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Abstract. We propose two new asynchronous algorithms for solvingriDisted

Constraint Satisfaction Problems (DisCSPs). The firstrilym, AFC-ng, is a
nogood-based version of Asynchronous Forward CheckingCjAFhe second
algorithm, Asynchronous Inter-Level Forward-Checking(RC), is based on
the AFC-ng algorithm and is performed on a pseudo-tree orglaf the con-

straint graph. AFC-ng and AILFC only need polynomial spAte.compare the
performance of these algorithms with other DisCSP algorition random DisC-
SPs in two kinds of communication environments: Fast conmaation and slow
communication. Our experiments show that AFC-ng improve&BC and that
AILFC outperforms all compared algorithms in communicatioad.

1 Introduction

Distributed Constraint Satisfaction ProblenBiCSP3 is a general framework for
solving distributed problems. DisCSPs have a wide rangepli@tions in multi-agent
coordination, such as distributed resource allocatiobleras [1], distributed schedul-
ing problems [2], sensor networks [3], and log-based reitiation [4].

DisCSPs are composed of agents, each holding its localreamsbetwork. Vari-
ables in different agents are connected by constraintsnt&gassign values to their
variables, attempting to generate a locally consistengaseent that is also consistent
with all constraints between agents [5, 6]. To achieve tbal,gagents check the value
assignments to their variables for local consistency ant@axge messages among them
to check consistency of their proposed assignments againstraints among variables
that belong to different agents.

Several efficient distributed algorithms for solving Dis&xShave been developed in
the last decade. Synchronous Backtrack (SBT) is the sitnpls€SP search algorithm
that performs assignments sequentially and synchronoOslly the agent holding a
Current Partial AssignmenCPA) performs an assignment or backtrack [7]. The first
complete asynchronous search algorithm for DisCSPs is siya¢hronous Backtrack-
ing ABT [8,5,9]. In ABT, agents perform assignments asyoalously and send out
messages to constraining agents, informing them aboutdlssignments. Due to the
asynchronous nature of agents operations, the globalressigt state at any particular
time during the run of asynchronous backtracking is in galneconsistent. Nogoods



are used to prevent the construction of globally inconststelutions. Another promis-
ing algorithm for DisCSPs is the Asynchronous Forward-®hear (AFC) algorithm
[10, 11]. This algorithm is based on the forward checking)(&lgorithm for CSPs, but
performs forward checking asynchronously.

In this paper, we present two new asynchronous algorithmsdiving DisCSPs.
The first one is based on Asynchronous Forward Checking (Adfd)uses nogood
recording. We call it Nogood-Based AFC ( AFC-ng). The secomnelis based on AFC-
ng and is performed on a pseudo-tree ordering of the consgeaph. We call it Asyn-
chronous Inter-Level Forward-Checking (AILFC).

This paper is organized as follows. Section 2 gives the sacgdackground on
DisCSPs. Sections 3 and 4 describe the algorithms AFC-ngAdieiC. Correctness
proofs are given in Section 5. Section 6 presents an expetahevaluation of our
proposed algorithms against three other well-known disted algorithms. Section 7
summarizes several related works and we conclude the pafection 8.

2 Background

2.1 Distributed Constraint Satisfaction Problems

The Distributed Constraint Satisfaction Probl®isCSPhas been formalized in [6] as
atuple(A4, X,D,C), whereA is a set of agent§A, ..., A;}, X is a set of variables
{z1, ..., x,}, Where each; is controlled by one agentid. D = {D(x1), ..., D(zy,)}
is a set of domains, whet®(z;) is a finite set of values to which variahle may be
assigned. Only the agent who is assigned a variable hasotontits value and knowl-
edge of its domainC is a set of binary constraints that specify the combinatiains
values allowed for the two variables they involve. A consira;; € C between two
variablesz; andz; is a subset of the Cartesian prodiitfz;) x D(z;).

For simplicity purposes, we consider a restricted versibDisCSP where each
agent owns exactly one variable. We identify the agent nuiwiih its variable index.
We also consider that the total order among agents that ishysa search algorithm is
the lexicographic ordering; < x; if i < j.

We assume that communication between two agents is notssdggeneralized
FIFO (aka causal order) channels [12]. Thus, all agents taiaittheir own counter,
calledCtr, and increment it whenever they change their value. Thentiialue of the
countertagseach generated assignment. #&gsignmentor an agent4; € A is a tuple
(x4, v;, Ctr;) wherev; is a value from the domain af; andC'tr; is the tag value.

