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Abstract— Autonomous Ground Vehicles designed for ex-
treme environments (e.g mining, constructions, defense, explo-
ration applications) require a reliable estimation of terrain
traversability, in terms of both terrain slope and obstacles
presence. In this paper we present a new technique to build,
in real time and only from a 3D points cloud, a dense terrain
elevation map able to: 1) provide slope estimation; 2) provide
a reference for segmenting points into terrain’s inliers and
outliers, to be then used for obstacles detection. The points cloud
is first smartly sampled into a 2.5 grid map, then samples are
fitted into a rational B-Spline surface by means of re-weighted
least square fitting and equalization. To meet an extensive range
of extreme off-road scenarios, no assumptions on vehicle pose
are made and no road infrastructure or a-priori knowledge
about terrain appearance and shape is required. The algorithm
runs in real time; it has been tested on one of VisLab’s AGVs
using a modified SGM-based stereo system as 3D data source.

I. INTRODUCTION

Reliable perception of terrain slope and terrain traversabil-

ity is a key-feature for any unmanned ground vehicle de-

signed for extreme environments. This is often achieved

processing 3D points clouds coming from high-quality dense

depth maps. The majority of the approaches project depth

information into digital elevation maps [1] or into various

types of Cartesian grid maps, containing cells of uniform

size. Cells typically store information about the correspond-

ing world portions, depending on the algorithm approach and

type of sensor used. The so called 2D grid maps just contains

occupancy information (traversable, not traversable); these

are useful for basic obstacle avoidance on flat terrains, based

on simple range sensors. When cells store also height infor-

mation, we talk about 2.5D grid maps [2]. More complex

grid maps embed full 3D information using adjacent stack

of cells [3], or octrees connected cubes [4], and are able

to represent objects at multiple heights located at the same

range and azimut.

Elevation maps, as well as cubes grids, do not provide

an immediate classification of their cells as belonging or

not the terrain. Some authors [5] enrich cells’ geometric

characteristics with visual information, like color and tex-

ture, to understand if a given cell is part of the terrain,

applying machine learning techniques on the basis of a priori

knowledge. When it is possible to use assumptions on road

model and on vehicle pose, successful solutions of geometry-

based obstacle/terrain segmentation have been proposed,
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Fig. 1. The image shows a terrain slope with a synthetic grid, obstacles
appears with their original color and enriched with 3D info, while a picture
of the scene is also shown to compare the results.

in some cases working in image coordinates by using v-

disparity space [6]; in other cases applying RANSAC fitting

to segment the 3D points in road inliers and outliers [7].

In our previous work [8] we presented a geometry based

technique able to segment 3D data points into terrain inliers

and outliers, without any constrains on vehicle pose and

surface roughness. The segmentation is made on the basis of

traversable terrain concept: any surface where the vehicle

can drive on. In other words, any surface not too rough

and steep for the vehicle capabilities. The algorithm block

diagram is shown in Fig. 2. It is pipeline oriented, where

each block can be implemented independently, as far as the

data flow is respected.

In [8] Ants Colony Optimizations (ACO) was used to

fit points into a certain number of longitudinal and lateral

2D models, then fused together to obtain a 3D Cartesian

model of the terrain. ACO works very satisfactorily, but it

is computationally demanding (as well as RANSAC based

techniques), since it requires many iterations for each model

to reach optimal results. Moreover, subdividing the world in

several 2D models, not constrained with each other but just

merged at the final stage, leads to a noisy and, occasionally,

unstable results.

