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Abstract. This paper reports the story of the introduction of formal
methods in the development process of a railway signaling manufac-
turer. The first difficulty for a company is due to the many different
formal methods proposals around; we show how this difficulty has been
addressed and how the choice of a reference formal specification notation
and of the related tools has been driven by many external factors related
to the specific application domain, to the company policies, to european
regulations. Cooperation with University has been fundamental in this
process, which is now at the stage in which internal acceptance of the
chosen formalisms and tools is established.

1 Introduction

Railway signaling has been often considered as one of the most successful areas
for the industrial application of formal methods, reporting many success stories.

There are two main reasons for this success. On the one hand, railway signal-
ing has always generated the interest of formal methods researchers: its safety
requirements with the implied need to avoid any kind of errors, the discrete
nature of typical control computations and the absence of very hard real-time
constraints, have made it a promising application field, in which the different
formal specification and verification techniques can be conveniently applied. On
the other hand, railways have always had a very strong safety culture, based on
simple fail-safe principles. In electromechanical equipments, used in most signal-
ing systems before the introduction of computers, gravity was used to bring a
system to the fail-safe state (e.g. all signals to red) in any occurrence of a critical
event. On the other hand, the impossibility of predicting in general the effects
of the occurrence of faults in computer-based equipment, has long delayed the
acceptance of computer-controlled signaling equipment by railway companies.
The employment of very stable technology and the quest for the highest pos-
sible guarantees have been key aspects for the adoption of computer-controlled
equipment in railway applications. Formal proof, or verification, of safety has
been therefore seen as a necessity.
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In this paper, we offer some insight into the actual industrial usage of formal
methods in this field, describing the experience of a railway signalling company,
namely the railway signaling division of General Electric Transportation Systems
(GETS), confronted with the need to adopt formal specification and development
techniques in the development cycle of safety-related equipment.

We will see how the choice of which formalism and tool to adopt inside the
company development cycle has been influenced by several factors. The choice
is indeed not easy: there are many notations, methods, and (prototypal) tools
originating from the academia, which however lack industrial strength in terms
of tool stability, documentation and user support. On the other hand, there are
very few technically sound methods and tools coming from industry. Indeed, the
combination of several external factors, such as specific characteristics of the ap-
plication domain, the general company policies, the european safety regulations,
and the trends over the last years of the main actors of the application domain
(namely, railway operators, railway infrastructure owners, railway signalling in-
dustries), has actually facilitated the choice, narrowing the range of preferred
formalisms and tools.

In section 2, the EN50128 guidelines by the European Committee for Elec-
trotechnical Standardization regarding the development of software for railway
signaling are discussed, with regards to the adoption of formal specification tech-
niques. Section 3 reports more information of the recent evolution of the context
in which GETS operates. Section 4 discusses some first experiments that have
been conducted in cooperation with academy in order to correctly address the
issue. Section 5 discusses the choice made by GETS to adopt Stateflow of the
Matlab environment as the reference formalism and tool.

2 CENELEC Guidelines

The EN50128 guidelines [6], issued by the European Committee for Electrotech-
nical Standardization (CENELEC), address the development of ”Software for
Railway Control and Protection Systems”, and constitute the main reference for
railway signaling equipment manufacturers in Europe, with their use spreading
to the other continents and to other sectors of the railway (and other safety-
related) industry.

The EN50128 document is part of a series of documents regarding the safety
of railway control and protection systems, in which the key concept of Software
Safety Integrity Level (SWSIL) is defined. One of the first steps indicated by
these guidelines in the development of a system is to define a Safety Integrity
Level (SIL) for each of its components, on the basis of the level of risk associ-
ated, by means of a risk assessment process. Assigning different SILs to different
components helps to concentrate the efforts (and therefore the production costs)
on the critical components. The SILs range from 4 (very high), to 1 (low), and
0 (not safety-related).