A nogoodnyg for valuec for variablexy, is a clause of the form; = a A z; =
bA... = x # ¢, meaning that the assignment = c (i.e., the right hand side
Rhs(ng) of ng) is inconsistent with the assignments = a,z; = b,... (i.e., the
left hand sideLhs(ng) of ng). When every value of a variable, is ruled out by a
nogood, these nogoods are resolved computing a new nogaod g. Let z; be the
lowest variable in the left-hand side of the nogoods, with= b. Lhs(newNg) is
the conjunction of the left-hand sides of all nogoods exaegpt b. Rhs(newNg) is



Definition 1 (Current Partial Assignment (CPA)). Given an agentd; € A, a CPA is
an ordered set of assignmertsey, vy, Ctry), ..., (zi—1,vi-1,Ctri—1) |21 < ... <
Ti—1 < xl}

Definition 2 (AgentView). The agent view of an agent; € A stores the newest as-
signments received from agents that precddée the ordering<. It has a form similar
to aCPAand is initialized to the set of empty assignmérts;, 0, 0) | i # j}.

Definition 3 (Time-stamp). A time-stamp is an ordered list of counté(Stry, Ctra,
..., Ctry). When comparing (lexicographically) two time-stamps,ritest up to date
is one which is lexicographically greater, that is, the orithwgreatest value on the first
counter on which they differ, if any, otherwise the longest.o

2.2 Asynchronous Forward-Checking (AFC)

AFC is based on the Forward-Checking (FC) algorithm for G8R#& performs the for-
ward checking phase asynchronously [10, 11]. As in synaustvacktracking, agents
assign their variables only when they hold the current peassignment (CPA). The
CPA is a unique message that is passed from one agent to therneek the ordering.
The CPA carries the partial assignment that agents attesrgsttend into a complete
solution by assigning their variables on it. Forward chegks performed as follows.
Every agent that sends the CPA to its successor also senis aifghe CPA to all
agents whose assignments are not yet on the CPA. Agentetieved CPAs update
domains of their variables, removing all values that areoinflict with assignments on
the received CPA.

An agent that generates an empty domain as a result of a fdweteacking oper-
ation initiates a backtrack by sendiipt OK messages which carry the inconsistent
partial assignment which caused the empty donmldot.OK messages are sent to all
agents with unassigned variables on the (inconsistent) @R#en an agent holding a
Not.OK receives a CPA, it sends this CPA back in a backtrack mesgdigen multi-
ple agents reject a given assignment by sentliogOK messages, only the first agent
that will receive a CPA and is holding a releviat OK message will eventually back-
track. After receiving a new CPA, thdot OK message becomes obsolete when the
CPA it carries is no longer a subset of the received CPA.

An improved backtrack method for AFC was described in Sediiof [11]. Instead
of just sendingNot. OK messages to all agents unassigned in the CPA, the agent who
detects the empty domain can itself initiate a backtrackatmm. It sends a backtrack
message to the last agent assigned in the inconsistent C&ddition to theNot OK
messages to all agents not instantiated in the inconsiSfft The agent who receives
a backtrack message generates (if it is possible) a new C&Anwii dominate older
ones thanks to the time-stamp mechanism (see Definition 3).

3 Nogood-based AFC

The nogood-based Asynchronous Forward-Checking (AFGsgased on AFC but
it tries to enhance the asynchronism of the forward phase.tWb main features of



procedure St art ()
1: InitMWAgentView);
end «— false; myAgentView.Consistent < true;
if( self =TA) then Assign();
while( —end)
msg < getMsg();
switch( msg.type)
CPA . ProcessCPA(msg);
BackCPA : ProcessBackCPA(msg) ;
Terminate : ProcessTer nmi nat e(msg) ;

N RN

procedure | ni t MyAgent Vi ew()
10: myAgentView — {(z;,0,0) | z; < self};

procedure Assi gn()

11: if( 3v € mylnitial Domain, Ang € myNogoodStore | Rhs(ng) = v) then

12: myValue — ChooseVal ue(); /*not eliminated by myNogoodStore*/

13: myCtr «— myCtr+l; CPA — myAgentView U {(self,myValue, myCtr)};
14: SendCPA(CPA);

15: else Backtrack();

procedure SendCPA( CPA)

16: next — get Next Agent ();

17: if( next = nil) then Broadcast Msg: Terminate( myAgentView); end « true;
18: else foreach x; > self do sendMsg: CPA(CPA,next) to xj;

