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Abstract— We present a new approach to integrated task
and motion planning (ITMP) for robots performing mobile
manipulation. In our approach, the user writes a high-level
specification that captures partial knowledge about a mobile
manipulation setting. In particular, this specification includes
a plan outline that syntactically defines a space of plausible
integrated plans, a set of logical requirements that the generated
plan must satisfy, and a description of the physical space that
the robot manipulates. A synthesis algorithm is now used to
search for an integrated plan that falls within the space defined
by the plan outline, and also satisfies all requirements.

Our synthesis algorithm complements continuous motion
planning algorithms with calls to a Satisfiability Modulo The-
ories (SMT) solver. From the scene description, a motion
planning algorithm is used to construct a placement graph,
an abstraction of a manipulation graph whose paths represent
feasible, low-level motion plans. An SMT-solver is now used
to symbolically explore the space of all integrated plans that
correspond to paths in the placement graph, and also satisfy the
constraints demanded by the plan outline and the requirements.

Our approach is implemented in a system called RO-
BOSYNTH. We have evaluated ROBOSYNTH on a generalization
of an ITMP problem investigated in prior work. The experi-
ments demonstrate that our method is capable of generating
integrated plans for a number of interesting variations on the
problem.

I. INTRODUCTION

Integrated task and motion planning (ITMP) [1]–[4] is a
challenging class of planning problems that involve complex
combinations of high-level task planning and low-level
motion planning. In this paper, we present a new approach—
embodied in a system called ROBOSYNTH—to ITMP.

In the version of ITMP considered here, the task planning
level is discrete and requires combinatorial exploration of the
space of possible integrated plans, while the motion planning
level is responsible for finding paths in continuous spaces.
The task level planner has to search a space that is exponential
in the number of actions required to achieve a goal, while
the continuous planning problem is PSPACE-complete in
the degrees of freedom of the robot [5]. Unsurprisingly, the
seamless integration of these two levels is difficult. A strictly
hierarchical approach where the task planner operates on an
abstraction and passes the solution to a continuous motion
planner does not always work: it either sacrifices completeness
or requires extensive backtracking, which can be highly time-
consuming. While we do not solve the above problem in its
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entirety, we have a minimal framework in place that enables
us to demonstrate our approach.

Our approach to solving the problem is based on two key
ideas: (1) we request a limited amount of specification from
the user of our system; and (2) we use a Satisfiability Modulo
Theories (SMT) solver as a complement to continuous motion
planning algorithms. The first idea utilizes the fact while
planning the actions of a robot, the human programmer usually
has a partial picture of what an acceptable plan looks like.
By letting the programmer specify this high-level knowledge
through an intuitive interface, we can prevent the planning
algorithm from searching through plans that are obviously
unacceptable.

As for the latter idea, SMT-solvers [6]–[8] are fully
automatic, highly engineered satisfiability checkers for logical
formulas in quantifier-free first-order theories. Over the last
decade, these solvers have emerged as a core technology
in many areas that demand analysis of large, discrete state
spaces [6], [9]. This is because large, even infinite, sets
of system states can be compactly represented as formulas
in first-order logic. This allows us to frame problems of
state space search using a small number of calls to an SMT-
solver. In practice, this formulation often leads to dramatic
improvements in the scalability of state space analysis. In
the present paper, uses an SMT-solver to efficiently explore
the large combinatorial space of integrated plans. As far
as we know, we are the first to explore the application of
SMT-solvers in ITMP.

In more detail, the inputs to our approach (and the
ROBOSYNTH system) include: (1) a scene description that
specifies the robot and the physical workspace in which it
operates; (2) a plan outline that describes high-level partial
knowledge that the programmer has about plausible plans,
and syntactically defines a space of integrated plans that we
search; and (3) a set of logical, semantic requirements that
the generated plan must satisfy.