The EN50128 guidelines dictate neither a precise development methodology
for software, nor any particular programming technique, but they classify a wide
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range of commonly adopted techniques in terms of a rating (from ”Forbidden”
to ”Highly Recommended” and ”Mandatory”) with respect to the established
SIL of the component. Formal methods (in particular CCS, CSP, HOL, LOTOS,
OBJ, Temporal Logic, VDM, Z and B are cited as examples) are rated as highly
recommended for the specification of systems/components with the higher levels
of SIL. Formal proof is also highly recommended as a verification activity. Any-
way, formal techniques are not classified as mandatory, since alternative, more
traditional techniques are also accepted. We should notice however that this is
the first time (the first edition of EN50128 dates back to 1994) that a strong
indication about the usage of formal methods appears in standard guidelines.

Indeed, despite CENELEC directives and success stories, formal methods have
not permeated the whole railway signaling industries, where much software is
still written in traditional ways. This is due to the investments needed to build
up a formal methods culture, and to the high costs of commercial support tools.
Moreover, equipment can conform to CENELEC without applying formal meth-
ods. Verification by thorough testing can be claimed compliant to EN50128. But
relying only on traditional testing shifts an enormous effort (usually more than
50% of the total development effort) on the shoulders of the testing department.
This becomes a risk for a company that is more and more required by the market
to be CENELEC compliant. Indeed, since testing activities are performed in late
phases of product life cycle, bugs detection and fixing activities imply reviews of
early phases with, consequently, high costs and stretched time. The only solution
is to shift back the effort to the design team, by introducing formal methods in
the specification and design phases. This is why the railway signalling division
of General Electric Transportation Systems (GETS) has taken the decision to
adopt formal methods in the development cycle of SIL 4 equipments.

3 The Context

Historically, the ancestors of GETS, similarly to many railway industries all
over Europe, had a strict collaboration with Italian State railways. The design
of new equipment were carried on as a single team between the railway operator
and the equipment providers. The evolution and liberalization of the European
market has clearly separated the roles of the operator, which issues equipment
specifications, and providers, which implement the specification, but also needs
to produce addressing the global market. Hence the specification themselves
have gained more importance, in particular with respect to the possibility to
have unambiguous, formally specified, specifications.

Indeed, this new trend has become evident inside a joint project between
Politecnico di Milano and Italian State Railway FS, Infrastructure Department
(which recently became Rete Ferroviaria Italiana S.p.A.). The purpose of the
project was to define procedures and rules for managing software procurement
for safety-critical signaling equipment [8]. One of the aims of the project was to
select and classify formal methods that were sufficiently mature for industrial
usage, were supported by automated tools, and were likely to gain acceptance
by average engineers, both in the railway and computer technology domains.
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One of the indications emerging from this project was that Statecharts [11]
and SDL [5] were perceived as the most suitable formalisms according to various
parameters, including those cited above.

Another event to be noted is the launching of the Eurointerlocking project
by a consortium among the main European infrastructure companies, with the
aim of developing a standard interlocking system at a European level, with
the purpose to reduce costs, by means of use of standardized components and
standardized interlocking rules. Inside Eurointerlocking, we can cite the interest-
ing EIFFRA (Euro-Interlocking Formalised Functional Requirements Approach)
activity [13], where, together with an attention to textual requirements, and re-
quirement management tools, such as Telelogic DOORS, model-based require-
ments are addressed, by proposing UML [19] state diagrams and Statecharts to
describe the behaviour, and OCL [20] to describe properties of the interlocking
systems.

We can also mention another experience inside Eurointerlocking, by SNCF-
RFF, which has modeled their national (relay based) interlocking logic principles
using Statecharts and Statemate [15].

In conclusion, the trend that we can note within the railway signaling field
is towards state machine - based formalisms, such as SDL and Statecharts, the
latter in their various dialects (UML, Statemate, etc...). The graphical syntax
and the availability of commercial support tools are considered as positive dis-
criminant factors.

4 The Experiments

GETS has addressed the problem of introducing formal methods in its develop-
ment process by contacting experts at University of Florence. Collaboration with
the Faculty of Engineering of the University of Florence was indeed a tradition,
already established on mechanics and electronics. Facing the problem of address-
ing software certification along CENELEC guidelines, and given that exhaustive
testing, possible on the small software systems of the beginnings, was no more
viable, GETS has asked to the University experts to establish a common project
of technology transfer about formal methods.