Fig. 1. Nogood-based AFC algorithm running by agent self (Part 1)

AFC-ng are the following. First, an agent finding an empty donmo longer sends
Not OK messages. It resolves the nogoods attached to its valueseadd the back-
track message to the lower agent in the resolved nogood.e5lemdtiple backtracks
may be performed at the same time coming from different agesning an empty do-
main. These backtracks are sent concurrently by theseelitfagents to different des-
tinations. The re-assignments of the destination ageatstiappen simultaneously and
generate several CPAs. However, the CPA coming from theelsigbvel in the search
tree will eventually dominate all others. Interestinghge tsearch process with the new
CPA of highest level can use nogoods reported by the (kiledgr level processes,
so that it benefits from their computational effort. Secarath time an agent performs
a forward-check, it revises itigitial domain, (including values already removed by a
stored nogood) in order to store the best nogoods for remesiees (one nogood per
value). When comparing two nogoods eliminating the samaevahe nogood with the
highest possible lowest variablevolved is selected (HPLV heuristic) [13]. As a result,
when an empty domain is found, the resolvent nogood contairiables as high as
possible in the ordering, so that the backtrack messagaissehigh as possible, thus
saving unnecessary search effort [9].

Description of the algorithm
We callsel f the variable that points to the agent itself. An AFC-ng agehf executes



the code shown in Figures 1 and 2. The data structuignitial Domain contains
all values of the initial domain ofelf. sel f stores a nogood per removed value in
myNogoodStore. sel f calls the procedure Start() in whishl f initiates its agent view
(line 1) by setting counters to zeros (line 10). The agent/\dentains a consistency
flag that represents whether the partial assignment it hsldsnsistent. Ifsel f is the
initializing agent ( A), it initiates the search by calling procedure assigne(18). All
agents performing the main loop wait for messages, and pso@xeived messages
according to their types (line 4-9).

When calling assign(3el f tries to find an assignment, which is consistent with its
agent view. Ifsel f succeeds, it increments its counéetr, generates a CPA from its
agent view augmented byl f assignment (line 13), and then sends forward the CPA to
every agent whose assignments are not yet on the CPA, ottsepsolution, when the
CPA includes all agents assignments (line 17). Before sgpally CPAsel f attaches
to every CPA message the ID of his successor (line 18). Ornhgeifreceiver ID equals
that attached to the CPA message, the receiver performsamasent (line 26). When
sel f fails to find a consistent assignment, it calls procedurekBack() (line 15).

Agents use time-stamps to detect and discard obsolete Gilstion Compare-
TimeStampgiew, C'PA) returns the indexplitievel of the first counter on which
view and CPA differ if CPA is newest (see Definition 3) or contairisw (line 48).

If view is newest, it returns-1. Whenwview and CPA are identical or when CPA is
included inview CompareTimeStamp returfis

Wheneversel f receives a CPA, procedure ProcessCPA() is callety. checks its
agent view status. If it is not consistent and the agent véees subset of the received
CPA, this means thatel f has already backtracked, theel f does nothing (line 19).
Otherwise,sel f compares the time-stamp of its agent view with the one of ¢ie r
ceived CPA by calling CompareTimeStamp (line 20). If theereed CPA is newest,
sel f updates its agent view and marks it consistent (lines 21R@cedure Update-
MyAgentView (lines 41-43) sets the agent view and the nogsiock to be consistent
with the received CPA. Each nogood in the nogood store aoingaia value for a vari-
able different from that received in the CPA will be deletédg 43). Next,sel f calls
procedure FQReviselnitialDomain() (in line 23) to store nogoods forwed inconsis-
tent with the new agent view or to try to find a better nogoodvidues already having
one in the nogood store (line 46). A nogood is better accorttirtheHPLV heuristic if
the lowest variable in the body of the nogood is higher.

When every value ofel f’s variable is ruled out by a nogood (line 24), the pro-
cedure Backtrack is called. These nogoods are resolvedbputing a new nogood
newN g (line 27). If the new nogood is emptyel f terminates execution after sending
aTerminate message to all agents in the system meaning that problens@vaile
(line 28). Otherwisesel f updates its agent view by removing assignments of every
agent that is strictly greater than the last agett{(newNg)) in the newNg. sel f
also updates its nogood store by removing obsolete nog&audly it marks its agent
view as inconsistent and it initiates a backtrack procettyreending oné3ackC P A
message to the lower priority agemt/{s(newN g)) involved in thenewN g (line 34).

