
Defeat information leakage from browser extensions via
data obfuscation

Wentao Chang, Songqing Chen

Department of Computer Science,
George Mason University,

Fairfax, VA 22030
U.S.A

{wchang7, sqchen}@gmu.edu

Abstract. Today web browsers have become the de facto platform for Internet
users. This makes browsers the target of a lot of attacks. With the security con-
siderations from the very beginning, Chrome offers more protection against ex-
ploits via benign-but-buggy extensions. However, more and more attacks have
been launched via malicious extensions while there is no effective solution to
defeat such malicious extensions. As user’s sensitive information is often the
target of such attacks, in this paper, we aim to proactively defeat information
leakage with our iObfus framework. With iObfus, sensitive information is al-
ways classified and labeled automatically. Then sensitive information is obfus-
cated before any IO operation is conducted. In this way, the users’ sensitive in-
formation is always protected even information leakage occurs. The obfuscated
information is properly restored for legitimate browser transactions. A proto-
type has been implemented and iObfus works seamlessly with the Chromium
25. Evaluation against malicious extensions shows the effectiveness of iObfus,
while it only introduces trivial overhead to benign extensions.

Keywords: Browser Extension, Chrome, Data Obfuscation, Information Leak-
age Threats.

1 Introduction

The web browser has become the de facto platform for everyday Internet users, and
unarguably the driving force of the recent years’ Internet revolution. Modern web
browsers, such as Chrome, Firefox, and IE, are no longer simple static data renderers
but complex networked operating systems that manage multiple facets of user online
experiences[1][3].

To help browsers handle various emerging files and events, functionalities of web
browsers are constantly enhanced. Most often such functionalities are extended by
third-party code that customizes user experience and enables additional interactions
among browser-level data and events. As of today, all major commodity web brows-
ers support extensions. For example, Chrome has a list of over 10,000 extensions on
Chrome Web Store by Dec 2010 [13].

mailto:@gmu.edu

However, the fact that web browsers have become the most popular vehicle for In-
ternet surfing attracts more and more attacks. Among them, an increasingly popular
attack is via browser extensions [7][8][10]. Commonly, these attacks are launched by
exploiting existing extensions’ weakness or by tricking user to install malicious ex-
tensions that can take over the web browser, steal cookies or user sensitive infor-
mation without users’ knowledge. For example, one of the earliest Firefox malicious
extensions, FFsniFF [14] hides itself from the extension manager after it has been
installed, monitors all form submissions in the browser for passwords and sends an
email with gathered data to the attacker, and many Trojans disguise themselves as
legitimate browser helper objects (BHO) for IE, but once installed they change user
Internet settings and redirect users to random websites.

To deal with such threats, Google Chrome, one of the most popular web browsers,
has made significant efforts by introducing several new security features to its exten-
sion framework [4][5]. It enforces strong isolation between web browsers and exten-
sions, separates privileges among different components of extension, and uses a fine-
grained permission system [11]. Recent studies [6][7] indicate that the Google
Chrome extension framework is highly effective in preventing and mitigating security
vulnerabilities in benign-but-buggy extensions that can be leveraged by web attackers.
However, even Chrome does not cover all the bases, and most importantly it is de-
fenseless to information dispersion or harvesting attacks launched by malicious exten-
sions. For example, as these days online social networks are very popular, a rogue
extension, Adobe business flash player [15], fetches and executes arbitrary JavaScript
code from network once it has detected that the user has landed to certain social me-
dia websites. Users’ social media accounts are then hijacked to post feeds or “like”s
without users’ consent. Other attacks can be launched to steal bank account infor-
mation when users conduct online transactions as discussed in [7][12]. Existing work
on extensions made little progress on the detection or protection of such attack vector.

To mitigate such an imperative threat, in this paper we design and implement
iObfus. As users’ sensitive information is the most critical asset, iObfus aims to defeat
sensitive information leakage through browser extensions. It automatically classifies
sensitive information on the web page with different default protection levels. Based
on the protection policy, sensitive information will be automatically and passively
obfuscated before any IO operations are performed. In this way, the users’ sensitive
information is always protected even information leakage happens (under this case
only obfuscated information is leaked). To ensure the proper function of normal
browser transactions, iObfus restores the context-aware sensitive information for
legitimate transactions.

To demonstrate the effectiveness of iObfus, we build a proof-of-concept prototype
on top of web browser Chromium 25. Experiments conducted against several mali-
cious extensions in the wild show that iObfus can effectively protect user information
from leaking. Further tests show that Chromium with iObfus does not interfere with
normal daily transactions, and the data obfuscation and de-obfuscation cause trivial
delay on users’ experience.

The rest of the paper is organized as follows. Section 2 gives an analysis of the in-
formation leakage threats from Chrome extensions. We describe iObfus design and

implementation in Section 3. An evaluation is conducted in Section 4. We discuss
some related work in Section 5 and make concluding remarks in Section 6.