To get a feel for what these inputs represent, consider the
benchmark domain on which we have evaluated ROBOSYNTH,
namely a simple Kitchen environment. The scene description
specifies the layout of the kitchen, the locations of obstacles,
the kinds of dishes that are available, the initial locations
of dishes and the robot, and demarcates regions such as the
food preparation areas, the countertop, and the dishwasher.
It also specifies stable locations for the robot and the objects
including their grasps. Although this latter information is
currently supplied manually, this is not intrinsic to our
approach, as much of it can be automatically determined
(see Sec. VI). The plan outline allows the programmer to



supply information that is known to him/her while letting
the tool determine details that the programmer does not care
about or simply does not know, but can be inferred from
given information. For example, the programmer may know
that larger items must be loaded before smaller ones in the
dishwasher. What he or she probably would not know are the
locations of dirty dishes or exactly where they should go in
the dishwasher or the paths the robot should take; these are
the plan unknowns. Finally, the logical requirements include
goals like “All dirty dishes are to be cleaned and put away
in storage” and constraints like “The path taken by the robot
from the dishwasher to the storage area must avoid the food
preparation area and be less than 10m long”. The plan outline
and requirements are written as a C-like “program” where
the objects that the robot moves around (for example, cups
and dishes) are declared as symbolic variables, and actions
that the robot performs (for example, moving and picking up
an object) appear as function calls.

From the scene description, ROBOSYNTH first constructs
a finite graph with nodes that correspond to the pre-defined
configurations of the robot and possible locations for objects.
Edges in the graph represent robot actions that are feasible
between the given configurations and to and from the
locations. We call this graph a placement graph. Note that
the placement graph is computed once per scene and is
common to all plan outlines in that scene (Sec. VI briefly
discusses a more dynamic approach). Next, using program
analysis techniques, ROBOSYNTH automatically computes
a logical formula that represents the set of all integrated
plans that follow the structure of the plan outline and satisfy
the requirements, and are also consistent with paths in the
placement graph. The problem of finding a plan that meets all
the criteria now resolves to computing a satisfying solution
of this constraint. This is done using Z3 [7], a state-of-the-art
SMT-solver.

We have evaluated ROBOSYNTH on a version of the
ITMP problem that generalizes prior work by Kaelbling and
Lozano-Pérez [1]. This problem involves load/unloading a
dishwasher and putting away the dishes in a kitchen using a
PR2 robot. Our work extends earlier approaches such as [1]
and ROBOSYNTH proves to be able to solve this problem
effectively under a rich variety of requirements and changes
to the physical space. Numerous extensions of our work can
be considered, and these are left for future work.

The main contributions of this paper are as follows: (1) We
apply SMT solvers to the problem of carrying out integrated
planning in the presence of constraints. (2) To integrate
the discrete and continouous levels, we introduce a novel
abstraction of manipulation graphs we call placement graphs.
(3) Finally, in order to control the search space we provide an
intuitive programming interface in which the programmer can
provide known control information. In our implementation of
the above ideas, we have made some basic choices in order
to demonstrate the concept. Several of these choices could
be improved and we address some of these in Sec. VI.

The rest of the paper is organized as follows. Sec. II
presents related work. In Sec. III, we introduce our benchmark

example and use it to illustrate the inputs and outputs of
our approach. In Sec. IV, we describe the internals of the
ROBOSYNTH system. Sec. V presents our experimental results.
We conclude with some discussion in Sec. VI.

II. RELATED WORK

A. Program Synthesis

Our method is influenced by prior work in the programming
language community on template-based program synthe-
sis [10], [11]. Just as our approach starts with a plan outline
and a logical requirement, template-based program synthesis
starts with a program template and a logical requirement. The
goal in both cases is to complete the template/outline using
solvers for automated reasoning. The difference between the
two settings is that template-based synthesis has so far been
motivated by pure software applications. This means that
satisfying the specified requirement is all that is needed. In
contrast, because our application domain is robotics, our
plans must also be realizable in the physical world. This
additional requirement significantly increases the complexity
of the synthesis problem.

B. Task Planning

Automated planners have a long history in AI [12].
Prominent among these are heuristic planners such as FF
[13]. Such planners have traditionally been employed on
problems in which there are a number of ways of achieving a
given goal and therefore require combinatorial search [14]. A
number of approaches to ITMP make use of such automated
planners in combination with motion planning [3], [15], [16]
and this is discussed further in the next subsection. Automated
planners that rely on Boolean satisfiability solvers [17], [18]
are known as SAT planners. A SAT planner constructs a
Boolean formula that represents the existence of a plan of
a given length. As in our case, satisfiability of the formula
means that a plan exists, and the steps of the plan can be
extracted from the model returned by the solver. A significant
difference between our work and that of automated planning
in general is that our inputs include a plan outline containing
programmer supplied partial information. This significantly
decreases the space of possible plans that must be searched.