In this paper we present a new technique to build, in real

time, the map of the traversable terrain, fitting 3D points

into a rational B-Spline surfaces [9] [10]. Oppositely to

the ACO based approach, made of a mesh of several 2D

models, B-Splines provide a full 3D elevation map model,



Fig. 2. The block diagram of our traversability mapping algorithm: first
a 3D point cloud is generated; then, a fully derivable surface model of the
terrain is build, able to segment points into terrain inliers and outliers; finally,
slope and occupancy information are fused together to build a traversability
cost map. This paper focuses mainly on terrain map creation.

where each sample represents a constrain for the others,

improving robustness; at the same time, B-Splines are locally

controllable by control points, allowing the same ACO’s

sensitivity to localized terrain slopes. Finally, the proposed

iterative re-weighted fitting method performs terrain’s inliers

and outliers segmentation with very few iteration, compared

to ACO and RANSAC, ensuring computational efficiency in

a wider range of scenarios.

Example of the final results is shown in Fig. 1.

II. ALGORITHM OVERVIEW

The approach can be described as a 5 steps procedure:

1) 3D world points cloud. A data set of 3D world points

(xi, yi, zi) is generated. The data set must provide

enough points to support the desired resolution over the

area of interest. Implementation details in Section III.

2) 2.5D grid sampling. Each 3D point is projected onto

its corresponding cell, that will contain every point that

belongs to its volume, regardless they represent terrain,

an object, or spurious noise. The number of cells and

their size are defined by the region of interest and the

required resolution. Resulting map has m0×m1 Carte-

sian cells, each one characterized by (x, y) coordinates

and z height, hereinafter called p(xi, yi, Zi). Details on

sampling method are in Section IV.

3) B-Spline fitting. The goal is to extract the main terrain

surface from the sampled points grid p(xi, yi, Zi): a

3D surface representing the terrain where it is possible

to drive safely and where objects stand on. Section V

shows how repeated least square fitting and equaliza-

tion of sampled points, with different patterns of B-

Spline control points, order, and weights, leads to the

desired segmentation in an efficient way.

4) Slope estimation. Once the terrain surface is available

in B-Spline form, terrain slope can be easily computed

for any (x, y) location contained into the interest area

just by derivation.

5) Obstacle detection and Traversability cost. Points

(xi, yi, zi) not belonging to the traversable terrain

are clustered together into obstacles candidates. Then,

a Kalman filter is applied to prune false positives.

Traversability cost for each (x, y) location is finally

computed as a function of the corresponding slope

and occupancy information: the steeper the slope, the

higher the cost; similarly, the more occupied the terrain

portion, the higher the cost of its traversability.

This paper focuses on terrain mapping only: steps 1 to 4.

III. 3D POINTS ENGINE

The 3D points engine is based on the processing of

the Disparity Space Image (DSI). To perform the stereo

reconstruction a modified Semi Global Matching (SGM)

algorithm [11] with a multi-resolution analysis scheme [12]

has been implemented. In order to reduce computational

weight, a multi-threaded SIMD processing scheme has been

devised, exploiting the parallel processing capabilities of the

hardware platform.

Fig. 3. Dense Stereo 3D point cloud.

The engine has been extensively tested during VIAC, the

VisLab Intercontinental Autonomous Challenge [13], in a

variety of scenarios and in different conditions.

IV. GRID QUANTIZATION

The main focus of the sampling processing, applied among

the 3D world points obtained by the disparity map, is simpli-

fying the traversable terrain reconstruction, highlighting, in

the 3D cloud, all points belonging to the terrain slope and,

at the same time, attenuating the spurious noise contribution.

Moreover, the grid quantization allows to reduce the problem

of computational complexity, transforming the dense stereo

depth map into a sparse grid representation.

Each world point (xj , yj , zj) is projected, according to its

position, on a m0 × m1 2.5D grid, whose cells are used to

locally accumulate the points. As shown in figure 4, for each

cell ci all 3D points, belonging to its volume, are condensate

in a single point p(xi, yi, Zi), with xi and yi equal to the

cell centre coordinates (px, py), and Zi calculated as:

Zi = max(min(zj), mean(zj) − σ) (1)

where:

• min(zj) is the height of the lower world point in ci;

• mean(zj) and σ are, respectively, the average and the

standard deviation of the 3D points heights belonging

to the volume of each cell ci.



Fig. 4. 3D world points quantization processing.