2 Information leakage threats from Chrome extensions

In this section, we discuss the information leakage threats from Chrome extensions.
For the architecture and Chrome extension security model, please refer to Appendix
A.

2.1 Threat analysis

Security concerns that online transactions could be hijacked or tampered with mali-
cious extensions have arisen in recent years [7][12]. Password or financial infor-
mation sniffing is one form of security attacks that malicious extensions could launch
against web surfers. To access sensitive information such as the bank account number
or login credentials, extensions need to inject Content Scripts to the victim web page.
The injected Content Script will search in the DOM tree for elements of their inter-
ests, for example, <input> elements with type or name equal to “password” where
user password is usually stored. To steal this information, attackers also need to estab-
lish a communication channel to the IP address where they hide. Thus malicious ex-
tensions also request cross-origin XHR permissions.

The recently popular attacks against Social Media accounts do not even need to
steal users’ login credentials. Instead, the attackers try to masquerade as the users to
engage social interactions stealthily. Such malware instances will check browser
cookies to determine whether users have landed to certain social websites. If they
have, another piece of JavaScript code will be fetched and executed, via which, the
account can be used to spam your friends, post malicious links on news feed or fol-
low/like other people or pages. This type of attacks seemingly acts like users’ normal
behavior, thus they are unlikely to be detected by anti-virus program. Once infected,
this threat tends to persist in user’s browser. As a matter of fact, this type of mali-
cious extensions is the most common ones in the wild because attackers could gain
monetary benefits and users are often not aware of the fact that they become victims.

 The root causes of these attacks are: 1) Content Scripts have full access privileges
to the DOM tree of the web page they are injected to, regardless of the fact that cer-
tain elements contain more sensitive information. If a fine-grained access control
policy is enforced, we could control the source of information leakage. 2) The cross-
origin XHR permission often grants access privileges to more origins than necessary.
Each origin specified in the extension manifest file expands the target set of origins
that the extension can leak information to. Since the extension core and the Content
Script share the same set of origins, the potential sink points could scatter anywhere in
Content Scripts or the extension core, making it difficult to track leakages.

2.2 Sources of information leakage through browser extensions

To defeat information leakage attacks, we need to first define the scope of “sensitive
information” in the context of web surfing. The term “sensitive information” often
differs in different research fields. In a broad sense, sensitive information includes but
not limited to:

• Any information that can reveal users’ true identities or can be used to uniquely
identify users, for instance, names, social security numbers, profile images, etc.

• Financial information or monetary equivalence such as bank account number, cred-
it card number, digital currency, and so on.

• Any information from which others can infer users’ tendency or personal prefer-
ences, for example, users’ recent shopping list can indicate his/her lifestyle and be
used for marketing purpose.

In general any data that users wish to withhold from others should be considered as
sensitive and shall be protected cautiously by venders or service providers. The scope
of sensitivity is so wide that in reality without a meaningful context of the term, there
is little to be done to protect sensitive information practically. To defeat information
leakage, it is essential to define the scope of sensitivity precisely in the context of
browser extensions.

Based on our extensive study of possible leaking sources that are accessible to
browser extensions, we classify sensitive information into two categories:

Per-tab user data from open web pages
When a user opens and views web pages, the multi-process Chrome browser will

fetch each web page along with its resource files from the web server and render them
in sandboxed render processes respectively. The extension core runs in its own pro-
cess and does not have direct access to the memory space of sandboxed render pro-
cess, however, Chrome allows extensions to inject Content Scripts to any web pages
as long as the origin of the web pages match Content Scripts’ injection patterns. The
injected Content Script has full access to the DOM tree of the targeted web page, thus
sensitive information from per-tab user data becomes exposed to Content Script com-
ponent of the extension.

Before Chrome 13, cross-origin XHR was not supported in Content Scripts, so that
information leakage can only happen in the extension core. The message passing
mechanism of Chrome extensions framework enables Content Scripts to send collect-
ed information back to the extension core. With proper message passing and receiving
code implemented in the Content Script and the extension core, any user sensitive
information on the web page is no longer local to its containing browser tab, and they
are shared with the extension core, via which they can be further shared with other
tabs.

We build our own set of privacy rules with the basis of HIPPA’s 18 rules [18] to
identify candidates of sensitive per-tab data. The scope of set is dynamic depending
on different websites; easy to expand/update and even let users choose their own tol-
erance level (The configurable level of sensitive information will be further studied).

Besides HIPPA rules, we also add to the scope DOM nodes with sensitive infor-
mation specific to the browser, for example, sessions cookies, anti-forgery tokens that
prevent Cross-Site Request Forgery (CSRF) attacks, etc.

Browser user data exposed by extension APIs
Modern browsers are allowed to maintain certain state information about their us-

ers aiming to remember user preferences and facilitate user actions. Such state infor-
mation includes bookmarks of websites, download history, browsing history, cache of
visited web pages, the chosen theme of browser UI, list of installed extensions, geo-
location of browser, etc. The Chrome browser even offers its users to back up aggre-
gated user settings via cloud services to their centralized Google account, so that the
state information is synchronized across different Chrome instances.

