
Information Sciences 232 (2013) 419–436
Contents lists available at SciVerse ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
An efficient classification approach for large-scale mobile
ubiquitous computing

Feilong Tang a,⇑, Ilsun You b, Can Tang c, Minyi Guo d

a School of Software, Shanghai Jiao Tong University, Shanghai 200240, China
b School of Information Science, Korean Bible University, Seoul, South Korea
c Department of Finance, Heilongjiang University, Harbin 150080, China
d Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

a r t i c l e i n f o
Article history:
Received 31 August 2011
Received in revised form 30 August 2012
Accepted 20 September 2012
Available online 16 October 2012

Keywords:
Classification
Semi-sparse algorithm
Multi-class multi-label classification
Parallelization
Sequential minimal optimization (SMO)
Mobile ubiquitous computing
0020-0255/$ - see front matter � 2012 Elsevier Inc
http://dx.doi.org/10.1016/j.ins.2012.09.050

⇑ Corresponding author. Tel.: +86 2134202949; fa
E-mail address: tang-fl@cs.sjtu.edu.cn (F. Tang).
a b s t r a c t

Context classification is at the center of user-centric ubiquitous computing that targets the
provision of personalized services based on expressed preferences and interests. Classifica-
tion of context for Mobile Ubiquitous Computing (MUC), where there are high volumes of
data and users place large demands on a context-aware system, must be effective and
efficient in computational terms. The Sequential Minimal Optimization (SMO) based
SVMTorch is widely used for text classification; it is however inefficient for MUC-oriented
context analysis due to: (1) a low classification speed caused by inefficient matrix multipli-
cation, and (2) the inability to classify multi-label data.

In this paper, we propose an efficient classification approach to improve and extend the
SVMTorch. Firstly, we propose a semi-sparse algorithm to speed up vector/matrix multipli-
cation which lies at the core of the SVMTorch-based classification approaches. Theoretically,
to multiply two vectors (i.e., a selected vector and a trained vector) with m and n non-zero
elements respectively, the traditional SVMTorch needs O(m + n) time while our semi-sparse
algorithm requires only O(n) time, where n is the number of non-zero elements in the trained
vector. Secondly, we extend the functions of the traditional SVMTorch approach which is lim-
ited to the classification of single-label data, to support multi-class multi-label classification.
Finally, we parallelize the improved SVMTorch which incorporates the semi-spares algo-
rithm and function extensions to access multi-core processor and cluster systems to further
improve the effectiveness and efficiency of the classification process. The experimental
results demonstrate that our proposed solution significantly improves the performance
and capability of the traditional SVMTorch. The results support the conclusion that the larger
training and testing data sets are, the more improvement our solution brings to the effective-
ness and efficiency of the context classification. This conclusion is verified in a Chinese web
page classifier developed based on the solution presented in this paper.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Ubiquitous computing is a user-centric mobile computing paradigm in which users enjoy service provision in a dynamic
mobile situation [24,46]. To provide mobile users with preferred services adaptively classification based on context is a
prerequisite in many ubiquitous applications; for example, in recommender systems the goal is targeted service provision
of resources to specific users based on h/her context. However, in Mobile Ubiquitous Computing (MUC) environments there
. All rights reserved.

x: +86 2134204728.

http://dx.doi.org/10.1016/j.ins.2012.09.050
mailto:tang-fl@cs.sjtu.edu.cn
http://dx.doi.org/10.1016/j.ins.2012.09.050
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


420 F. Tang et al. / Information Sciences 232 (2013) 419–436
are serious challenges to the classification of text due to: (1) large-scale and high-dimensional contextual data, and (2) real-
time implementation where users have highly dynamic spatial change. Consequently, context classification approaches for
MUC applications should be sufficiently fast and versatile to meet the highly dynamic environments and provide support
for multi-class multi-label context analysis [11,33,44].

Among existing classification models, the machine learning based support vector machine (SVM) outperforms other
methods especially in high-dimensional nonlinear classification [2,34,39]. SVMTorch is a classic implementation of the
SVM. It exhibits excellent performance on text classification, and has been widely used in face recognition, image processing
and other areas. However, for MUC environments with the characteristics identified in points 1 and 2 above the SVMTorch
fails to perform effectively due to a low classification speed caused by inefficient matrix multiplication and the inability to
implement multi-label classification.

The Sequential Minimal Optimization (SMO) algorithm forms the kernel of the SVMTorch. Different from other classifica-
tion methods that solve the largest possible optimization problem at each step, the SMO solves the smallest possible opti-
mization problem in each iteration. Specifically, the SMO chooses two Lagrange multipliers to jointly optimize for these
multipliers and updates the SVM to reflect new optimal values at each step [9,25]. In traditional implementations (e.g., SVM-
Torch) of the SMO, there is a large number of sparse matrix multiplication for not only the linear kernel but also the Gaussian
kernel. We observe that during the matrix multiplication, the selected sparse vector is thoroughly traversed in each iteration,
which inevitably results in time-consuming training and testing processes, especially to large-scale sparse matrices. On the
other hand, SVMTorch only supports single-label classification, therefore it is incapable of classifying MUC-oriented contex-
tual data with multiple labels.

The motivation of this paper is set to investigate and solve the identified challenging issues. The solution proposed in this
paper improves matrix multiplication efficiency of the SVMTorch and extends its functions to support multi-class multi-label
data classification in multi-core processor and cluster systems. The main contributions of this paper are summarized as follows.

� We propose a semi-sparse algorithm for vector/matrix multiplication to improve the traditional SMO algorithm. Tra-
versing a selected vector at each iteration in the SMO wastes a large amount of training and testing time during the
sparse matrix multiplication. Our semi-sparse algorithm can speed up the training and testing processes of the SVM-
Torch classifier through densifying the selected sparse vector to avoid redundant traverses. A theoretical analysis indi-
cates that the traditional SMO requires O(m + n) time on traversing two vectors (a selected vector and a trained
vector) with m and n non-zero elements in a vector multiplication. Our semi-sparse algorithm improves efficiency
in that it only needs O(n) time for vector multiplication without reducing classification accuracy of the SVMTorch.
The experimental results also show that the two implementations of our semi-sparse algorithm can reduce the train-
ing time to 53.7% and 74.95% of that in the traditional SVMTorch respectively.

� We extend the traditional SVMTorch classifier to support multi-label data classification. The traditional SVMTorch
has a good behavioral characteristics in two-class and multi-class single-label classifications; however, it cannot sup-
port multi-class multi-label classification tasks. This solution proposed in this paper transforms a multi-label prob-
lem into multiple single-label sub-problems based on the 1-vs-many policy and proposes a comprehensive
evaluation metrics. Experimental results demonstrate that our approach exhibits excellent precision and perfor-
mance for multi-class multi-label classification tasks.

� We parallelize the SVMTorch classifier. This demonstrates enhanced performance in both the semi-sparse matrix
multiplication and multi-label classification in multi-core processor and cluster systems. Existing SVMTorch imple-
mentations are restricted to single-core processor systems; this limits its classification speed. We use MPI (Message
Passing Interface) to simultaneously distribute multiple sub-tasks in a training or testing process to different cores;
this enables a significant increase in the speed of the classification process significantly.

� A Chinese web page classifier has been developed predicated on our novel semi-sparse algorithm, parallelization
technology and multi-label classification approach. It has been shown to work very well in large-scale Chinese
web page classification.