The project has followed the indications of the already cited RFI procure-
ments guidelines [8] . In particular some first experiments, have been attempted,
modeling in SDL some already produced systems [1,7], with specific attention
to the issues of validation coverage [2] and of code generation [3].

Though modelling with SDL allowed a formal methods culture to start to
consolidate inside GETS, it was not felt that this was the definitive choice, both
for some difficulties emerged with the language itself (the asynchronous nature
of communication, inherited by the original mission of SDL to describe commu-
nication protocols, and some other characteristics of the messages management
have been perceived as difficulties by the designers) and for the not clear future
of the language and its support tools, which were going to be merged into the
UML 2.0 world.
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Following the trends that have been noted in the international railway sig-
nalling arena, mainly inside the Eurointerlocking effort, later experiments have
switched to Statecharts, at first in their Statemate dialect. At that time, it
seemed that also the major GETS client, namely RFI, was inclined to use State-
mate Statecharts for drawing their systems specifications. The experiments con-
sisted in the formal specification of a railway signalling system for the objects
detection in level crossing areas. The system, named PAI-PL, was developed and
homologated SIL 4 by GETS using a customer paper based requirements specifi-
cation. During the experiment, that specification was translated in a Statemate
model and analysed using the related model checker tools. The results showed
both that formal methods could be used in specification activities and that could
also permit to find mistakes or ambiguous aspects in requirements. Nevertheless
after some time, and a quite dense dialog with RFI, it has appeared that no
clear decision had already been taken, and that the railway infrastructure com-
pany was not ready to abandon its traditional way of developing specifications in
favour of formal statecharts specification. This is also because, GETS apart, most
of the others signalling companies did not replied positively to formal methods
quest by RFI.

The choice of the formal method and support tools were now back in the
hands of GETS. The experience acquired on Statecharts indicated that a nat-
ural candidate tool to acquire was ILogix Statemate tool [12]. At this point,
however, other factors, mostly related to costs, have been taken in considera-
tion. We should recall that the quest for the adoption of a formal method for the
specification of systems were coming mainly from the V&V department. Inside
the company the high investment needed to acquire the tools would have been
therefore not shared among all the departments. Design departments were more
keen to adopt instead more flexible tools that could aid several aspects of the
design, and not only the specification by statecharts of the ”discrete” behaviour
of a system.

5 The Choice of Stateflow

An attractive competitor appeared on the scene, in the form of the Stateflow
component [16] of the Matlab modeling environment [17] . Indeed Stateflow
statecharts share most of the characteristics of other dialects of statecharts,
but their semantics have some restrictions, especially in comparison with that
described in [11]. Indeed, Statemate semantics is based on three different views
(behavioural, functional and structural) of a system, which are related to three
corresponding charts (statecharts, activity-charts and module-charts) in a model.
Instead, Stateflow semantics permits to represent only the behavioural view,
while there is no special formalism to represent the other ones. These and the
interactions with the behavioural view can be partially and sometimes with
difficulty made up using Simulink formalism. It is in particular a very hard task
to develop a model compound by nested functional and behavioural blocks.
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From the behavioural point of view, the most peculiar characteristic of State-
flow semantics is the use of the ”clockwise rule” to evaluate the transitions from
the same state. If no user-defined priority rule is given, transitions from the same
state are ordered first on the form of their guards (transitions guarded by an
event are evaluated before those guarded only by a condition, and unguarded
transitions come last): remaining unordered transitions from the state (i.e. shar-
ing the same form of the guards) are ordered by their graphical appearance:
the first transition is the one whose arc starts closest to the upper left corner
of the source state, and the others follow clockwise. We refer to [10] for a com-
plete formal description of Stateflow semantics. The clockwise rule has two main
implications:

– the Stateflow semantics is completely deterministic, since outgoing transi-
tions are always deterministically ordered. The problem is that determinism
in some intricate cases (e.g. involving overlapping boolean conditions) can-
not be immediately perceived by the user, who naturally considers them as
non-deterministic. On the other hand, while Statemate or other statecharts
tools are able to identify (statically or by model-checking) possible sources
of nondeterminism, this is not possible in Stateflow, where such critical situ-
ations perceived by the user as nondeterministic, are actually resolved only
at simulation time.