The state information together is called browser user data and security measures
should be taken by browsers to protect them from tampering and stealing by web and
local attackers. In Chrome’s approach, browser extensions are executed in a sand-
boxed environment and a permission system is used to regulate permissions assigned
to extensions. If the principle of least privilege is strictly enforced, even they are tak-
en over by attackers the damage to the browser should be contained.

However, Chrome’s rich extension APIs and rough privilege definition make this
situation complicated. In addition to all the APIs that web pages and Apps can use,
Chrome also provides its own set of extension APIs to allow tight integration with the
browser. While these APIs vastly enrich extension features, it also permits unfettered
accesses to browser user data by extensions. Browser user data that are inherently safe
in other browsers suffer from information leakage threats in the Chrome extension
framework [26].

3 Design and implementation of iObfus

In this paper, we focus on protecting sensitive information that could be leaked
through browser extensions. For this purpose, we design iObfus. We do not try to
defeat information attacks launched by malicious websites in our system. We also
assume malicious extensions discussed in this paper are written following the content
security policy and are not easily detected by static analysis. Hence iObfus does not
consider information leakage via src attributes of img tags, iframe tags, etc. Figure 1
sketches the architecture of iObfus and its working flow.

Fig. 1. iObfus architecture

We build the prototype on the open source Chromium project. Our prototype is com-
patible with all extensions developed for Chromium 25 and plus. What motivates us
to build our prototype on Chromium is: (a) the Chrome browser is by far the most
secure browser in the market and already has a comprehensive security model in
place. (b) Building the prototype based on a platform that commercial browsers share
the source code with also indicates that the security enhancement we propose can be
easily transported to its commercial counterpart.

iObfus consists of four major components: Monitor, Interceptor, Obfuscator and
De-obfuscator.

3.1 Monitor

This component monitors the execution of Content Scripts and JavaScript code in the
extension core. Our system must be able to distinguish the execution of regular Ja-
vaScript code in web pages from JavaScript code introduced by extensions, which
includes Content Scripts and JavaScript code running in background pages of the
extension core. The ability to separate the execution of JavaScript code is important
for two reasons. Firstly, limiting the scope of monitoring could reduce performance
overhead of our system. Because iObfus aims to mitigate information leakage threats
incurred by extensions in a cost effective manner, we can disregard attacks launched
by JavaScript code of malicious websites and rely on the existing security model of
Chrome extension framework to defeat them. Therefore, it is critical to identify ori-
gins of JavaScript code at runtime and enable/disable iObfus features on demand.
Secondly, disabling obfuscation and restoration of sensitive per-tab data accessible to
regular JavaScript code can avoid breaking the functionality of websites. For exam-
ple, some normal behaviors in the web page such as the input validation of user login

could be identified as a potential leakage and be obstructed by iObfus if we cannot
exclude these JavaScript actions from our active monitoring.

We modify compileAndRunScript() method of WebKit’s ScriptController class to
check whether the execution of JavaScript code snippet is within isolated world
(please refer to Appendix A for definition). Only if it is, iObfus marks the separate
copy of DOM documents as obfuscation candidates.

3.2 Interceptor

This component intercepts the subset extension APIs we identify that can expose
browser user data to the extension core. As we discussed in the previous section, the
browser user data is the second source of leakage, thus iObfus must be capable of
instrumenting the subset extension APIs and obfuscating the browser user data before
they are read by the extension core. Since the Chrome extension APIs are under active
development, it is common that more experimental APIs become supported APIs in
future releases. We perform the identification of leaking APIs from all extension APIs
currently available in Chromium 25, and the list of APIs that iObfus intercepts is
shown in Appendix B.

3.3 Obfuscator

The goal of Obfuscator is to protect user sensitive information without breaking the
normal functionalities of extensions. The values of those potential leakage sources are
obfuscated before they enter the memory space of extensions. Extensions can still
access those data objects and use their values for actions as if they are regular JavaS-
cript objects.

iObfus only obfuscates sensitive information derived from DOM documents that
have a marked sensitivity flag by the Monitor or browser user data from intercepted
extension APIs by the Interceptor. According to HIPAA and Chesapeake Research
Review, Inc. [19], from the security perspective there are 18 types of individual iden-
tifiers including name, telephone number, social security number, account number,
etc. Based on our observation and previous research [7], DOM elements containing
sensitive information often have name, type or ID attributes with values correlating to
these individual identifiers. For example, the HTML input element for password in
Google account sign-in page has attributes of type=”password”, name=”Passwd”
and id=”Passwd”. Hence, a set of regular expression patterns is defined in iObfus to
locate the first source of leakage – sensitive per-tab user data.

Due to the fact that the regular JavaScript code and the Content Script are executed
intermittently, to avoid repetitive processing, iObfus also assigns an “isProcessed”
Boolean flag to candidate DOM documents marked by the Monitor. Only if the value
of “isProcessed” is false, iObfus begins to iterate every element of the DOM tree to
find a pattern match for names, types and IDs. For matched DOM elements, iObfus
processes them differently depending on their element type. For text node, iObfus
applies the obfuscation algorithm to convert the text content into its obfuscated form
and then call replaceEntireText() method to substitute the entire content of text node;

for element node, iObfus only replaces the content of “value” attribute with obfus-
cated data.