The remainder of this paper is organized as follows. In Section 2, we introduce preliminaries with a discussion on the
background. In Section 3, we present our novel semi-sparse algorithm for vector/matrix multiplication with an analysis. Sec-
tion 4 presents our proposed approach to multi-class multi-label context classification and the parallelization scheme.
Experimental results and comprehensive performance evaluations are reported in Section 5. The paper closes with conclu-
sions set out in Section 6.

2. Preliminaries and background

In this section we initially introduce some preliminaries followed by a review related research.

2.1. Preliminaries

The SVM, developed by Vapnik [43], exhibits many attractive features including high classification precision. The SVM
solves classification problems generally through a quadratic optimization. Let there be a training set with ‘ samples



F. Tang et al. / Information Sciences 232 (2013) 419–436 421
ðxi; yiÞðxi 2 E; yi 2 RÞ and, where E is an Euclidean space with a scalar dot product. The optimization problem in the SVM can
be formulated as follows [30].
max
a

WðaÞ ¼
X‘
i¼1

ai �
1
2

X‘
i¼1

X‘
j¼1

yiyjkð~xi; ~xjÞaiaj

0 6 ai 6 C; 8i

X‘
i¼1

yiai ¼ 0
A point is optimal if and only if Karush–Kuhn–Tucker (KKT) conditions are fulfilled and Q ij ¼ yiyjkð~xi; ~xjÞ is positive semi-
definite [41]. Such the point may be non-unique and non-isolated. The KKT conditions are particularly KKT simple. The qua-
dratic programming problem can be solved using the following formula (for all i).
ai ¼ 0) yif ð~xiÞP 1

0 6 ai 6 C ) yif ð~xiÞ ¼ 1

ai ¼ C ) yif ð~xiÞ 6 1
In this way, solutions to SVM optimization problems are changed into how to obtain optimal values for the above qua-
dratic programming problem; this can be achieved through a large volume of sparse matrix multiplications during a classi-
fication process. In 1998, Platt proposed the famous SMO algorithm for solving the sparse matrix multiplication problem in
SVM optimization. The SMO algorithm reduces the size of data sets to 2 samples at each step in the classification process and
identifies the solution iteratively. It is well-known that high-dimensional matrix multiplication is very time-consuming,
occupying most training and testing time in SVM-based SMO algorithms. Therefore, the speed of high-dimension vector/ma-
trix multiplication is an important factor in the classification time. In actuality, it is the time taken by SMO-based classifiers
which restricts their application in large-scale text classification problems.

2.2. Background

Classification is one of the most important data mining tasks [1,13,17,23,28,32] and has been widely researched in recent
years [3,7,16,26,42]. As a classic classification method, the SVM has advantages such as: adequate generalization to new ob-
jects, absence of local minima, and representation that depends on only a few parameters [8,31]. Most SVM-based training
algorithms, for example: Chunking in [4], the decomposition method [35–37], Shrinking [21], BSVM [18] and Alpha Seeding
[15], use the decomposition technology. The GBT algorithm proposed by Joachims is an extension the Osuna algorithm. An
implementation of this algorithm is termed SVMLight [22].

Sequential minimal optimization (SMO), proposed by John Platt in 1998 [41], is possibly the most important representa-
tive among decomposition-based classifiers. This algorithm is the kernel of the SVMTorch which is widely used for data clas-
sification and regression. The SMO always solves the smallest possible optimization problem through optimizing two
Lagrange multipliers at each step.

In recent years many application-specific solutions have been proposed for solving specified classification tasks [5,10]. In
[29] Ma et al. proposed an approach for gene classification adopting codon usage bias as feature inputs. The DNA sequence is
first converted to a feature vector with 59 dimensions, where each element corresponds to the Relative Synonymous Usage
(RSCU) frequency of a codon. The Support-Vector-Based Fuzzy Neural Network (SVFNN) [27] combines the superior classi-
fication power of SVM in high dimensional data spaces and the efficient human-like reasoning of Fuzzy Neural Networks
(FNN) to handle uncertainty in pattern classification. F2SVM (fuzzy-input fuzzy-output SVM) [6] was designed for subpixel
image classification. This binary classifier can address multi-class problems using two strategies: the fuzzy one-against-all
(FOAA) and the fuzzy one-against-one (FOAO) strategies. It can process inputs of the classification algorithm for modeling
the subpixel information in the learning phase and provide a fuzzy model of classification results, allowing a
many-to-one relationship among classes and pixels. Personalized Transductive Learning (PTL) [38] builds a unique local
model for classification of individual test samples and is practically Dependant on neighborhood, using two concepts:
knowledgeable neighborhood and transductive SVM classification tree (t-SVMT). The Support Feature Machine (SFM) [12]
is a multidimensional time series classification model. It uses the optimization model of SVM and the nearest neighbor rule
to incorporate both spatial and temporal features of multi-dimensional data. In [19], the authors proposed an enhanced
hybrid classification method through the utilization of the naive Bayes approach and the SVM. The Bayes formula is used
to vectorize a document according to a probability distribution reflecting the probable categories to which documents
may belong. The SVM can then be used to classify the documents on a multidimensional level.

The Twin SVM (TWSVM)[20] is a binary SVM classifier which determines two nonparallel planes by solving two related
SVM-type problems, each of which is smaller than in a conventional SVM. The TWSVM solves two quadratic programming
problems of a smaller size rather than a large one in traditional SVMs. The Twin Mahalanobis Distance-Based Support Vector



422 F. Tang et al. / Information Sciences 232 (2013) 419–436
Machine (TMSVM) [40] extends the TWSVM by constructing two Mahalanobis distance-based kernels according to the
covariance matrices of two classes of data for optimizing the nonparallel hyperplanes. As a result, it is suitable for data with
different covariance matrices.

A complete framework for XML document classification to capture structures and contents of XML-based data has been pro-
posed in [45]. In this work, the author designs a knowledge representation method for XML documents with a decision-tree
learning algorithm for the XML classification problem and a semi-supervised learning algorithm. An Adaptive Classification
System (ACS) is presented in [14]. ACS has been developed for video-based face recognition and it combines a fuzzy ARTMAP
neural network classifier with a dynamic particle swarm optimization (DPSO) algorithm, and a has long term memory.

3. Semi-sparse matrix multiplication

The SMO algorithm is the core of the SVMTorch. Vector/matrix multiplication is a basic operation for iteration-based data
classification in the SMO. Consequently, vector/matrix multiplication speed significantly impacts the training time of the
SVMTorch. The SMO algorithm in traditional SVMTorch generally uses sparse vector multiplication for data training. During
each iteration, both the selected vector and trained vector are repeatedly traversed, which wastes a lot of training time. In
this section, we propose the semi-sparse algorithm to expedite the matrix multiplication process, and then analyze the per-
formance of our algorithm.

3.1. Motivation

Algorithm 1. Sparse matrix multiplication in the traditional SMO

1: i = 0, p1 = 0, p2 = 0, dot = 0;
2: while (i < NV) {
3: while (p1 < num1 && p2 < num2) {
4: a1 = index[p1];

a2 = index[p2];
5: if (a1 == a2) {
6: dot += value[p1] * value[p2];

p1++;
p2++;}

7: else if (a1 > a2)
p2++;

8: else
p1++;

}
9: result[i]=dot;
10: i++;}

In traditional SMO algorithm, trained samples are stored in sparse matrix, where each sparse vector consists of only non-
zero elements and is stored in two arrays: index[] and value[]. The index[] is an integer array that stores locations of non-zero
elements, and the value[] is a float point array that stores the corresponding non-zero value.

