pe-
riod of milliseconds, is easy to manage, and is non-invasive.
For these reasons, EEG has been used in brain computer
interface (BCI) based systems to allow users to control de-
vices, and for studying and staging of neurodegenerative
disorders, and other clinical diagnostic purposes. As av-
erage human lifespan increases have been followed by the
dramatic rise in the appearance of neurological diseases,
the importance of such tools is clear.
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Figure 8: The NeuCube framework for EEG data classi-
fication and knowledge extraction. The picture shows the
cube’s three principal modules: the input module, where
input data are encoded into trains of spikes that are then
presented to the main module, the SNNc; the NeuCube
module, where time and space characteristics of the STBD
are captured and learned; and the output module for data
classification (or regression) and new knowledge discovery
from the SNNc visualization.

EEG data contains temporal, spatial, and spectral in-
formation that is difficult to truly explore using standard
statistical or ML techniques. Though these techniques are
often used to process STBD, they lack the ability to clas-
sify differences in neurological dynamics that occur over
the time, to identify the functional brain area involved,
and to quantify the information involved. SNN however,
are shown to be capable of such tasks (Taylor et al., 2014;
Hu et al., 2014; Kasabov et al., 2013b).

In Kasabov and Capecci (2015) for example, an SNN
methodology based in the NeuCube eSTDM was used for
the study of 19-channel EEG data recorded from the scalp
of subjects performing mental tasks. This research iden-
tifies that the NeuCube is able to classify and analyse
changes in functional brain activities. This is significant,
as it allows for the identification of the appearance of mild
cognitive impairment (MCI) and the staging of its degen-
eration toward Alzheimer’s Disease (AD).

To study the EEG data, we have used a 3D SNNc of
1471 brain-mapped spiking neurons. Each of these neu-
rons represented the centre coordinates of 1cm3 of the
Talairach Atlas, a human brain template (Talairach and
Tournoux, 1988). The spike trains, obtained after encod-
ing the real time EEG data using Address Event Repre-
sentation (AER) algorithm, were entered into the SNNc
from the 19 corresponding brain-mapped input neurons.
The data was first learnt in an unsupervised way using
Spike Time Dependent Plasticity Learning Rule (STDP)
(Song et al., 2000) and then classified via supervised learn-
ing with the Dynamic Evolving SNN (deSNN) (Kasabov
et al., 2013a). After training, the SNNc connectivity can
be analysed and interpreted for a better understanding of
the data and to identify differences in brain activity. A
methodology diagram is given in Figure 8.

Excellent classification results of 100% test accuracy
have been achieved. These have also been compared with

other traditional machine learning approaches, such as
the Multi Layer Perceptron (MLP), Support Vector Ma-
chine (SVM), Inductive Evolving Classification Function
(IECF) (Kasabov, 2007) and Evolving Clustering Method
for Classification (ECMC). The LOOCV method was used
to evaluate all the outputs. See the paper by Kasabov and
Capecci (2015) for detailed results.

NeuCube performed significantly better compared with
the other methods and with the highest accuracy, sen-
sitivity and specificity over all. Thus, we believe that
the NeuCube eSTDM can be successfully used for on-line
learning and recognition of STBD. It also offers a better
understanding of the information and the phenomena of
study. Further improvement of the understanding and use
of the model proposed are believed to contribute to the
advancement in machine learning for the prediction and
understanding of brain data and more specifically for data
related to neurodegenerative pathologies, such as AD.

5.2. eSTDM for fMRI STBD

Recently there has been a huge interest in using func-
tional magnetic resonance imaging (fMRI) to understand,
analyze and predict behavior and cognition. The abil-
ity of fMRI to sample high resolution spatial information
over time has been successfully used in correlating high-
resolution neural activity with behavior. Several attempts
have been made (Mitchell et al., 2003; Haxby et al., 2001),
not only to identify the spatial distribution of activation
across brain regions associated with cognitive tasks, but
also to build computational models to distinguish them.
The PBAIC 2007 competition was designed to detect cog-
nitive tasks such as ‘seeing a dog’, ‘picking up a weapon’
etc. in a virtual reality environment.