C. Integrated Task and Motion Planning

In recent years, several approaches have been proposed to
integrate the motion planning level with task planning. In [2]
a form of SAT planning is used that incorporates conflict-
directed learning when an action fails at the motion planning
level. Actual motion planning information is however not
exposed. In contrast, we expose motion planning information
to the SMT solver, so information about why a particular
solution fails is available and the same motion planning query
need not be re-attempted. ASYMOV [3] partially ameliorates
the graph explosion problem by introducing a separate graph
for each object and robot, which is used for fast validation
of motion plans. Instead of a heuristic planner, [4] uses a
Hierarchical Task Network (HTN) planner [12]. In addition
to a planning problem, HTN planning takes as input a schema



for how to recursively decompose complex tasks, terminating
in motion primitives at the lowest level. Schemas can be
viewed as grammars defining a language of legal plans. Thus
HTN planners share with our approach the input of domain
knowledge. However, they require a level of domain expertise
in order to correctly, completely, and efficiently codify the
space of possible plans. In contrast, our approach accepts
partial user knowledge sufficient to solve the given problem,
expressed in a programming language format. Feedback from
the tool tells the programmer whether or not the plan outline
they provided can solve the given problem.

A different form of hierarchy is used in Hierarchical
Planning in the Now (HPN) [1] which comes the closest to
ours in scope and intent. In HPN, actions are represented at
varying levels of abstraction, obtained by postponing different
preconditions of an action. While HPN is very powerful (and
has been extended to belief space planning [19]), it rests on
the assumption that an action can always be reversed. This is
not always true. For example, an egg once fried, cannot be
unfried, or if a robot is preparing meals in a restaurant, there
may be several dishes that need to be ready to go at the same
time. Even if actions can be reversed, reversing too many
actions, although theoretically possible, may be practically
infeasible. For example, if the robot runs on a battery the
total time allowed for carrying out a plan may be limited.

Although our work tackles a similar problem to HPN,
the two frameworks are different in design and have their
respective advantages and disadvantages. Distinguishing char-
acteristics of our work which also underline the differences
with HPN are the following:

• It is not necessary for the user to designate a specific
“safe region” for where to place removed obstructions.

• The ROBOSYNTH language allows a programmer to
place constraints on the paths that are returned by the
solver.

• With HPN, it is quite possible that the robot may have
to (repeatedly) move just placed items to get them out
of the way. As we will show, our plan outline language
allows the programmer to write a simple loop which
forces ROBOSYNTH to find an efficient solution if one
exists, eliminating such unproductive actions.

• Because HPN relies on re-planning, it requires run-time
sensing even when the environment does not change. We
do not require run-time sensing, and have left reactivity
to future work.

In [16] a different approach is taken to the problem of
interfacing a discrete task planner with the underlying
continuous world by Skolemizing the continuous variables.
While avoiding unnecessary discretization, the approach
shares some of the drawbacks of HPN, particularly the
possibility of the robot having to undo a lot of work in
the real world if a particular sub-plan fails. The way in which
the Skolem terms are interpreted at the motion level is also
hard-coded for each type of action and does not have the
same generality as pre- and post- condition definitions of
actions. In contrast, both the built-in and domain-specific

Fig. 1. Architecture of ROBOSYNTH

actions in ROBOSYNTH are defined in the same way using
pre- and post- conditions.

[20] takes a different approach to the ITMP by verifying
a task plan as it is being generated. Their goal is to eliminate
a task plan that is infeasible at the motion level as early as
possible. They do this by introducing a number of constraints
on the motion level expressed over the motion level unknowns.
After every action generated by the task planner, the bounds
on each unknown are refined (reduced) by using a linear
programming solver. A choice of a variable is then propagated
reducing the variable ranges further. An empty range indicates
an unsatisfiable task plan. While this and other extensions
(such as reactivity) could be incorporated, they are outside
the scope of this paper, which is primarily focused on our
use of automated constraint solvers for solving the ITMP.