The concept of matrix multiplication in the traditional SMO algorithm is shown in Algorithm 1, where index[p1] and in-
dex[p2] point to non-zero elements in a selected vector p1 and a trained vector p2, respectively; similarly, value[p1] and
value[p2] store the non-zero values corresponding to index[p1] and index[p2], respectively. NV is the number of trained vec-
tors in a matrix. num1 and num2 are the numbers of the non-zero elements in p1 and p2, respectively.

To multiply two sparse vectors p1 and p2, Algorithm 1 needs to find the same subscript through traversing the two vec-
tors. Assume there be a set of vectors in a training matrix. To get the optimal value, all of them need to multiply by the se-
lected vector. Consequently, the selected vector in Algorithm 1 will be traversed NV times in the above matrix multiplication
process. When the trained vectors are high-dimensional, the traditional SMO algorithm will take insufferable time for a
training or a testing.

Based on this analysis, we propose a new semi-sparse algorithm to speed up the matrix multiplication.

3.2. Semi-sparse matrix multiplication algorithm

To address the issues identified we have developed a semi-sparse matrix multiplication approach to avoid the redundant
traverses on the selected vector in matrix multiplication. Each vector multiplication in the traditional SMO must traverse
two sparse vectors. In our semi-sparse algorithm we initially make the selected vector (e.g., VS) dense by creating a dense



F. Tang et al. / Information Sciences 232 (2013) 419–436 423
array AD
S to store both non-zero values in VS and zero excluded in VS. Next, the AD

S is multiplied with all sparse vectors in the
matrix sequentially. Fig. 1 illustrates the process of densification and multiplication of the selected vector VS with a sparse
vector Vi in the matrix.

Specifically, our semi-sparse algorithm works in two phases: (1) selected vector densification, and (2) matrix multiplication.
In the selected vector densification phase, our algorithm first creates an array wrk[] in which all elements are initialized as 0;
this is followed by a second stage in which all non-zero elements in VS are filled in the corresponding locations of the wrk[].
In the matrix multiplication phase, the array wrk[] is multiplied with each sparse vector in the matrix.

The pseudo-code is described in Algorithm 2 where: NS and Ni are the number of non-zero elements of the selected vector
VS and the trained vector Vi in the matrix respectively; NV are the number of vectors in the trained matrix. Note that
Algorithm 2 does not traverse the array wrk[]; it only locates index2[] and multiplies corresponding value2[] with elements
of the wrk[].

Algorithm 2. Static semi-sparse matrix multiplication algorithm (in stack) (SSS-SMO)
1: i = 0, p1 = 0, p2 = 0, dot = 0;
2: double wrk[MAXLEN] = {0};
3: double result[NV] = {0};
4: while (p1 < NS) { // make the selected vector dense

wrk[index[p1]] = value[p1];
p1++;}

5: while (i < NV) {
6: while ðp2 < NiÞ { // get comparing result on semi-sparse vector

dot+=wrk[index[p2]] * value[p2];
p2++;}

7: result[i]=dot;
8: i++;}

The data set in the trained matrix is generally comprehensive and high-dimensional. Compared with Algorithm 1, it can
be found that our Algorithm 2 significantly reduces the time taken to traverse and judge the selected vector VS. Therefore, the
time required for matrix multiplication will be significantly reduced because the selected vector VS is traversed and judged
only once during the whole matrix multiplication.
3.3. Performance analysis for our semi-sparse algorithm

For large-scale classification tasks, our semi-sparse algorithm can significantly speed up the training process. Let there be
a sparse trained matrix Am�n. A selected vector VS needs to multiply with n sparse vectors Við1 6 i 6 nÞ in the Am�n during a
matrix multiplication. The traditional SMO algorithm traverses and judges the selected vector VS n times while our
selected vector V
S

trained vector V
i

trained vector V
i

densified vector V
D

S

V
S

 densification

multiply

traverse 

non-zero element

zero element

Fig. 1. Semi-sparse vector multiplication.



424 F. Tang et al. / Information Sciences 232 (2013) 419–436
semi-sparse algorithm traverses the VS only once. Specifically, in our semi-sparse algorithm, all vector multiplications are
carried out directly on the dense array wrk[]. Consequently, for a vector multiplication between the VS and a Vi, the tradi-
tional SMO algorithm will compare and judge OðNS þ NiÞ times while our semi-sparse algorithm only needs O(Ni) times. This
is the main reason why our semi-sparse algorithm can accelerate the matrix multiplication.

To multiply the selected vector VS with the training matrix Am�n, the traditional SMO algorithm needs the time tSMO to
traverses vectors, which can be formulated as follows.
tSMO ¼ NS � n� tS þ
Xn

i¼1

Ni � ti ð1Þ
where tS and ti are the time to find one element in the VS and the Vi respectively. For the same matrix multiplication, our
semi-sparse algorithm needs the time tSS�SMO, which can be calculated in the following formula.
tSS�SMO ¼ NS � tS þ
Xn

i¼1

Ni � ti ð2Þ
Let there be a VS and a matrix A200�100. The VS needs to multiply with the 100 sparse vectors in the A200�100. Without losing
generality, we assume all vectors have the same number of non-zero elements such that NS ¼ Ni ¼ N and the same traversing
time such that tS ¼ ti ¼ t. In this case, the traditional SMO needs the time tSMO ¼ 100� NS � tS þ

P100
i¼1 Ni � ti ¼ 200N � t while

our semi-sparse algorithm requires the time tSS�SMO ¼ NS � tS þ
P100

i¼1 Ni � ti ¼ 101N � t, which is approximately 50% of that in
the traditional SMO algorithm. Experimental results in Section 5 also verify this conclusion.

3.4. Dynamical implementation

Algorithm 3. Dynamical semi-sparse matrix multiplication algorithm (in heap) (DSS-SMO)
1: i = 0, p1 = 0, p2 = 0, dot = 0;
2: double *wrk = new double [MS];
3: double result[NV]=0;
4: memset (wrk,0,define*sizeof (double));
5: while (p1 < NS) { // make the selected p1 into a dense vector

wrk[index[p1]] = value[p1];
p1++;}

6: while (i < NV) {
7: while (p2 < Ni) { // get comparing result on semi-sparse vector

dot+=wrk[index[p2]]*value[p2];
p2++;}

8: result[i]=dot;
9: i++;}

In general, our Algorithm 2 can be implemented as a function or a method using C or C++ and when encoded in these
programming languages the algorithm should run in a stack. A densified array wrk[] can be allocated storage space statically
so that Algorithm 2 can run faster than other implementations.

However, Algorithm 2 needs an additional big dense array wrk[] to densify the selected vector VS. For a selected vector VS

with m non-zero elements and M dimensions (generally speaking, M � m), Algorithm 2 requires (M-m) units of additional
storage capacity as compared to the traditional SMO. What is more, the array wrk[] in Algorithm 2 should be allocated in
terms of the largest data set, this results in wasted space to small training data sets. In the worst case scenario, the high-
dimensional training matrix Am�n could exceed the default capacity of a stack. If a static variable is set as 2 M by default
in C++ compiling environment, for example, it can only contain a 0.5 M double array wrk[].

Based on the above analysis, we have developed a further dynamic implementation of our novel semi-sparse ap-
proach. This is shown in Algorithm 3 where MS is the dimension of the selected vector VS and the wrk[] is a dynamic
array in the heap area. In particular, the size of the dense array wrk[] can be dynamically specified as a parameter of the
method or function when we choose different selected vectors from a training matrix. Although Algorithm 3 can solve
the dynamic memory allocation issues for the dense array wrk[] in Algorithm 2, the initiation (set the dense vector wrk
with zero elements memset (wrk, 0, n � sizeof (double))) of the dense array wrk[] will consume a little more time than
that required in Algorithm 2.