– porting specifications from Statemate or UML Statecharts to Stateflow and
vice-versa (by simple manual redrawing or by some import/export tool
through a XML/XMI format) is not immediate, and care should be taken
that the intended meaning of the specifications is preserved during the
porting.

We can observe however that the delays of the major client in adopting formal
specifications, referred in the previous sections, have moved the focus away from
waiting for specifications from the client, towards the proprietary production
and use of specifications, for a later sharing with and approval by the client.
Hence, the issue of porting has no more been considered crucial for GETS.

The semantic disadvantages of Stateflow had their counterpart in the possibil-
ity offered by Matlab, and by lots of tools compatible with Matlab and Simulink
environment, of modelling and simulating several aspects of a system: this pos-
sibility was felt as very attractive by many groups inside the design department.
Moreover, Matlab was already widely used at corporate level, so that knowledge
about it could be easily retrieved over the corporation intranet. Again, several
modeling experiments were started, which allowed a better knowledge of the pe-
culiar characteristics of Stateflow. In Figure 1, the main statechart extracted by
the model of the already cited PAI-PL system is shown; actually, the represented
states are phases of the execution of the system, defined in conformance with the
customer requirement specification, and are hierarchically subdivided in lower
level statecharts.

The experiments have shown the capability of Stateflow to formally describe
the behaviour of a system, allowing simulation and integration in a complete
model of the system. The experiments have actually revealed the semantic
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Fig. 1. The Stateflow model of PAI-PL phases

problems that plague Stateflow, but the expected advantages were valued as posi-
tively counterbalancing the negative aspects; hence, a decision to adopt Stateflow
was taken.

For the first time, Stateflow was actually adopted in the design of a new
system, while previous experiments were mainly playing with the specifications of
systems already in production. The tool was successfully used to formally define
the high levels requirements of this new system and to share the specification
with the customer. A more detailed model was developed to define the software
requirements of the system and used to design and write down some functions
of the application code. Moreover the model was used to carry out functional
system tests and to identify corner-case scenarios.

Currently, the use of Matlab has still to become widespread inside the com-
pany, and this is planned to occur incrementally on a project by project base.
The collaboration with University is still active, and is now focused over the
added value that can be obtained from Stateflow specifications, in terms of early
validation (through model checking), test case generation and code generation
These are listed in order of priority for GETS: namely, first guaranteeing an
early validation of Stateflow models, then guaranteeing the consistency between
developed code and the model by means of high coverage testing, and last in-
vestigating the possibility of automating the code generation from the Stateflow
model.

5.1 Model Checking over Stateflow Specifications

Model checking the Stateflow specifications in search of inaccuracies or to guar-
antee the exhaustiveness of their verification and the compliance with customer
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requirements is the first goal for our research activity. Actually, several experi-
ments have already been carried on, using SF2SMV [14], a conversion tool devel-
oped at Carnegie Mellon University under a contract of the locomotive branch
of GETS. The tool allows to convert a Stateflow specification so that it can be
given as input to the popular SMV model checker [18].

The experiments have been quite satisfactory, but have revealed two weak-
nesses, namely the missing maintenance of the conversion tool, and the problem
(common to any other format translator) that counterexamples given by SMV
must be traced by hand on the original Stateflow specification, and this is cer-
tainly a not immediate step.

We are currently investigating the possibility of writing a translator from
Stateflow to the UMC on the fly model checker [9], developed at ISTI in Pisa,
which takes as input UML State Diagrams. Obviously, the translator should be
able to encode the Stateflow semantics into the UML semantics. In return, we
are confident to obtain a better back tracing of counterexamples to the original
Stateflow specification.

An alternative that is also taken in consideration is the use of commercial
model checkers for Stateflow specifications, such as TNI’s SCB and OSC’s Em-
bedded Validator. An evaluation of such tools is also planned.