Traditional machine learning algorithms like Gaussian
Naive Bayes (Mitchell et al., 2003), or the SVM (Chu
et al., 2011) has been used previously for this purpose.
Some current research also focuses on the transforma-
tion of time series information to transformed space like
shapelet-similarity, similarity in frequency domain etc. All
of these techniques are focused mainly on classification ac-
curacy (prediction), rather than understanding the spatio-
temporal dynamics of the brain.

In contrast to statistical analysis and traditional ma-
chine learning methods, NeuCube is a rich computational
model for fMRI data analysis (Doborjeh et al., 2015;
Kasabov and Capecci, 2015). This method can be ap-
plied to fMRI data across areas of brain study and appli-
cations. The NeuCube neuromorphic spatiotemporal data
machine has been used successfully on one of the bench-
mark datasets reported in (Kasabov and Doborjeh, 2015).
The NeuCube-based methodology for learning, visualisa-
tion and classification of a benchmark fMRI data proposed
here is shown graphically in Figure 9.

The number of brain voxels vary from one subject to
another. The SNNc is scalable to evolve new neurons
for different number of voxels. For this purpose, we
mapped and analysed a known benchmark fMRI data
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called STAR/PLUS (Just, 2001). The 3D size of the SNNc
is scalable. This SNNc is composed of 51x56x8 spiking
neurons corresponding to the maximum values of the x, y
and z coordinates of the STAR/PLUS fMRI data.

In this experiment, we selected subject number “05780”
from STAR/PLUS fMRI data sets. This data consists of
5062 voxels in the entire brain data. In order to visualise
the whole brain structure, we loaded all voxel coordinates
into the SNNc. Then, we fed the activity patterns of the
pre-selected voxels into the corresponding allocated input
neurons inside the cube. Figure 10 is a comparative illus-
tration of the neuron connections created after the Neu-
Cube learning procedure with different fMRI data streams
related to different mental activities.

Another successful experiment involving the NeuCube
and STAR/PLUS fMRI is on the classification of a sub-
ject looking at a picture or looking at a sentence which is
conducted for each 6 subjects (N. Murli et al., 2014). Com-
paring with the standard machine learning techniques (i.e.
SVM and MLP), NeuCube has achieved more than 80%
classification accuracy for all subjects. Neuron connectiv-
ity before and after training can help in understanding the
data. The results suggest that a NeuCube model is more
appropriate in handling complex fMRI data even without
filtering the noise from the data. The noise may carry
valuable information in defining the association between
STBD samples, but failed to be recognized and processed
in the standard machine learning techniques.

Recently the NeuCube was successfully used in mod-
elling and predicting response to treatment of clozapine
monotherapy responsive and non-responsive Schizophre-
nia patients using fMRI data. fMRI data was collected
of 19 Schizophrenia subjects, 12 of which are Clozapine
monotherapy responsive and 7 are non-responsive to cloza-
pine monotherapy. The data was preprocessed for motion
correction, coregistration and normalization. The data
was also subsampled to approximately 4000 voxels.

As discussed in the previous sections, the standard Neu-
Cube modules are used as part of NeuCube architecture,
except some changes in the spatial distribution generation
and supervised learning algorithm. As opposed to the
canonical edition, the connection generation is not com-
pletely random within a small world. A Gaussian proba-
bilistic neighborhood function is used to generate connec-
tions in the small world. A tempotron (Gutig and Som-
polinsky, 2006) based supervised learning module is used
for the classification of the unsupervised spike in these
experiments. An average crossvalidated accuracy of 72%
with 5% standard deviation was achieved after hyperpa-
rameter search. Further work is in progress which not only
uses fMRI, but also simultaneously uses other modalities
like DTI and EEG for better prediction accuracy and un-
derstanding.