F. Tang et al. / Information Sciences 232 (2013) 419–436 425
4. Multi-class multi-label classification and parallelization for SVMTorch

This section considers the multi-label classification and parallelization for SVMTorch.

4.1. multi-class multi-label classification extension for SVMTorch

Text classification involves two basic conceptions: class and label. Let a data set S consist of K samples such that
S ¼ fSij1 6 i 6 Kg belong to M classes and N labels. We use Si; S

c
i and Sl

ið1 6 i 6 KÞ to denote the ith sample, the class set
of the Si and the label set of the Si. Further, jSc

i j and jSl
ijð1 6 i 6 KÞ refer to the number of class(es) and label(s) in Si. Generally,

classification problems can be categorized as follows.

� Two-class (TC) classification. In TC classification, there are two classes in S and any sample Si 2 S belongs to only one class
such that 8Si; jSc

i j ¼ 1. In this case, any sample Si 2 S can have only one label.
� Multi-class single-label (MCSL) classification. A MCSL data set has M (M > 2) classes, where any two classes are disjoint.

Moreover, in the data set, there exists at least one sample Sið1 6 i 6 KÞ that belongs to more than one class such that
9Si; jSc

i jP 2. On the other hand, any sample Si has exactly one label such that 8Si; jSl
ij ¼ 1.

� Multi-class multi-label (MCML) classification. In a MCML data set, at least one sample Si belongs to more than one class such
that 9Si; jSc

i jP 2. At the same time, there are at least one sample Si has more than one label such that 9Sj; jSl
jjP 2. Obvi-

ously, a data set in the MCML classification includes more than one classes and more than one labels.

4.1.1. Multi-class classification with single label or multiple labels
Preliminarily, the SVM is designed for only two-class classification tasks where each sample belongs to one of two classes:

A and B. However, in ‘real-world’ applications there are generally multiple classes. For example, web pages may generally
include many classes including: news, sports and education. Therefore, SVM based multi-class single label classification ap-
proaches have been well researched and are well documented in the literaturel.

The TC classification needs only one classifier which classifies each sample to the nearest class through feature matching.
Multi-class classification is achieved mainly through two categories of method: decomposition. and a multi-class learning
model. The front has faster training speed so that it is widely researched and has been frequently used. In general, decom-
position based schemes use the following three policies: one-against-one, one-against-many and output coding. The one-
against-many approach exhibits fast training speeds as well as high precision. The basic idea of this approach is to set up
M 2-class classifiers for a M-class classification task. The ith 2-class classifier divides samples based on two-class classifica-
tion, taking the sample Si as a class and other samples as another class. For a MCSL classification, one-against-many use the M
2-class classifiers to directly divide each sample into a specific class and label. However, it is more complex for a MCML clas-
sification. Generally speaking, in the first step, the M 2-class classifiers transfer the MCML problem into multiple equivalent
MCSL tasks. In the second step, the classifier first seeks a threshold, and decides which class and label each sample belongs to
based on the threshold.

4.1.2. SVMTorch based multi-class multi-label classification
The SVM was originally designed for two-class classification and then extended to multi-class single-label classification.

SVMTorch is a SMO based classification tool and while the SMTorch is effective in TC and MCSL classifications it cannot sup-
port the MCML classification. We extended the SVMTorch to enable MCML classification by the addition of a new class
MultiLableWorker.

The key point of decomposition-based MCML classification is to transfer a MCML problem into multiple MCSL problems.
For a MCSL data set with M classes, our MultiLableWorker initially constructs M two-class classifiers to transfer a MCML task
into M MCSL tasks using its function formLabel () as shown in Algorithm 4, and then matches each sample with labels
through its function formResult (), which is similar to the formLabel ().

Traditional classification schemes use the two metrics: recall (r) and precision (p) to measure classification performance.
They are formally described as the following formulas.
r ¼ a
aþ c

� 100%

p ¼ a
aþ b

� 100%
where a is the number of samples correctly classified as a specific class A; b refers to the number of samples that are mis-
takenly classified as the class A but belong to other class(es); c means the number of samples that belong to the class A but
are mistakenly classified as other class(es). The metrics r and p are conflict to each other. Only considering the recall or the
precision will eventually results in a large deviation. We combine these two metrics and propose the following metrics F1 to
evaluate classification performance of classifiers.



426 F. Tang et al. / Information Sciences 232 (2013) 419–436
F1 ¼
2� p� r

pþ r
� 100% ð3Þ
Algorithm 4. Transform a MCML problem into MCSL classification
Input: Training and testing samples
Output: Classified samples
1: formLabel (string file, real �� label, int &numExamples, int cl, int � fileID, int len) {
2: ifstream f;
3: f.open (file.c_str ());
4: if (!f) error ();

// get two-category information
5: double � label_info = newdouble[len];
6: map <int, map<int, int>> fileID2Label;
7: map <int, int> labels;
8: int fid = 0, labelInfo = �1;
9: string s = ‘‘’’;
10: while (!f.eof ()) {
11: f � fid; // get file ID
12: labels = fileID2Label[fid];
13: for (int i = 0; i < len; i++) { // get label information of all samples in the file

f �s;
if (s == ‘‘#’’) break;
labelInfo = atoi (s.c_str ()) – 1;
fileID2Label[fid][labelInfo] = 0;}}

// transfer multi-label into two-category label
14: numExamples = 0;
15: for (int i = 0; i < len; i++){

labels = fileID2Label[fileID[i]];
if (labels.count (cl) > 0){

label_info[i] = 1.0;
numExamples++;}

else
label_info[i] = �1.0;}

16: labels.clear();
17: fileID2Label.clear();
18: f.close();
19: � label = label_info;}

4.2. SVMTorch parallelization

The current SVMTorch cannot run in multi-core processor and cluster systems. With the training matrix growing
exponentially larger, the long training time makes the SVMTorch inefficient even unusable to MUC environments. The
Message Passing Interface (MPI) is a category of parallel programming language based on message communication. It
is efficient for computation-intensive tasks without excessive data communication. In most cases, the SVMTorch needs
many iterations for a training process; this represents a typical computationally-intensive application, especially for mul-
ti-classification and multi-label training. After analyzing the source code of the SVMTorch we identified that the SVM-
Torch executes the training and testing tasks sequentially. On the other hand, different 2-class classifiers in the
SVMTorch execute independently so that these 2-class classifiers can work in parallel to speed up training and testing
processes. Based on MPI, we have improved the enhanced SVMTorch by transplanting it to multi-core processor and clus-
ter systems to speed up the training process.



F. Tang et al. / Information Sciences 232 (2013) 419–436 427
Algorithm 5. Training parallelization
1: int worker_id, procs_num, src_p, dest, namelen, total_result;
2: char proc_name[MPI_MAX_PROCESSOR_NAME];
3: MPI::Init (argc, argv);
4: worker_id = MPI::COMM_WORLD.Get_rank ();
5: procs_num = MPI::COMM_WORLD.Get_size ();
6: MPI::Get_processor_name (proc_name, namelen);
7: for (int cl = params.first_class; cl 6 params.last_class; cl++) {
8: if (worker_id == (cl % procs_num)) {

cout �‘‘nn Training class’’ � cl �‘‘against the others n n’’;
if (params.multi_m) {

//import 2-classification label information
9: io.formLabel (‘‘train_vector_class.txt’’, &y_temp, numExamples, cl, file_id, l);}
10: else {//multi-label classification

formLabelInfo (y, y_temp, l, numExamples, cl);
11: cout �‘‘# class’’ �cl #�‘‘has ’’� numExamples �‘‘examples . . .’’�endl;
12: formOutFile (file_out, argv[argc - 1], cl);
13: bsvm (data, sdata, arr_size, y_temp, l, dim, &params, file_out,comment);}} // parallel task allocation

. . .;
}

4.2.1. Parallel training
We parallelize SVMTorch through using MPI to distribute multiple 2-class classification sub-tasks on cores (or nodes).