D. Controller Synthesis

Another major research effort has been the automatic
synthesis of both reactive [21], [22] and non-reactive con-
trollers [23] and plans [24] for robots from temporal logic
specifications. Tools such as LTLMOP go beyond what we do,
in that they accept structured temporal specifications written
in “natural language” style and handle reactive robotics. The
primary difference between these approaches and ours is that
we use a symbolic method, where a space consisting of a
vast number of plausible integrated plans can be represented
concisely in the form a logical constraint, and a solver is
invoked to perform operations on such constraints using a
small number of calls. Such symbolic approaches to analysis
of large combinatorial spaces can be often dramatically more
scalable than methods relying on explicit enumeration of the
space, even when that space is compactly represented using,
for example, BDDs. An extension of our approach to reactive
robotics is left for future work.

III. SYSTEM OVERVIEW AND MOTIVATING EXAMPLE

In this section, we describe the inputs and outputs of the
ROBOSYNTH approach using an illustrative example. The
internals of the approach are described in Sec. IV.

As outlined in the Introduction, the inputs required by
ROBOSYNTH are (1) a scene description; (2) a plan outline;
and (3) a set of logical requirements. We will now illustrate
each of these pieces by means of our running example.



Fig. 2. Example kitchen domain (overhead view). Three alternative paths
between Dishwasher and Storage are shown

A. Example: Planning for a robot in a kitchen

Consider a household robot operating in a kitchen environ-
ment. Kaelbling and Lozano-Perez [1] take as an example
the problem of planning for a robot to move a given item
from its current location, place it in the Dishwasher, run the
Dishwasher, remove the item and place it in Storage. We
show how to describe in ROBOSYNTH a more complex class
of problems in which:
• There is a set of dirty dishes, which can be located

anywhere in the kitchen, to be moved to the dishwasher.
By “anywhere” we mean that although in any particular
problem input the dishes are in specific locations, the
plan outline is agnostic as to what those specific locations
are.

• In the Dishwasher, larger items such as plates can block
access to smaller items such as cups. (Information about
what kinds of objects in which locations can block access
to other locations is input as part of the process of
creating the scene description).

• There are constraints on the paths the robot takes. For
instance, they may be limited in length or be required
to avoid or pass through certain regions.

Input 1. Scene Description: The scene description is
provided in two files, called the domain and the scene. The
domain represents that information which does not vary across
different instances of a given problem, such as immovable
obstacles, layout, stable locations for the robot and objects.
The domain used in the present example is shown in Fig. 2.
At the bottom of the figure is the Storage area; At the top
of the figure are the Countertop and Dishwasher areas in
that order. The green square in the middle of the figure is an
“island” that the robot must not collide with. Right of that is
the food preparation area. The scene provides information that
can vary across different instances, in our case it provides
the number of different cups, plates, etc. and their initial
locations.

Input 2. Plan outline: The plan outline is a program
written by the programmer that captures high-level, partial
knowledge about what successful integrated plans look like.
In our kitchen example, the plan outline captures the fact
that in any reasonable plan, the robot would have to pick up
a dish (assume this is done by an action pickup) before it

1. #import KitchenDomain
2. #import KitchenScene
3.
4. Path path, path1, path2, pathR;
5. Region tempR, somewhere; Location loc1;
6.
7. void main()
8. { for o in! DIRTY do
9.. { findPlace(?loc1,Dishwasher);
10. pickup(o,?somewhere,?path1);
11. place(o,?loc1,?path2);
12. }
13. run(Diswasher);
14. for o in DIRTY do
15. ... //move dishes from Dishwasher to Storage
16.}
17.@goal: clean(DIRTY) & contains(Storage,DIRTY)
18.@invariant (||?path|| <= 10) &
19. ~crosses(?path,FoodPrep))

Fig. 3. Plan outline for the Dirty Dishes problem

attempts to place it anywhere. While this ordering looks
“obvious”, it nonetheless allows the SMT solver to prune out
a large number of meaningless orderings of robot actions. In
general, we view the plan outline as a syntactic, imperative
definition of a large space of integrated plans. The goal of
ROBOSYNTH is to search this space and come up with a
plan that satisfies the requirements. ROBOSYNTH supplies
the programmer with a C-like language in which to write
plan outlines and requirements.