Table 1. Regular expression of some common data formats

SSN # \d{3}-\d{2}-\d{4}$

Email
Ad-
dress

\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b

Url

^(http|https|ftp)\://([a-zA-Z0-9\.\-]+(\:[a-zA-Z0-9\.&%\$\-
]+)*@)*((25[0-5]|2[0-4][0-9]|[0-1]{1}[0-9]{2}|[1-9]{1}[0-9]{1}|[1-
9])\.(25[0-5]|2[0-4][0-9]|[0-1]{1}[0-9]{2}|[1-9]{1}[0-9]{1}|[1-9]|0)\.(25[0-
5]|2[0-4][0-9]|[0-1]{1}[0-9]{2}|[1-9]{1}[0-9]{1}|[1-9]|0)\.(25[0-5]|2[0-
4][0-9]|[0-1]{1}[0-9]{2}|[1-9]{1}[0-9]{1}|[0-9])|localhost|([a-zA-Z0-9\-
]+\.)*[a-zA-Z0-9\-
]+\.(com|edu|gov|int|mil|net|org|biz|arpa|info|name|pro|aero|coop|museum|[a
-zA-Z]{2}))(\:[0-9]+)*(/($|[a-zA-Z0-9\.\,\?\'\\\+&%\$#\=~_\-]+))*$

A context-aware obfuscation algorithm is the key to the success of the Obfuscator.
The “obfuscated” form has to be syntactically equivalent to its original form so that
the evaluation of these DOM objects at runtime does not fail. In the current prototype,
iObfus defines regular expressions for some most common data formats as known
contexts, and they are listed in Table 1. Before applying a randomization-based gener-
ic obfuscation, iObfus examines the input for known contexts. If a pattern match is
detected, it will instead perform a context-aware transformation. For example, if
iObfus detects an email address smith@gmail.com in its input, it will transform the
email address into a fake one such as hnrgs@ymail.com, which can be restored later
for legitimate I/O operations.

3.4 De-obfuscator

The De-obfuscator is responsible for URL and payload inspection of cross-origin
XMLHTTPRequests and it also restores obfuscated data if requests are sent to trusted
domains. Some extensions heavily rely on the communication with their own servers
to demonstrate features, for example, an extension that synchronizes users’ book-
marks across multiple browser instances requires saving un-obfuscated bookmarks to
its server. To add this domain to the trusted list, extension developers need to explicit-
ly declare this specific domain in manifest.json file, and users’ approvals are also
required at the installation time for iObfus to trust this domain. Trusted domains also
include the resource URI of extension such as “chrome-extension://<extension-id>”.

To capture all cross-origin XHRs, iObfus instruments both the open() and send()
methods of XMLHttpRequest class because sensitive information can either be leaked
in the parameters of the target URLs or in the body of send() method. To restore sen-
sitive information if necessary, iObfus first determines what domain each specific
XHR is sent to. If the request URL matches any one of trusted domains, a de-

mailto:smith@gmail.com
mailto:hnrgs@ymail.com

obfuscation algorithm is then applied to the parameters and the body of XHRs in an
effort to reverse the transformation done in the Obfuscator. iObfus also de-obfuscates
messages that are written to disk via LocalStorage.

4 Evaluation

To evaluate the effectiveness of iObfus, we first test whether the prototype could
defeat some known attacks via malicious extensions and then we assess iObfus’s
capability to protect users’ sensitive information from leaking. At last, the perfor-
mance overhead introduced by iObfus is studied.

4.1 Mitigate attacks that hijack Social Media accounts

Many rogue extensions that hijack Social Media accounts manifest similar attack
behaviors. They are either derived from the same open-source attack toolkit [2] or its
variants. Such rogue extensions include Adobe Flash Player 12.1.102.55, Business
Adobe Flash Player, Chrome Guncellemesi, Facebook Black, etc. They are briefly
described in Appendix C.

We have tested all these social hijacking extensions in our experiments and iObfus
can defeat all of them. Figure 2 shows a screenshot when Business Adobe Flash Play-
er was tested in our experiment. Basically, we installed the malicious extension, land-
ed to Facebook.com website and signed in as the test user “iObfus Leakage”. The
Monitor of iObfus accurately detected the execution of Content Script injected by
rogue extension to Facebook.com, and then the Obfuscator processed the DOM doc-
ument before it was accessed by the Content Script. We observed that the
“c_user=100006040261082” in Cookie (the Facebook user id of “iObfus Leakage”)
was replaced with its syntactic equivalence by our obfuscation algorithm. Moreover,
since privacy rules defined in section 2.2 contain anti-forgery token keyword
“name=fb_dtsg”, the value of token “AQBtosAv” was also obfuscated. Hence, the
stealthy actions performed by Business Adobe Flash Player failed due to invalid
cookie/anti-forgery token as shown in Figure 2.