These concurrent execution units share a sparse training matrix. Parallel training is illustrated in Algorithm 5, which
works in the following steps: including MPI head file, declaring parameters, initializing MPI run-time environment, clas-
sifying multi-class multi-label samples and finally ending MPI environment. During the training process, our algorithm
provides a set of complete training data for each of parallel training processes to reduce messaging overhead. Commu-
nications among processors only involves execution results and execution marks. Our parallel approach only uses the
following basic MPI functions to startup and exit MPI environments, recognize processes, and discover and receive
messages.

� MPI_INIT( ): initialize MPI environment
� MPI_COMM_SIZE( ): query the number of processes
� MPI_COMM_RANK(): query the execution marks
� MPI_SEND(): send a message
� MPI_RECV(): receive a message
� MPI_FINALIZE: end the MPI environment

By the end of a training process, we save training results in a model file which is stored in a NFS based cluster. Moreover,
we do not synchronize any intermediate result to keep different 2-class classifiers independently. Such the design further
improves the training speed.
4.2.2. Parallel testing
Our parallelized SVMTorch synchronizes the classification process through saving final trained data in a file stored in NFS.

Any execution unit can read all the training results during the testing process. Specifically, our scheme compares tested data
sets with original labels, and organizes the tested results as a 8-dimension vector that mainly includes the number of sam-
ples classified mistakenly, the number of samples classified correctly, recall, precision and F1. This vector will be transferred
to a management process responsible for testing statistics. Our parallelization testing scheme is illustrated in Algorithm 6.
We use Ready-mode based Point to Point communication and Group communication. The synchronization statement
MPI_Barrier (MPI_COMM_WORLD) is used for the final statistics.



428 F. Tang et al. / Information Sciences 232 (2013) 419–436
Algorithm 6. Testing parallelization
1:
 for (int cl = 0; cl < n_class; cl++) {

2:
 if (worker_id == (cl % procs_num)) {

3:
 cout �‘‘n n testing class ’’ � cl � endl;

4:
 string file = argv[argc - 2]; // get the file type
file = getStoreKernel (file, cl);

5:
 real norm = svmTest (file, data, sdata, a_size, y_temp, l,&params); // test the text vectors

6:
 getBinStat (params.multi_m, cl, y_temp, l, stat, file_id); // count testing results

7:
 if (worker_id > 0) {// send statistic information to trace program
MPI_Send (stat, 8, MPI_DOUBLE, 0, 123, MPI_COMM_WORLD);}

8:
 else {
getBinSVM (stat, res);}} //send testing results to scheduling process manager

9:
 if (worker_id == 0) {
memset (stat, 0, 8);

src_p = cl % procs_num;

if (src_p > 0) {
MPI_Recv (stat, 8, MPI_DOUBLE, src_p, 123, MPI_COMM_WORLD,&status);

getBinSVM (stat, res);}}
10:
 MPI_Barrier (MPI_COMM_WORLD);

. . .;
}

5. Experiments and performance evaluation

We have implemented our semi-sparse matrix multiplication algorithms, our multi-class multi-label classification ap-
proach, and parallelization scheme. In this section, we evaluate our solutions through comprehensive experiments and per-
formance analysis. Specifically, we demonstrate the performance improvement derived using from our proposed solutions
through comparing the following related schemes, which all rely on the same environment.

� The traditional SMO algorithm (SMO).
� Our semi-sparse matrix multiplication algorithm with static stack implementation (SSS-SMO, i.e., Algorithm 2).
� Our semi-sparse matrix multiplication algorithm with dynamical heap implementation (DSS-SMO, i.e., Algorithm 3).

5.1. Environment and setting

We implemented all solutions using C++ and ran them on a personal computer with 2.33 GHz Pentium CPU and 2G mem-
ory in Windows XP. In all the implementations, we use the Gaussian Kernel as a typical demonstration for our performance
evaluations. In the text classification, the following two parameters have significant impact to classification results:

� Error tolerance ratio (simply marked as e). We vary e from 0.01 to 0.1 to evaluate the above three solutions. When we
test how the performance change with c, it is fixed as 0.01.

� Trade-off between training error and training margin (simply marked as c). In the experiments, we vary c from 200 to
2000. Its default value is set as 100.

We use e and c as parameters to evaluate the above three solutions. Each point in the following figures is derived from the
average of 10 independent runs. In the testing the size of the dense array wrk[] is set as 50000 for our SSS-SMO algorithm
because the maximal dimension in the training matrix is 31138.

5.2. Performance evaluation

5.2.1. Performance evaluation on our semi-sparse algorithm
In evaluating the performance we have utilized both the balanced corpus 20-newsgroups and the skewed corpus WebKB

to demonstrate the performance of the three solutions under different scenarios.

� WebKB. This data set contains web pages gathered from computer science departments of universities. The pages
involve seven categories: student, faculty, staff, course, project, department and other. WebKB contains 8203 pages
(7031 training pages and 1172 testing pages). To distinguish impact from different parts in pages, we assign ‘‘Title’’,
‘‘H1’’ and ‘‘URL’’ parts five times of weight than that in ‘‘Body’’ part in web pages.



F. Tang et al. / Information Sciences 232 (2013) 419–436 429
� 20-newsgroup. This data set is generated from 20 Usenet newsgroups. It consists of 19,997 text messages, around one
thousand text messages per category. Approximately 4% of the articles are cross-posted. We only keep ‘‘Subject’’,
‘‘Keywords’’ and ‘‘Content’’ parts in these articles and assign the ‘‘Subject’’ and ‘‘Keywords’’ parts five times of weight
than that in ‘‘Contents’’.

We compare our semi-sparse algorithms (SSS-SMO and DSS-SMO) with the traditional SMO algorithm in terms of training
time and classification accuracy.

Training time vs e. Our semi-sparse algorithms can significantly improve the training time under different error tolerance
ratios e. Fig. 2 shows that both SSS-SMO and DSS-SMO significantly outperform over SMO in terms of training time when we
use the skewed WebKB benchmark. In this case, our semi-sparse algorithms can reduce the training time to around 53.7% of
that in the traditional SMO algorithm because the semi-sparse algorithm avoids the redundant traverses to the selected vec-
tor. Moreover, the SSS-SMO runs a little faster than the DSS-SMO. The reason is that the SSS-SMO is implemented on stack
area so that it can allocate memory space more quickly than the DSS-SMO on heap area.

When the balanced 20-newsgroup was used as a benchmark, we observed a similar conclusion. As shown in Fig. 3, the
training time is reduced to around 75% of that in the SMO. In this experiment, the static SSS-SMO still outperforms a little
over the dynamic DSS-SMO.

In conclusion, our semi-sparse algorithm can significantly reduce the training time for both balanced and unbalanced
data sets.