The BackC' P A message carries theew N g and the inconsistent CPA containing
assignments of all agents smaller than or equdthe(newNg) in the agent ordering



ProcessCPA msg)

19: if( =myAgentView.Consistent A myAgentView C msg.C PA) then return;

20: splitlevel < Conpar eTi meSt anp( myAgentView, msg.CPA) ;

21: if( splitlevel > 0) then

22: Updat eMyAgent Vi ew( msg.C PA, splitlevel) ; myAgentView.Consistent «— true;
23: FC.Revi sel ni ti al Domai n();

24: if (Vv € myInitial Domain, Ing € myNogoodStore | Rhs(ng) = v) then Backt rack();

25: else CheckAssi gn(msg.Next)

procedure CheckAssi gn( next)
26: if( next = self) then Assign();

procedure Backtrack()

27: newNg « sol ve( myNogoodStore) ;

28: if(newNg = empty) then Broadcast Msg: Terminate( ) ; end « true; return;
29: foreach z; > Rhs(newNg)do

30: myAgentView.Value[ x;] < unknown ;
31: for each ng € myNogoodStore do
32: if(x; € Lhs(ng)) then renove(ng, myNogoodStore) ;

33: myAgentView.Consistent <+ false; myValue «— empty, CPA «— myAgentView;
34: SendMsg: BackCPA(CPA, newNg) to Rhs(newNg);

ProcessBackCPA msg)

35: if(-myAgentView.Consistent N myAgentView C msg.C'PA) thenreturn;
36: splitlevel — Conpar eTi meSt anp( myAgentView, msg.CPA) ;

37: if( splitlevel =0 A myValue = RhsVal ue( msg.Nogood)) then

38: add( msg.Nogood, myNogoodStore) ; myValue «— empty, Assign();

ProcessTerminaté msg)
39: end « true ; myValue «— empty;
40: if(msg.CPA # 0) then myValue — msg.CPA.Val ue[ self];

procedure Updat eMyAgent Vi ewm( C'P A, splitlevel)

41: foreach j > splitlevel do myAgentView| j] <— CPA[ j]; /*update value and Ctr */
42: for each ng € myNogoodStore do

43: if Lhs(ng) isinconsistent withmyAgentView then renmove(ng, myNogoodStore) ;

procedure FC_Revi sel ni ti al Domai n()

44: for each v € mylnitial Domain do

45: if( ~Consi st ent (v, myAgentView) ) then

46: store the best nogood fov; /* according to the HPLV heuristic*/

function Conpar eTi meSt anp( view, CPA)

47: from j «— 1 to size(CPA) do

48: if (Ctr(CPA[j]) > Ctr(view[j])) thenreturn j;

49: else if (Ctr(CPA[j]) < Ctr(view([j])) thenreturn -1,
50: return O;

Fig. 2. Nogood-based AFC algorithm running by agent self (Part 2)



(lines 29-30)sel f remains in an inconsistent state until receiving a new CRaihg
at least one agent assignment with counter higher thanrittheiagent view ofel f
(lines 21-22).

When aBackC P A message is receivegkl f checks the validity of receiveBackC P A
using agent view status and time-stamp (lines 35-36RdéLC' P A is accepted (line
37), sel f removes its last assignment, adds attached nogood to itsodagjore, and
calls the procedure assign() (line 38).

ProcessTerminate procedure is called when an agent recWerminate mes-
sage. It marksnd flag true to stop the main loop (line 39). If attached CPA is empty
then there is no solution. Otherwise, agent solution isaetd from the CPA (line 40).

4 Asynchronous Inter Level Forward-Checking

A DisCSP can be represented by a constraint géaph (X, F), whose nodes represent
the variables and edges represent the constraints (thétis X’ and{z;,z;} € F <
¢i; € C). The graph can be re-arranged to form a pseudo-tree [14jseudo-tree
Gpr = (X,r, E,U) for the graphG is defined by a root node € X and a directed
treeT = (X,U) rooted inr such that for any edgéz;,z;} € E, x; andx; are not
in different branches of. For any ardz;,z;) € U, the nodez; is the parent of the
nodex;. If z; is the parent of;, thenz; is a child ofz;. A nodex; is an ancestor of
a nodez; if x; is the parent ofc; or an ancestor of the parent of. A nodez; is a
descendant of a nodsg if x; is an ancestor of ;. A leaf is a node that has no child. In
our implementation, the pseudo-tree is built by a DFS trealesf the graph. Thus, we
haveU C E.