5.3. Neurogenetic eSTDM

A neurogenetic model of a neuron is proposed and stud-
ied in Benuskova and Kasabov (2007). It utilises informa-

tion about how some proteins and genes affect the spiking
activities of a neuron such as fast excitation, fast inhibi-
tion, slow excitation, and slow inhibition. An important
part of the model is a dynamic Gene-Protein Regulatory
Network (GRN) model of the dynamic interactions be-
tween genes and proteins over time that affect the spiking
activity of the neuron (see Figure 2.

Currently, NeuCube-based model implements the STDP
learning rule, based on the Hebbian theory, which defines
a synaptic competition with respect to the order of incom-
ing spikes, leading to control the postsynaptic action po-
tentials over the time. However, this competition can also
be implemented through dynamic mechanisms involving
non-Hebbian synaptic growth or decay terms (Song et al.,
2000).

In the Central Nervous System, these mechanisms are
regulated by two opposite forces controlling the synaptic
plasticity functionality. Spiking activity amongst neurons
is intrinsically related with Glutamate and GABA neu-
rotransmitters, and their receptors. While AMPA and
NMDA Glutamate receptors mediate a fast and a slow ex-
citatory synaptic response, the GABAa and the GABAb
receptors regulate a fast and a slow inhibitory synaptic
transmission. Additionally, these receptors are related
with the learning and memory in the hippocampus.

To study how the spiking neuron postsynaptic action
potential is affected by the dynamic of these four macro-
molecules, a new synaptic scaling model was proposed
in Espinosa-Ramos et al. (Submitted 2015), which im-
plemented the synaptic plasticity in a evolving Computa-
tional Neurogenetic Model (eCNGM). The model can au-
tomatically balance the synaptic strengths, making post-
synaptic firing irregular but sensitive to presynaptic po-
tentials such as the STDP like rules. It is inspired in the
NMDA dependency on the AMPA, and their dependency
on the inhibitory receptors.

After a spike is emitted by a neuron ni and received by
a neuron nj , the activation of these excitatory receptors in
a neuron nj increases up to a maximum threshold value.
If no spike is emitted, the inhibitory receptors activity in-
creases in function to the time elapsed after the last spike
is emitted, affecting the excitatory behaviour. A proba-
bility determines the activation of the GABA receptors,
if GABAa is activated then GABAb is not, and opposite.
The inhibition speed (fast or slow) is also determined by
this probability, a higher activation probability means a
faster inhibition, and therefore, the GABAa probability
must be higher than the GABAb probability. .

Threshold values of each neuroreceptor can be modified
according to the problem of interest and the data available;
therefore, the possible effects that this change may have
on the entire model connectivity and spiking activity can
be studied.

The eCNGM based on the NeuCube framework need to
be further developed in terms of both theory and applica-
tions, as they can be used for modelling and prediction of
neurodegenerative diseases, such as cognitive impairment
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Figure 9: Schematic representation of the NeuCube-based methodology for mapping, learning, visualisation and classi-
fication of fMRI STBD

and memory loss that leads to serious disorders such as
Alzheimer’s Disease (AD). In addition to brain data they
make possible the study of gene data related to the same
profile.

5.4. eSTDM for Brain-Machine Interfaces

The feasibility of using NeuCube with EEG data to de-
velop a functional electrical stimulation BCI/BMI system
that is able to assist in the rehabilitation of complex up-
per limb movements was shown in Taylor et al. (2014). A
primary modality of the device is for subjects who have no
voluntary activity in a limb, who would drive the device
using mental imagery. However, the same model could be
used for arbitrary output, to control a cursor or speaking
device, for example.

In order to provide an effective tool for this purpose, a
NeuCube eSTDM was trained on EEG data for a series of
relatively complex muscle movements.

The preliminary experiments suggest that NeuCube is
much more efficient for this task than standard machine
learning techniques, resulting in high recognition accuracy,
a better adaptability to new data, and a better interpre-
tation of the models, leading to a better understanding of
the brain data and the processes that generated it.