5.2 Test Case Generation from Stateflow Specifications

The model developed in GETS allowed to identify corner-case scenarios of soft-
ware behaviour and to adopt them as test cases during real system testing. Nev-
ertheless the tests were not collected with a formal methodology that permits to
measure the coverage of the model, but were identified during model simulation
activities with the only purpose of defining software requirements. Therefore it
was impossible both to evaluate the correctness of the model and to completely
test the conformance of the real system to the software requirements through
the model. These two aspects showed the need to develop a test case generation
strategy. Indeed a test generation tool can help the user, together with a model
checking activity, in the model validation; moreover, it can be used to strengthen
the relations between the model and the software: this can be done by testing
the same scenario on the model and the system and comparing the outputs. The
purpose is to reduce the time to define the test cases and increase the detection
of corner case scenarios. Therefore test case generation can be used to reduce the
execution time of the functional tests. For this purpose automatic procedures,
such as parallel execution of the model and the system with outputs compari-
son, will be investigated. An analysis of test generation tools as TNI’s STB or
T-VEC’s Test Generation for Simulink is also planned.

5.3 Code Generation from Stateflow Specifications

Automatic code generation is usually considered as a natural output of a soft-
ware formal specification because it can be easily obtained from a model using
a proper tool. This is true in several application domains, but not in railways,
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where code generation is viewed not less suspiciously than formal methods. In-
deed railways safety-related systems are based upon architectures designed with
safety more than performance targets in mind. Moreover, the operating soft-
ware is wrote down mainly to satisfy testing, synchronization and other safety
issues. Therefore, the application software needs to be written down following
strict constraints, to be seamlessly integrated with the hardware and the op-
erating software. Integration can be very hard, using the code generated from
a model: evaluating and understanding how much hard is the object of future
work. The evaluation could be done starting with a simple model and analysing
the code generated with tools such as ADI’s Beacon for Simulink/Stateflow, to
understand which language structures it uses and how readable and ”linked”
to the model it is.The idea is that only using a special precaution during the
model development is possible to generate a usable code that can be success-
fully integrated with the existing one. If the experiment gives good results, the
code generation could be used for development of some application functions.
For these functions, the effort could be shifted in the early phases of software
life cycle (the model development) and most bugs could be fixed during model
validation (test generation and model checking). Of course this will not replace
standard software testing activities, but will reduce the time of the software life
cycle and will guarantee the conformance of the software developed to the model
used as software requirements specification.

6 Lessons Learned and Conclusions

The industrial acceptance of formal methods has always been difficult; though
many success stories are reported, formally developed software is still a small
percentage of the overall installed software. Application domains where safety is
a major concern are the ones where industrial formal method applications are
more easily found; in particular, railway signaling is considered one of the most
successful area of formal methods diffusion. However, the choice among so many
different formal methods proposals is not an easy task for a company; the risk
of early choices of methods that are not suitable or are not widely accepted by
the company departments is high. The experience we have reported has profited
of many enabling factors that have in the end facilitated the choice:

– collaboration with academic experts;
– no time–to–market pressure (due to the longer time span of projects w.r.t.

other application domains), which has allowed a long experimental phase
before selection;

– European regulations asking for formal methods;
– a market evolution pushing for formal methods adoption;
– indications from the major clients about the preferred formalisms for speci-

fication.

However, even in this favourable setting for the growth of a formal method
culture and in spite of standard and customers indications, the choice was still
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not easy. Cost factors and company policies necessarily have driven, or even
imposed, the choice. In the story we have told, the final choice of Stateflow has on
one side followed a trend that has recently emerged in railway signaling, that is,
a shift towards behavioral, state-machine based formalisms; on the other hand,
this choice was favoured by the industrial quest for formalisms supported by
commercial integrated environments, which have a broader scope of application.
Tools that give the ability of simulating and model-checking specifications, and
of generating code from them provide an interesting added value. The current
stage of the adoption of Stateflow in GETS is that the tool is being used for
specification and simulation in several new projects. Still more experiments are
needed to better evaluate benefits and deficiencies of using model-checking, test
case generation and code generation in GETS’products life cycle, and to choose
industrial-strength tools offering such functionalities. Hence, it is too early to
draft a final balance of the experience: the return of the ongoing analysis will
actually be seen in several years.
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