The AILFC algorithm is based on AFC-ng performed on a psetne@ordering of
the constraint graph (built in a preprocessing step). Agyard prioritized according to
the pseudo-tree ordering in which each agent has a singéapand various children.
Using this priority ordering, AILFC performs multiple AF@g processes on the paths
from the root to the leaves. The root initiates the searchdmegating a CPA, assigning
its value on it, and sending CPA messages to its linked déseces (including its chil-
dren) that share a constraint with it. Each child that rezea/copy of the CPA performs
AFC-ng on the sub-problem restricted to its ancestors (agéat are assigned in the
CPA) and the set of its descendants. Therefore, insteadiofghe privilege of assign-
ing to only one agent, all agents who are in disjoint subtreag assign their variables
simultaneously. So, the Inter-Level Forward Checking idgrened asynchronously on
each path from the root to any leaf. AILFC thus exploits théeptal speed-up of a
parallel exploration in the processing of distributed peofs.

An execution of AILFC on a sample DisCSP problem is shown iguFé 3. At
time ¢4, the rootx; sends copies of the CPA on messages to its linked descendants
(including its children). Children:,, 3 andx, assign their values simultaneously in
the received CPAs and then perform concurrently the AIL@@thm. Agentse7, and
x9 only perform a forward- checking. At timg, zq finds an empty domain and sends
a BackC P A message ta;. At the same time, other CPAs propagate down through
the other paths. For instance, a CPA has propagated downafsaim x; andzs. z7
detects an empty domain and sends a nogoogd titached on &ackC P A message.
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Fig. 3. An example of the AILFC execution

For the CPA that propagates on the path, 25, x5) (resp.(x1, x2, x¢)), x5 (resp.zg)
successfully assigned its value and initiated a solutideai®n. However, when:;
receives theBackC P A from zg, it initiates a new search process by sending a new
copy of the CPA which will kill any CPA where; is assigned its old value.

In AFC-ng, a solution is reached when the last agent recéiae€PA and succeeds
in assigning its variable. In AILFC, the situation is diféeit because a CPA can reach a
leaf without being complete. When all agents are assignédharconstraint is violated,
this state is a global solution and the network has reaches$cgnce, meaning that no
message is traveling through it. Such a state can be detesitaglspecialized snapshot
algorithms [15], but AILFC uses a different mechanism thimves to detect solutions
before quiescence. AILFC uses an additional type of messalied Accepted that
inform parents of the acceptance of their CPA. Terminatiamloe inferred earlier and
the number of messages required for termination detectiorbe reduced. A similar
technique of solution detection was used in the AAS algorifh6].

The mechanism of solution detection is as follows: whenaveaf node succeeds
in assigning its value, it sends afrcepted message to its parent. This message con-
tains the CPA that was received from the parent incrementétdévalue-assignment
of the leaf node. When a non-leaf agentf receivesAccepted messages from all its
children that are all compatible with each other, all coripatwith sel f’s agent view
and with sel f's value, sel f builds anAccepted message being the conjunction of all
receivedAccepted messages plus:l f’s value-assignment. Hel f is the root a solution
is found, andsel f broadcasts this solution to all agents. Otherwiséf sends the built
Accepted to its parent.

Description of the algorithm
A preprocessing step before starting the AILFC algorithimeasformed to convert the
constraint graph into a pseudo-tré&ildren(sel f) C Ais the set of children of agent
sel f inthe pseudo-tred)esc(sel f) is the set of its descendants didked Desc(sel f) C
Desc(sel f)is the set of its descendants (including its children) threatanstrained with
self. Parent(self) € Ais the parent of agentl f and Ancestors(sel f) C Ais the
set of its ancestors (including its parent).

In Figure 4, we present only the procedures that are new fardift from those of
AFC-ng in Figures 1 and 2. In InitMyAgentView(), the agergwiof sel f is initialized



procedure Start ()
10: Accepted : ProcessAccept ed(msg);

procedure | ni t MyAgent Vi ew()
11: myAgentView — {(z;,0,0) | z; € Ancestors(self) };
12: for each child € chil dren(self) accepted[ child] < 0; [*For Solution Detection*/

procedure SendCPA(CPA)

13: if(children(self)= 0) then

14. Sol utionDetection();

15: else for eachdesc € |inkedDesc( self)do sendMsg: CPA(CPA, self) to desc;

procedure CheckAssi gn( ancestor)
16: if( Parent (self) = ancestor) then Assign();

procedure Sol uti onDet ecti on()