5.5. eSTDM for Neurorehabilitation

eSTDM are uniquely applicable for neurorehabilitation.
Their biomimetic learning and information processing
timescales are appropriate for integration with mentally-
driven tasks. In addition, they offer the fast learning and
incremental (continuous) learning required to adapt to the
user’s changing abilities as their rehabilitation progresses.
This application is a natural extension of eSTDM’s use in
a BCI/BMI context.

Repetitive activities of daily living (ADL) and robotic
active training are commonly practised in the rehabilita-
tion of paralyzed patients, both of which have been proven

effective in the recovery of locomotor function in impaired
limbs. Classification of ADL from EEG is of interest for
the active robotic rehabilitation of patients with spinal
cord injuries (SCI). This classification is a significant chal-
lenge with classical techniques, as these cannot deal effec-
tively with the high noise, variability, and gradual change
(due to the subject learning or rehabilitating the task) in
the EEG signals.

Hu et al. (2014) performed an experiment using the
NeuCube eSTDM to identify the upper-limb ADL of
three classes with 14-channel EEG data. The contin-
uous real-number signals are firstly encoded into spike
trains through Ben’s Spike Algorithm (BSA). The gen-
erated spikes are then submitted into the SNNc reservoir.
Spike trains from all neurons of the trained reservoir are fi-
nally classified using the dynamic evolving spiking neuron
networks (deSNN). Classification accuracy using this tech-
nique is shown to be promising despite the highly noisy,
low resolution EEG data (Hu et al., 2014). This experi-
ment indicates strong potential for further exploration of
the eSTDM for neurorehabilitation tasks.

6. eSTDM for Personalised Modelling and Person-
alised Event Prediction

6.1. Personalised Modelling

A special direction of ECOS is transductive reasoning
and personalised modelling. Instead of building a set of
local models (e.g. prototypes) to cover the whole problem
space and then use these models to classify/predict any
new input vector, in transductive modelling for every new
input vector a new model is created based on selected near-
est neighbour vectors from the available data. Such ECOS
models are the Neuro-Fuzzy Inference model, NFI, and
the Transductive Weighted Neuro-Fuzzy Inference Model,
TWNFI (Kasabov, 2007).
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Figure 10: Illustrative mapping of 5062 voxels of a single individual fMRI data to the SNNc and the spatio-temporal
connectivity which evolved through unsupervised learning from the spike sequences of 20 input voxels of the affirmative
/negative sentence presentation and 33 input voxels of the picture/sentence presentation: (a) 3D visualisation of the
initial connections between neurons before SNNc training; (b) 3D visualisation of the spatio-temporal connections after
SNNc training; (c) 2D visualisation of the spatio-temporal connections after the SNNc training. Blue lines are positive
connections while red lines represent negative connections. The brighter the colour of a neuron, the stronger its activity
with neighbouring neurons. Thicknesses of the lines also identify the neuron’s enhanced connectivity. Zooming on
particular areas of the connections in the SNNc would reveal more information about the brain processes related to the
task.
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In Kasabov et al. (2014), a methodology for personalised
model creation is proposed based on the NeuCube frame-
work. It builds an eSTDM for eavery individual based on
both static and temporal data.

6.2. A Case Study of Early Stroke Prediction on an Indi-
vidual Basis

The problem formulation for stroke occurrences is stated
as: Given a set of individuals’ data (static variables) and
a set of environmental data (temporal variables), produce
a model for an individual that predicts the earliest time
point that individual is likely to suffer a stroke.

A feasibility study on the applicability of NeuCube
eSTDM was published in Kasabov et al. (2014) where the
dataset was taken from Auckland Regional Community
Stroke Study population, consisting of 2805 patients data
that suffered a stroke between the years 1981-1982, 1991-
1992 and 2002-2003.