When none of 3D points belongs to a given cell, its

corresponding Zi is computed averaging valid neighbours’

heights. If no valid neighbours are available, cells are marked

as INVALID, and Zi := 0. Section V explains how B-Spline

fitting handles invalid cells.

This mapping, through the local evaluation of the 3D

points distribution, allows to maximize the contribution of

the 3D points characterized by low height values, that are

likely to represent the terrain slope. The determination of the

mapped Zi is more influenced by low zj values, regardless

of whether the corresponding world points heights vary in a

small or in a large range. The standard deviation evaluation

is used to attenuate the outliers contribution. Moreover all

mapped heights are maintained in the range defined, locally,

by the highest and lowest world point.

V. B-SPLINE FITTING

A rational B-spline tensor product surface of order d0 and

d1 is a R2 → R function defined as follows:

SR,Q(x, y) =

n0
∑

i0=0

n1
∑

i1=0

Ri0,i1Ni0,d0
(x)Ni1,d1

(y)Qi0,i1

Ri0,i1Ni0,d0
(x)Ni1,d1

(y)

(2)

where: Q is a 2-dimensional array of (n0 + 1) × (n1 +
1) control points; d0 and d1 are Spline’s degrees along the

two axes, with 1 ≤ d0 ≤ n0 and 1 ≤ d1 ≤ n1; R is the

corresponding control points’ weights matrix.

The set of Ni,d(t) are the Spline’s basis functions:

Ni,j(t) =
t − ti

ti+j − ti
Ni,j−1(t) +

ti+j+1 − t

ti+j+1 − ti+1

Ni+1,j−1(t)

with

Ni,0(t) =

{

1 ti ≤ t < ti+1

0 otherwise.

where t is a non-decreasing sequence of scalars ti for 0 ≤
i ≤ n0,1 + d0,1 + 1 known as knot vector [9]. In this paper,

the vectors (x, y) are world coordinates, while SR,Q(x, y)
are the corresponding terrain’s height z.

A. B-Spline surface fitting

Control points Qi0,i1 are typically obtained by Least

Squares Fitting, from a set of m0 × m1 sample points

P with known z. In particular, our fitting module starts

with Weighted Least Squares Curve Fitting [9] along the X

world coordinate, where to each sample is assigned a proper

amount of influence W(zi) over the parameter estimates.

Then the resulting control points are fitted across the Y

direction, to compute the final Qi0,i1 control points matrix.

As mentioned, here the weights refer to sample points,

instead of control points, and are used to increase or decrease

the influence of a given sample on the final square error.

B. Terrain estimation

Basically the algorithm consists of a repeated least-squares

B-Spline fitting, using surfaces with a number of control

points increasing iteration after iteration, and where control

points’ weights and samples’ weights, at a given iteration,

are adapted on the basis of the previous surface.

The idea is to fit sample points with a very simple B-

Spline, not weighed and not rational, with very few control

points, in order to understand the principal terrain slope and

shape; then, the closer a sample point is to this surface, the

higher its weights will be at the next iteration. Moreover, to

speedup the procedure, samples are also equalized: they are

moved towards the surface, the higher the distance, the higher

the equalization. This procedure ends when the maximum

number of control points nmax (always ≤ min(m0, m1)) is

reached or when no point has been equalized in the last step.

The algorithm V-B.1 summarize the process in pseudo-code.

Algorithm V-B.1 Iterative least-squares fitting of S

W← identity matrix(m0 × m1)
R← constant matrix(1, (n0 + 1)× (n1 + 1))
procedure Terrain mapping(P)
do

Pprev ← P
Q← spline fitting(P,W, d0, d1, δn0, δn1)
e← linear mean(‖P− SR,Q‖)
W← compute weights(P,SR,Q, e)
R← remap weights(W, δn0, δn1)
P← equalization filter(P,SR,Q, e)
δni ← δni + 1

while (δni < nmax i, i = 0, 1) ∧ (‖Pprev −P‖ < ǫ)
Q← spline fitting(P,W, d, n0, n1)

end

As mentioned P is a (m0×m1) samples matrix containing

the Zi values of each sample, while R and W are control

points and sample points weights matrices respectively. The

R are computed downsampling and interpolating the larger

W matrix.
1) Weight function: Function compute weights in V-B.1

assigns to each sample point a fitting weight according to the

following formula:

W(Zi) = 1 +

(

|∆z|

th(e)

)−α

(3)

where th > 0 is the weighting threshold, proportional to

the current average fitting error, while α ≥ 1 is the weighting

speed, proportional to the current iteration number. Note how

W(Zi) is always greater than 1.



2) Equalization: The equalization filter in V-B.1

moves sample points towards the last computed surface,

according to this logic:

Zi = Zi − ∆z · (1 +
1

W(Zi)
)

Actually not all sample points are equalized: valid points

(see Sec. IV) with ∆z < 0 are not modified. This is because

our goal is to find a good terrain surface estimation, that

must always be made of the lowest visible 3D points. Under

this point of view, it is counterproductive to rise points to

the current approximated surface. Note how adjustments are

always smaller than ∆z, hence points never overshoot the

current surface.

In Fig. 5 it is shown the comparison between a simple

B-Spline surface and the proposed iterative method, applied

on the same samples.

VI. TESTING

The input 3D points cloud includes everything is visible

in the images: terrain, obstacles standing on the terrain,

sky, etc. The goal of our algorithm is to fit the terrain

surface, removing all the remaining points (outliers). An easy

scenario is when all the 3D points belong to the terrain (e.g.

a flat road free of obstacles): in this case it is enough to fit the

whole 3D point cloud into a simple spline. Now imagine the

same scene, but with a pedestrian on the ground: a well-

performing terrain estimation algorithm should detect the

very same terrain surface as before, without being affected

by the presence of the object. On the basis of this concept,

the assessment procedure is the following:

1) select a scene where the terrain is perfectly estimated

by the algorithm; e.g. a flat road;

2) add an artificial obstacle, of given width and height,

and estimate again the terrain surface;

3) compare the two surfaces, calculating the maximum

deviation from the original surface.

Fig. 6 shows, for each artificial obstacles’ width and

against obstacles’ height, the maximum surface deviation in

percentage of obstacles’ height. We can notice that:

• deviations are more dependent on obstacles’ size rather

than height; in particular they are dependent on size

compared to the area of interest’s size: a tall and

thin obstacles (e.g a pole or a pedestrian), will be

easily cut off, leading to small differences between the

two surfaces; a wide and short obstacle will be less

effectively separated from the terrain below;

• under a terrain estimation point of view, the above

concept can be rephrased: those parts of the terrain

characterized by low height/width ratio turn out in high

deviations with respect to a flat plane; i.e. obstacle are

more likely to be included into terrain;

• with few control points the surface tents to be rigid, i.e.

less affected by the presence of an obstacle, regardless

of its height; at the same time, a rigid surface results

to be less accurate in estimating rough terrains, since

deviations never get close to obstacle height;
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Fig. 6. Terrain deviation with artificial obstacle: the maximum deviation,
as percentage of obstacle height, is plotted against the obstacle height. The
interest area is 22m× 22m, control points are (above) 5× 5 and (below)
25× 25, splines order is 3, sampling ratio 50cm. The obstacle is placed in
(x, y) = (11.0, 0.0), with height from 0.5m to 3m and width from 0.8m
to 12m.

• with many control points there is a trade off between

terrain fitting and obstacles segmentation: the surface is

still able to cut off obstacles, but only when character-

ized by a minimum steepness; conversely, it is possible

to fit terrains with a wider range of slopes.