17: if(children(self) = 0) then

18: SendAccept ed( myAgentView U {(self, myValue,myCtr)}, self) to Parent(self);
19: else PA — Buil dAccepted();

20: if( PA # 0) then

21: if( self =root) then Broadcast(Term nate, PA); end« true;

22: else SendAccept ed( PA, self) to Parent(self);

ProcessAcceptefimsg)

23: if(accept ed[ msg.Sender] =fvConpar eTi neSt anp(msg.CPA, accept ed[ msg.Sender] ) >0) then
24: accept ed[ msg.Sender] <« msg.CPA;

25: Sol uti onDet ection();

function Bui | dAccept ed()

26: PA — myAgentView U {(sel f, myValue, myCtr)};

27: foreach child € children(self) do

28: if(accept ed[ child] = ) v —=Conpati bl e( PA,accept ed[ child])) return 0;
29: else PA «— PA U accept ed[ child] ;

30: return PA

Fig. 4. New lines/procedures of AILFC with respect to AFC-ng.

to the setAncestors(sel f). Ctr is set to O for each agent iAncestors(sel f) (line

11). The new data structure storing the receivk@depted messages is initialized to
the empty set (line 12). In SendCRAP A), instead of sending copies of the CPA to
all agents not yet instantiated on i/ f sends copies of the CPA only to its linked
descendantdinkedDesc(sel f)) (line 15). When the sdtinkedDesc(sel f) is empty
(i.e., self is a leaf),sel f calls the procedure SolutionDetection to build and send an
Accepted message. In CheckAssign(cestor), sel f assigns its value if the CPA was
received from its parent (line 16) (i.e.,dhcestor is the parent ofel f).

In SolutionDetection(), ifsel f is a leaf Children(self) is empty), it sends an
Accepted message to its parent. Thecepted message sent byl f contains its agent
view incremented by its assignment (lines 17-18)sdff is not a leaf, it calls the
BuildAccepted() procedure to build an accepted partialttmh PA (line 19). If the



returned partial solutio®® A is not empty andel f is the root,P A is a solution of the
problem. Thengel f broadcasts it to other agents including the system agensetsd
theend flag totrue (line 21). Otherwisegel f sends amccepted message containing
PAtoits parent (line 22).

In ProcessAccepted(sg), whensel f receives amccepted message from itehild
for the first time, or whennsg is newer than that received before (lines 23-24]) f
stores the content of this message and calls the Solutiecbah procedure (line 25).

In BuildAccepted(), if an accepted partial solution is ieed.sel f generates a par-
tial solution P A incrementing its agent view with its assignment (line 263xNsel f
loops over the set dlccepted messages received fromits children. If at least@niéd
has never sent aficcepted message or thdccepted message is incompatible withA,
then the partial solution has not yet been reached and tlotidmrreturns empty (lines
27-28). Otherwise, the partial solutidhA is incremented by thdccepted message of
child (line 29). Finally, the accepted partial solution is retdirgline 30).

5 Correctness Proofs

Theorem 1. AFC-ng is sound, complete, and terminates.

The argument for soundness is close to the one given in [11Th@ fact that agents
only forward consistent partial solution on the CPAs messaat only one place in
function assign() (line 14), implies that the agents regeinly consistent assignments.
A solution is reported by the last agent only in function SERA(C P A) at line 17. At
this point, all agents have assigned their variables, agiddssignments are consistent.
Thus the AFC-ng algorithm is sound.

For completeness, we need to show that AFC-ng is able tonetmand does not
report inconsistency if a solution exists.

Lemma 1. AFC-ng is guaranteed to terminate.

For sake of clarity, we assume that the order in which AFC-sgjgas the variables
is the lexicographic ordering’;, X5, ..., X,,. We define the total orderon CPAs as
follows. Let/; be an assignment oy, . .., Xi,, I> be an assignment ok, . . ., Xy,,
ands be the smallest index on whidh and/; differ. I; <, Iz ifand onlyifs = k; +1

or the valuel, [s] is chosen before the valug|s] by the value ordering heuristics on
variableX given the CPAl;[1..s — 1].