A chosen winter case study consists of subjects’ age be-
tween 50 to 70 years, with a history of hypertension and
smoking at the time the stroke occurred, in the year 2002.
These subjects are described by eighteen variables which
consist of six static features; age, gender, history of hy-
pertension, smoking status, season, date of stroke; along
with twelve environmental (temporal) features (continuous
daily data) including eight (8) daily mean weather data
(e.g. wind speed, min & max temperature, humidity);
three daily mean air pollution data (e.g. NO2 concentra-
tion); planetary geomagnetic activity, and solar radiation.

As NeuCube eSTDM functionality enables us to do pre-
dictive modelling, the experiment was designed in three
ways:

1. One day earlier prediction where the whole 100% time
period of 20 days was taken for analysis.

2. Six days earlier prediction (75% of the whole time
period was taken)

3. Eleven days earlier prediction (50% of the whole time
period was taken).

As a comparative experiment, tests were also designed
for conventional machine learning methods (SVM, MLP,
kNN, wkNN). Table 1 shows the best obtained accuracy
from all the experiments.

The result clearly shows that NeuCube eSTDM per-
formed better than conventional machine learning meth-
ods since it achieved an overall accuracy of 95% with a mis-
classification of class 1 (normal class). NeuCube eSTDM
managed to 100% identify the stroke subjects (class 2) for
this particular winter case study using the whole tempo-
ral patterns (one day ahead prediction). Furthermore for
earlier time points of 6 days and 11 days prior prediction,
NeuCube eSTDM managed to classify at 70% accuracy
the risk of stroke occurrences in subjects. With earlier risk
prediction, the subject could take precautions to minimize
the risk or damage of a stroke.

Through visualisation tools in NeuCube eSTDM, con-
nection patterns of temporal features can be analysed fur-
ther. In NeuCube we can visualize input feature interac-
tions, not only at group level but also on a personalised
level leading to increased understanding of the relation-
ships within the data and how these affect the results.

7. Ecological and Environmental Event Prediction

A NeuCube eSTDM would be suitable for learning the
complex spatio-temporal relationships inherent in ecologi-
cal and environmental data; for ecological applications to
predict pest or crop populations; for seismic applications
to potentially predict earthquake occurrence; and so on.

7.1. Case Study on Prediction of Risk of Aphid Population

In this section we consider how to use our NeuCube ar-
chitecture to model and predict the population of a harm-
ful species, Rophalosiphum padi, in Southern New Zealand
based on weather and climate factors.

We study a concrete case on aphid population predic-
tion to demonstrate the capability of the NeuCube archi-
tecture for modeling ecological and environmental spatio-
temporal data. In this study we use 14 weather variables
which are recorded week by week from year 1982 to 2004
at the Canterbury Agricultural Research Centre, Lincoln,
New Zealand (Hartono et al., 2014). Data preprocessing
consisted of bad data removal, and time point alignment.
Feature selection was applied to make sure the data was
useful before entering the next phase. The real valued
weather variables were transformed to spike trains with the
Address Event Representation (AER) encoding algorithm.
A 5x20x20 SNNs was generated and initialized according
to small world connection rule to learn the temporal pat-
terns in the spike trains. Then all the weather variables
were mapped into the SNNs using a graph matching al-
gorithm to ensure that the temporally dependent weather
variables were mapped into nearby input neurons. The in-
put data was propagated, and after the synaptic weights
were learned using STDP, the weights were fixed and the
spike trains fed to the SNNr again to obtain each neuron’s
firing state vector, which serves as the transformed feature
of the original input signals in the following learning stage.
The firing state vector of the SNNr is fed to a dynamic
evolving spike neural network (deSNN) classifier to learn
the underlying temporal pattern. After the whole system
was trained, we used a validation data set to verify the
validity of the system. The accuracy of the performance
was evaluated by comparing the ground truth results with
the predicted results.