Fig. 2. Failed stealthy actions of Business Adobe Flash Player

4.2 Protect sensitive information from leaking

We test iObfus prototype against 20 popular extensions from Chrome Web Store.
They are shown in Table 4 in Appendix D. The experiment results show that the ob-
fuscation of sensitive information does not hinder the normal execution of most ex-
tensions with the exception of several extensions whose features are built on browser
user data such as bookmarks or browsing history. These include bookmark sentry,
Xmarks Bookmark Sync and PanicButton. We also observed that 7 of 20 extensions in
our study do not initiate any cross-origin XHRs. For extensions that do make cross-
origin XHRs, the sensitive information classified in section 2.2 was properly obfus-
cated before it was read by extensions. Some extensions such as Google Translate
and SpellChecker, did leak obfuscated information via XHRs, but it was not compre-
hensible to attackers.

However, in our experiments we also noticed that iObfus blocked certain features
of extensions that heavily depend on interactions with their own servers, for instance,
Similar Sites Pro and WOT. This is because by design the De-obfuscator only at-
tempts to restore the obfuscated data when the request was sent to safe origins de-
clared specifically by developers, but in reality extension developers often specify
excessive web origins with wildcards such as http://*/*. Thus to ensure the data resto-
ration, a set of whitelisted origins are required to be listed in manifest.json file. After
adding the whitelist, the iObfus works with the browser seamlessly.

4.3 Performance evaluation

We also evaluate the performance of iObfus prototype. The browser version is Chro-
mium 25.0.1347.0 and our test platform is an Intel Core2 Quad 2.66GHz machine
with 8GM memory running 64-bit Windows Server 2008R2. The SunSpider 1.0, V8
JavaScript benchmark suites 7.0 and Browsermark 2.0 online tools are used to meas-
ure the performance of an iObfus-enabled browser versus unmodified browser. The
final result is averaged over 5 runs and shown in Table 2. Compared to the unmodi-
fied browser, the performance overhead introduced by iObfus is indeed negligible.

Table 2. Performance comparison between iObfus and unmodified browser

Benchmarks iObfus Unmodified browser Overhead
percentages

SunSpider 1.0 393ms 387ms 1.55%
V8 JavaScript bench-

mark suites 7.0 9422pts 9736pts 3.33%

Browsermark 2.0 4431pts 4695pts 5.96%

5 Related work

Browser extensions can pose significant threats to the security of the browser plat-
form and privacy of browser users [24]. Vulnerabilities in extension platforms have

been investigated [6][20], and attacks launched via malicious extensions have been
found and reported [25].

Google Chrome has enforced several security policies to protect the browser from
attacks via browser extensions. The security model of Chrome is found to be very
effective against benign-but-buggy extensions [6], however, it does not consider
threats from malicious extensions. Liu et al [7] demonstrated several possible attack
scenarios that be achieved by malicious extensions including email spamming, DDOS
attacks, password sniff, etc. A refined extension security framework has also been
proposed with micro-privilege management and fine-grained access control to DOM
elements. Compared to this work, iObfus focuses on defeating the most common and
dangerous information leakage attack so that we consider not only the DOM elements
in web pages but also browser user data as leakage sources.

Several capacity leaks have been found in JetPack[9], the new Firefox extension
framework, via a thorough static analysis [21], many of which can be utilized by at-
tackers to steal user sensitive information. Static analysis techniques are utilized to
analyze JavaScript-based extensions. For example, VEX [22] applied a high-precision
static information analysis on JavaScript code to identify potential security vulnerabil-
ities in browser extensions automatically. Gatekeeper [23] is another static analysis
framework that enforces the security and reliability policy for JavaScript program.

A number of researchers also explored the use of information flow for browser ex-
tension security. SABRE [16] is a framework that analyzes browser extensions via
tracking in-browser information flows. Djeric et al [8] proposed a framework that is
capable of tracking taint propagation at runtime not only in the script interpreter but
also in browser’s native code. Compared to static techniques, dynamic information
flow techniques usually introduce significant performance and/or memory overhead.
Our work combines static analysis with dynamic JavaScript instrumentation. iObfus
performs a static analysis to mark sensitive DOM elements first, and obfuscates the
source or inspects the sink of leakage at runtime. The performance overhead is mini-
mal when compared with traditional dynamic information flow approaches.

6 Conclusion and Future work

Attacks via web browsers pose immense threats to Internet users as web browsers are
the most commonly used platform for web surfing. Despite various efforts made,
attacks via browser extensions are continuously emerging. In this paper, we seek to
protect Internet users from information leakage via browser extension attacks. For this
purpose, we have designed and implemented a system called iObfus that can seam-
lessly work with Chrome. The core of iObfus is to obfuscate sensitive information
when there is IO operation pending. We have built a proof-of-concept prototype on
Chromium project. Our experiments show that iObfus can effectively mitigate the
information leakage threats without degrading users’ browsing experience.