Fig. 3 shows the essential parts of a plan outline for the
example problem. Lines 1 and 3 import the domain and
scene information respectively. Lines 4 and 5 declare a few
variables; these are the unknowns to which ROBOSYNTH
will assign values. The types of these variables are Path,
Location, and Region, corresponding respectively to the
types of robot paths, locations of objects, and sets of possible
object locations. Lines 8-16 constitute the body of the main
procedure. This code specifies the high-level knowledge that
in any reasonable plan, the robot must perform the following
actions in sequence:

1) Repeatedly carry out the following steps:
a) Locate a place ?loc1 in the dishwasher for

the object through an action findPlace. As
the location is unknown to the programmer, the
variable for the place has a “?”. The action
findPlace, along with actions pickup and
place for picking up and placing objects, are
predefined in the language.

b) Follow an (as yet unknown) path ?path1 from
the robot’s current location to an (unknown) area
?somewhere and pickup an (unknown) dirty
item ?o located there.

c) Follow the unknown path ?path2 to the dish-
washer and place the item in there.

2) When all the dirty items are loaded, run the dish-
washer.

3) Unload the dishwasher and place all the items in storage.
The code for this is similar to the first for-loop.

Input 3. Requirements : Requirements come in the form
of a goal for the planner, and invariants that must hold



along the planned paths. The goal (line 17) states that all
the dirty dishes defined in the scene (contained in the set
DIRTY) must be clean and put away in Storage. Examples
of invariants are: health and safety regulations may require
that paths should not cross, or that paths between certain
regions should not come within a certain distance of each
other; power limitations may limit paths to a certain length;
protocols for clearing a building may require that paths must
visit certain regions in a particular order, and so on. The
invariants in our example are that: (1) the total length of
any path is constrained to be under 10 units; and at no point
must the robot go through the food preparation area. The
specification of these properties uses functions like ‖‖ for
path length, and predicates like crosses (crosses(p,z)
is true when p is a path crossing a zone z) and the value of
these properties is obtained from the placement graph. We use
an SMT solver rather than just a SAT solver because of the
presence of linear arithmetic and functions in the invariant.

Events: We could enrich the above requirements and
the plan outline further. In particular, we offer a special
syntax for specifying exceptional scenarios that prevent the
straightforward execution of a robot action. For example,
there may be items obstructing the target items, and these
must first be moved into some safe place that is out of the
way. The natural way to handle such “exceptions” is to have
an “event handler” fired before and after each action. The
programmer can set up such event handlers to carry out
whatever corrective action is needed. In ROBOSYNTH, code
for these event handlers is written as follows:
20.@pre-handler: pickup(obj,rgn,_):
21. while (obstructs(?obst,obj))
22. { pickup(?obst,rgn,?pathR);
23. place(?obst,?tempR,?pathR);
24. }

This code, which defines the pre-event handler for the pickup
action, moves any obstacles out of the way to an unknown safe
region (?tempR) that ROBOSYNTH determines automatically.

B. Plan Synthesis

The inputs described above, namely the scene description,
plan outline, and requirements, are fed to ROBOSYNTH as
shown in Fig. 1. ROBOSYNTH computes the placement graph
and then uses that to compute values for the unknown
variables in the plan outline (for example, ?loc1 and
?path1) such that the requirements are satisfied. If there
is no plan that follows the plan outline and meets the
requirements, ROBOSYNTH will indicate that no solution
exists. The placement graph is the connection between the
discrete solver and the underlying motion planning, and its
construction is discussed in Section IV-A. Note that once
the unknowns are resolved in our system, the plan outline
can be instantiated and the corresponding sequence of paths
can be extracted from the placement graph. The result is a
deterministic sequence of instructions for the robot, i.e., a
complete plan. For example, Fig. 2 shows some sample paths
that are found for the present problem when the constraints are
varied. More details on the plans computed by ROBOSYNTH
on our current example are presented in Sec. V.

Finally, we wish to draw the reader’s attention to the
following in the plan outline for the example: (1) Obstructing
items may be blocking not just the target items but also
each other. Since the programmer does not know which
obstructions are not themselves blocked, a feasible order in
which to remove them is left for ROBOSYNTH to determine,
indicated by the non-deterministic choice of obstruction
(?obst) in the while loop of the event handler (Lines 21-24).
(2) Recall there are physical constraints on the order in which
items can be placed in the dishwasher, with plates blocking
cups. By virtue of the fact that the plan outline only permits
each item to be picked up and placed once (lines 10,11),
ROBOSYNTH is forced to find an efficient way of moving
the dishes (cups then plates).