Table 2 shows the results of predicting the autumn aphid
population amount with the NeuCube system, as well as
results of other traditional methods as a comparison. The
testing time length means how many weeks weather mea-
surements we used to predict the autumn aphid popula-
tion. The fewer weeks used, the harder to predict accu-
rately in the autumn, as shown in the last two columns.
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Table 1: Comparative experimental results for all modelling methods (Kasabov et al., 2014) when applied to predicting
a stroke occurrence

Method
Overall Accuracy (%)

SVM MLP kNN wKNN NeuCube

1 Day Earlier (100%) 55 (70, 40) 30 (50, 10) 40 (50, 30) 50 (70, 30) 95 (90, 100)
6 Days Earlier (75%) 60 (70, 30) 25 (20, 30) 40 (60, 20) 40 (60, 20) 70 (70, 70)
11 Days Earlier (50%) 50 (50, 50) 25 (30, 20) 45 (60, 30) 45 (60, 30) 70 (70, 70)

Table 2: Aphid Population Prediction Accuracy (%)

Accuracy of each training
and testing time length (weeks)
52 (full) 41.6 (early) 39

MLR 36.36 64.63 72.73
SVM 72.73 72.73 63.64
MLP 81.82 81.82 81.82
kNN 72.73 63.64 63.64
wkNN 72.73 63.64 63.64
NeuCube 100 90.91 81.82

7.2. A Feasibility Evaluation of using eSTDM for Seismic
Data Modelling

Earthquake prediction is a challenging problem but com-
pelling nonetheless. The immense capacity for destruction
of earthquakes prompts for the ability to predict, within
a reasonable time horizon, the occurrence of significant
earthquakes so preemptive and anticipative actions could
be taken to minimize the damage.

One of the potential uses of eSTDM in this field is to an-
alyze the seismogram readings from multiple sites spread
spatially across a geographical region to predict the occur-
rence of large earthquakes. A preliminary study using the
waveform data obtained from the New Zealand GeoNet
project web services (www.geonet.org.nz) has been done
for the Canterbury region of New Zealand. After selecting
the appropriate earthquakes from the earthquake catalog,
the seismic waveform data collected prior to these earth-
quakes are fetched from selected four seismograph stations
which were picked for their high uptime and availability.

To predict ahead of the actual event, the data fetched
is offset by around twelve hours. The duration of the ob-
servation is 120 hours or five days long. The experiment
is done by selecting twenty samples of earthquakes in the
Canterbury region which are put into two categories based
on the severity of the case (i.e. Strong – historically no-
table, and Weak – low energy seismic events unnoticed by
the general population). The small number of samples is
the consequence of the fact that strong earthquakes hap-
pen very rarely throughout the history and earthquakes
before the year 2010 were not included because the avail-
ability and quality of the seismic activity data is not as

Figure 11: Seismograph sites across New Zealand with the
4 selected sites greyed.

good compared to those which happen after. The per-
formance of the classifiers are measured in terms of the
F-measure, which is the harmonic mean of precision and
sensitivity of binary classification problems with the for-
mula F1 = 2TP/(2TP+FP+FN). The testing scheme is
Leave-one-out cross validation, since the number of sam-
ples is small.

The result shown in Table 3 gives us the confidence that
seismicity data might be a viable precursor for short-term
earthquake prediction. The peak F-score of 0.73 means
that the classifier successfully predict 7 out of 10 strong

Table 3: Preliminary results of earthquake prediction on
a small data set using a NeuCube eSTDM in comparison
with traditional techniques: SVM, MLP, NB.

Measure SVM MLP NaiveBayes NeuCube

Accuracy (%) 70 65 60 75
F-Score 0.66 0.58 0.55 0.73
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earthquakes and raises only 2 false alarms. Though the ex-
periment is in a very preliminary stage, this research has
shown a promising way to predict the occurrence of strong
earthquakes by training an eSTDM model to differentiate
between strong and moderate earthquakes based on spa-
tiotemporal seismicity precursors. For future works, it is
important to fine-tune the models to get a better discrim-
inating capability and using a larger dataset and getting
more inputs from more seismic monitoring sites across the
globe and running the analysis in real-time as the data is
collected to produce a useful and practical disaster pre-
diction system. A more comprehensive experiment should
also be done to verify the accuracy and find the best pre-
diction horizon and observation period. An interesting
aspect is the extraction of spatiotemporal knowledge or
rules pertaining to how the seismic activities in different
sites affect each other.