Hence, as mentioned in Section I, it is very important

to clearly define what an obstacles is in terms of size and

steepness. Under a pure geometry based point of view, if the

area of interest is limited to 22m× 22m, should an obstacle

15m wide still be considered an obstacle? Or would it be

better to include it into the terrain? Probably the obstacle

width is not enough to answer this question, and we should

also look at its height: in many extreme scenarios, a 15m

wide, 1m tall area, is not considered an obstacle; but a 15m

wide, 8m tall area deserves more attention, even for a big

mining machines.

In conclusion, the definition of the application scenario in

terms of maximum allowed terrain steepness and size limits

of typical obstacles compared with the area of interest is a

key aspect. The right spline parameters pattern can be derived

with the help of deviation plots like those shown in Fig. 6.

VII. RESULTS

The system has been tested in different configurations

and scenarios (urban, off-road, mining), providing reliable



(a) (b) (c)

Fig. 5. Examples of simple B-Spline fitting (a) compared with the proposed iterative least-squares fitting (b) and the resulting obstacle segmentation (c).
Note how the terrain is not affected by the equalization, while obstacles are noticeably lowered, allowing effective obstacle detection.

terrain traversability maps. With 34m×22m area of interest,

25×25 control points, spline order 3, and 640 × 480 pixel

images, the algorithm runs at 12.5Hz (Preprocessing and

DSI=45ms, Terrain Mapping=15ms, Obstacle Detection and

Traversability Cost=20ms) on an Intel R© Core
TM

i7 3720QM.

Fig. 7 shows various results in different scenarios, with

different cameras setup and lighting conditions. In particular,

Fig. 7(g) and Fig. 7(h) show two paradigmatic processing

results. First of all, the terrain estimation is not affected

by the presence of a pedestrian, regardless of its position.

Remember that this is a geometry based approach, so no

analysis of the visual information (color, edge, features,

histograms, etc.) is made to classify obstacles. Second,

the pedestrian is always detected as an obstacle (outlier),

wherever it is placed in the scene. Finally, each portion of

the terrain surface is labeled with different traversability cost.

VIII. CONCLUSIONS

This paper presented a real-time approach for 3D terrain

mapping, based on stereo vision and rational B-Splines sur-

faces computed by re-weighted iterative least square fitting

and equalization. A cloud of 3D points is sampled into a 2.5D

grid map; then grid points are iteratively fitted into rational

B-Splines surfaces with different patterns of control points

and degrees, depending on traversability consideration. The

obtained surface also represents a segmentation of the initial

3D points into terrain inliers and outliers.

This method presents some advantages, compared with

previous techniques: 1) obstacle/terrain segmentation is ge-

ometry based only, performed online during the surface

fitting process. This allows further analysis of visual data

such as color and texture to reinforce estimates. 2) as seen

in Section VI, by selecting appropriate spline parameters it

is possible to empirically set the maximum allowed terrain

steepness; this could allow to adapt the terrain estimation

to actual vehicle capabilities to traverse rough terrain, in

terms of maximum slopes; 3) B-Splines minimize the ter-

rain fitting error over the whole area of interest, providing

robustness and computational efficiency; they are also locally

controllable through control points, ensuring accuracy in

identification of localized terrain.

The algorithm is fully frame based, so it does not perform

any temporal interpolation. Knowing vehicle odometry and

pose, it would be possible to integrate in time the surfaces

obtained, increasing the robustness. In addition, more con-

strains on points’ heights and derivatives could be added in

the spline fitting phase.

The vision based 3D engine implementation can be neg-

atively affected by poor visibility conditions, leading to low

disparity map densities. More testing sessions are needed

to characterize the system performance with respect to 3D

points noise and resolution, especially at long distances.

Finally, a quantitative assessment on terrain reconstruction

accuracy is now being considered, running the system on a

proving ground where terrain elevations are known, or by

means of simulators

IX. ACKNOWLEDGEMENT

This work has been developed in the framework of the

Open intelligent systems for Future Autonomous Vehicles

(OFAV) Project funded by the European Research Council

(ERC) within an Advanced Investigators Grant.