To bypass iObfus, attackers could deliberately devise a malicious extension that
performs a transformation of sensitive data so that it can circumvent the pattern
matching when we inspect network messages. In our next step, we will design and
implement new techniques to overcome these attacks.

References

1. Firefox web browser, http://www.mozilla.com/en-US/firefox/firefox.html
2. Qhaoser Hq, an open-source attack toolkit for Facebook.

http://userscripts.org/scripts/review/140659
3. Chrome browser features, https://www.google.com/intl/en/chrome/browser/features.html
4. A. Barth, C. Jackson, C. Reis, and T. G. C. Team. The security architecture of the chromi-

um browser. In Stanford Technical Report, 2008.
5. A. Barth. More secure extensions, by default. http://blog.chromium.org/2012/02/ more-

secure-extensions-by-default.html, February 2012.
6. N. Carlini, A. P. Felt, and D. Wagner. An Evaluation of the Google Chrome Extension se-

curity architecture. In Proc. of the 21st USENIX Security Symposium, 2012.
7. L. Liu, X. Zhang, G. Yan, and S. Chen. Chrome Extensions: Threat Analysis and Coun-

termeasures. In Network and Distributed System Security Symposium (NDSS), 2012.
8. V. Djeric and A. Goel. Securing script-based extensibility in web browsers. In Proc. of the

19th USENIX Security Symposium, 2010.
9. Jetpack, https://jetpack.mozillalabs.com/

10. A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protecting browsers from extension vul-
nerabilities. In Proc. of Network and Distributed System Security Symposium (NDSS),
2010.

11. A. P. Felt, K. Greenwood, and D. Wagner. The Effectiveness of Application Permissions.
In USENIX Conference on Web Application Development (WebApps), 2011.

12. Chrome extensions flaw allows password theft.
http://www.pcpro.co.uk/news/security/359362/chrome-extensions-flaw-allows-password-
theft

13. Chromium blog. A year of extensions. http://blog.chromium.org/2010/12/year-of-
extensions.html

14. C. Wuest and E. Florio. Firefox and Malware: When Browsers At-
tack.http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepap
ers/firefox_and_malware.pdf, 2009

15. F. Assolini. Think twice before installing Chrome extensions.
http://www.securelist.com/en/blog/208193414/Think_twice_before_installing_Chrome_ex
tensions

16. M. Dhawan and V. Ganapathy. Analyzing information flow in JavaScript-based browser
extensions. In Proc. of Annual Computer Security Applications Conference, 2009.

17. Rogue Chrome Extension racks up Facebook “likes” for online bandits.
http://www.pcworld.com/article/2028614/rogue-chrome-extension-racks-up-facebook-
likes-for-online-bandits.html

18. Health information privacy, http://www.hhs.gov/ocr/privacy/
19. Chesapeake irb, http://chesapeakeirb.com/.
20. R. S. Liverani and N. Freeman. Abusing Firefox extensions. In Defcon 17,

https://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-
roberto_liverani-nick_freeman-abusing_firefox.pdf , 2009.

21. R. Karim, M. Dhawan, V. Ganapathy, and C. Shan. An Analysis of the Mozilla Jetpack
Extension Framework. In Proc. of the 26th European Conference on Object Oriented Pro-
gramming(ECOOP),2012

22. S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett. Vex: Vetting browser exten-
sions for security vulnerabilities. In Proc. of the 19th USENIX Security Symposium, 2010.

http://www.mozilla.com/en-US/firefox/firefox.html
http://userscripts.org/scripts/review/140659
https://www.google.com/intl/en/chrome/browser/features.html
http://blog.chromium.org/2012/02/
https://jetpack.mozillalabs.com/
http://www.pcpro.co.uk/news/security/359362/chrome-extensions-flaw-allows-password
http://blog.chromium.org/2010/12/year-of
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepap
http://www.securelist.com/en/blog/208193414/Think_twice_before_installing_Chrome_ex
http://www.pcworld.com/article/2028614/rogue-chrome-extension-racks-up-facebook
http://www.hhs.gov/ocr/privacy/
http://chesapeakeirb.com/
https://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17

23. S. Guarnieri and B. Livshits. GATEKEEPER: mostly static enforcement of security and
reliability policies for JavaScript code. In Proc. of the 18th conference on USENIX Securi-
ty Symposium, 2009.

24. D.M. Martin Jr., R.M. Smith, M. Brittain, I. Fetch, H. Wu. The privacy practices of web
browser extensions. Communications of the ACM, 2001.