To prove the lemma we prove that AFC-ng performs a finite nurobéacktrack
steps. In AFC-ng, several backtracks can be performed simedusly as they are gen-
erated concurrently by different agents to different cedions. The re-assignments of
destination agents then happen simultaneously, gengisgireral CPAs. However, the
CPA at the highest level in the search hierarchy tree wilhévally dominate all others
thanks to its greater time-stamp (see line 21 in Figure 2usTkvery backtrack step
may be represented by the backtrack at the highest levelagaetX,; who has re-
ceived that backtrack of highest level has to replace itsipus assignment; in the
CPA by a new one/ because the backtrack message contains a nogood rejeatireg v
v;. If v; was not the first value chosen B§; since it has received the current CPA from



Xi—1 then we know that all other values preferred tav; were ruled out by a nogood
at the timev; was chosen. Now, the CPA oYy, ..., X;_; has not changed since then,
otherwise this would not be the highest backtrack. As a tethe nogoods rejecting
valuesy; preferred tov; are still valid andv} is necessarily theextpreferred value in
the heuristic order. By definition of the orderthe new CPA obtained is greater than
the previous one according tobecause it has not changed &n, ..., X;_; andv]

is less preferred than,. Sinceo is a total order and since there are a finite number of
variables and a finite number of values per variable, theliebwia finite number of
new CPAs generated. Now, each backtrack of highest levelrgéss a new CPA. Thus,
AFC-ng performs a finite number of backtracks.

Lemma 2. AFC-ng cannot infer inconsistency if a solution exists.

Whenever a newer CPA orfaackC P A message is received, AFC-ng agent updates
its nogood store. Hence, for every CPA that may potentiaihdlto a solution, agents
only store valid nogoods. In addition, every nogood resglfrom a CPA is redundant
with regard to the DisCSP to solve. Since all additional ratgoare generated by logical
inference when a domain wipe-out occurs, the empty nogoodatabe inferred if the
network is satisfiable. This mean that AFC-ng is able to pcedall solutions.

Theorem 2. AILFC algorithm is sound, complete, and terminates.

AILFC agents only forward consistent partial assignme@RAs). Hence, leaf agents
receive only consistent CPAs. Thus, leaf agents send Aedapessage only holding
consistent assignments to their parent. Since a parenstanlAccepted message only
when theAccepted messages received from all its children are compatible aéith
other and all compatible with its own value, tHecepted message it sends contains a
consistent partial solution. The root broadcasts a saoiwidy when it can build itself
such anAccepted message. Therefore, the solution is correct and AILFC isgou

AILFC performs multiple AFC-ng processes on the paths ofptbeudo-tree from
the root to the leaves. Thus, it inherits the completenesperty of AFC-ng (empty
nogood cannot be inferred if the network is satisfiable (semma 2). It also appears
that the agent of high priority cannot fall into an infinitefm By induction on the level
of the pseudo-tree no agent can fall in such a loop, whichresghe termination of
AILFC.

6 Experimental Evaluation

In this section we compare experimentally AFC-ng and AlLECHree other algo-
rithms: AFC, ABT, and ABT-Hyb [18]. Algorithms are tested tire same static agents
ordering usingmax-degredneuristic and the same nogood selection heuristieL{).
For ABT and ABT-Hyb we implemented an improved version o&§Hi’s solution de-
tection [12] and counters for tagging assignments. Thisalto better treat non-causal
order channels [12]. All experiments were performed on tieChoco platform [19]
in which agents are simulated by Java threads that comnteracdy through message
passing.
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Fig. 5. Total number of messages sent and NCCCs on fast communmicatio

The algorithms are tested on uniform binary random DisCSistware character-
ized by(n, d, p1, p2), wheren is the number of agents/variablesghe number of val-
ues per variabley; the network connectivity defined as the ratio of existingaoyrcon-
straints, angb, the constraint tightness defined as the ratio of forbiddérevaairs. We
solved 100 instances of two classes of constraints graphsegrapi20, 10, 0.25p-)
and dense grap{20, 10, 0.75p-). We vary the tightness from 0.10 to 0.90 by steps of
0.10.

We evaluate the algorithms performance by the averagealfritessages sent [20]
(including system messages) and the average of Equivatandncurrent Constraint
Checks (ENCCCs) [21]. ENCCCs are a weighted sum of proagssid communica-
tion time. We simulate two scenarios of communication: tasnmunication (where
message delay is null and ENCCCs reduce to standard NCQ@k$|@v communica-
tion with uniform random message delay (where the cost ofitiay is between 500
and 1000 constraint checks.)