Training time vs c. In this experiment, we have tested how the training time changes with different values for c. As illus-
trated in Fig. 4, training time in our SSS-SMO and DSS-SMO has small growth on the skewed corpus WebKB as the parameter
c increases. However, Fig. 5 reveals that the training time reduces a little with the increase values for the parameter c when
we use the balanced corpus 20-newsgroup. The reverse variation tendency results from the different characteristics of the
two used benchmarks. From Figs. 4 and 5, we find that our semi-sparse algorithms SSS-SMO and DSS-SMO always shows a
significant reduce the training time when compared to the traditional SMO irrespective of whether we use balanced or
unbalanced data sets. Another advantage of our SSS-SMO and DSS-SMO is that their training time is more stable than the
traditional SMO algorithm under different c.

Classification accuracy vs e. This experiment tests how the classification accuracy in the three solutions changes with the
different values for the parameter e; the results are shown in Figs. 6 and 7 where the WebKB and the 20-newsgroup are used
as benchmarks respectively. From the two figures we can conclude that our SSS-SMO and DSS-SMO do not impact the clas-
sification accuracy and have been shown to improve accuracy in cases where they run on the unbalanced corpus. In fact, our
semi-sparse algorithms only speed up matrix multiplication and do not impair the classification accuracy.

Classification accuracy vs c. Here, we set the parameter e such that e = 0.01 and examined how the classification accuracy
changes with the different parametric values for c. Figs. 8 and 9 show that our SSS-SMO and DSS-SMO have the same clas-
sification accuracy as the traditional SMO algorithm.

5.2.2. Performance evaluation on our multi-class multi-label classification approach
The traditional SVMTorch only supports multi-class single-label classification. We extend the traditional SVMTorch to en-

able classification of multi-class multi-label data sets. In this experiment, we use the unbalanced corpus Reuters-21578,
which is widely used as a multi-label classification benchmark, to examine our multi-class multi-label classification ap-
proach. The Reuters-21578 consists of 21578 samples with 135 classes. We have selected 7723 multi-label samples from
0 0.02 0.04 0.06 0.08 0.1
50

100

150

200

Error Tolerance Ratio

Tr
ai

ni
ng

 T
im

e 
(s

)

SSS−SMO
DSS−SMO
SMO

Fig. 2. Training time for the WebKB under different error tolerance ratio e.



0 0.02 0.04 0.06 0.08 0.1
60

70

80

90

100

110

120

130

140

150

Error Tolerance Ratio

Tr
ai

ni
ng

 T
im

e 
(s

)

SSS−SMO
DSS−SMO
SMO

Fig. 3. Training time for the 20-newsgroup under different error tolerance ratio e.

200 400 600 800 1000 1200 1400 1600 1800 2000
100

150

200

250

300

350

c

Tr
ai

ni
ng

 T
im

e 
(s

)

SSS−SMO
DSS−SMO
SMO

Fig. 4. Training time for the WebKB under different parameter c.

200 400 600 800 1000 1200 1400 1600 1800 2000
75

80

85

90

95

100

105

110

115

120

c

Tr
ai

ni
ng

 T
im

e 
(s

)

SSS−SMO
DSS−SMO
SMO

Fig. 5. Training time for the 20-newsgroup under different parameter c.

430 F. Tang et al. / Information Sciences 232 (2013) 419–436



0 0.02 0.04 0.06 0.08 0.1
0.753

0.7535

0.754

0.7545

0.755

0.7555

Error Tolerance Ratio

Ac
cu

ra
cy

SSS−SMO
DSS−SMO
SMO

Fig. 6. Classification accuracy for the WebKB with the parameter e.

0 0.02 0.04 0.06 0.08 0.1
0.8424

0.8426

0.8428

0.843

0.8432

0.8434

0.8436

Error Tolerance Ratio

Ac
cu

ra
cy

SSS−SMO
DSS−SMO
SMO

Fig. 7. Classification accuracy for the 20-newsgroup with the parameter e.

200 400 600 800 1000 1200 1400 1600 1800 2000
0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

c

Ac
cu

ra
cy

SSS−SMO
DSS−SMO
SMO

Fig. 8. Classification accuracy for the WebKB with the parameter c.

F. Tang et al. / Information Sciences 232 (2013) 419–436 431



200 400 600 800 1000 1200 1400 1600 1800 2000
0.815

0.82

0.825

0.83

0.835

0.84

c

Ac
cu

ra
cy

SSS−SMO
DSS−SMO
SMO

Fig. 9. Classification accuracy for the 20-newsgroup with the parameter c.

Table 1
Results of our multi-class multi-label classifier on the Reuters-21578.

Class Tested Doc
(a + c)

Total Doc
(a + b)

Doc classified correctly
(a)

Other Doc
(c)

Doc classified mistakenly
(b)

Recall
(%)

Precision
(%)

F1 (%)

Earn 1,080 1,047 1,035 45 12 95.83 98.85 97.32
Acq 718 678 646 72 32 89.97 95.28 92.55
Crude 186 161 139 47 22 74.73 86.34 80.12
Money-

fx
179 168 117 62 51 65.36 69.64 67.44

Grain 148 135 120 28 15 81.08 88.89 84.81
Interest 131 116 89 42 27 67.94 76.72 72.06
Trade 116 114 79 37 35 68.1 69.3 68.7
Ship 87 52 44 43 8 50.57 84.62 63.31
Wheat 71 59 47 24 12 66.2 79.66 72.31
Corn 56 52 40 16 12 71.43 76.92 74.07

Earn Acq Crude Money Grain Interest Trade Ship Wheat Corn
0

200

400

600

800

1000

1200

Tested Documents(a+c)
Total Documents(a+b)
Correct Documents(a)

Fig. 10. The number of documents classified by our multi-class multi-label classification approach.

432 F. Tang et al. / Information Sciences 232 (2013) 419–436
its training set where these training samples belong to 90 classes. We classified all the training samples and found that most
classes in the Reuters-21578 include only a relatively few samples. Therefore, we have counted the first 10 classes: Earn, Acq,
Crude, Money-Fx, Grain, Interest, Trade, Ship, Wheat and Corn and have listed their results in Table 1. Figs. 10 and 11 intuitively
show that our multi-class multi-label classification approach can work well.



Earn Acq Crude Money Grain Interest Trade Ship Wheat Corn0

10

20

30

40

50

60

70

80

90

100

Recall (%)
Precision (%)
F1 (%)

Fig. 11. The classification performance of our multi-class multi-label classification approach.

Table 2
Classification results of our Chinese web page classifier.

Class Tested Doc
(a + c)

Total Doc
(a + b)

Doc classified correctly
(a)

Other Doc
(c)

Doc classified mistakenly
(b)

Recall
(%)

Precision
(%)

Traffic 71 68 68 3 0 95.78 100
Sport 149 153 149 0 4 100 97.39
Military 83 77 66 17 11 79.52 85.71
Medicine 68 67 65 3 2 97.06 98.51
Politics 167 181 160 7 21 95.81 88.4
Education 73 71 68 5 3 93.15 95.78
Environment 67 61 59 8 2 88.06 96.72
Economy 108 107 103 5 4 95.37 96.26
Art 82 83 81 1 2 98.78 97.59
Computer 66 66 64 2 2 96.7 96.7

Traffic Sports Military Med. Politics Edu. Environ. Econ. Art Computer
0

20

40

60

80

100

120

140

160

180

200

Tested Documents(a+c)
Total Documents(a+b)
Correct Documents(a)

Fig. 12. The number of classified documents.