IV. INTERNALS OF ROBOSYNTH

In this section, we describe the internals of ROBOSYNTH.
We start by discussing the low level (box labeled “Motion
planner” in Fig. 1), which requires the use of a motion
planning algorithm. Next we describe the discrete level (box
“Constraint generator” in Fig. 1), which operates on a discrete
abstraction of the scene, and makes use of an SMT-solver.

A. Low-level Planning

The usual way of representing manipulation planning
problems is with a manipulation graph [25]. A node in a
manipulation graph represents a particular configuration of the
robot and all the movable items in the workspace and an edge
represents a physically allowable transition from one global
configuration to another. To facilitate integrated planning
for a mobile manipulator we will introduce a variant of the
manipulation graph called a placement graph. The vertices of
the placement graph are divided into so-called base points (b-
points) and stable points (s-points). The b-points correspond
to robot configurations that allow the robot to reach many
possible object locations without moving the base. The s-
points correspond to configurations of an object resting on a
support surface and the robot potentially holding that object
in a stable grasp. The s-points are defined for each kind of
object (cups, plates, etc.). Edges in the placement graph are
allowed among b-points and between b-point and s-points.
We define that an s-point i blocks an s-point j iff an object in
s-point i would collide with the robot or object along a path
from s-point j to its parent b-point. A sampling-based planner
is used to find a feasible path between j and its parent b-point.
The information required to compute b-points and s-points,
such as object location, robot location, and grasp is currently
manually identified in the scene description. In future much of
this information will be computed automatically and possibly
adaptively while the graph will be computed lazily [26], [27].
An example placement graph for the kitchen domain is shown
in Fig. 4. The b-point and s-point names begin with “b_” and
“s_”, respectively. Solid lines depict edges between b-points,
dashed lines depict edges between b-points and s-points, and
dotted arrows show which s-points are blocked by which
other s-points. The graph is constructed by reading in the
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Fig. 4. A section of the placement graph for the kitchen scene description

scene description which is why it appears as one of the inputs
to the Constraint Generator in Fig. 1

The primitives moveTo, pickup, and place that are used
in plan outlines specify locations in terms of regions (e.g.,
Dishwasher, Cooking) rather than specific configurations. The
placement graph is used by ROBOSYNTH to find feasible b-
points and s-points within these regions. As will be described
in more detail below, the SMT solver will automatically
compute all feasible paths in the placement graph that
correspond to collision-free paths in the continuous space and
that satisfy the plan outline. ROBOSYNTH internally keeps
track of where each object is at any stage of the plan and
when objects should be picked up or released.

B. The discrete level

The task at the discrete level of ROBOSYNTH is as follows:
find an assignment to the unknowns in the given plan outline
P such that by executing the integrated plan obtained by
replacing the unknowns in P with this assignment, from the
given initial scene, the requirements in the plan outline are
satisfied.

To achieve this, it is necessary to (a) have a clear meaning
or semantics for the plan outline and (b) given a plan
outline determine the required initial conditions. Both these
requirements are met by utilizing a style of program semantics
called weakest precondition semantics [28]1.

Now we briefly discuss what weakest preconditions mean
in our setting; for a general understanding of weakest
preconditions, see [30]. Suppose we are given a plan outline P
and a requirement g that must hold at the end of the integrated
plans in which we are interested (such requirements are goals
in the terminology of Sec. III — the notion can be generalized
in a standard way to invariants). Define a state s to be an
assignment of appropriately-typed values to the known and
unknown variables of P . Now note that a plan is nothing but
an instantiation of the variables of P with values from an
assignment s, written P [s]. Each action of P [s] effectively
updates the state it starts in (because robot actions change
the locations of objects), resulting in a final state when all
the steps have executed. The integrated plan is correct for

1A similar idea called goal regression was developed around the same
time in AI Planning by Waldinger [29]. We use the weakest precondition
approach because it is was developed specifically for programs.

a goal G if executing it leads to a final state in which G
holds. Then the weakest precondition of P with respect to G,
written wp(P,G), corresponds to the largest set of states {s}
for which the plan P [s] is correct. In most program analysis
settings and also in ROBOSYNTH, this weakest precondition
is represented as a (quantifier-free) first-order formula.