8. eSTDM for Video Data Recognition

Video SSTD can be successfully learned in an eSTDM
subject to the availability of quality data and the NeuCube
eSTDM parameter optimisation. Here we demonstrate the
feasibility of NeuCube for this purpose on a case study
problem. Specifically, a model is created to classify a given
video into one of three age groups based on its assessed age.

Aging is a slow process and its effects are visible only
after a few months or a few years. But in spite of be-
ing slow, it remains a spatiotemporal phenomenon. The
facial features of a person itself can be considered as a sub-
space and their aging over the years a temporal process. It
would be very useful to incorporate the temporal, as well
as spatial, patterns in aging data as an important part in
classification.

The raw data which has been used in this study is from
(Cerniello, 2013). It is five minutes of video containing
8943 frames of size 1920x1080 pixels. First the video is
converted into greyscale frames. The nose tip of the sub-
ject in the image is manually annotated. The purpose was
to locate a small region on the face which remains at a
fixed distance from the annotated point. That same re-
gion is used for all the images in our study. This region is
a part of the texture information of the face image, namely
a small part of cheek portion of the face. This is chosen
as facial skin is naturally smooth in youth and becomes
wrinkled with age, thereby resulting in a change in the
textural information present in this area. Based on this
assumption 50 pixels are selected from cheek area of each
face image.

All frames are divided into three classes. 128 frames of
each sample are chosen, for each in a total of 60 samples.
Thus the whole data comprises some 7680 images. The
first 20 samples comprise young age, the next 20 samples
adult age, and the third set of 20 samples represent old
age.

In this experiment, the size of the SNNc is 1000 neurons,
a relatively simple 10x10x10 cube. It is trained and tested

Table 4: Age Group Classification Accuracy (%) from
video data

Method Accuracy (%)

SVM 55
MLP 26
NeuCube 78

in a hold out method. Firstly we converted the video data
into discrete spike trains using the AER encoding method
to discretize the continuous signal, following the exam-
ple of the silicon retina (Delbruck and Lichtsteiner, 2007).
The deSNN classified mentioned previously is used here
as an output classifier, because deSNN is computationally
efficient and emphasizes the importance of the first spike,
which has been observed in biological vision systems.

We conducted experiments to compare between tradi-
tional modeling methods (SVM and MLP) and our pro-
posed method for age group classification. We designed
two experiments for these baseline algorithms. Note that
for these baseline algorithms, the time length of training
samples and testing samples have to be the same as these
methods cannot tolerate different lengths of feature vec-
tors for training and testing.

It was observed that the classification achieved with
NeuCube was better than other techniques. See Table 4
for results. Note that the techniques mentioned (other
than NeuCube) do not have the capability of representing
the spatio-temporal problem space effectively. These tra-
ditional techniques are only suitable for static data within
a given time segment. Since an eSTDM models the rela-
tionships between and within spatio-temporal data, even
a small input data will be able to trigger the spiking activ-
ities in SNNc, for an accurate pattern (class) recognition
from video data.

9. eSTDM for Spectro-Temporal Data

9.1. eSTDM for Audio Information Processing

Audio data is spectro-temporal. It consists of temporal
sequences of the intensity of the signal at different fre-
quencies. How to map the frequencies into an SNNc is the
first challenge. And then – training the SNNc on spike
sequences that represent the audio signals is another chal-
lenge. A brief example is given in the subsection below.