F. Tang et al. / Information Sciences 232 (2013) 419–436 433
5.2.3. Performance evaluation on our parallelization approach
We have parallelized SVMTorch, which has been improved using our solution, on a cluster with 10 nodes. Each node has

eight 2.0 Hz cores and a 8G memory. We install centos 5.4 in the cluster, use NIS to support the Single Sign-On, and manage



Traffic Sports Military Med. Politics Edu. Environ.Econ. Art Compu.Macro Micro
0

10

20

30

40

50

60

70

80

90

100

Recall (%)
Precision (%)

Fig. 13. Classification performance of our Chinese web page classifier.

434 F. Tang et al. / Information Sciences 232 (2013) 419–436
files through the NFS. We have run our improved SVMTorch to train the 20-newsgroups; the training time is 10, 18 and 143s
when 10 nodes are used, only one node and only one core respectively. This result reveals that our parallelization scheme
significantly reduces the training time; the greater the number of cores used in parallel in a classification task the greater the
improvement in performance achieved by our parallelization approach.

By comparison, the time taken in training the WebKB in the cluster is 67 s; the time taken is noticeably greater than for
the 20-newsgroup. The rationale for this is that the WebKB is unbalanced. In fact, the third class in the WebKB has almost
50% samples. Therefore the time spent in training the third-class samples is much greater which results increased training
time than for other classes; the result is that other parts have to wait for the completion of the training for the third class.
Future projected work will target further improvements in parallelization performance for unbalanced data classification
through super thread idea.

5.2.4. A Chinese web page classifier and performance evaluation
It is very important to classify multi-class multi-label web pages automatically and efficiently as the WWW has become

ubiquitous and pervasive with the development of mobile wireless technologies. We have developed a Chinese web page
classifier based on our semi-sparse algorithm using the multi-label classification and parallelization approaches. The classi-
fier works in the training and the testing phases. In this section, we focus on evaluating the classification performance of our
SVMTorch-based classifier.

Classifier testing has employed the FDU corpus with 19437 files: 9833 files for training and 9604 files for testing. These
files belongs multiple classes and multiple labels, e.g., environment, computer, traffic, education, economy, military, medi-
cine, art and politics. Our classifier pay ‘‘Title’’, ‘‘H1’’ and ‘‘URL’’ parts 5 times of weight than ‘‘body’’ area.

In this part, we use not only recall and precision but also macro averaging (�r and pÞ and micro averaging (~r and ep) as the
performance metrics to clearly examine the classification ability of our classifier.
�r ¼
P

s2Srs

jSj ; p ¼
P

s2Sps

jSj ð4Þ

~r ¼
P

s2SaP
s2Saþ

P
s2Sc

; ep ¼
P

s2SaP
s2Saþ

P
s2Sb

ð5Þ
where (1) rs and ps are the recall and precision of the sample s, (2) �r and p are the macro averaging recall and macro averaging
precision, (3) ~r and ep are the micro averaging recall and micro averaging precision, (4) S is the set of samples, and (5) jSj is the
number of the samples. Moreover, a, b and c are the same as described above. Classification results are listed in Table 2.
Figs. 12 and 13 show our classifier is sufficiently efficient to enable effective classification of Chinese web pages.

6. Conclusions

Context classification lies at the center of user-centric MUC where the aim is the provision of personalized service pro-
vision based on user preferences in dynamic mobile scenarios. To handle large volumes of contextual information and to
meet the high demands of ubiquitous users, context classification for MUC environments has to be sufficiently fast, effective,
and efficient. The SMO based SVMTorch, while widely used in the text classification, is inefficient for MUC context analysis in



F. Tang et al. / Information Sciences 232 (2013) 419–436 435
terms of both low classification speed caused by inefficient matrix multiplication and its inherent inability to handle multi-
label data classification.

To provide an effective basis upon which versatility and performance improvements in the classification of context infor-
mation in large-scale MUC environments can be realized, we have proposed a novel classification approach which incorpo-
rates the following advantages:

� Our semi-sparse algorithm reduces the matrix multiplication time to around 50% of that in the traditional SMO
algorithm.

� We extend the traditional SVMTorch to classify multi-class multi-label data sets.
� We parallelize SVMTorch, which is improved as discussed in this paper, to multi-core processor and cluster systems.

It significantly speeds up the training and testing processes, especially for the balanced data sets.
� Our Chinese web page classifier can be applied to real web page classification.

The proposed solution presented in this paper has been evaluated and verified based on systematic experiments together
with a rigorous theoretic analysis. In conclusion, the results demonstrate that the improvements achieved using our solution
are proportional to the size of the training and testing data sets. Thus, the proposed solution is posited as an effective solu-
tion to context classification in large scale system in ‘real-world’ applications.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (NSFC) with Grant Nos. 61073148 and
61272442, and Key Basic Research Project of the Science and Technology Commission of Shanghai Municipality with Grant
No. 12JC1405400.

References

[1] G.S. Aoude, V.R. Desaraju, L.H. Stephens, J.P. How, Driver behavior classification at intersections and validation on large naturalistic data set, IEEE
Transactions on Intelligent Transportation Systems 13 (2) (2012) 724–736.

[2] E.J. Bayro-Corrochano, N. Arana-Daniel, Clifford support vector machines for classification, regression, and recurrence, IEEE Transactions on Neural
Networks 21 (11) (2010) 1731–1746.

[3] K. Bernard, Y. Tarabalka, J. Angulo, et al, Spectral–spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach,
IEEE Transactions on Image Processing 21 (4) (2012) 2008–2021.

[4] B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in: Proceedings of the 5th Annual ACM Workshop on
Computational Learning Theory, ACM Press, Pittsburgh, PA, 1992, pp. l44–l52.

[5] S. Bouyuklieva, I. Bouyukliev, An algorithm for classification of binary self-dual codes, IEEE Transactions on Information Theory 58 (6) (2012) 3933–
3940.

[6] F. Bovolo, L. Bruzzone, L. Carlin, A novel technique for subpixel image classification based on support vector machine, IEEE Transactions on Image
Processing 19 (11) (2010) 2983–2999.

[7] A. Bremler-Barr, D. Hendler, Space-efficient TCAM-based classification using gray coding, IEEE Transactions on Computers 61 (1) (2012) 18–30.
[8] C.J.C. Burges, B. Scholkopf, Improving the accuracy and speed of support vector learning machines, in: Advances in Neural Information Processing

Systems 9, MIT Press, Cambridge, MA, 1997, pp. 375–381.
[9] L.J. Cao, S.S. Keerthi, C.J. Ong, J.Q. Zhang, et al, Parallel sequential minimal optimization for the training of support vector machines, IEEE Transactions

on Neural Networks 17 (4) (2006) 1039–1049.
[10] S. Cesare, Y. Xiang, W.L. Zhou, Malwise – an effective and efficient classification system for packed and polymorphic malware, IEEE Transactions on

Computer PP (99) (2012).
[11] X. Chang, S.C. Cheung, W.K. Chan, et al., Heuristics-based strategies for resolving context inconsistencies in pervasive computing applications, in:

Proceedigns of ICDCS, 2008, pp. 713–721.
[12] W.A. Chaovalitwongse, Y.J. Fan, Support feature machine for classification of abnormal brain activity, in: Proceedings of KDD 2007, August 2007, San

Jose, California, USA, 2007.
[13] W.-J. Choi, T.-S. Choi, Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed

tomography images, Information Sciences 212 (1) (2012) 57–78.
[14] J.-F. Connolly, E. Granger, R. Sabourin, An adaptive classification system for video-based face recognition, Information Sciences 192 (1) (2012) 50–70.
[15] D. DeCoste, K. Wagstaff, Alpha seeding for support vector machines, in: Proceedings of International Conference on Knowledge Discovery and Data