Space does not permit a complete exposition of how
wp(P, g) is determined, but to get a feel for what such a
condition looks like, consider the simplest example where P
is a single action, e.g.,

pickup(Cup1,Cooking,?path1);

and g is holding(Cup1) (“Robot is holding Cup1”). Then
wp(P, g) is the set of states captured by the following
condition:

∃bpt· loc(Cup1) ∈ Cooking∧loc(Cup1) ∈ reachOf (bpt)

∧@o′ · blocks(loc(o′), loc(Cup1))∧path(path,CURR, bpt)

∧ @o′ · holding(o′).

Informally, this says that the cup Cup1 must be located
in the Cooking region, there must be a b-point bpt from
which the robot can access that location, which must not be
blocked by some other object o′, there is a path path in the
placement graph between the current b-point CURR and bpt,
and the robot is not currently holding anything. Note that the
precondition definition makes use of auxiliary functions and
predicates loc and holding which are computed from the
input scene description and reachOf , ∈, path, and blocks
which are answered by querying the placement graph. The
semantics of the other actions place, moveTo, etc. as well as
any domain-specific actions can be defined in a similar way.

The weakest precondition semantics gives rules by which
the weakest precondition can be calculated for a sequence of
statements, for an if-then-else statement and a while statement.
By following these rules, a constraint representing the weakest
precondition for the entire plan outline is automatically
calculated by the Constraint Generator of ROBOSYNTH
(Fig. 1).

Note that the weakest precondition is derived completely
independently of the initial state of the physical space (the
initial scene). Let the formula I capture constraints on the
variables of P that describe this initial scene. Then the formula
I ∧ wp(P, g) defines the largest set of valuations of the
unknowns of P such that the plans corresponding to these
valuations: (a) respect the initial conditions defined by the
scene description; and also (b) meet the goal. Our objective
of finding a satisfactory assignment to the unknowns in P
thus amounts to checking the satisfiability of this formula.

Recall that the satisfiability of a formula means there is a
set of assignments to each of the unknowns, called a model,
which makes the formula true. For example the formula
p ∧ x > 2 is satisfiable by a model M = [p 7→ true, x 7→ 3],
written as M � p ∧ x > 2. On the other hand, the formula
x > 2 ∧ ¬(x > 1) is not satisfiable (under the standard
interpretation of >). Satisfiability of quantifier-free formulas
can be determined automatically by the SMT solver which
returns a model in case the formula is satisfiable. The SMT



solver we use is Z3 [7]. If Z3 finds the formula satisfiable it
returns values for the unknowns.

V. RESULTS

A. Experimental Setup

The Constraint Generator (Fig. 1) was implemented in
F# and utilizes Z3 4.3 [7] as the SMT solver. The scenes
are based on CAD files imported into the MoveIt! [31]
manipulation planning library, and depicted in RViz [32]
for a simulated PR2. Individual motion plans were computed
using OMPL [33]. The plan output by the Plan Extractor is
fed to an interpreter which also makes calls on MoveIt!. All
experiments were carried out on Ubuntu Linux on a 3.1 GHz
machine with 4 GB of memory.

B. Qualitative Evaluation

We have discussed how to solve a more general problem
than the one in [1] not only by moving several dishes, but
more importantly by allowing the programmer to constrain
the solution returned by ROBOSYNTH at the motion planning
level, specifically the values returned for path, location, or
region unknowns. We illustrate the power of our approach by
offering some examples of how the programmer can use the
constraint mechanism to obtain paths that satisfy different
user-level requirements. Consider a very simple plan outline
in which the robot is asked to move from the Dishwasher to
the Storage to pickup a cup there, and a placement graph in
which there are several paths between the Dishwasher b-point
and the Storage b-point, corresponding to different paths in
the kitchen workspace, numbered 1 through 3 in Fig. 2. In the
complete absence of any constraints, the solver might return a
path in the placement graph which corresponds to path 1 (also
shown in red). In the presence of a safety requirement, this
path may be considered undesirable because it passes through
the food preparation area FoodPrep (shaded in Fig. 2). A
zone constraint ~crosses(?path1,FoodPrep) forces
ROBOSYNTH to find an alternative path, for example one that
goes around the Island (path 2 shown in blue). But such a
path might be considered too long if there are power or time
limitations on the robot. A stronger constraint that also adds
& ||path|| <= 10 ensures ROBOSYNTH returns path 3,
shown in green.