9.2. Radioastronomy Data

Radioastronomy data is massively spectro-temporal.
The timescale of meaningful background radiation in space
is billions of years, and the volume of data to be processed
to identify a small event is immense. eSTDM are currently
being explored for applications in radioastronomy, as they
are effective at learning in a noisy and dynamic environ-
ment, and explicitly incorporating the spatial, spectral,
and temporal characteristics of such data.
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10. Implementing the NeuCube on Neuromorphic
Hardware

A system like the NeuCube, with its highly scalable ar-
chitecture, requires a highly scalable computation plat-
form. As traditional Von Neumann computational ar-
chitectures reach their limits (Esmaeilzadeh et al., 2011;
Perrin, 2011) in terms of power consumption, transistor
size, and communication, new approaches must be sought.
Neuromorphic hardware systems, especially designed to
solve neuron dynamics and able to be highly accelerated
compared to biological time are a response to these con-
cerns. Systems such as analog VLSI or the SpiNNaker
are advantageous by comparison to software based simu-
lations on commodity computing hardware in areas such
as biophysical realism; density of neurons per unit of pro-
cessing power; and significantly lowered power consump-
tion (Furber, 2012; Indiveri et al., 2011). This is not to
say that simulations of the NeuCube cannot occur on tra-
ditional computing architectures; merely that dedicated
hardware is advantageous in these areas and may be more
appropriate for large-scale modelling. Subsequent to the
modular framework for the development of NeuCube neu-
romorphic implementations written in Python first intro-
duced in Scott et al. (2013), a cross platform version was
written utilizing the PyNN API.

PyNN (Davison et al., 2008) is a generic SNN simulation
markup framework that allows the user to run arbitrary
SNN models on a number of different simulation platforms,
including software simulators PyNEST and Brian, and
some neuromorphic hardware systems such as SpiNNaker
and FACETS/BrainScaleS. It provides a “write once, run
anywhere” (where “anywhere” is the list of simulators
it supports) facility for the development of SNN simula-
tions. A version of the NeuCube has been implemented in
this environment, for application on both commodity Von
Neumann computing systems and dedicated neuromorphic
hardware.

A key target of this NeuCube version is the SpiNNaker
device currently in development. SpiNNaker is a general-
purpose, scalable, multichip, multicore platform for the
real-time massively parallel simulation of large scale SNN
(Furber, 2012). Each SpiNNaker chip contains 18 ARM968
subsystems responsible for modelling up to one thousand
neurons per core, at very low power consumption. These
chips communicate through a custom multicast packet link
fabric, and an arbitrary number of these chips can be
linked together, with the assumption that the networks
simulated exhibit some kind of connection locality. The
small-world structure used in the NeuCube and its scalable
nature are appropriate for implementation on this type of
hardware.

An alternative implementation of the NeuCube eSTDM
for embedded applications is currently being explored us-
ing the INI Neuromorphic VLSI chip (Indiveri et al., 2011).

Figure 12: A conceptual schematic of the SpiNNaker sys-
tem, demonstrating the interface and toroidal connection
network.

11. Conclusion and Future Directions

The main goal of ECOS is to facilitate the creation
of computational models and systems for adaptive learn-
ing and knowledge discovery from complex data. ECOS
principles are derived from the integration of principles
from neural networks, fuzzy systems, evolutionary com-
putation, quantum computing and brain information pro-
cessing. ECOS applications are manifold, but perhaps
most welcome in the medical, environmental and health
sciences, where the diagnostic phenomena are chaotic in
nature and the data sets are massive and often incomplete.
Here we present a new development of ECOS: the eSTDM,
created in the NeuCube SNN environment. eSTDM is a
promising approach to deal with big, stream data. Mas-
sive (so called ‘big’) data sets with the characteristics just
described need to be analyzed, virtually in real time, for
prognoses to be made and solutions to the issues sought
at a level of urgency. In this sense, eSTDM for adaptive
learning and knowledge discovery can make a great con-
tribution to the methodologies employed by the emerg-
ing trans-disciplinary, integrative, systemic and problem-
solving science.

There are some challenging questions that need to be
further explored, for example:

1. What is the capacity of a NeuCube eSTDM in terms
of both spatial and temporal characteristics of the
data?

2. How much noise can be tolerated in an eSTDM?

3. How do we model transitions between spatio-temporal
states triggered by external stimuli?

4. How early and accurately can an eSTDM predict an
event from SSTD?

These are some of the questions that need to be ad-
dressed as a future work.
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