REFERENCES

[1] F. Malartre, T. Feraud, C. Debain, and R. Chapuis, “Digital elevation
map estimation by vision-lidar fusion,” in Robotics and Biomimetics

(ROBIO), 2009 IEEE Int. Conference on, dec. 2009, pp. 523 –528.
[2] J.-S. Gutmann, M. Fukuchi, and M. Fujita, “3d perception and

environment map generation for humanoid robot navigation,” Int. J.

Rob. Res., vol. 27, no. 10, pp. 1117–1134, 2008.
[3] H. P. Moravec, “Robot spatial perception by stereoscopic vision

and 3D evidence grids,” Technical Report CMU-RI-TR-96-34, CMU
Robotics Institute, Tech. Rep., 1996.

[4] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: A probabilistic, flexible, and compact 3d map repre-
sentation for robotic systems,” in In Proc. of the ICRA 2010 workshop.

[5] A. L. Rankin, A. Huertas, and L. H. Matthies, “Stereo vision based
terrain mapping for off-road autonomous navigation,” in Proc. of SPIE,

the International Society for Optical Engineering, vol. 7332, 2009.
[6] D. Pfeiffer and U. Franke, “Towards a global optimal multi-layer stixel

representation of dense 3d data,” in Proceedings of the British Machine

Vision Conference. BMVA Press, 2011, pp. 51.1–51.12.
[7] F. Oniga and S. Nedevschi, “Processing dense stereo data using

elevation maps: Road surface, traffic isle, and obstacle detection,”
Vehicular Technology, IEEE Transactions on, vol. 59, no. 3, pp. 1172
–1182, march 2010.

[8] A. Cappalunga, S. Cattani, A. Broggi, M. McDaniel, and S. Dutta,
“Real time 3d terrain elevation mapping using ants optimization
algorithm and stereo vision,” in Intelligent Vehicles Symposium (IV),

2010 IEEE, june 2010, pp. 902 –909.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7. Examples of terrain mapping on a variety of scenarios: terrain mapping in mining environment: (a) mounds of gravel, (b) ditch and berms, (c)
gravel “canyons”; obstacle detection in mining environment: (d) car and pedestrian close to a berm, (e) excavator close to a berm, (f) truck close to a high
berm; (g)(h) a pedestrian walking up and down a hill; (i) gravel road with ditch, cars, trees and bushes; (j) urban scenario with (k) parking lot and (l)
houses. The area of interest is 34m× 22m for all images but (g)(h)(j)(l), where is 22m× 22m.

[9] L. Piegl and W. Tiller, The NURBS book (2nd ed.). New York, NY,
USA: Springer-Verlag New York, Inc., 1997.

[10] A. Wedel, U. Franke, H. Badino, and D. Cremers, “B-spline modeling
of road surfaces for freespace estimation,” in Intelligent Vehicles

Symposium, 2008 IEEE, june 2008, pp. 828 –833.

[11] H. Hirschmüller, “Accurate and Efficient Stereo Processing by Semi-
Global Matching and Mutual Information,” in Intl. Conf. on Computer

Vision and Pattern Recognition, vol. 2. San Diego, CA, USA: IEEE
Computer Society, June 2005, pp. 807–814.

[12] A. Broggi, M. Buzzoni, M. Felisa, and P. Zani, “Stereo obstacle

detection in challenging environments: the VIAC experience,” in
Procs. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, San
Francisco, California, USA, Sept. 2011, pp. 1599–1604.

[13] M. Bertozzi, L. Bombini, A. Broggi, M. Buzzoni, E. Cardarelli,
S. Cattani, P. Cerri, A. Coati, S. Debattisti, A. Falzoni, R. I. Fedriga,
M. Felisa, L. Gatti, A. Giacomazzo, P. Grisleri, M. C. Laghi,
L. Mazzei, P. Medici, M. Panciroli, P. P. Porta, P. Zani, and P. Versari,
“VIAC: an Out of Ordinary Experiment,” in Procs. IEEE Intelligent

Vehicles Symposium 2011, Baden Baden, Germany, June 2011.