Mining(KDD-2000), 2000.
[16] Y.S. Dong, J.W. Ma, Bayesian texture classification based on contourlet transform and BYY harmony learning of poisson mixtures, IEEE Transactions on

Image Processing 21 (3) (2012) 909–918.
[17] R. Hosseini, S.D. Qanadli, S. Barman, et al, An automatic approach for learning and tuning Gaussian interval type-2 fuzzy membership functions applied

to lung CAD classification system, IEEE Transactions on Fuzzy Systems 20 (2) (2012) 224–234.
[18] C.W. Hsu, C.J. Lin, A simple decomposition method for support vector machines, Machines Learning 46 (2002) 291–314.
[19] D. Isa, L.H. Lee, V.P. Kallimani, R. RajKumar, Text document preprocessing with the Bayes formula for classification using the support vector machine,

IEEE Transactions on Knowledge and Data Engineering 20 (9) (2008) 1264–1272.
[20] Jayadeva, R. Khemchandani, S. Chandra, Twin support vector machines for pattern classification, IEEE Transactions on Patter Analysis and Machine

Intelligence 29 (5) (2007) 905–910.
[21] T. Joachims, Making large-scale support vector machine learning practical, Advances in Kernel Methods Support Vector Machines, 1999.
[22] T. Joachims. Web page on SVMLight: <http://www-ai.cs.uni-dortmund.de/SOFTWATE/SVMLIGHT/svmlight.eng.html>.
[23] A.J. Joshi, F. Porikli, N. Papanikolopoulos, Scalable active learning for multi-class image classification, in: IEEE Transactions on Pattern Analysis and

Machine Intelligence PP(99), 2012, p. 1.
[24] T.G. Kanter, HotTown, enabling context-aware and extensible mobile interactive spaces, IEEE Wireless Communications 9 (5) (2002) 18–27.
[25] T.-W. Kuan, J.-F. Wang, J.-C. Wang, et al., VLSI design of an SVM learning core on sequential minimal optimization algorithm, in: IEEE Transactions on

Very Large Scale Integration (VLSI) Systems PP(99), 2011, pp. 1–11.

http://www-ai.cs.uni-dortmund.de/SOFTWATE/SVMLIGHT/svmlight.eng.html


436 F. Tang et al. / Information Sciences 232 (2013) 419–436
[26] D.C. Li, C.W. Liu, Extending attribute information for small data set classification, IEEE Transactions on Knowledge and Data Engineering 24 (3) (2012)
452–464.

[27] C.T. Lin, C.M. Yeh, S.F. Liang, et al, Support-vector-based fuzzy neural network for pattern classification, IEEE Transactions on Fuzzy Systems 14 (1)
(2006) 31–41.

[28] P. Lingras, C. Butz, Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi-classification, Information Sciences 177 (2007) 3782–
3798.

[29] J.M. Ma, M.N. Nguyen, J.C. Rajapakse, Gene classification using codon usage and support vector machines, IEEE/ACM Transactions on Computational
Biology and Bioinformatics 6 (1) (2009) 134–143.

[30] S. Maji, A.C. Berg, J. Malik, Efficient classification for additive kernel SVMs, IEEE Transactions on Pattern Analysis and Machine Intelligence, PP (99)
(2012).

[31] S. Maldonado, R. Weber, J. Basak, Simultaneous feature selection and classification using kernel-penalized support vector machines, Information
Sciences 181 (2011) 115–128.

[32] M.M. Masud, Q. Chen, L. Khan, et al., Classification and adaptive novel class detection of feature-evolving data streams. IEEE Transactions on
Knowledge and Data Engineering, PP (99) (2012).

[33] P.D. Meo, A. Nocera, G. Terracina, D. Ursino, Recommendation of similar users, resources and social networks in a social internetworking scenario,
Information Sciences 181 (7) (2011) 1285–1305.

[34] S. Moustakidis, G. Mallinis, N. Koutsias, et al, SVM-Based Fuzzy Decision Trees for Classification of High Spatial Resolution Remote Sensing Images, IEEE
Transactions on Geoscience and Remote Sensing 50 (1) (2012) 149–169.

[35] S. Mukherjee, E. Osuna, F. Girosi, Nonlinear prediction of chaotic time series using support vector machines, in: Proc. of IEEE NNSP’97, Amelia Island, FL,
1997.

[36] E. Osuna, R. Freund, F. Girosi, An improved training algorithm for support vector machines, in: Proceedings of the 1997 IEEE Workshop on Neural
Networks for Signal Processing, New York, 1997, pp. 276–285.

[37] E. Osuna, R. Freund, F. Girosi, Training support vector machines: an application to face detection, in: Proceedings of IEEE Conference on Computer
Vision and, Pattern Recognition, 1997, pp. 130–136.

[38] S.N. Pang, T. Ban, Y. Kadobayashi, N. Kasabov, Personalized mode transductive spanning SVM classification tree, Information Sciences 181 (2011)
2071–2085.

[39] M. Papadonikolakis, C.-S. Bouganis, Novel cascade FPGA accelerator for support vector machines classification, IEEE Transactions on Neural Networks
and Learning Systems 23 (7) (2012) 1040–1052.

[40] X.J. Peng, D. Xu, Twin Mahalanobis distance-based suppor tvector machines for pattern recognition, Information Sciences 200 (1) (2012) 22–37.
[41] J.C. Platt, Fast Training of Support Vector Machines Using Sequential Minimal Potimization, Advances in Kernel Methods: Support Vector Machines

(Book), MIT Press Cambridge, MA, USA, 1999.
[42] R.C. Prati, G.E.A.P.A. Batista, M.C. Monard, A survey on graphical methods for classification predictive performance evaluation, IEEE Transactions on

Knowledge and Data Engineering 23 (11) (2011) 1601–1618.
[43] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.
[44] V. Viswanathana, K. Ilangob, Ranking semantic relationships between two entities using personalization in context specification, Information Sciences

207 (10) (2012) 35–49.
[45] J. Wu, A framework for learning comprehensible theories in XML document classification, IEEE Transactions on Knowledge and Data Engineering 24 (1)

(2012) 1–14.
[46] Z.W. Yu, X.S. Zhou, D.Q. Zhang, et al, Supporting context-aware media recommendations for smart phones, IEEE Pervasive Computing 5 (3) (2006) 68–

75.


	An efficient classification approach for large-scale mobile  ubiquitous computing
	1 Introduction
	2 Preliminaries and background
	2.1 Preliminaries
	2.2 Background

	3 Semi-sparse matrix multiplication
	3.1 Motivation
	3.2 Semi-sparse matrix multiplication algorithm
	3.3 Performance analysis for our semi-sparse algorithm
	3.4 Dynamical implementation

	4 Multi-class multi-label classification and parallelization for SVMTorch
	4.1 multi-class multi-label classification extension for SVMTorch
	4.1.1 Multi-class classification with single label or multiple labels
	4.1.2 SVMTorch based multi-class multi-label classification

	4.2 SVMTorch parallelization
	4.2.1 Parallel training
	4.2.2 Parallel testing


	5 Experiments and performance evaluation
	5.1 Environment and setting
	5.2 Performance evaluation
	5.2.1 Performance evaluation on our semi-sparse algorithm
	5.2.2 Performance evaluation on our multi-class multi-label classification approach
	5.2.3 Performance evaluation on our parallelization approach
	5.2.4 A Chinese web page classifier and performance evaluation


	6 Conclusions
	Acknowledgment
	References