Another aspect of our plan outline language is that it
allows a degree of latitude to the programmer in how much
information can be omitted without paying an undue penalty
in plan synthesis time. Consider a simpler version of the
example problem in Section Sec. III in which all the DIRTY
dishes are on the Countertop, there are no other dishes
obstructing the DIRTY dishes to be moved nor are any of
the DIRTY dishes obstructing each other. Then the following
straight-line plan outline that moves each DIRTY dish in
order is perfectly fine:

findPlace(?loc1,Dishwasher);
pickup(Cup1,Countertop,?pathDC);
place(Cup1,?loc1,?pathDC);
findPlace(?loc2,Dishwasher);
pickup(Cup2,Countertop,?pathDC);
place(Cup2,?loc2,?pathDC);
...
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Fig. 5. Synthesis time with varying number of objects and locations. In two
cases, the SMT solver returned UNSAT because there was no assignment to
the unknowns that would allow the plan outline to fulfill the goal condition.
These points are denoted with a star.

From a task planning perspective, there is no actual planning
required here. ROBOSYNTH takes 37 seconds to find values for
?loc1, ?loc2, and ?pathDC, and return a plan for this
problem. If however, some DIRTY dishes may be obstructing
each other, then it is not clear exactly which order the cups
should be moved, and in that case a non-deterministic for
loop can be used (just as in lines 9 through 17 of Fig. 3 except
with Countertop in place of ?somewhere), in which the
exact item to be moved at each iteration is represented by
the loop variable o because it is unknown. This requires
more effort from ROBOSYNTH because it has to determine
the correct order in which to remove the dishes. However,
ROBOSYNTH still takes 39 seconds to return a plan for this
problem. We can go one step further. By making the outline
read exactly like the for loop of Fig. 3 this allows DIRTY
dishes to be located anywhere in the kitchen. ROBOSYNTH
still takes only 41 seconds to return a plan for this problem. Of
course, in the most general case, if the programmer supplies
nothing other than a goal and an unordered bunch of action
statements with unknowns, then the behavior devolves into
that of a SAT planner [17], [18]. But if the programmer
supplies at least the desired actions and the order, then as
can be seen from the results, we can do much better.

C. Quantitative Evaluation

The main body of the example plan outline in Fig. 3 was
run on a varying number of dirty dishes (number of items
in the set DIRTY) and a varying number of locations where
they may be placed. Fig. 5 shows that the time required by
the synthesis engine does not seem unreasonable given the
complexity of the problem. Fig. 6 shows the time required
to compute the low-level paths for the placement graph as a
function of the number of s-points (i.e., the number of possible
object locations). Although these results are encouraging,
further experimentation is needed to draw any definitive
conclusions about trends beyond this data.

VI. DISCUSSION

We have described a tool ROBOSYNTH for expressing
and solving problems in integrated task and motion planning
that arise with mobile manipulators, and have evaluated our
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Fig. 6. Computation time of placement graph.

tool on a benchmark problem (the Kitchen domain). Our
main contributions are a novel way of solving the ITMP
by transforming the problem into suitable input for an SMT
solver, a language for plan outlines allowing the programmer
to supply known plan information, and a novel abstraction
of the manipulation graphs we call placement graphs.

We are currently refining the language to allow greater
expressibility as well as investigating a tighter integration
between the motion and task planning levels in order to
provide better scalability. We will further reduce the human
input that is currently required by automatically determining
grasps and parent b-points given possible locations for the
robot and objects. The placement graph can be computed
lazily to avoid computing low-level paths that are never
considered by the task level planner. Finally, the placement
graph can be grown adaptively: Using constraint propagation
techniques [20], [34] it is possible to significantly reduce
the number of local paths that are generated. We are also
investigating the use of feedback from the motion planning
level to the solver to help guide its search.
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