Fast communication

Figure 5 presents performance of AILFC, AFC-ng, AFC, ABT &®RiT-hyb running

on a fast communication environment. The figure shows thiadih types of constraint
graphs (sparse and dense), AILFC has the lowest commuomndatd (#MSGs). Con-
cerning NCCCs, AILFC is the fastest algorithm on sparseflggpig. 5(b)). On dense
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Fig. 6. Total number of messages sent and ENCCCs on slow commuaricati

graphs AILFC behaves like AFC and AFC-ng. Comparing AFC-riilp WFC, Fig. 5
shows that they perform the same number of NCCCs but AFC-olgasges less mes-
sages than AFC. Comparing AFC-ng with ABT and ABT-hyb, Fighbws that in both
types of constraint graphs AFC-ng is faster than ABT-hyb/aBd. However, on sparse
graphs, Fig 5(a) shows that AFC-ng sends more messages Bighyb and ABT.

Slow communication

In Figure 6 we report experimental results with slow commoation. The figure shows
that AILFC is again the best algorithm in terms of humber oksgages. Concerning
ENCCCs, as in the fast communication environment, AILFGadr than or equal to
AFC and AFC-ng depending on whether the graph is sparse eed&he comparison
of AFC and AFC-ng shows a pattern close to the one observédfast communica-
tion: AFC-ng is better, or slightly better, both in terms oéssages and ENCCCs. The
main difference between fast and slow communication is gréopmance of ABT and
ABT-hyb. Whereas they remain expensive in terms of mess#gegbecome the best
algorithms in terms of ENCCCs, with a slight advantage to ABfis confirms that in
slow communication environment, the more the algorithnsigiahronous, the better it
is.



Discussion

A first observation on these experiments is that ABT, ABT-bylone side, and AFC,
AFC-ng on the other side, show quite opposite patterns. Esage passing is not an
issue, ABT and ABT-hyb are good choices with slow commuiocavhereas AFC and
AFC-ng are good when communication is fast. A second observe that AILFC is
always better than or equivalent to AFC-ng, which is bettantor equivalent to AFC,
both in terms of messages and amount of processing (ENCE@@s)iting the commu-
nication load is important, AILFC is the best among all bathfast and slow communi-
cation. AILFC benefits both from running separate searchgs®ses in disjoint problem
subtrees, which pays off when a graph is sparse, and frong tisshsame mechanism
as AFC-ng, which pays off when agents are highly connecteddgl graphs).

7 Other Related Work

In [18, 7] the performance of asynchronous (ABT), synchtmpSynchronous Con-
flict BackJumping (SCBJ)), and hybrid approaches (ABT-Hyb} studied. It is shown
that ABT-Hyb improves over ABT and that SCBJ requires lesamanication effort
than ABT-Hyb. In Interleaved Asynchronous Backtrackin@IBT) [22], agents par-
ticipate in multiple processes of asynchronous backtregitach agent keeps a sep-
arateAgentViewfor each search process in IDIBT. The number of search psesds
fixed by the first agent in the ordering. The performance oftaoment asynchronous
backtracking [22] was tested and found to be ineffectivenfimre than two concur-
rent search processes [22]. Dynamic Distributed BackJong{DBJ) was presented
in [17]. It is an improved version of the basic AFC. It comlsne concurrency of
an asynchronous dynamic backjumping algorithm, and thepctational efficiency of
the AFC algorithm, coupled with thgossible conflict heuristiosf dynamic value and
variable ordering. As in DDBJ, AFC-ng performs several ltiesdks simultaneously.
However, AFC-ng should not be confused with DDBJ. DDBJ iseldasn dynamic
ordering and requires additional messages to computeingdeeuristics. In AFC-ng,
all agents that received BackC P A message continue search concurrently. Once a
more up to date CPA is received by an agent, all nogoods aligtaded can be kept if
consistent with that CPA.

8 Conclusion

Two new complete, asynchronous algorithms are presenitedirt algorithm, Nogood-
Based Asynchronous Forward Checking (AFC-ng), is an imgment on AFC. The
second, Asynchronous Inter-Level Forward-Checking (AT)Fis based on AFC-ng
and is performed on a pseudo-tree re-arrangement of théramgraph. Experiments
ran on random DisCSPs show that AFC-ng improves AFC bothsingad slow com-
munication environments. Experiments show that AILFC &rtiore robust algorithm
in both communication types. In particular, it is the besterms of messages sent. In
slow communication environments, the performance of @lgms that perform vari-
able assignments sequentially deteriorates. This is wbddéor AFC and AFC-ng, and,
less significantly for ABT-Hyb, when compared to ABT.
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