25. Facebook scammers host Trojan horse extensions on the Chrome web store.
http://www.pcworld.com/article/252533/facebook_scammers_host_trojan_horse_extensio
ns_on_the_chrome_web_store.html

26. K. Kotowicz and K. Osborn. Advanced Chrome extension exploitation leveraging
API powers for better evil. Black Hat, USA, 2012

Appendix A: Security model of Chrome extension

a. Chrome extension architecture

Chrome uses a multi-process architecture, where the browser core process runs in the
privileged mode to access system resources and performs I/O tasks and the renderer
process is responsible for displaying web content. Figure 3 sketches the extension in
the Chrome multi-process architecture. The single instance of the browser core pro-
cess handles the browser UI and manages all tab and plugin processes, while each
renderer process corresponds to a single tab in the browser and runs in a sandboxed
environment. To perform any task that needs additional privileges, the renderer pro-
cess simply sends messages to the browser core process via IPC.

Fig. 3. Chrome multi-process architecture

http://www.pcworld.com/article/252533/facebook_scammers_host_trojan_horse_extensio

Chrome also relies on various extensions to extend its functionality. Chrome exten-
sion consists of Content Scripts and extension core components. Figure 4 shows an
example. A Content Script is a piece of JavaScript code that can be injected into a
web page before/after the page is loaded. It is executed in the same process of the tab
but in its separate JavaScript engine (called isolated world). Content Scripts cannot
access any objects except for the DOM tree of the web page and cannot use any
Chrome extension APIs. To communicate with the extension core or Content Scripts
across tabs, a Content Script relies on the message passing mechanism of Chrome’s
inter-process communication (IPC). The extension core contains background web
pages and their associated JavaScript code, and it runs in a separate sandboxed ren-
derer process and has no privileges to access system resources or perform I/O. The
message passing mechanism is also needed by the extension core to dispatch I/O tasks
to the browser core process. Optionally, an extension can have binary code such as
NPAPI plugins, which have the same set of privileges as the browser. Note that bina-
ry plugins are native executable and not protected by the Chrome extension security
framework so we do not include these in our research.

Fig. 4. Chrome Extension Security Architecture

b. Security model of chrome extension

The goal of Chrome extension security architecture is not to defend the browser pro-
cess against malicious extensions but to protect benign-but-buggy extensions from
being compromised. The most common attack against Chrome extensions is through
malicious JavaScript codes that are either bundled with web pages or fetched from the
network. Thus the security model is an effort to defeat attacks launched from mali-
cious web pages that target vulnerabilities of buggy extensions. To minimize the po-
tential damages caused to the browser process if the extension is exploited, Chrome
also uses a multi-component architecture with fine-grained privilege separation strate-
gies.

The security features of Chrome extension model can be summarized as four secu-
rity mechanisms, and each one further separates privileges that are already refined by
the previous mechanism.

1. Permissions. The capability of Chrome extension is bounded to its granted per-
missions. A Chrome browser defines a comprehensive list of permissions that gov-
ern access control to Chrome extension APIs and web contents. Each extension is
required to declare the permissions it requires in a manifest.json file, as part of the

extension package. The rule of thumb recommended by Google is to request as
least permissions as possible. As a security countermeasure to encourage develop-
ers to have their extensions scrutinized by the Chrome web store, from Chrome
version 21 Google disabled the “Easy install” feature that allows automatic instal-
lation of extensions from unknown sources downloaded via a hyperlink.

2. Privilege separation between extension components. Different sets of privileges
are assigned to the two types of extension components: the Content Script and the
extension core. By design, these two components are isolated from each other and
are running in separate processes. The Content Script can directly interact with the
web page it was injected to, but it cannot use extension APIs to access browser us-
er data. The extension core obtains all privileges requested by extensions but it has
to rely on the Content Script to gain accesses to web contents. The communications
between the Content Script and the extension core are through exchanging messag-
es over an authenticated IPC channel. The purpose of this privilege separation de-
sign is to protect the extension core from attackers in case that the Content Script
has been compromised by a malicious web site. Because of the low privilege as-
signed to the Content Script and the complications to extend attacks over IPC,
damages to the extension core are usually controllable.

3. Isolated runtime environments between the Content Script and associated
web page’s JavaScript code. Although the Content Script is executed in the same
renderer process as the web page and shares DOM objects with the web page’s Ja-
vaScript, it cannot exchange pointers with JavaScript codes. This is because the
Content Script is executed in a separate JavaScript engine (i.e., isolated world),
thus it has its own heap and a separate copy of DOM objects. Consequently, it
makes object tempering of Content Scripts more difficult.

4. Content Security Policy (CSP) for extensions. CSP is a declarative policy that
allows web application developers to inform clients what types of scripts can run
on its web page. CSP is introduced by Chrome to mitigate cross-site scripting at-
tacks, because the execution of scripts can be blocked if a violation is detected. By
default, CSP disables eval and related functions, and it also disables inline scripts.
Only scripts and object resources from the extension’s package can be loaded.
This will ensure that the extension will only execute user-approved code, not the
malicious code redirected by some network attackers. The default policy can be re-
laxed to a limited extent by whitelisting secure origins if a user has a need for ex-
ternal JavaScript or object resources. CSP can also restrict the use of cross-origin
HttpRequest, and iframes.

Appendix B: List of extension APIs that access browser user data

The data in the fourth column of the table 3 are required to be properly processed
before they enter the isolated world of the Content Script.

Table 3. List of Extension APIs that access browser user data

Extension API
name

Meth-
ods/Property

Return Value
(property/type) Taint source

Bookmarks

get
getChidlren
getRecent
getTree

getSubtree

Bookmark-
TreeNode url, title

contentSettings
get

getResourceI-
dentifier

ResourceIdenti-
fier Id

Cookies

get
getAll

getAllCook-
ieStore

Cookie value, domain, path,
storied

History search
getVisit

HistoryItem
VistItem

url, title,
lastVistTime

pageCapture saveAsMHTML MHTML details(object)

Permissions getAll
contains

Permissions
Boolean permissions, origins

pushMessage getChannelId ChannelIdResult channelId

Storage get
getBytesInUse

Sync
Local Items(object)

Tabs
get

getCurrent
query

Tab url, title

Topsites Get MostVistedUrl url, title

Windows

get
getCurrent

getLastFocused
getAll

Window Tabs

Appendix C: List of malicious extensions that hijack Social Media
accounts

• Adobe Flash Player 12.1.102.55: The extension disguises itself as the legitimate
Adobe Flash Player extension. After installation it gains complete control of vic-
tim’s Facebook profile and can spread spam messages on Facebook, “like” pages
on behalf of victim, etc. The rogue extension spread quickly in Brazil and other
Spanish speaking countries before it was detected by Kaspersky Lab researchers
[15] and removed from official Chrome Web Store in March 2012.

• Business Adobe Flash Player: A variant of abovementioned Adobe Flash Player
12.1.102.55. Attackers keep uploading new variants of Facebook hijacking ex-
tensions to Chrome Web Store This extension was removed from Chrome Web
Store shortly after it was reported by Bitdefender researchers in February 2013.

• Chrome Guncellemesi: Victims are enticed to click on a malicious link embed-
ded in the scam email or messages. The link redirects Facebook users to a web
page in Turkish that urges them to download a bogus Chrome update and install
the “Chrome Guncellemesi”(Chrome Update) extension. The malicious extension
then can collect cookies or interacts with Facebook without users’ consent.

• Facebook Black: Facebook users are tricked to open “Facebook Black” landing
page, where they are prompted to download the extension. After installation the
Facebook Black extension fetches two JavaScript files. One spreads the scam by
creating an empty Facebook page on victim’s account with an iFrame that redi-
rects users to Facebook Black landing page. The other one is used to present vic-
tims a set of survey scams for monetary purposes.

Appendix D: 20 popular extensions in our study

Table 4. Experiment results of 20 popular extensions

Name Description Functioning
in iObfus

Has
Cross-origin

XHRs

Leakage
mitigated

AdBlock
2.5.63 Blocks ads all over the web ü û −

Google Mail
Checker 4.4.0

Displays the number of unread
messages in your Google Mail
inbox.

ü ü −

Stylish 1.1
A user styles manager that lets
you easily install themes and
skins for Google, Facebook, etc.

ü ü −

FastestChrome
Browse Faster
7.1.7

Get quick definitions, auto-load
next pages, search faster, and
more

ü û −

Bookmark
Sentry 1.7.13

A bookmark scanner that
checks for duplicate and bad
links.

û − −

Google Voice
2.4.1

Make calls, send SMS, preview
Inbox, and get notified of new
messages.

ü û −

Webpage &
WebCam
Screenshot 8.0

Capture whole page, save PNG,
edit, annotate and share to your
favorite social network

ü û −

Google Trans- Translates entire webpages into ü ü ü

late 1.2.4 a language of your choice with
one click.

Turn Off the
Lights 2.2

The entire page will be fading
to dark, so you can watch the
video as if you were in the
cinema

ü û −

SpellChecker
2.76

Prevent spelling, grammar and
punctuation mistakes when you
write emails and post to social
media sites

ü ü ü

Xmarks
Bookmark
Sync 1.0.24

Backup and sync your book-
marks, passwords and open tabs
across computers and browsers.

û − −

SmartVideo
for YouTube
0.9926

Provides 'Smart Buffer' for slow
connections; auto loop; buffer
preferences; quality selection
and more

ü û −

WOT 1.4.12
Helps you find trustworthy
websites based on millions of
users’ experiences

ü ü −

Google
Chrome to
Phone Exten-
sion 2.3.1

Enables you to send links and
other information from Chrome
to your Android device

ü ü −

PanicButton
0.14.2.2

Hide all your tabs at once with
one single button and restore
them later

û − −

Google Dic-
tionary 3.0.17

View definitions easily as you
browse the web.

ü ü ü
Amazon 1
Button App
for Chrome
3.2013.530.0

Get special offers and features
from Amazon

ü û −

Google Quick
Scroll 2

Let you jump directly to the
relevant bits of a Google search
result

ü ü ü

Similar Sites
Pro 3

Instant access to the best sites
related to the one you are
browsing

ü ü −

Fabulous 27.2
Customize your Facebook with
this free app. Block ads, change
colors, zoom photos and more

ü ü −

